2.4 KiB
Design goals
There are myriads of JSON libraries out there, and each may even have its reason to exist. Our class had these design goals:
-
Intuitive syntax. In languages such as Python, JSON feels like a first class data type. We used all the operator magic of modern C++ to achieve the same feeling in your code. Check out the examples below and you'll know what I mean.
-
Trivial integration. Our whole code consists of a single header file
json.hpp
. That's it. No library, no subproject, no dependencies, no complex build system. The class is written in vanilla C++11. All in all, everything should require no adjustment of your compiler flags or project settings. -
Serious testing. Our class is heavily unit-tested and covers 100% of the code, including all exceptional behavior. Furthermore, we checked with Valgrind and the Clang Sanitizers that there are no memory leaks. Google OSS-Fuzz additionally runs fuzz tests against all parsers 24/7, effectively executing billions of tests so far. To maintain high quality, the project is following the Core Infrastructure Initiative (CII) best practices.
Other aspects were not so important to us:
-
Memory efficiency. Each JSON object has an overhead of one pointer (the maximal size of a union) and one enumeration element (1 byte). The default generalization uses the following C++ data types:
std::string
for strings,int64_t
,uint64_t
ordouble
for numbers,std::map
for objects,std::vector
for arrays, andbool
for Booleans. However, you can template the generalized classbasic_json
to your needs. -
Speed. There are certainly faster JSON libraries out there. However, if your goal is to speed up your development by adding JSON support with a single header, then this library is the way to go. If you know how to use a
std::vector
orstd::map
, you are already set.
See the contribution guidelines for more information.