json/src/json.hpp.re2c
2015-02-18 22:28:56 +01:00

3193 lines
96 KiB
Text

/*!
@file
@copyright The code is licensed under the MIT License
<http://opensource.org/licenses/MIT>,
Copyright (c) 2013-2015 Niels Lohmann.
@author Niels Lohmann <http://nlohmann.me>
@see https://github.com/nlohmann/json
*/
#ifndef _NLOHMANN_JSON
#define _NLOHMANN_JSON
#include <algorithm>
#include <cmath>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <limits>
#include <map>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
/*!
@see https://github.com/nlohmann
*/
namespace nlohmann
{
/*!
@brief JSON
@tparam ObjectType type for JSON objects
(@c std::map by default)
@tparam ArrayType type for JSON arrays
(@c std::vector by default)
@tparam StringType type for JSON strings and object keys
(@c std::string by default)
@tparam BooleanType type for JSON booleans
(@c bool by default)
@tparam NumberIntegerType type for JSON integer numbers
(@c int64_t by default)
@tparam NumberFloatType type for JSON floating-point numbers
(@c double by default)
@tparam Allocator type of the allocator to use
(@c std::allocator by default)
@note ObjectType trick from http://stackoverflow.com/a/9860911
@see RFC 7159 <http://rfc7159.net/rfc7159>
@see ECMA 404 <http://www.ecma-international.org/publications/standards/Ecma-404.htm>
*/
template <
template<typename U, typename V, typename... Args> class ObjectType = std::map,
template<typename U, typename... Args> class ArrayType = std::vector,
class StringType = std::string,
class BooleanType = bool,
class NumberIntegerType = int64_t,
class NumberFloatType = double,
template<typename U> class Allocator = std::allocator
>
class basic_json
{
public:
/////////////////////
// container types //
/////////////////////
// forward declarations
class iterator;
class const_iterator;
/// the type of elements in a basic_json container
using value_type = basic_json;
/// the type of an element reference
using reference = basic_json&;
/// the type of an element const reference
using const_reference = const basic_json&;
/// the type of an element pointer
using pointer = basic_json*;
/// the type of an element const pointer
using const_pointer = const basic_json*;
/// a type to represent differences between iterators
using difference_type = std::ptrdiff_t;
/// a type to represent container sizes
using size_type = std::size_t;
/// an iterator for a basic_json container
using iterator = basic_json::iterator;
/// a const iterator for a basic_json container
using const_iterator = basic_json::const_iterator;
/// a reverse iterator for a basic_json container
using reverse_iterator = std::reverse_iterator<iterator>;
/// a const reverse iterator for a basic_json container
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
///////////////////////////
// JSON value data types //
///////////////////////////
/// a type for an object
using object_t = ObjectType<StringType, basic_json>;
/// a type for an array
using array_t = ArrayType<basic_json>;
/// a type for a string
using string_t = StringType;
/// a type for a boolean
using boolean_t = BooleanType;
/// a type for a number (integer)
using number_integer_t = NumberIntegerType;
/// a type for a number (floating-point)
using number_float_t = NumberFloatType;
/// a type for list initialization
using list_init_t = std::initializer_list<basic_json>;
////////////////////////
// JSON value storage //
////////////////////////
/// a JSON value
union json_value
{
/// object (stored with pointer to save storage)
object_t* object;
/// array (stored with pointer to save storage)
array_t* array;
/// string (stored with pointer to save storage)
string_t* string;
/// bolean
boolean_t boolean;
/// number (integer)
number_integer_t number_integer;
/// number (floating-point)
number_float_t number_float;
/// default constructor (for null values)
json_value() = default;
/// constructor for booleans
json_value(boolean_t v) : boolean(v) {}
/// constructor for numbers (integer)
json_value(number_integer_t v) : number_integer(v) {}
/// constructor for numbers (floating-point)
json_value(number_float_t v) : number_float(v) {}
};
/////////////////////////////////
// JSON value type enumeration //
/////////////////////////////////
/// JSON value type enumeration
enum class value_t : uint8_t
{
null, ///< null value
object, ///< object (unordered set of name/value pairs)
array, ///< array (ordered collection of values)
string, ///< string value
boolean, ///< boolean value
number_integer, ///< number value (integer)
number_float ///< number value (floating-point)
};
//////////////////
// constructors //
//////////////////
/// create an empty value with a given type
inline basic_json(const value_t value)
: m_type(value)
{
switch (m_type)
{
case (value_t::null):
{
break;
}
case (value_t::object):
{
Allocator<object_t> alloc;
m_value.object = alloc.allocate(1);
alloc.construct(m_value.object);
break;
}
case (value_t::array):
{
Allocator<array_t> alloc;
m_value.array = alloc.allocate(1);
alloc.construct(m_value.array);
break;
}
case (value_t::string):
{
Allocator<string_t> alloc;
m_value.string = alloc.allocate(1);
alloc.construct(m_value.string, "");
break;
}
case (value_t::boolean):
{
m_value.boolean = boolean_t(false);
break;
}
case (value_t::number_integer):
{
m_value.number_integer = number_integer_t(0);
break;
}
case (value_t::number_float):
{
m_value.number_float = number_float_t(0.0);
break;
}
}
}
/// create a null object (implicitly)
inline basic_json() noexcept
: m_type(value_t::null)
{}
/// create a null object (explicitly)
inline basic_json(std::nullptr_t) noexcept
: m_type(value_t::null)
{}
/// create an object (explicit)
inline basic_json(const object_t& value)
: m_type(value_t::object)
{
Allocator<object_t> alloc;
m_value.object = alloc.allocate(1);
alloc.construct(m_value.object, value);
}
/// create an object (implicit)
template <class V, typename
std::enable_if<
std::is_constructible<string_t, typename V::key_type>::value and
std::is_constructible<basic_json, typename V::mapped_type>::value, int>::type
= 0>
inline basic_json(const V& value)
: m_type(value_t::object)
{
Allocator<object_t> alloc;
m_value.object = alloc.allocate(1);
alloc.construct(m_value.object, value.begin(), value.end());
}
/// create an array (explicit)
inline basic_json(const array_t& value)
: m_type(value_t::array)
{
Allocator<array_t> alloc;
m_value.array = alloc.allocate(1);
alloc.construct(m_value.array, value);
}
/// create an array (implicit)
template <class V, typename
std::enable_if<
not std::is_same<V, basic_json::iterator>::value and
