//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Trace PCs. // This module implements __sanitizer_cov_trace_pc_guard[_init], // the callback required for -fsanitize-coverage=trace-pc-guard instrumentation. // //===----------------------------------------------------------------------===// #include "FuzzerCorpus.h" #include "FuzzerDefs.h" #include "FuzzerDictionary.h" #include "FuzzerExtFunctions.h" #include "FuzzerIO.h" #include "FuzzerTracePC.h" #include "FuzzerValueBitMap.h" #include <map> #include <sanitizer/coverage_interface.h> #include <set> #include <sstream> namespace fuzzer { TracePC TPC; void TracePC::HandleTrace(uint32_t *Guard, uintptr_t PC) { uint32_t Idx = *Guard; if (!Idx) return; PCs[Idx % kNumPCs] = PC; Counters[Idx % kNumCounters]++; } size_t TracePC::GetTotalPCCoverage() { size_t Res = 0; for (size_t i = 1; i < GetNumPCs(); i++) if (PCs[i]) Res++; return Res; } void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) { if (Start == Stop || *Start) return; assert(NumModules < sizeof(Modules) / sizeof(Modules[0])); for (uint32_t *P = Start; P < Stop; P++) *P = ++NumGuards; Modules[NumModules].Start = Start; Modules[NumModules].Stop = Stop; NumModules++; } void TracePC::PrintModuleInfo() { Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards); for (size_t i = 0; i < NumModules; i++) Printf("[%p, %p), ", Modules[i].Start, Modules[i].Stop); Printf("\n"); } void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) { const uintptr_t kBits = 12; const uintptr_t kMask = (1 << kBits) - 1; uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits); HandleValueProfile(Idx); } static bool IsInterestingCoverageFile(std::string &File) { if (File.find("compiler-rt/lib/") != std::string::npos) return false; // sanitizer internal. if (File.find("/usr/lib/") != std::string::npos) return false; if (File.find("/usr/include/") != std::string::npos) return false; if (File == "<null>") return false; return true; } void TracePC::PrintNewPCs() { if (DoPrintNewPCs) { if (!PrintedPCs) PrintedPCs = new std::set<uintptr_t>; for (size_t i = 1; i < GetNumPCs(); i++) if (PCs[i] && PrintedPCs->insert(PCs[i]).second) PrintPC("\tNEW_PC: %p %F %L\n", "\tNEW_PC: %p\n", PCs[i]); } } void TracePC::PrintCoverage() { if (!EF->__sanitizer_symbolize_pc || !EF->__sanitizer_get_module_and_offset_for_pc) { Printf("INFO: __sanitizer_symbolize_pc or " "__sanitizer_get_module_and_offset_for_pc is not available," " not printing coverage\n"); return; } std::map<std::string, std::vector<uintptr_t>> CoveredPCsPerModule; std::map<std::string, uintptr_t> ModuleOffsets; std::set<std::string> CoveredDirs, CoveredFiles, CoveredFunctions, CoveredLines; Printf("COVERAGE:\n"); for (size_t i = 1; i < GetNumPCs(); i++) { if (!PCs[i]) continue; std::string FileStr = DescribePC("%s", PCs[i]); if (!IsInterestingCoverageFile(FileStr)) continue; std::string FixedPCStr = DescribePC("%p", PCs[i]); std::string FunctionStr = DescribePC("%F", PCs[i]); std::string LineStr = DescribePC("%l", PCs[i]); char ModulePathRaw[4096] = ""; // What's PATH_MAX in portable C++? void *OffsetRaw = nullptr; if (!EF->__sanitizer_get_module_and_offset_for_pc( reinterpret_cast<void *>(PCs[i]), ModulePathRaw, sizeof(ModulePathRaw), &OffsetRaw)) continue; std::string Module = ModulePathRaw; uintptr_t FixedPC = std::stol(FixedPCStr, 0, 16); uintptr_t PcOffset = reinterpret_cast<uintptr_t>(OffsetRaw); ModuleOffsets[Module] = FixedPC - PcOffset; CoveredPCsPerModule[Module].push_back(PcOffset); CoveredFunctions.insert(FunctionStr); CoveredFiles.insert(FileStr); CoveredDirs.insert(DirName(FileStr)); if (!CoveredLines.insert(FileStr + ":" + LineStr).second) continue; Printf("COVERED: %s %s:%s\n", FunctionStr.c_str(), FileStr.c_str(), LineStr.c_str()); } std::string CoveredDirsStr; for (auto &Dir : CoveredDirs) { if (!CoveredDirsStr.empty()) CoveredDirsStr += ","; CoveredDirsStr += Dir; } Printf("COVERED_DIRS: %s\n", CoveredDirsStr.c_str()); for (auto &M : CoveredPCsPerModule) { std::set<std::string> UncoveredFiles, UncoveredFunctions; std::map<std::string, std::set<int> > UncoveredLines; // Func+File => lines auto &ModuleName = M.first; auto &CoveredOffsets = M.second; uintptr_t ModuleOffset = ModuleOffsets[ModuleName]; std::sort(CoveredOffsets.begin(), CoveredOffsets.end()); Printf("MODULE_WITH_COVERAGE: %s\n", ModuleName.c_str()); // sancov does not yet fully support DSOs. // std::string Cmd = "sancov -print-coverage-pcs " + ModuleName; std::string Cmd = "objdump -d " + ModuleName + " | grep 'call.