06731b14d7
- Catch 1.12.0 -> 1.12.2 - Google Benchmark 1.3.0 -> 1.4.1
172 lines
5.3 KiB
C++
Executable file
172 lines
5.3 KiB
C++
Executable file
#include "string_util.h"
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstdarg>
|
|
#include <cstdio>
|
|
#include <memory>
|
|
#include <sstream>
|
|
|
|
#include "arraysize.h"
|
|
|
|
namespace benchmark {
|
|
namespace {
|
|
|
|
// kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta.
|
|
const char kBigSIUnits[] = "kMGTPEZY";
|
|
// Kibi, Mebi, Gibi, Tebi, Pebi, Exbi, Zebi, Yobi.
|
|
const char kBigIECUnits[] = "KMGTPEZY";
|
|
// milli, micro, nano, pico, femto, atto, zepto, yocto.
|
|
const char kSmallSIUnits[] = "munpfazy";
|
|
|
|
// We require that all three arrays have the same size.
|
|
static_assert(arraysize(kBigSIUnits) == arraysize(kBigIECUnits),
|
|
"SI and IEC unit arrays must be the same size");
|
|
static_assert(arraysize(kSmallSIUnits) == arraysize(kBigSIUnits),
|
|
"Small SI and Big SI unit arrays must be the same size");
|
|
|
|
static const int64_t kUnitsSize = arraysize(kBigSIUnits);
|
|
|
|
void ToExponentAndMantissa(double val, double thresh, int precision,
|
|
double one_k, std::string* mantissa,
|
|
int64_t* exponent) {
|
|
std::stringstream mantissa_stream;
|
|
|
|
if (val < 0) {
|
|
mantissa_stream << "-";
|
|
val = -val;
|
|
}
|
|
|
|
// Adjust threshold so that it never excludes things which can't be rendered
|
|
// in 'precision' digits.
|
|
const double adjusted_threshold =
|
|
std::max(thresh, 1.0 / std::pow(10.0, precision));
|
|
const double big_threshold = adjusted_threshold * one_k;
|
|
const double small_threshold = adjusted_threshold;
|
|
// Values in ]simple_threshold,small_threshold[ will be printed as-is
|
|
const double simple_threshold = 0.01;
|
|
|
|
if (val > big_threshold) {
|
|
// Positive powers
|
|
double scaled = val;
|
|
for (size_t i = 0; i < arraysize(kBigSIUnits); ++i) {
|
|
scaled /= one_k;
|
|
if (scaled <= big_threshold) {
|
|
mantissa_stream << scaled;
|
|
*exponent = i + 1;
|
|
*mantissa = mantissa_stream.str();
|
|
return;
|
|
}
|
|
}
|
|
mantissa_stream << val;
|
|
*exponent = 0;
|
|
} else if (val < small_threshold) {
|
|
// Negative powers
|
|
if (val < simple_threshold) {
|
|
double scaled = val;
|
|
for (size_t i = 0; i < arraysize(kSmallSIUnits); ++i) {
|
|
scaled *= one_k;
|
|
if (scaled >= small_threshold) {
|
|
mantissa_stream << scaled;
|
|
*exponent = -static_cast<int64_t>(i + 1);
|
|
*mantissa = mantissa_stream.str();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
mantissa_stream << val;
|
|
*exponent = 0;
|
|
} else {
|
|
mantissa_stream << val;
|
|
*exponent = 0;
|
|
}
|
|
*mantissa = mantissa_stream.str();
|
|
}
|
|
|
|
std::string ExponentToPrefix(int64_t exponent, bool iec) {
|
|
if (exponent == 0) return "";
|
|
|
|
const int64_t index = (exponent > 0 ? exponent - 1 : -exponent - 1);
|
|
if (index >= kUnitsSize) return "";
|
|
|
|
const char* array =
|
|
(exponent > 0 ? (iec ? kBigIECUnits : kBigSIUnits) : kSmallSIUnits);
|
|
if (iec)
|
|
return array[index] + std::string("i");
|
|
else
|
|
return std::string(1, array[index]);
|
|
}
|
|
|
|
std::string ToBinaryStringFullySpecified(double value, double threshold,
|
|
int precision, double one_k = 1024.0) {
|
|
std::string mantissa;
|
|
int64_t exponent;
|
|
ToExponentAndMantissa(value, threshold, precision, one_k, &mantissa,
|
|
&exponent);
|
|
return mantissa + ExponentToPrefix(exponent, false);
|
|
}
|
|
|
|
} // end namespace
|
|
|
|
void AppendHumanReadable(int n, std::string* str) {
|
|
std::stringstream ss;
|
|
// Round down to the nearest SI prefix.
|
|
ss << ToBinaryStringFullySpecified(n, 1.0, 0);
|
|
*str += ss.str();
|
|
}
|
|
|
|
std::string HumanReadableNumber(double n, double one_k) {
|
|
// 1.1 means that figures up to 1.1k should be shown with the next unit down;
|
|
// this softens edge effects.
|
|
// 1 means that we should show one decimal place of precision.
|
|
return ToBinaryStringFullySpecified(n, 1.1, 1, one_k);
|
|
}
|
|
|
|
std::string StrFormatImp(const char* msg, va_list args) {
|
|
// we might need a second shot at this, so pre-emptivly make a copy
|
|
va_list args_cp;
|
|
va_copy(args_cp, args);
|
|
|
|
// TODO(ericwf): use std::array for first attempt to avoid one memory
|
|
// allocation guess what the size might be
|
|
std::array<char, 256> local_buff;
|
|
std::size_t size = local_buff.size();
|
|
// 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation
|
|
// in the android-ndk
|
|
auto ret = vsnprintf(local_buff.data(), size, msg, args_cp);
|
|
|
|
va_end(args_cp);
|
|
|
|
// handle empty expansion
|
|
if (ret == 0) return std::string{};
|
|
if (static_cast<std::size_t>(ret) < size)
|
|
return std::string(local_buff.data());
|
|
|
|
// we did not provide a long enough buffer on our first attempt.
|
|
// add 1 to size to account for null-byte in size cast to prevent overflow
|
|
size = static_cast<std::size_t>(ret) + 1;
|
|
auto buff_ptr = std::unique_ptr<char[]>(new char[size]);
|
|
// 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation
|
|
// in the android-ndk
|
|
ret = vsnprintf(buff_ptr.get(), size, msg, args);
|
|
return std::string(buff_ptr.get());
|
|
}
|
|
|
|
std::string StrFormat(const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
std::string tmp = StrFormatImp(format, args);
|
|
va_end(args);
|
|
return tmp;
|
|
}
|
|
|
|
void ReplaceAll(std::string* str, const std::string& from,
|
|
const std::string& to) {
|
|
std::size_t start = 0;
|
|
while ((start = str->find(from, start)) != std::string::npos) {
|
|
str->replace(start, from.length(), to);
|
|
start += to.length();
|
|
}
|
|
}
|
|
|
|
} // end namespace benchmark
|