/*! @file @copyright The code is licensed under the MIT License , Copyright (c) 2013-2015 Niels Lohmann. @author Niels Lohmann @see https://github.com/nlohmann/json */ #ifndef NLOHMANN_JSON_HPP #define NLOHMANN_JSON_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // enable ssize_t on MinGW #ifdef __GNUC__ #ifdef __MINGW32__ #include #endif #endif // enable ssize_t for MSVC #ifdef _MSC_VER #include using ssize_t = SSIZE_T; #endif /*! @brief namespace for Niels Lohmann @see https://github.com/nlohmann */ namespace nlohmann { /// namespace with internal helper functions namespace internals { // Helper to determine whether there's a key_type for T. // http://stackoverflow.com/a/7728728/266378 template struct has_mapped_type { private: template static char test(typename C::mapped_type*); template static int test(...); public: enum { value = sizeof(test(0)) == sizeof(char) }; }; } /*! @brief a class to store JSON values @tparam ObjectType type for JSON objects (@c std::map by default) @tparam ArrayType type for JSON arrays (@c std::vector by default) @tparam StringType type for JSON strings and object keys (@c std::string by default) @tparam BooleanType type for JSON booleans (@c bool by default) @tparam NumberIntegerType type for JSON integer numbers (@c int64_t by default) @tparam NumberFloatType type for JSON floating-point numbers (@c double by default) @tparam AllocatorType type of the allocator to use (@c std::allocator by default) @requirement This class satisfies the Container requirements (see http://en.cppreference.com/w/cpp/concept/Container): - @ref basic_json() - @ref basic_json(const basic_json&) - @ref reference& operator=(basic_json) - @ref ~basic_json() - @ref iterator begin(), @ref const_iterator begin(), @ref const_iterator cbegin() - @ref iterator end(), @ref const_iterator end(), @ref const_iterator cend() - @ref bool operator==(const_reference, const_reference), @ref bool operator!=(const_reference, const_reference) - @ref void swap(reference other) - @ref size_type size(), @ref size_type max_size() - @ref bool empty() @note ObjectType trick from http://stackoverflow.com/a/9860911 @see RFC 7159 @see ECMA 404 */ template < template class ObjectType = std::map, template class ArrayType = std::vector, class StringType = std::string, class BooleanType = bool, class NumberIntegerType = int64_t, class NumberFloatType = double, template class AllocatorType = std::allocator > class basic_json { public: ///////////////////// // container types // ///////////////////// /// @name container types /// @{ using __basic_json = basic_json; /// the type of elements in a basic_json container using value_type = basic_json; /// the type of an element reference using reference = value_type&; /// the type of an element const reference using const_reference = const value_type&; /// a type to represent differences between iterators using difference_type = std::ptrdiff_t; /// a type to represent container sizes using size_type = std::size_t; /// the allocator type using allocator_type = AllocatorType; /// the type of an element pointer using pointer = typename std::allocator_traits::pointer; /// the type of an element const pointer using const_pointer = typename std::allocator_traits::const_pointer; /// an iterator for a basic_json container class iterator; /// a const iterator for a basic_json container class const_iterator; /// a reverse iterator for a basic_json container class reverse_iterator; /// a const reverse iterator for a basic_json container class const_reverse_iterator; /// @} /*! @brief returns the allocator associated with the container */ static allocator_type get_allocator() { return allocator_type(); } /////////////////////////// // JSON value data types // /////////////////////////// /// @name JSON value data types /// @{ /// a type for an object using object_t = ObjectType, AllocatorType>>; /// a type for an array using array_t = ArrayType>; /// a type for a string using string_t = StringType; /// a type for a boolean using boolean_t = BooleanType; /// a type for a number (integer) using number_integer_t = NumberIntegerType; /// a type for a number (floating-point) using number_float_t = NumberFloatType; /// a type for list initialization using list_init_t = std::initializer_list; /// @} ///////////////////////////////// // JSON value type enumeration // ///////////////////////////////// /*! @brief the JSON value type enumeration This enumeration collects the different JSON value types. It is used to distinguish the stored values in the union @ref json_value. */ enum class value_t : uint8_t { null, ///< null value object, ///< object (unordered set of name/value pairs) array, ///< array (ordered collection of values) string, ///< string value boolean, ///< boolean value number_integer, ///< number value (integer) number_float, ///< number value (floating-point) discarded ///< (internal) indicates the parser callback chose not to keep the value }; //////////////////////// // JSON value storage // //////////////////////// /// a JSON value union json_value { /// object (stored with pointer to save storage) object_t* object; /// array (stored with pointer to save storage) array_t* array; /// string (stored with pointer to save storage) string_t* string; /// boolean