*__sanitizer_cov_trace_pc_guard' | awk -F: '{print $1}'"; std::string SanCovOutput; if (!ExecuteCommandAndReadOutput(Cmd, &SanCovOutput)) { Printf("INFO: Command failed: %s\n", Cmd.c_str()); continue; } std::istringstream ISS(SanCovOutput); std::string S; while (std::getline(ISS, S, '\n')) { uintptr_t PcOffset = std::stol(S, 0, 16); if (!std::binary_search(CoveredOffsets.begin(), CoveredOffsets.end(), PcOffset)) { uintptr_t PC = ModuleOffset + PcOffset; auto FileStr = DescribePC("%s", PC); if (!IsInterestingCoverageFile(FileStr)) continue; if (CoveredFiles.count(FileStr) == 0) { UncoveredFiles.insert(FileStr); continue; } auto FunctionStr = DescribePC("%F", PC); if (CoveredFunctions.count(FunctionStr) == 0) { UncoveredFunctions.insert(FunctionStr); continue; } std::string LineStr = DescribePC("%l", PC); uintptr_t Line = std::stoi(LineStr); std::string FileLineStr = FileStr + ":" + LineStr; if (CoveredLines.count(FileLineStr) == 0) UncoveredLines[FunctionStr + " " + FileStr].insert(Line); } } for (auto &FileLine: UncoveredLines) for (int Line : FileLine.second) Printf("UNCOVERED_LINE: %s:%d\n", FileLine.first.c_str(), Line); for (auto &Func : UncoveredFunctions) Printf("UNCOVERED_FUNC: %s\n", Func.c_str()); for (auto &File : UncoveredFiles) Printf("UNCOVERED_FILE: %s\n", File.c_str()); } } void TracePC::DumpCoverage() { __sanitizer_dump_coverage(PCs, GetNumPCs()); } // Value profile. // We keep track of various values that affect control flow. // These values are inserted into a bit-set-based hash map. // Every new bit in the map is treated as a new coverage. // // For memcmp/strcmp/etc the interesting value is the length of the common // prefix of the parameters. // For cmp instructions the interesting value is a XOR of the parameters. // The interesting value is mixed up with the PC and is then added to the map. ATTRIBUTE_NO_SANITIZE_MEMORY void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2, size_t n) { if (!n) return; size_t Len = std::min(n, (size_t)32); const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1); const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2); size_t I = 0; for (; I < Len; I++) if (A1[I] != A2[I]) break; size_t PC = reinterpret_cast<size_t>(caller_pc); size_t Idx = I; // if (I < Len) // Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1; TPC.HandleValueProfile((PC & 4095) | (Idx << 12)); } ATTRIBUTE_NO_SANITIZE_MEMORY void TracePC::AddValueForStrcmp(void *caller_pc, const char *s1, const char *s2, size_t n) { if (!n) return; size_t Len = std::min(n, (size_t)32); const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1); const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2); size_t I = 0; for (; I < Len; I++) if (A1[I] != A2[I] || A1[I] == 0) break; size_t PC = reinterpret_cast<size_t>(caller_pc); size_t Idx = I; // if (I < Len && A1[I]) // Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1; TPC.HandleValueProfile((PC & 4095) | (Idx << 12)); } template <class T> ATTRIBUTE_TARGET_POPCNT #ifdef __clang__ // g++ can't handle this __attribute__ here :( __attribute__((always_inline)) #endif // __clang__ void TracePC::HandleCmp(void *PC, T Arg1, T Arg2) { uintptr_t PCuint = reinterpret_cast<uintptr_t>(PC); uint64_t ArgXor = Arg1 ^ Arg2; uint64_t ArgDistance = __builtin_popcountl(ArgXor) + 1; // [1,65] uintptr_t Idx = ((PCuint & 4095) + 1) * ArgDistance; if (sizeof(T) == 4) TORC4.Insert(ArgXor, Arg1, Arg2); else if (sizeof(T) == 8) TORC8.Insert(ArgXor, Arg1, Arg2); HandleValueProfile(Idx); } } // namespace fuzzer extern "C" { __attribute__((visibility("default"))) void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) { uintptr_t PC = (uintptr_t)__builtin_return_address(0); fuzzer::TPC.HandleTrace(Guard, PC); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) { fuzzer::TPC.HandleInit(Start, Stop); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) { uintptr_t PC = (uintptr_t)__builtin_return_address(0); fuzzer::TPC.HandleCallerCallee(PC, Callee); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Arg1, Arg2); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { // Updates the value profile based on the relative position of Val and Cases. // We want to handle one random case at every call (handling all is slow). // Since none of the arguments contain any random bits we use a thread-local // counter to choose the random case to handle. static thread_local size_t Counter; Counter++; uint64_t N = Cases[0]; uint64_t *Vals = Cases + 2; char *PC = (char*)__builtin_return_address(0); // We need a random number < N using Counter as a seed. But w/o DIV. // * find a power of two >= N // * mask Counter with this power of two. // * maybe subtract N. size_t Nlog = sizeof(long) * 8 - __builtin_clzl((long)N); size_t PowerOfTwoGeN = 1U << Nlog; assert(PowerOfTwoGeN >= N); size_t Idx = Counter & (PowerOfTwoGeN - 1); if (Idx >= N) Idx -= N; assert(Idx < N); uint64_t TwoIn32 = 1ULL << 32; if ((Val | Vals[Idx]) < TwoIn32) fuzzer::TPC.HandleCmp(PC + Idx, static_cast<uint32_t>(Val), static_cast<uint32_t>(Vals[Idx])); else fuzzer::TPC.HandleCmp(PC + Idx, Val, Vals[Idx]); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_div4(uint32_t Val) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Val, (uint32_t)0); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_div8(uint64_t Val) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Val, (uint64_t)0); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_gep(uintptr_t Idx) { fuzzer::TPC.HandleCmp(__builtin_return_address(0), Idx, (uintptr_t)0); } } // extern "C"