not std::is_same<V, basic_json::const_iterator>::value and
not std::is_same<V, basic_json::reverse_iterator>::value and
not std::is_same<V, basic_json::const_reverse_iterator>::value and
not std::is_same<V, typename array_t::iterator>::value and
not std::is_same<V, typename array_t::const_iterator>::value and
std::is_constructible<basic_json, typename V::value_type>::value, int>::type
= 0>
inline basic_json(const V& value)
: m_type(value_t::array)
{
Allocator<array_t> alloc;
m_value.array = alloc.allocate(1);
alloc.construct(m_value.array, value.begin(), value.end());
}
/// create a string (explicit)
inline basic_json(const string_t& value)
: m_type(value_t::string)
{
Allocator<string_t> alloc;
m_value.string = alloc.allocate(1);
alloc.construct(m_value.string, value);
}
/// create a string (explicit)
inline basic_json(const typename string_t::value_type* value)
: m_type(value_t::string)
{
Allocator<string_t> alloc;
m_value.string = alloc.allocate(1);
alloc.construct(m_value.string, value);
}
/// create a string (implicit)
template <class V, typename
std::enable_if<
std::is_constructible<string_t, V>::value, int>::type
= 0>
inline basic_json(const V& value)
: basic_json(string_t(value))
{}
/// create a boolean (explicit)
inline basic_json(boolean_t value)
: m_type(value_t::boolean), m_value(value)
{}
/// create an integer number (explicit)
inline basic_json(const number_integer_t& value)
: m_type(value_t::number_integer), m_value(value)
{}
/// create an integer number (implicit)
template<typename T, typename
std::enable_if<
std::is_constructible<number_integer_t, T>::value and
std::numeric_limits<T>::is_integer, T>::type
= 0>
inline basic_json(const T value) noexcept
: m_type(value_t::number_integer), m_value(number_integer_t(value))
{}
/// create a floating-point number (explicit)
inline basic_json(const number_float_t& value)
: m_type(value_t::number_float), m_value(value)
{}
/// create a floating-point number (implicit)
template<typename T, typename = typename
std::enable_if<
std::is_constructible<number_float_t, T>::value and
std::is_floating_point<T>::value>::type
>
inline basic_json(const T value) noexcept
: m_type(value_t::number_float), m_value(number_float_t(value))
{}
/// create a container (array or object) from an initializer list
inline basic_json(list_init_t l, bool type_deduction = true, value_t manual_type = value_t::array)
{
// the initializer list could describe an object
bool is_object = true;
// check if each element is an array with two elements whose first element
// is a string
for (const auto& element : l)
{
if ((element.m_final and element.m_type == value_t::array)
or (element.m_type != value_t::array or element.size() != 2
or element[0].m_type != value_t::string))
{
// we found an element that makes it impossible to use the
// initializer list as object
is_object = false;
break;
}
}
// adjust type if type deduction is not wanted
if (not type_deduction)
{
// mark this object's type as final
m_final = true;
// if array is wanted, do not create an object though possible
if (manual_type == value_t::array)
{
is_object = false;
}
// if object is wanted but impossible, throw an exception
if (manual_type == value_t::object and not is_object)
{
throw std::logic_error("cannot create JSON object from initializer list");
}
}
if (is_object)
{
// the initializer list is a list of pairs -> create object
m_type = value_t::object;
Allocator<object_t> alloc;
m_value.object = alloc.allocate(1);
alloc.construct(m_value.object);
for (auto& element : l)
{
m_value.object->emplace(std::move(*(element[0].m_value.string)), std::move(element[1]));
}
}
else
{
// the initializer list describes an array -> create array
m_type = value_t::array;
Allocator<array_t> alloc;
m_value.array = alloc.allocate(1);
alloc.construct(m_value.array, std::move(l));
}
}
/// explicitly create an array from an initializer list
inline static basic_json array(list_init_t l = list_init_t())
{
return basic_json(l, false, value_t::array);
}
/// explicitly create an object from an initializer list
inline static basic_json object(list_init_t l = list_init_t())
{
return basic_json(l, false, value_t::object);
}
///////////////////////////////////////
// other constructors and destructor //
///////////////////////////////////////
/// copy constructor
inline basic_json(const basic_json& other)
: m_type(other.m_type)
{
switch (m_type)
{
case (value_t::null):
{
break;
}
case (value_t::object):
{
Allocator<object_t> alloc;
m_value.object = alloc.allocate(1);
alloc.construct(m_value.object, *other.m_value.object);
break;
}
case (value_t::array):
{
Allocator<array_t> alloc;
m_value.array = alloc.allocate(1);
alloc.construct(m_value.array, *other.m_value.array);
break;
}
case (value_t::string):
{
Allocator<string_t> alloc;
m_value.string = alloc.allocate(1);
alloc.construct(m_value.string, *other.m_value.string);
break;
}
case (value_t::boolean):
{
m_value.boolean = other.m_value.boolean;
break;
}
case (value_t::number_integer):
{
m_value.number_integer = other.m_value.number_integer;
break;
}
case (value_t::number_float):
{
m_value.number_float = other.m_value.number_float;
break;
}
}
}
/// move constructor
inline basic_json(basic_json&& other) noexcept
: m_type(std::move(other.m_type)),
m_value(std::move(other.m_value))
{
// invalidate payload
other.m_type = value_t::null;
other.m_value = {};
}
/// copy assignment
inline reference& operator=(basic_json other) noexcept (
std::is_nothrow_move_constructible<value_t>::value and
std::is_nothrow_move_assignable<value_t>::value and
std::is_nothrow_move_constructible<json_value>::value and
std::is_nothrow_move_assignable<json_value>::value
)
{
std::swap(m_type, other.m_type);
std::swap(m_value, other.m_value);
return *this;
}
/// destructor
inline ~basic_json() noexcept
{
switch (m_type)
{
case (value_t::object):
{
Allocator<object_t> alloc;
alloc.destroy(m_value.object);
alloc.deallocate(m_value.object, 1);
m_value.object = nullptr;
break;
}
case (value_t::array):
{
Allocator<array_t> alloc;
alloc.destroy(m_value.array);
alloc.deallocate(m_value.array, 1);
m_value.array = nullptr;
break;
}
case (value_t::string):
{
Allocator<string_t> alloc;
alloc.destroy(m_value.string);
alloc.deallocate(m_value.string, 1);
m_value.string = nullptr;
break;
}
default:
{
// all other types need no specific destructor
break;
}
}
}
public:
///////////////////////
// object inspection //
///////////////////////
/*!
@brief serialization
Serialization function for JSON objects. The function tries to mimick Python's
@p json.dumps() function, and currently supports its @p indent parameter.