boolean_t boolean; /// number (integer) number_integer_t number_integer; /// number (floating-point) number_float_t number_float; /// default constructor (for null values) json_value() noexcept = default; /// constructor for booleans json_value(boolean_t v) noexcept : boolean(v) {} /// constructor for numbers (integer) json_value(number_integer_t v) noexcept : number_integer(v) {} /// constructor for numbers (floating-point) json_value(number_float_t v) noexcept : number_float(v) {} /// constructor for empty values of a given type json_value(value_t t) { switch (t) { case (value_t::null): case (value_t::discarded): { break; } case (value_t::object): { AllocatorType alloc; object = alloc.allocate(1); alloc.construct(object); break; } case (value_t::array): { AllocatorType alloc; array = alloc.allocate(1); alloc.construct(array); break; } case (value_t::string): { AllocatorType alloc; string = alloc.allocate(1); alloc.construct(string, ""); break; } case (value_t::boolean): { boolean = boolean_t(false); break; } case (value_t::number_integer): { number_integer = number_integer_t(0); break; } case (value_t::number_float): { number_float = number_float_t(0.0); break; } } } /// constructor for strings json_value(const string_t& value) { AllocatorType alloc; string = alloc.allocate(1); alloc.construct(string, value); } /// constructor for objects json_value(const object_t& value) { AllocatorType alloc; object = alloc.allocate(1); alloc.construct(object, value); } /// constructor for arrays json_value(const array_t& value) { AllocatorType alloc; array = alloc.allocate(1); alloc.construct(array, value); } }; ////////////////////////// // JSON parser callback // ////////////////////////// /// JSON callback event enumeration enum class parse_event_t : uint8_t { object_start, ///< start an object scope (found a '{' token) object_end, ///< end of an object scope (found '}' token) array_start, ///< start of an array scope (found '[' token) array_end, ///< end of an array scope (found ']' token) key, ///< found an object key within an object scope value ///< a value in an appropriate context (i.e., following a tag in an object scope) }; /// per-element parser callback type using parser_callback_t = std::function; /*! @brief comparison operator for JSON value types Returns an ordering that is similar to Python: - order: null < boolean < number < object < array < string - furthermore, each type is not smaller than itself */ friend bool operator<(const value_t lhs, const value_t rhs) { static constexpr std::array order = {{ 0, // null 3, // object 4, // array 5, // string 1, // boolean 2, // integer 2 // float } }; // discarded values are not comparable if (lhs == value_t::discarded or rhs == value_t::discarded) { return false; } return order[static_cast(lhs)] < order[static_cast(rhs)]; } ////////////////// // constructors // ////////////////// /*! @brief create an empty value with a given type Create an empty JSON value with a given type. The value will be default initialized with an empty value which depends on the type: Value type | initial value ----------- | ------------- null | `null` boolean | `false` string | `""` number | `0` object | `{}` array | `[]` @param value the type of the value to create @complexity Constant. @exception std::bad_alloc if allocation for object, array, or string value fails (thrown by the constructors of @ref json_value) @liveexample{The following code shows the constructor for different @ref value_t values,basic_json__value_t} */ basic_json(const value_t value) : m_type(value), m_value(value) {} /*! @brief create a null object (implicitly) Create a `null` JSON value. This is the implicit version of the `null` value constructor as it takes no parameters. @complexity Constant. @requirement This function satisfies the Container requirements: - The complexity is constant. - As postcondition, it holds: `basic_json().empty() == true`. @liveexample{The following code shows the constructor for a `null` JSON value.,basic_json} @sa basic_json(std::nullptr_t) @ingroup container */ basic_json() noexcept = default; /*! @brief create a null object (explicitly) Create a `null` JSON value. This is the explicitly version of the `null` value constructor as it takes a null pointer as parameter. It allows to create `null` values by explicitly assigning a @c nullptr to a JSON value. The passed null pointer itself is not read - it is only used to choose the right constructor. @complexity Constant. @liveexample{The following code shows the constructor with null pointer parameter.,basic_json__nullptr_t} @sa basic_json() */ basic_json(std::nullptr_t) noexcept : basic_json(value_t::null) {} /*! @brief create an object (explicit) Create an object JSON value with a given content. @param value a value for the object @complexity Linear in the size of the passed @a value. @exception std::bad_alloc if allocation for object value fails (thrown by the constructor of @ref json_value) @liveexample{The following code shows the constructor with an @ref object_t parameter.,basic_json__object_t} @sa basic_json(const CompatibleObjectType&) */ basic_json(const object_t& value) : m_type(value_t::object), m_value(value) {} /*! @brief create an object (implicit) Create an object JSON