06731b14d7
- Catch 1.12.0 -> 1.12.2 - Google Benchmark 1.3.0 -> 1.4.1
177 lines
7.3 KiB
C++
Executable file
177 lines
7.3 KiB
C++
Executable file
// ----------------------------------------------------------------------
|
|
// CycleClock
|
|
// A CycleClock tells you the current time in Cycles. The "time"
|
|
// is actually time since power-on. This is like time() but doesn't
|
|
// involve a system call and is much more precise.
|
|
//
|
|
// NOTE: Not all cpu/platform/kernel combinations guarantee that this
|
|
// clock increments at a constant rate or is synchronized across all logical
|
|
// cpus in a system.
|
|
//
|
|
// If you need the above guarantees, please consider using a different
|
|
// API. There are efforts to provide an interface which provides a millisecond
|
|
// granularity and implemented as a memory read. A memory read is generally
|
|
// cheaper than the CycleClock for many architectures.
|
|
//
|
|
// Also, in some out of order CPU implementations, the CycleClock is not
|
|
// serializing. So if you're trying to count at cycles granularity, your
|
|
// data might be inaccurate due to out of order instruction execution.
|
|
// ----------------------------------------------------------------------
|
|
|
|
#ifndef BENCHMARK_CYCLECLOCK_H_
|
|
#define BENCHMARK_CYCLECLOCK_H_
|
|
|
|
#include <cstdint>
|
|
|
|
#include "benchmark/benchmark.h"
|
|
#include "internal_macros.h"
|
|
|
|
#if defined(BENCHMARK_OS_MACOSX)
|
|
#include <mach/mach_time.h>
|
|
#endif
|
|
// For MSVC, we want to use '_asm rdtsc' when possible (since it works
|
|
// with even ancient MSVC compilers), and when not possible the
|
|
// __rdtsc intrinsic, declared in <intrin.h>. Unfortunately, in some
|
|
// environments, <windows.h> and <intrin.h> have conflicting
|
|
// declarations of some other intrinsics, breaking compilation.
|
|
// Therefore, we simply declare __rdtsc ourselves. See also
|
|
// http://connect.microsoft.com/VisualStudio/feedback/details/262047
|
|
#if defined(COMPILER_MSVC) && !defined(_M_IX86)
|
|
extern "C" uint64_t __rdtsc();
|
|
#pragma intrinsic(__rdtsc)
|
|
#endif
|
|
|
|
#ifndef BENCHMARK_OS_WINDOWS
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
#endif
|
|
|
|
#ifdef BENCHMARK_OS_EMSCRIPTEN
|
|
#include <emscripten.h>
|
|
#endif
|
|
|
|
namespace benchmark {
|
|
// NOTE: only i386 and x86_64 have been well tested.
|
|
// PPC, sparc, alpha, and ia64 are based on
|
|
// http://peter.kuscsik.com/wordpress/?p=14
|
|
// with modifications by m3b. See also
|
|
// https://setisvn.ssl.berkeley.edu/svn/lib/fftw-3.0.1/kernel/cycle.h
|
|
namespace cycleclock {
|
|
// This should return the number of cycles since power-on. Thread-safe.
|
|
inline BENCHMARK_ALWAYS_INLINE int64_t Now() {
|
|
#if defined(BENCHMARK_OS_MACOSX)
|
|
// this goes at the top because we need ALL Macs, regardless of
|
|
// architecture, to return the number of "mach time units" that
|
|
// have passed since startup. See sysinfo.cc where
|
|
// InitializeSystemInfo() sets the supposed cpu clock frequency of
|
|
// macs to the number of mach time units per second, not actual
|
|
// CPU clock frequency (which can change in the face of CPU
|
|
// frequency scaling). Also note that when the Mac sleeps, this
|
|
// counter pauses; it does not continue counting, nor does it
|
|
// reset to zero.
|
|
return mach_absolute_time();
|
|
#elif defined(BENCHMARK_OS_EMSCRIPTEN)
|
|
// this goes above x86-specific code because old versions of Emscripten
|
|
// define __x86_64__, although they have nothing to do with it.
|
|
return static_cast<int64_t>(emscripten_get_now() * 1e+6);
|
|
#elif defined(__i386__)
|
|
int64_t ret;
|
|
__asm__ volatile("rdtsc" : "=A"(ret));
|
|
return ret;
|
|
#elif defined(__x86_64__) || defined(__amd64__)
|
|
uint64_t low, high;
|
|
__asm__ volatile("rdtsc" : "=a"(low), "=d"(high));
|
|
return (high << 32) | low;
|
|
#elif defined(__powerpc__) || defined(__ppc__)
|
|
// This returns a time-base, which is not always precisely a cycle-count.