@param indent sif indent is nonnegative, then array elements and object
members will be pretty-printed with that indent level. An indent level of 0
will only insert newlines. -1 (the default) selects the most compact
representation
@see https://docs.python.org/2/library/json.html#json.dump
*/
inline string_t dump(const int indent = -1) const noexcept
{
if (indent >= 0)
{
return dump(true, static_cast<unsigned int>(indent));
}
else
{
return dump(false, 0);
}
}
/// return the type of the object (explicit)
inline value_t type() const noexcept
{
return m_type;
}
/// return the type of the object (implicit)
operator value_t() const noexcept
{
return m_type;
}
//////////////////////
// value conversion //
//////////////////////
/// get an object (explicit)
template <class T, typename
std::enable_if<
std::is_constructible<string_t, typename T::key_type>::value and
std::is_constructible<basic_json, typename T::mapped_type>::value, int>::type
= 0>
inline T get() const
{
switch (m_type)
{
case (value_t::object):
return T(m_value.object->begin(), m_value.object->end());
default:
throw std::logic_error("cannot cast " + type_name() + " to " + typeid(T).name());
}
}
/// get an array (explicit)
template <class T, typename
std::enable_if<
not std::is_same<T, string_t>::value and
std::is_constructible<basic_json, typename T::value_type>::value, int>::type
= 0>
inline T get() const
{
switch (m_type)
{
case (value_t::array):
return T(m_value.array->begin(), m_value.array->end());
default:
throw std::logic_error("cannot cast " + type_name() + " to " + typeid(T).name());
}
}
/// get a string (explicit)
template <typename T, typename
std::enable_if<
std::is_constructible<T, string_t>::value, int>::type
= 0>
inline T get() const
{
switch (m_type)
{
case (value_t::string):
return *m_value.string;
default:
throw std::logic_error("cannot cast " + type_name() + " to " + typeid(T).name());
}
}
/// get a boolean (explicit)
template <typename T, typename
std::enable_if<
std::is_same<boolean_t, T>::value, int>::type
= 0>
inline T get() const
{
switch (m_type)
{
case (value_t::boolean):
return m_value.boolean;
default:
throw std::logic_error("cannot cast " + type_name() + " to " + typeid(T).name());
}
}
/// get a number (explicit)
template<typename T, typename
std::enable_if<
not std::is_same<boolean_t, T>::value and
std::is_arithmetic<T>::value, int>::type
= 0>
inline T get() const
{
switch (m_type)
{
case (value_t::number_integer):
return static_cast<T>(m_value.number_integer);
case (value_t::number_float):
return static_cast<T>(m_value.number_float);
default:
throw std::logic_error("cannot cast " + type_name() + " to " + typeid(T).name());
}
}
/// get a value (implicit)
template<typename T>
inline operator T() const
{
return get<T>();
}
////////////////////
// element access //
////////////////////
/// access specified element with bounds checking
inline reference at(size_type pos)
{
// at only works for arrays
if (m_type != value_t::array)
{
throw std::runtime_error("cannot use at with " + type_name());
}
return m_value.array->at(pos);
}
/// access specified element with bounds checking
inline const_reference at(size_type pos) const
{
// at only works for arrays
if (m_type != value_t::array)
{
throw std::runtime_error("cannot use at with " + type_name());
}
return m_value.array->at(pos);
}
/// access specified element
inline reference operator[](size_type pos)
{
// at only works for arrays
if (m_type != value_t::array)
{
throw std::runtime_error("cannot use [] with " + type_name());
}
return m_value.array->operator[](pos);
}
/// access specified element
inline const_reference operator[](size_type pos) const
{
// at only works for arrays
if (m_type != value_t::array)
{
throw std::runtime_error("cannot use [] with " + type_name());
}
return m_value.array->operator[](pos);
}
/// access specified element with bounds checking
inline reference at(const typename object_t::key_type& key)
{
// at only works for objects
if (m_type != value_t::object)
{
throw std::runtime_error("cannot use at with " + type_name());
}
return m_value.object->at(key);
}
/// access specified element with bounds checking
inline const_reference at(const typename object_t::key_type& key) const
{
// at only works for objects
if (m_type != value_t::object)
{
throw std::runtime_error("cannot use at with " + type_name());
}
return m_value.object->at(key);
}
/// access specified element
inline reference operator[](const typename object_t::key_type& key)
{
// implicitly convert null to object
if (m_type == value_t::null)
{
m_type = value_t::object;
Allocator<object_t> alloc;
m_value.object = alloc.allocate(1);
alloc.construct(m_value.object);
}
// at only works for objects
if (m_type != value_t::object)
{
throw std::runtime_error("cannot use [] with " + type_name());
}
return m_value.object->operator[](key);
}
/// access specified element
inline const_reference operator[](const typename object_t::key_type& key) const
{
// at only works for objects
if (m_type != value_t::object)
{
throw std::runtime_error("cannot use [] with " + type_name());
}
return m_value.object->operator[](key);
}
/// access specified element (needed for clang)
template<typename T, size_t n>
inline reference operator[](const T (&key)[n])
{
// implicitly convert null to object
if (m_type == value_t::null)
{
m_type = value_t::object;
Allocator<object_t> alloc;
m_value.object = alloc.allocate(1);
alloc.construct(m_value.object);
}
// at only works for objects
if (m_type != value_t::object)
{
throw std::runtime_error("cannot use [] with " + type_name());
}
return m_value.object->operator[](key);
}
/// access specified element (needed for clang)
template<typename T, size_t n>
inline const_reference operator[](const T (&key)[n]) const
{
// at only works for objects
if (m_type != value_t::object)
{
throw std::runtime_error("cannot use [] with " + type_name());
}
return m_value.object->operator[](key);
}
/// find an element in an object
inline iterator find(typename object_t::key_type key)
{
auto result = end();
if (m_type == value_t::object)
{
result.m_it.object_iterator = m_value.object->find(key);
}
return result;
}
/// find an element in an object
inline const_iterator find(typename object_t::key_type key) const
{
auto result = cend();
if (m_type == value_t::object)
{
result.m_it.object_iterator = m_value.object->find(key);
}
return result;
}
///////////////
// iterators //
///////////////
/// returns an iterator to the beginning of the container
inline iterator begin() noexcept
{
iterator result(this);
result.set_begin();
return result;
}
/// returns a const iterator to the beginning of the container
inline const_iterator begin() const noexcept
{
const_iterator result(this);
result.set_begin();
return result;
}
/// returns a const iterator to the beginning of the container
inline const_iterator cbegin() const noexcept
{
const_iterator result(this);
result.set_begin();
return result;
}
/// returns an iterator to the end of the container
inline iterator end() noexcept
{
iterator result(this);
result.set_end();
return result;
}
/// returns a const iterator to the end of the container
inline const_iterator end() const noexcept
{
const_iterator result(this);
result.set_end();
return result;
}
/// returns a const iterator to the end of the container
inline const_iterator cend() const noexcept
{
const_iterator result(this);
result.set_end();
return result;
}
/// returns a reverse iterator to the beginning
inline reverse_iterator rbegin() noexcept
{
return reverse_iterator(end());
}
/// returns a reverse iterator to the beginning
inline const_reverse_iterator rbegin() const noexcept
{
return const_reverse_iterator(end());
}
/// returns a reverse iterator to the end
inline reverse_iterator rend() noexcept
{
return reverse_iterator(begin());
}
/// returns a reverse iterator to the end
inline const_reverse_iterator rend() const noexcept
{
return const_reverse_iterator(begin());
}
/// returns a reverse iterator to the beginning
inline const_reverse_iterator crbegin() const noexcept
{
return const_reverse_iterator(cend());
}
/// returns a reverse iterator to the end
inline const_reverse_iterator crend() const noexcept
{
return const_reverse_iterator(cbegin());
}
//////////////
// capacity //
//////////////
/// checks whether the container is empty
inline bool empty() const noexcept
{
switch (m_type)
{
case (value_t::null):
{
return true;
}
case (value_t::array):
{
return m_value.array->empty();
}
case (value_t::object):
{
return m_value.object->empty();
}
default:
{
// all other types are nonempty
return false;
}
}
}
/// returns the number of elements
inline size_type size() const noexcept
{
switch (m_type)
{
case (value_t::null):
{
return 0;
}
case (value_t::array):
{
return m_value.array->size();
}
case (value_t::object):
{
return m_value.object->size();
}
default:
{