value with a given content. This constructor allows any type that can be used to construct values of type @ref object_t. Examples include the types `std::map` and `std::unordered_map`. @tparam CompatibleObjectType an object type whose `key_type` and `value_type` is compatible to @ref object_t @param value a value for the object @complexity Linear in the size of the passed @a value. @exception std::bad_alloc if allocation for object value fails (thrown by the constructor of @ref json_value) @liveexample{The following code shows the constructor with several compatible object type parameters.,basic_json__CompatibleObjectType} @sa basic_json(const object_t&) */ template ::value and std::is_constructible::value, int>::type = 0> basic_json(const CompatibleObjectType& value) : m_type(value_t::object) { AllocatorType alloc; m_value.object = alloc.allocate(1); using std::begin; using std::end; alloc.construct(m_value.object, begin(value), end(value)); } /*! @brief create an array (explicit) Create an array JSON value with a given content. @param value a value for the array @complexity Linear in the size of the passed @a value. @exception std::bad_alloc if allocation for array value fails (thrown by the constructor of @ref json_value) @liveexample{The following code shows the constructor with an @ref array_t parameter.,basic_json__array_t} @sa basic_json(const CompatibleArrayType&) */ basic_json(const array_t& value) : m_type(value_t::array), m_value(value) {} /*! @brief create an array (implicit) Create an array JSON value with a given content. This constructor allows any type that can be used to construct values of type @ref array_t. Examples include the types `std::vector`, `std::list`, and `std::set`. @tparam CompatibleArrayType an object type whose `value_type` is compatible to @ref array_t @param value a value for the array @complexity Linear in the size of the passed @a value. @exception std::bad_alloc if allocation for array value fails (thrown by the constructor of @ref json_value) @liveexample{The following code shows the constructor with several compatible array type parameters.,basic_json__CompatibleArrayType} @sa basic_json(const array_t&) */ template ::value and not std::is_same::value and not std::is_same::value and not std::is_same::value and not std::is_same::value and not std::is_same::value and std::is_constructible::value, int>::type = 0> basic_json(const CompatibleArrayType& value) : m_type(value_t::array) { AllocatorType alloc; m_value.array = alloc.allocate(1); using std::begin; using std::end; alloc.construct(m_value.array, begin(value), end(value)); } /// create a string (explicit) basic_json(const string_t& value) : m_type(value_t::string), m_value(value) {} /// create a string (explicit) basic_json(const typename string_t::value_type* value) : basic_json(string_t(value)) {} /// create a string (implicit) template ::value, int>::type = 0> basic_json(const V& value) : basic_json(string_t(value)) {} /// create a boolean (explicit) basic_json(boolean_t value) : m_type(value_t::boolean), m_value(value) {} /*! @brief create an integer number (explicit) @tparam T helper type to compare number_integer_t and int @param value an integer to create a JSON number from This constructor takes care about explicitly passed values of type number_integer_t. However, this constructor would have the same signature as the existing one for const int values, so we need to switch this one off in case number_integer_t is the same as int. */ template::value) and std::is_same::value , int>::type = 0> basic_json(const number_integer_t value) : m_type(value_t::number_integer), m_value(value) {} /*! @brief create an int number to support enum type (implicit) @param value an integer to create a JSON number from This constructor allows to pass enums directly to a constructor. As C++ has no way of specifying the type of an anonymous enum explicitly, we can only rely on the fact that such values implicitly convert to int. As int may already be the same type of number_integer_t, we may need to switch off that constructor, which is done above. */ basic_json(const int value) : m_type(value_t::number_integer), m_value(static_cast(value)) {} /// create an integer number (implicit) template::value and std::numeric_limits::is_integer, T>::type = 0> basic_json(const T value) noexcept : m_type(value_t::number_integer), m_value(static_cast(value)) {} /// create a floating-point number (explicit) basic_json(const number_float_t value) : m_type(value_t::number_float), m_value(value) { // replace infinity and NAN by null if (not std::isfinite(value)) { m_type = value_t::null; m_value = json_value(); } } /// create a floating-point number (implicit) template::value and std::is_floating_point::value>::type > basic_json(const T value) noexcept : basic_json(number_float_t(value)) {} /*! @brief create a container (array or object) from an initializer list Creates a JSON value of type array or object from the passed initializer list @a init. In case @a type_deduction is `true` (default), the type of the JSON value to be created is deducted from the initializer list @a init according to the following rules: 1. If the list is empty, an empty JSON object value `{}` is created. 