|
|
int64_t tbl, tbu0, tbu1;
|
|
asm("mftbu %0" : "=r"(tbu0));
|
|
asm("mftb %0" : "=r"(tbl));
|
|
asm("mftbu %0" : "=r"(tbu1));
|
|
tbl &= -static_cast<int64_t>(tbu0 == tbu1);
|
|
// high 32 bits in tbu1; low 32 bits in tbl (tbu0 is garbage)
|
|
return (tbu1 << 32) | tbl;
|
|
#elif defined(__sparc__)
|
|
int64_t tick;
|
|
asm(".byte 0x83, 0x41, 0x00, 0x00");
|
|
asm("mov %%g1, %0" : "=r"(tick));
|
|
return tick;
|
|
#elif defined(__ia64__)
|
|
int64_t itc;
|
|
asm("mov %0 = ar.itc" : "=r"(itc));
|
|
return itc;
|
|
#elif defined(COMPILER_MSVC) && defined(_M_IX86)
|
|
// Older MSVC compilers (like 7.x) don't seem to support the
|
|
// __rdtsc intrinsic properly, so I prefer to use _asm instead
|
|
// when I know it will work. Otherwise, I'll use __rdtsc and hope
|
|
// the code is being compiled with a non-ancient compiler.
|
|
_asm rdtsc
|
|
#elif defined(COMPILER_MSVC)
|
|
return __rdtsc();
|
|
#elif defined(BENCHMARK_OS_NACL)
|
|
// Native Client validator on x86/x86-64 allows RDTSC instructions,
|
|
// and this case is handled above. Native Client validator on ARM
|
|
// rejects MRC instructions (used in the ARM-specific sequence below),
|
|
// so we handle it here. Portable Native Client compiles to
|
|
// architecture-agnostic bytecode, which doesn't provide any
|
|
// cycle counter access mnemonics.
|
|
|
|
// Native Client does not provide any API to access cycle counter.
|
|
// Use clock_gettime(CLOCK_MONOTONIC, ...) instead of gettimeofday
|
|
// because is provides nanosecond resolution (which is noticable at
|
|
// least for PNaCl modules running on x86 Mac & Linux).
|
|
// Initialize to always return 0 if clock_gettime fails.
|
|
struct timespec ts = { 0, 0 };
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
return static_cast<int64_t>(ts.tv_sec) * 1000000000 + ts.tv_nsec;
|
|
#elif defined(__aarch64__)
|
|
// System timer of ARMv8 runs at a different frequency than the CPU's.
|
|
// The frequency is fixed, typically in the range 1-50MHz. It can be
|
|
// read at CNTFRQ special register. We assume the OS has set up
|
|
// the virtual timer properly.
|
|
int64_t virtual_timer_value;
|
|
asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
|
|
return virtual_timer_value;
|
|
#elif defined(__ARM_ARCH)
|
|
// V6 is the earliest arch that has a standard cyclecount
|
|
// Native Client validator doesn't allow MRC instructions.
|
|
#if (__ARM_ARCH >= 6)
|
|
uint32_t pmccntr;
|
|
uint32_t pmuseren;
|
|
uint32_t pmcntenset;
|
|
// Read the user mode perf monitor counter access permissions.
|
|
asm volatile("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
|
|
if (pmuseren & 1) { // Allows reading perfmon counters for user mode code.
|
|
asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
|
|
if (pmcntenset & 0x80000000ul) { // Is it counting?
|
|
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
|
|
// The counter is set up to count every 64th cycle
|
|
return static_cast<int64_t>(pmccntr) * 64; // Should optimize to << 6
|
|
}
|
|
}
|
|
#endif
|
|
struct timeval tv;
|
|
gettimeofday(&tv, nullptr);
|
|
return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
|
|
#elif defined(__mips__)
|
|
// mips apparently only allows rdtsc for superusers, so we fall
|
|
// back to gettimeofday. It's possible clock_gettime would be better.
|
|
struct timeval tv;
|
|
gettimeofday(&tv, nullptr);
|
|
return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
|
|
#elif defined(__s390__) // Covers both s390 and s390x.
|
|
// Return the CPU clock.
|
|
uint64_t tsc;
|
|
asm("stck %0" : "=Q" (tsc) : : "cc");
|
|
return tsc;
|
|
#else
|
|
// The soft failover to a generic implementation is automatic only for ARM.
|
|
// For other platforms the developer is expected to make an attempt to create
|
|
// a fast implementation and use generic version if nothing better is available.
|
|
#error You need to define CycleTimer for your OS and CPU
|
|
#endif
|
|
}
|
|
} // end namespace cycleclock
|
|
} // end namespace benchmark
|
|
|
|
#endif // BENCHMARK_CYCLECLOCK_H_
|