// all other types have size 1
return 1;
}
}
}
/// returns the maximum possible number of elements
inline size_type max_size() const noexcept
{
switch (m_type)
{
case (value_t::null):
{
return 0;
}
case (value_t::array):
{
return m_value.array->max_size();
}
case (value_t::object):
{
return m_value.object->max_size();
}
default:
{
// all other types have max_size 1
return 1;
}
}
}
///////////////
// modifiers //
///////////////
/// clears the contents
inline void clear() noexcept
{
switch (m_type)
{
case (value_t::null):
{
break;
}
case (value_t::number_integer):
{
m_value.number_integer = 0;
break;
}
case (value_t::number_float):
{
m_value.number_float = 0.0;
break;
}
case (value_t::boolean):
{
m_value.boolean = false;
break;
}
case (value_t::string):
{
m_value.string->clear();
break;
}
case (value_t::array):
{
m_value.array->clear();
break;
}
case (value_t::object):
{
m_value.object->clear();
break;
}
}
}
/// add an object to an array
inline void push_back(basic_json&& value)
{
// push_back only works for null objects or arrays
if (not(m_type == value_t::null or m_type == value_t::array))
{
throw std::runtime_error("cannot add element to " + type_name());
}
// transform null object into an array
if (m_type == value_t::null)
{
m_type = value_t::array;
Allocator<array_t> alloc;
m_value.array = alloc.allocate(1);
alloc.construct(m_value.array);
}
// add element to array (move semantics)
m_value.array->push_back(std::move(value));
// invalidate object
value.m_type = value_t::null;
}
/// add an object to an array
inline reference operator+=(basic_json&& value)
{
push_back(std::move(value));
return *this;
}
/// add an object to an array
inline void push_back(const basic_json& value)
{
// push_back only works for null objects or arrays
if (not(m_type == value_t::null or m_type == value_t::array))
{
throw std::runtime_error("cannot add element to " + type_name());
}
// transform null object into an array
if (m_type == value_t::null)
{
m_type = value_t::array;
Allocator<array_t> alloc;
m_value.array = alloc.allocate(1);
alloc.construct(m_value.array);
}
// add element to array
m_value.array->push_back(value);
}
/// add an object to an array
inline reference operator+=(const basic_json& value)
{
push_back(value);
return *this;
}
/// add an object to an object
inline void push_back(const typename object_t::value_type& value)
{
// push_back only works for null objects or objects
if (not(m_type == value_t::null or m_type == value_t::object))
{
throw std::runtime_error("cannot add element to " + type_name());
}
// transform null object into an object
if (m_type == value_t::null)
{
m_type = value_t::object;
Allocator<object_t> alloc;
m_value.object = alloc.allocate(1);
alloc.construct(m_value.object);
}
// add element to array
m_value.object->insert(value);
}
/// add an object to an object
inline reference operator+=(const typename object_t::value_type& value)
{
push_back(value);
return operator[](value.first);
}
/// swaps the contents
inline void swap(reference other) noexcept (
std::is_nothrow_move_constructible<value_t>::value and
std::is_nothrow_move_assignable<value_t>::value and
std::is_nothrow_move_constructible<json_value>::value and
std::is_nothrow_move_assignable<json_value>::value
)
{
std::swap(m_type, other.m_type);
std::swap(m_value, other.m_value);
}
/// swaps the contents
inline void swap(array_t& other)
{
// swap only works for arrays
if (m_type != value_t::array)
{
throw std::runtime_error("cannot use swap with " + type_name());
}
// swap arrays
std::swap(*(m_value.array), other);
}
/// swaps the contents
inline void swap(object_t& other)
{
// swap only works for objects
if (m_type != value_t::object)
{
throw std::runtime_error("cannot use swap with " + type_name());
}
// swap arrays
std::swap(*(m_value.object), other);
}
/// swaps the contents
inline void swap(string_t& other)
{
// swap only works for strings
if (m_type != value_t::string)
{
throw std::runtime_error("cannot use swap with " + type_name());
}
// swap arrays
std::swap(*(m_value.string), other);
}
//////////////////////////////////////////
// lexicographical comparison operators //
//////////////////////////////////////////
/// comparison: equal
friend bool operator==(const_reference lhs, const_reference rhs)
{
switch (lhs.type())
{
case (value_t::array):
{
if (rhs.type() == value_t::array)
{
return *lhs.m_value.array == *rhs.m_value.array;
}
break;
}
case (value_t::object):
{
if (rhs.type() == value_t::object)
{
return *lhs.m_value.object == *rhs.m_value.object;
}
break;
}
case (value_t::null):
{
if (rhs.type() == value_t::null)
{
return true;
}
break;
}
case (value_t::string):
{
if (rhs.type() == value_t::string)
{
return *lhs.m_value.string == *rhs.m_value.string;
}
break;
}
case (value_t::boolean):
{
if (rhs.type() == value_t::boolean)
{
return lhs.m_value.boolean == rhs.m_value.boolean;
}
break;
}
case (value_t::number_integer):
{
if (rhs.type() == value_t::number_integer)
{
return lhs.m_value.number_integer == rhs.m_value.number_integer;
}
if (rhs.type() == value_t::number_float)
{
return lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_float);
}
break;
}
case (value_t::number_float):
{
if (rhs.type() == value_t::number_integer)
{
return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer);
}
if (rhs.type() == value_t::number_float)
{
return lhs.m_value.number_float == rhs.m_value.number_float;
}
break;
}
}
return false;
}
/// comparison: not equal
friend bool operator!=(const_reference lhs, const_reference rhs)
{
return not (lhs == rhs);
}
/// comparison: less than
friend bool operator<(const_reference lhs, const_reference rhs)
{
switch (lhs.type())
{
case (value_t::array):
{
if (rhs.type() == value_t::array)
{
return *lhs.m_value.array < *rhs.m_value.array;
}
break;
}
case (value_t::object):
{
if (rhs.type() == value_t::object)
{
return *lhs.m_value.object < *rhs.m_value.object;
}
break;
}
case (value_t::null):
{
if (rhs.type() == value_t::null)
{
return false;
}
break;
}
case (value_t::string):
{
if (rhs.type() == value_t::string)
{
return *lhs.m_value.string < *rhs.m_value.string;
}
break;
}
case (value_t::boolean):
{
if (rhs.type() == value_t::boolean)
{
return lhs.m_value.boolean < rhs.m_value.boolean;
}
break;
}
case (value_t::number_integer):
{
if (rhs.type() == value_t::number_integer)
{
return lhs.m_value.number_integer < rhs.m_value.number_integer;
}
if (rhs.type() == value_t::number_float)
{
return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_float);
}
break;
}
case (value_t::number_float):
{
if (rhs.type() == value_t::number_integer)
{
return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer);
}
if (rhs.type() == value_t::number_float)
{
return lhs.m_value.number_float < rhs.m_value.number_float;
}
break;
}
}
return false;
}
/// comparison: less than or equal
friend bool operator<=(const_reference lhs, const_reference rhs)
{
return not (rhs < lhs);
}
/// comparison: greater than
friend bool operator>(const_reference lhs, const_reference rhs)
{
return not (lhs <= rhs);
}
/// comparison: greater than or equal
friend bool operator>=(const_reference lhs, const_reference rhs)
{
return not (lhs < rhs);
}
///////////////////
// serialization //
///////////////////
/// serialize to stream
friend std::ostream& operator<<(std::ostream& o, const basic_json& j)
{
// read width member and use it as indentation parameter if nonzero
const int indentation = (o.width() == 0) ? -1 : o.width();
o << j.dump(indentation);
return o;
}
/// serialize to stream
friend std::ostream& operator>>(const basic_json& j, std::ostream& o)
{
// read width member and use it as indentation parameter if nonzero
const int indentation = (o.width() == 0) ? -1 : o.width();
o << j.dump(indentation);
return o;
}
/////////////////////
// deserialization //
/////////////////////
/// deserialize from string
static basic_json parse(const string_t& s)
{
return parser(s).parse();
}
/// deserialize from stream
friend std::istream& operator>>(std::istream& i, basic_json& j)
{
j = parser(i).parse();
return i;
}
/// deserialize from stream
friend std::istream& operator<<(basic_json& j, std::istream& i)
{
j = parser(i).parse();
return i;
}
private:
///////////////////////////
// convenience functions //
///////////////////////////
/// return the type as string
inline string_t type_name() const noexcept
{
switch (m_type)
{
case (value_t::null):
{
return "null";
}
case (value_t::object):
{
return "object";
}
case (value_t::array):
{
return "array";
}
case (value_t::string):
{
return "string";
}
case (value_t::boolean):
{
return "boolean";
}
default:
{
return "number";
}
}
}
/*!
@brief escape a string
Escape a string by replacing certain special characters by a sequence of an
escape character (backslash) and another character and other control
characters by a sequence of "\u" followed by a four-digit hex
representation.
@param s the string to escape
@return escaped string
*/
static string_t escape_string(const string_t& s) noexcept
{
// create a result string of at least the size than s
string_t result;
result.reserve(s.size());
for (const auto c : s)
{
switch (c)
{
// quotation mark (0x22)
case '"':
{
result += "\\\"";
break;
}
// reverse solidus (0x5c)
case '\\':
{
result += "\\\\";
break;
}
// backspace (0x08)
case '\b':
{
result += "\\b";
break;
}
// formfeed (0x0c)
case '\f':
{
result += "\\f";
break;
}
// newline (0x0a)
case '\n':
{
result += "\\n";
break;
}
// carriage return (0x0d)
case '\r':
{
result += "\\r";
break;
}
// horizontal tab (0x09)
case '\t':
{
result += "\\t";
break;
}
default:
{
if (c >= 0 and c <= 0x1f)
{
// control characters (everything between 0x00 and 0x1f)
// -> create four-digit hex representation
std::stringstream ss;
ss << "\\u" << std::hex << std::setw(4) << std::setfill('0') << int(c);
result += ss.str();
}
else
{
// all other characters are added as-is
result.append(1, c);
}
break;
}
}
}
return result;
}
/*!
@brief internal implementation of the serialization function
This function is called by the public member function dump and organizes
the serializaion internally. The indentation level is propagated as
additional parameter. In case of arrays and objects, the function is called
recursively. Note that
- strings and object keys are escaped using escape_string()
- numbers are converted to a string before output using std::to_string()
@param prettyPrint whether the output shall be pretty-printed
@param indentStep the indent level
@param currentIndent the current indent level (only used internally)
*/
inline string_t dump(const bool prettyPrint, const unsigned int indentStep,
const unsigned int currentIndent = 0) const noexcept
{
// variable to hold indentation for recursive calls
auto new_indent = currentIndent;
// helper function to return whitespace as indentation
const auto indent = [prettyPrint, &new_indent]()
{
return prettyPrint ? string_t(new_indent, ' ') : string_t();
};
switch (m_type)
{
case (value_t::object):
{
if (m_value.object->empty())
{
return "{}";
}
string_t result = "{";
// increase indentation
if (prettyPrint)
{
new_indent += indentStep;
result += "\n";
}
for (auto i = m_value.object->cbegin(); i != m_value.object->cend(); ++i)
{
if (i != m_value.object->cbegin())
{
result += prettyPrint ? ",\n" : ",";
}
result += indent() + "\"" + escape_string(i->first) + "\":" + (prettyPrint ? " " : "")
+ i->second.dump(prettyPrint, indentStep, new_indent);
}
// decrease indentation
if (prettyPrint)
{
new_indent -= indentStep;
result += "\n";
}
return result + indent() + "}";
}
case (value_t::array):
{
if (m_value.array->empty())
{
return "[]";
}
string_t result = "[";
// increase indentation
if (prettyPrint)
{
new_indent += indentStep;
result += "\n";
}
for (auto i = m_value.array->cbegin(); i != m_value.array->cend(); ++i)
{
if (i != m_value.array->cbegin())
{
result += prettyPrint ? ",\n" : ",";
}
result += indent() + i->dump(prettyPrint, indentStep, new_indent);
}
// decrease indentation
if (prettyPrint)
{
new_indent -= indentStep;
result += "\n";
}
return result + indent() + "]";
}
case (value_t::string):
{
return string_t("\"") + escape_string(*m_value.string) + "\"";
}
case (value_t::boolean):
{
return m_value.boolean ? "true" : "false";
}
case (value_t::number_integer):
{
return std::to_string(m_value.number_integer);
}
case (value_t::number_float):
{
return std::to_string(m_value.number_float);
}
default:
{
return "null";
}
}
}
private:
//////////////////////
// member variables //
//////////////////////
/// the type of the current element
value_t m_type = value_t::null;
/// whether the type of JSON object may change later
bool m_final = false;
/// the value of the current element
json_value m_value = {};
private:
///////////////
// iterators //
///////////////
/// values of a generic iterator type of non-container JSON values
enum class generic_iterator_value
{
/// the iterator was not initialized
uninitialized,
/// the iterator points to the only value
begin,
/// the iterator points past the only value
end,
/// the iterator points to an invalid value
invalid
};
/// an iterator value
template<typename array_iterator_t, typename object_iterator_t>
union internal_iterator
{
/// iterator for JSON objects
object_iterator_t object_iterator;
/// iterator for JSON arrays
array_iterator_t array_iterator;
/// generic iteraotr for all other value types
generic_iterator_value generic_iterator;
/// default constructor
internal_iterator() : generic_iterator(generic_iterator_value::uninitialized) {}
/// constructor for object iterators
internal_iterator(object_iterator_t v) : object_iterator(v) {}
/// constructor for array iterators
internal_iterator(array_iterator_t v) : array_iterator(v) {}
/// constructor for generic iterators
internal_iterator(generic_iterator_value v) : generic_iterator(v) {}
};
public:
/// a bidirectional iterator for the basic_json class
class iterator : public std::iterator<std::bidirectional_iterator_tag, basic_json>
{
public:
/// the type of the values when the iterator is dereferenced
using value_type = basic_json::value_type;
/// a type to represent differences between iterators
using difference_type = basic_json::difference_type;
/// defines a pointer to the type iterated over (value_type)
using pointer = basic_json::pointer;
/// defines a reference to the type iterated over (value_type)
using reference = basic_json::reference;
/// the category of the iterator
using iterator_category = std::bidirectional_iterator_tag;
/// default constructor
inline iterator() = default;
/// constructor for a given JSON instance
inline iterator(pointer object) : m_object(object)
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator = typename object_t::iterator();
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator = typename array_t::iterator();
break;
}
default:
{
m_it.generic_iterator = generic_iterator_value::uninitialized;
break;
}
}
}
/// copy assignment
inline iterator& operator=(const iterator& other) noexcept
{
m_object = other.m_object;
m_it = other.m_it;
return *this;
}
/// set the iterator to the first value
inline void set_begin() noexcept
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator = m_object->m_value.object->begin();
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator = m_object->m_value.array->begin();
break;
}
case (basic_json::value_t::null):
{
// set to end so begin()==end() is true: null is empty
m_it.generic_iterator = generic_iterator_value::end;
break;
}
default:
{
m_it.generic_iterator = generic_iterator_value::begin;
break;
}
}
}
/// set the iterator past the last value
inline void set_end() noexcept
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator = m_object->m_value.object->end();
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator = m_object->m_value.array->end();
break;
}
default:
{
m_it.generic_iterator = generic_iterator_value::end;
break;
}
}
}
/// return a reference to the value pointed to by the iterator
inline reference operator*() const
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
return m_it.object_iterator->second;
}
case (basic_json::value_t::array):
{
return *m_it.array_iterator;
}
case (basic_json::value_t::null):
{
throw std::out_of_range("cannot get value");
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::begin)
{
return *m_object;
}
else
{
throw std::out_of_range("cannot get value");
}
}
}
}
/// dereference the iterator
inline pointer operator->() const
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
return &(m_it.object_iterator->second);
}
case (basic_json::value_t::array):
{
return &*m_it.array_iterator;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::begin)
{
return m_object;
}
else
{
throw std::out_of_range("cannot get value");
}
}
}
}
/// post-increment (it++)
inline iterator operator++(int)
{
iterator result = *this;
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator++;
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator++;
break;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::begin)
{
m_it.generic_iterator = generic_iterator_value::end;
}
else
{
m_it.generic_iterator = generic_iterator_value::invalid;
}
break;
}
}
return result;
}
/// pre-increment (++it)
inline iterator& operator++()
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
++m_it.object_iterator;
break;
}
case (basic_json::value_t::array):
{
++m_it.array_iterator;
break;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::begin)
{
m_it.generic_iterator = generic_iterator_value::end;
}
else
{
m_it.generic_iterator = generic_iterator_value::invalid;
}
break;
}
}
return *this;
}
/// post-decrement (it--)
inline iterator operator--(int)
{
iterator result = *this;
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator--;
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator--;
break;
}
case (basic_json::value_t::null):
{
m_it.generic_iterator = generic_iterator_value::invalid;
break;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::end)
{
m_it.generic_iterator = generic_iterator_value::begin;
}
else
{
m_it.generic_iterator = generic_iterator_value::invalid;
}
break;
}
}
return result;
}
/// pre-decrement (--it)
inline iterator& operator--()
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
--m_it.object_iterator;
break;
}
case (basic_json::value_t::array):
{
--m_it.array_iterator;
break;
}
case (basic_json::value_t::null):
{
m_it.generic_iterator = generic_iterator_value::invalid;
break;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::end)
{
m_it.generic_iterator = generic_iterator_value::begin;
}
else
{
m_it.generic_iterator = generic_iterator_value::invalid;
}
break;
}
}
return *this;
}
/// comparison: equal
inline bool operator==(const iterator& other) const
{
if (m_object != other.m_object or m_object->m_type != other.m_object->m_type)
{
return false;
}
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
return (m_it.object_iterator == other.m_it.object_iterator);
}
case (basic_json::value_t::array):
{
return (m_it.array_iterator == other.m_it.array_iterator);
}
default:
{
return (m_it.generic_iterator == other.m_it.generic_iterator);
}
}
}
/// comparison: not equal
inline bool operator!=(const iterator& other) const
{
return not operator==(other);
}
private:
/// associated JSON instance
pointer m_object = nullptr;
/// the actual iterator of the associated instance
internal_iterator<typename array_t::iterator, typename object_t::iterator> m_it;
};
/// a const bidirectional iterator for the basic_json class
class const_iterator : public std::iterator<std::bidirectional_iterator_tag, const basic_json>
{
public:
/// the type of the values when the iterator is dereferenced
using value_type = basic_json::value_type;
/// a type to represent differences between iterators
using difference_type = basic_json::difference_type;
/// defines a pointer to the type iterated over (value_type)
using pointer = basic_json::const_pointer;
/// defines a reference to the type iterated over (value_type)
using reference = basic_json::const_reference;
/// the category of the iterator
using iterator_category = std::bidirectional_iterator_tag;
/// default constructor
inline const_iterator() = default;
/// constructor for a given JSON instance
inline const_iterator(pointer object) : m_object(object)
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator = typename object_t::const_iterator();
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator = typename array_t::const_iterator();
break;
}
default:
{
m_it.generic_iterator = generic_iterator_value::uninitialized;
break;
}
}
}
/// copy constructor given a nonconst iterator
inline const_iterator(const iterator& other) : m_object(other.m_object)
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator = other.m_it.object_iterator;
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator = other.m_it.array_iterator;
break;
}
default:
{
m_it.generic_iterator = other.m_it.generic_iterator;
break;
}
}
}
/// copy assignment
inline const_iterator& operator=(const const_iterator& other) noexcept
{
m_object = other.m_object;
m_it = other.m_it;
return *this;
}
/// set the iterator to the first value
inline void set_begin() noexcept
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator = m_object->m_value.object->cbegin();
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator = m_object->m_value.array->cbegin();
break;
}
case (basic_json::value_t::null):
{
// set to end so begin()==end() is true: null is empty
m_it.generic_iterator = generic_iterator_value::end;
break;
}
default:
{
m_it.generic_iterator = generic_iterator_value::begin;
break;
}
}
}
/// set the iterator past the last value
inline void set_end() noexcept
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator = m_object->m_value.object->cend();
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator = m_object->m_value.array->cend();
break;
}
default:
{
m_it.generic_iterator = generic_iterator_value::end;
break;
}
}
}
/// return a reference to the value pointed to by the iterator
inline reference operator*() const
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
return m_it.object_iterator->second;
}
case (basic_json::value_t::array):
{
return *m_it.array_iterator;
}
case (basic_json::value_t::null):
{
throw std::out_of_range("cannot get value");
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::begin)
{
return *m_object;
}
else
{
throw std::out_of_range("cannot get value");
}
}
}
}
/// dereference the iterator
inline pointer operator->() const
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
return &(m_it.object_iterator->second);
}
case (basic_json::value_t::array):
{
return &*m_it.array_iterator;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::begin)
{
return m_object;
}
else
{
throw std::out_of_range("cannot get value");
}
}
}
}
/// post-increment (it++)
inline const_iterator operator++(int)
{
const_iterator result = *this;
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator++;
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator++;
break;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::begin)
{
m_it.generic_iterator = generic_iterator_value::end;
}
else
{
m_it.generic_iterator = generic_iterator_value::invalid;
}
break;
}
}
return result;
}
/// pre-increment (++it)
inline const_iterator& operator++()
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
++m_it.object_iterator;
break;
}
case (basic_json::value_t::array):
{
++m_it.array_iterator;
break;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::begin)
{
m_it.generic_iterator = generic_iterator_value::end;
}
else
{
m_it.generic_iterator = generic_iterator_value::invalid;
}
break;
}
}
return *this;
}
/// post-decrement (it--)
inline const_iterator operator--(int)
{
const_iterator result = *this;
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
m_it.object_iterator--;
break;
}
case (basic_json::value_t::array):
{
m_it.array_iterator--;
break;
}
case (basic_json::value_t::null):
{
m_it.generic_iterator = generic_iterator_value::invalid;
break;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::end)
{
m_it.generic_iterator = generic_iterator_value::begin;
}
else
{
m_it.generic_iterator = generic_iterator_value::invalid;
}
break;
}
}
return result;
}
/// pre-decrement (--it)
inline const_iterator& operator--()
{
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
--m_it.object_iterator;
break;
}
case (basic_json::value_t::array):
{
--m_it.array_iterator;
break;
}
case (basic_json::value_t::null):
{
m_it.generic_iterator = generic_iterator_value::invalid;
break;
}
default:
{
if (m_it.generic_iterator == generic_iterator_value::end)
{
m_it.generic_iterator = generic_iterator_value::begin;
}
else
{
m_it.generic_iterator = generic_iterator_value::invalid;
}
break;
}
}
return *this;
}
/// comparison: equal
inline bool operator==(const const_iterator& other) const
{
if (m_object != other.m_object or m_object->m_type != other.m_object->m_type)
{
return false;
}
switch (m_object->m_type)
{
case (basic_json::value_t::object):
{
return (m_it.object_iterator == other.m_it.object_iterator);
}
case (basic_json::value_t::array):
{
return (m_it.array_iterator == other.m_it.array_iterator);
}
default:
{
return (m_it.generic_iterator == other.m_it.generic_iterator);
}
}
}
/// comparison: not equal
inline bool operator!=(const const_iterator& other) const
{
return not operator==(other);
}
private:
/// associated JSON instance
pointer m_object = nullptr;
/// the actual iterator of the associated instance
internal_iterator<typename array_t::const_iterator, typename object_t::const_iterator> m_it;
};
private:
//////////////////////
// lexer and parser //
//////////////////////
/*!
@brief lexical analysis
This class organizes the lexical analysis during JSON deserialization. The
core of it is a scanner generated by re2c <http://re2c.org> that processes
a buffer and recognizes tokens according to RFC 7159 and ECMA-404.
*/
class lexer
{
public:
/// token types for the parser
enum class token_type
{
uninitialized, ///< indicating the scanner is uninitialized
literal_true, ///< the "true" literal
literal_false, ///< the "false" literal
literal_null, ///< the "null" literal
value_string, ///< a string - use get_string() for actual value
value_number, ///< a number - use get_number() for actual value
begin_array, ///< the character for array begin "["
begin_object, ///< the character for object begin "{"
end_array, ///< the character for array end "]"
end_object, ///< the character for object end "}"
name_separator, ///< the name separator ":"
value_separator, ///< the value separator ","
parse_error, ///< indicating a parse error
end_of_input ///< indicating the end of the input buffer
};
/// the char type to use in the lexer
using lexer_char_t = unsigned char;
/// constructor with a given buffer
inline lexer(const string_t& s) noexcept
: m_content(reinterpret_cast<const lexer_char_t*>(s.c_str()))
{
m_start = m_cursor = m_content;
m_limit = m_content + s.size();
}
/// default constructor
inline lexer() = default;
/*!
@brief create a string from a Unicode code point
@param codepoint the code point (must be in [0x0, 0x10ffff]
@return string representation of the code point
@exception std::out_of_range if code point is >0x10ffff
@exception std::invalid_argument if the low surrogate is invalid
@see <http://en.wikipedia.org/wiki/UTF-8#Sample_code>
*/
inline static string_t to_unicode(const size_t codepoint1, const size_t codepoint2 = 0)
{
string_t result;
// calculate the codepoint from the given code points
size_t codepoint = codepoint1;
if (codepoint1 >= 0xD800 and codepoint1 <= 0xDBFF)
{
if (codepoint2 >= 0xDC00 and codepoint2 <= 0xDFFF)
{
codepoint =
// high surrogate occupies the most significant 22 bits
(codepoint1 << 10)
// low surrogate occupies the least significant 15 bits
+ codepoint2
// there is still the 0xD800, 0xDC00 and 0x10000 noise
// in the result so we have to substract with:
// (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
- 0x35FDC00;
}
else
{
throw std::invalid_argument("missing or wrong low surrogate");
}
}
if (codepoint <= 0x7f)
{
// 1-byte characters: 0xxxxxxx (ASCI)
result.append(1, static_cast<typename string_t::value_type>(codepoint));
}
else if (codepoint <= 0x7ff)
{
// 2-byte characters: 110xxxxx 10xxxxxx
result.append(1, static_cast<typename string_t::value_type>(0xC0 | ((codepoint >> 6) & 0x1F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F)));
}
else if (codepoint <= 0xffff)
{
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
result.append(1, static_cast<typename string_t::value_type>(0xE0 | ((codepoint >> 12) & 0x0F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 6) & 0x3F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F)));
}
else if (codepoint <= 0x10ffff)
{
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
result.append(1, static_cast<typename string_t::value_type>(0xF0 | ((codepoint >> 18) & 0x07)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 12) & 0x3F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 6) & 0x3F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F)));
}
else
{
throw std::out_of_range("code points above 0x10FFFF are invalid");
}
return result;
}
/// return name of values of type token_type
inline static std::string token_type_name(token_type t) noexcept
{
switch (t)
{
case (token_type::uninitialized):
return "<uninitialized>";
case (token_type::literal_true):
return "true literal";
case (token_type::literal_false):
return "false literal";
case (token_type::literal_null):
return "null literal";
case (token_type::value_string):
return "string literal";
case (token_type::value_number):
return "number literal";
case (token_type::begin_array):
return "[";
case (token_type::begin_object):
return "{";
case (token_type::end_array):
return "]";
case (token_type::end_object):
return "}";
case (token_type::name_separator):
return ":";
case (token_type::value_separator):
return ",";
case (token_type::end_of_input):
return "<end of input>";
default:
return "<parse error>";
}
}
/*!
This function implements a scanner for JSON. It is specified using
regular expressions that try to follow RFC 7159 and ECMA-404 as close
as possible. These regular expressions are then translated into a
deterministic finite automaton (DFA) by the tool re2c
<http://re2c.org>. As a result, the translated code for this function
consists of a large block of code with goto jumps.
@return the class of the next token read from the buffer
*/
inline token_type scan() noexcept
{
// pointer for backtracking information
const lexer_char_t* m_marker = nullptr;
// remember the begin of the token
m_start = m_cursor;
/*!re2c
re2c:define:YYCTYPE = lexer_char_t;
re2c:define:YYCURSOR = m_cursor;
re2c:define:YYLIMIT = m_limit;
re2c:define:YYMARKER = m_marker;
re2c:indent:string = " ";
re2c:indent:top = 1;
re2c:labelprefix = "basic_json_parser_";
re2c:yyfill:enable = 0;
// whitespace
ws = [ \t\n\r]+;
ws { return scan(); }
// structural characters
"[" { return token_type::begin_array; }
"]" { return token_type::end_array; }
"{" { return token_type::begin_object; }
"}" { return token_type::end_object; }
"," { return token_type::value_separator; }
":" { return token_type::name_separator; }
// literal names
"null" { return token_type::literal_null; }
"true" { return token_type::literal_true; }
"false" { return token_type::literal_false; }
// number
decimal_point = [.];
digit = [0-9];
digit_1_9 = [1-9];
e = [eE];
minus = [-];
plus = [+];
zero = [0];
exp = e (minus|plus)? digit+;
frac = decimal_point digit+;
int = (zero|digit_1_9 digit*);
number = minus? int frac? exp?;
number { return token_type::value_number; }
// string
quotation_mark = [\"];
escape = [\\];
unescaped = [^\"\\\000];
single_escaped = [\"\\/bfnrt];
unicode_escaped = [u][0-9a-fA-F]{4};
escaped = escape (single_escaped | unicode_escaped);
char = unescaped | escaped;
string = quotation_mark char* quotation_mark;
string { return token_type::value_string; }
// end of file
'\000' { return token_type::end_of_input; }
// anything else is an error
. { return token_type::parse_error; }
*/
}
/// return string representation of last read token
inline string_t get_token() const noexcept
{
return string_t(reinterpret_cast<typename string_t::const_pointer>(m_start),
static_cast<size_t>(m_cursor - m_start));
}
/*!
@brief return string value for string tokens
The function iterates the characters between the opening and closing
quotes of the string value. The complete string is the range
[m_start,m_cursor). Consequently, we iterate from m_start+1 to
m_cursor-1.
We differentiate two cases:
1. Escaped characters. In this case, a new character is constructed
according to the nature of the escape. Some escapes create new
characters (e.g., @c "\\n" is replaced by @c "\n"), some are copied
as is (e.g., @c "\\\\"). Furthermore, Unicode escapes of the shape
@c "\\uxxxx" need special care. In this case, to_unicode takes care
of the construction of the values.
2. Unescaped characters are copied as is.
@return string value of current token without opening and closing quotes
@exception std::out_of_range if to_unicode fails
*/
inline string_t get_string() const
{
string_t result;
result.reserve(static_cast<size_t>(m_cursor - m_start - 2));
// iterate the result between the quotes
for (const lexer_char_t* i = m_start + 1; i < m_cursor - 1; ++i)
{
// process escaped characters
if (*i == '\\')
{
// read next character
++i;
switch (*i)
{
// the default escapes
case 't':
{
result += "\t";
break;
}
case 'b':
{
result += "\b";
break;
}
case 'f':
{
result += "\f";
break;
}
case 'n':
{
result += "\n";
break;
}
case 'r':
{
result += "\r";
break;
}
// characters that are not "un"escsaped
case '\\':
{
result += "\\\\";
break;
}
case '/':
{
result += "\\/";
break;
}
case '"':
{
result += "\\\"";
break;
}
// unicode
case 'u':
{
// get code xxxx from uxxxx
auto codepoint = std::strtoul(std::string(reinterpret_cast<typename string_t::const_pointer>(i + 1),
4).c_str(), nullptr, 16);
if (codepoint >= 0xD800 and codepoint <= 0xDBFF)
{
// make sure there is a subsequent unicode
if ((i + 6 >= m_limit) or * (i + 5) != '\\' or * (i + 6) != 'u')
{
throw std::invalid_argument("missing low surrogate");
}
// get code yyyy from uxxxx\uyyyy
auto codepoint2 = std::strtoul(std::string(reinterpret_cast<typename string_t::const_pointer>
(i + 7), 4).c_str(), nullptr, 16);
result += to_unicode(codepoint, codepoint2);
// skip the next 11 characters (xxxx\uyyyy)
i += 11;
}
else
{
// add unicode character(s)
result += to_unicode(codepoint);
// skip the next four characters (xxxx)
i += 4;
}
break;
}
}
}
else
{
// all other characters are just copied to the end of the
// string
result.append(1, static_cast<typename string_t::value_type>(*i));
}
}
return result;
}
/*!
@brief return number value for number tokens
This function translates the last token into a floating point number.
The pointer m_begin points to the beginning of the parsed number. We
pass this pointer to std::strtod which sets endptr to the first
character past the converted number. If this pointer is not the same as
m_cursor, then either more or less characters have been used during the
comparison. This can happen for inputs like "01" which will be treated
like number 0 followed by number 1.
@return the result of the number conversion or NAN if the conversion
read past the current token. The latter case needs to be treated by the
caller function.
@exception std::range_error if passed value is out of range
*/
inline number_float_t get_number() const
{
// conversion
typename string_t::value_type* endptr;
const auto float_val = std::strtod(reinterpret_cast<typename string_t::const_pointer>(m_start),
&endptr);
// return float_val if the whole number was translated and NAN
// otherwise
return (reinterpret_cast<lexer_char_t*>(endptr) == m_cursor) ? float_val : NAN;
}
private:
/// the buffer
const lexer_char_t* m_content = nullptr;
/// pointer to he beginning of the current symbol
const lexer_char_t* m_start = nullptr;
/// pointer to the current symbol
const lexer_char_t* m_cursor = nullptr;
/// pointer to the end of the buffer
const lexer_char_t* m_limit = nullptr;
};
class parser
{
public:
/// constructor for strings
inline parser(const string_t& s) : m_buffer(s), m_lexer(m_buffer)
{
// read first token
get_token();
}
/// a parser reading from an input stream
inline parser(std::istream& _is)
{
while (_is)
{
string_t input_line;
std::getline(_is, input_line);
m_buffer += input_line;
}
// initializer lexer
m_lexer = lexer(m_buffer);
// read first token
get_token();
}
/// public parser interface
inline basic_json parse()
{
basic_json result = parse_internal();
expect(lexer::token_type::end_of_input);
return result;
}
private:
/// the actual parser
inline basic_json parse_internal()
{
switch (last_token)
{
case (lexer::token_type::begin_object):
{
// explicitly set result to object to cope with {}
basic_json result(value_t::object);
// read next token
get_token();
// closing } -> we are done
if (last_token == lexer::token_type::end_object)
{
get_token();
return result;
}
// otherwise: parse key-value pairs
do
{
// ugly, but could be fixed with loop reorganization
if (last_token == lexer::token_type::value_separator)
{
get_token();
}
// store key
expect(lexer::token_type::value_string);
const auto key = m_lexer.get_string();
// parse separator (:)
get_token();
expect(lexer::token_type::name_separator);
// parse value
get_token();
result[key] = parse_internal();
}
while (last_token == lexer::token_type::value_separator);
// closing }
expect(lexer::token_type::end_object);
get_token();
return result;
}
case (lexer::token_type::begin_array):
{
// explicitly set result to object to cope with []
basic_json result(value_t::array);
// read next token
get_token();
// closing ] -> we are done
if (last_token == lexer::token_type::end_array)
{
get_token();
return result;
}
// otherwise: parse values
do
{
// ugly, but could be fixed with loop reorganization
if (last_token == lexer::token_type::value_separator)
{
get_token();
}
// parse value
result.push_back(parse_internal());
}
while (last_token == lexer::token_type::value_separator);
// closing ]
expect(lexer::token_type::end_array);
get_token();
return result;
}
case (lexer::token_type::literal_null):
{
get_token();
return basic_json(nullptr);
}
case (lexer::token_type::value_string):
{
const auto s = m_lexer.get_string();
get_token();
return basic_json(s);
}
case (lexer::token_type::literal_true):
{
get_token();
return basic_json(true);
}
case (lexer::token_type::literal_false):
{
get_token();
return basic_json(false);
}
case (lexer::token_type::value_number):
{
auto float_val = m_lexer.get_number();
// NAN is returned if token could not be translated
// completely
if (std::isnan(float_val))
{
throw std::invalid_argument(std::string("parse error - ") +
m_lexer.get_token() + " is not a number");
}
get_token();
// check if conversion loses precision
const auto int_val = static_cast<number_integer_t>(float_val);
if (float_val == int_val)
{
// we basic_json not lose precision -> return int
return basic_json(int_val);
}
else
{
// we would lose precision -> returnfloat
return basic_json(float_val);
}
}
default:
{
std::string error_msg = "parse error - unexpected \'";
error_msg += m_lexer.get_token();
error_msg += "\' (";
error_msg += lexer::token_type_name(last_token) + ")";
throw std::invalid_argument(error_msg);
}
}
}
/// get next token from lexer
inline typename lexer::token_type get_token()
{
last_token = m_lexer.scan();
return last_token;
}
inline void expect(typename lexer::token_type t) const
{
if (t != last_token)
{
std::string error_msg = "parse error - unexpected \'";
error_msg += m_lexer.get_token();
error_msg += "\' (" + lexer::token_type_name(last_token);
error_msg += "); expected " + lexer::token_type_name(t);
throw std::invalid_argument(error_msg);
}
}
private:
/// the buffer
string_t m_buffer;
/// the type of the last read token
typename lexer::token_type last_token = lexer::token_type::uninitialized;
/// the lexer
lexer m_lexer;
};
};
/////////////
// presets //
/////////////
/// default JSON class
using json = basic_json<>;
}
/////////////////////////
// nonmember functions //
/////////////////////////
// specialization of std::swap, and std::hash
namespace std
{
/// swaps the values of two JSON objects
template <>
inline void swap(nlohmann::json& j1,
nlohmann::json& j2) noexcept(
is_nothrow_move_constructible<nlohmann::json>::value and
is_nothrow_move_assignable<nlohmann::json>::value
)
{
j1.swap(j2);
}
/// hash value for JSON objects
template <>
struct hash<nlohmann::json>
{
/// return a hash value for a JSON object
inline size_t operator()(const nlohmann::json& j) const
{
// a naive hashing via the string representation
const auto& h = hash<nlohmann::json::string_t>();
return h(j.dump());
}
};
}
/*!
This operator implements a user-defined string literal for JSON objects. It can
be used by adding \p "_json" to a string literal and returns a JSON object if
no parse error occurred.
@param s a string representation of a JSON object
@return a JSON object
*/
inline nlohmann::json operator "" _json(const char* s, std::size_t)
{
return nlohmann::json::parse(reinterpret_cast<nlohmann::json::string_t::value_type*>
(const_cast<char*>(s)));
}
#endif