2. If the list consists of pairs whose first element is a string, a JSON object value is created where the first elements of the pairs are treated as keys and the second elements are as values. 3. In all other cases, an array is created. The rules aim to create the best fit between a C++ initializer list and JSON values. The ratioinale is as follows: 1. The empty initializer list is written as `{}` which is exactly an empty JSON object. 2. C++ has now way of describing mapped types other than to list a list of pairs. As JSON requires that keys must be of type string, rule 2 is the weakest constraint one can pose on initializer lists to interpret them as an object. 3. In all other cases, the initializer list could not be interpreted as JSON object type, so interpreting it as JSON array type is safe. With the rules described above, the following JSON values cannot be expressed by an initializer list: - the empty array (`[]`): use @ref array(list_init_t) with an empty initializer list in this case - arrays whose elements satisfy rule 2: use @ref array(list_init_t) with the same initializer list in this case @note When used without parentheses around an empty initializer list, @ref basic_json() is called instead of this function, yielding the JSON null value. @param init initializer list with JSON values @param type_deduction internal parameter; when set to `true`, the type of the JSON value is deducted from the initializer list @a init; when set to `false`, the type provided via @a manual_type is forced. This mode is used by the functions @ref array(list_init_t) and @ref object(list_init_t). @param manual_type internal parameter; when @a type_deduction is set to `false`, the created JSON value will use the provided type (only @ref value_t::array and @ref value_t::object are valid); when @a type_deduction is set to `true`, this parameter has no effect @throw std::domain_error if @a type_deduction is `false`, @a manual_type is `value_t::object`, but @a init contains an element which is not a pair whose first element is a string @complexity Linear in the size of the initializer list @a init. @liveexample{The example below shows how JSON values are created from initializer lists,basic_json__list_init_t} @sa basic_json array(list_init_t) - create a JSON array value from an initializer list @sa basic_json object(list_init_t) - create a JSON object value from an initializer list */ basic_json(list_init_t init, bool type_deduction = true, value_t manual_type = value_t::array) { // the initializer list could describe an object bool is_object = true; // check if each element is an array with two elements whose first element // is a string for (const auto& element : init) { if (element.m_type != value_t::array or element.size() != 2 or element[0].m_type != value_t::string) { // we found an element that makes it impossible to use the // initializer list as object is_object = false; break; } } // adjust type if type deduction is not wanted if (not type_deduction) { // if array is wanted, do not create an object though possible if (manual_type == value_t::array) { is_object = false; } // if object is wanted but impossible, throw an exception if (manual_type == value_t::object and not is_object) { throw std::domain_error("cannot create object from initializer list"); } } if (is_object) { // the initializer list is a list of pairs -> create object m_type = value_t::object; m_value = value_t::object; for (auto& element : init) { m_value.object->emplace(std::move(*(element[0].m_value.string)), std::move(element[1])); } } else { // the initializer list describes an array -> create array m_type = value_t::array; AllocatorType alloc; m_value.array = alloc.allocate(1); alloc.construct(m_value.array, std::move(init)); } } /*! @brief explicitly create an array from an initializer list Creates a JSON array value from a given initializer list. That is, given a list of values `a, b, c`, creates the JSON value `[a, b, c]`. If the initializer list is empty, the empty array `[]` is created. @note This function is only needed to express two edge cases that cannot be realized with the initializer list constructor (@ref basic_json(list_init_t, bool, value_t)). These cases are: 1. creating an array whose elements are all pairs whose first element is a string - in this case, the initializer list constructor would create an object, taking the first elements as keys 2. creating an empty array - passing the empty initializer list to the initializer list constructor yields an empty object @param init initializer list with JSON values to create an array from (optional) @return JSON array value @complexity Linear in the size of @a init. @liveexample{The following code shows an example for the @ref array function.,array} @sa basic_json(list_init_t, bool, value_t) - create a JSON value from an initializer list @sa basic_json object(list_init_t) - create a JSON object value from an initializer list */ static basic_json array(list_init_t init = list_init_t()) { return basic_json(init, false, value_t::array); } /*! @brief explicitly create an object from an initializer list Creates a JSON object value from a given initializer list. The initializer lists elements must be pairs, and their first elments must be strings. If the initializer list is empty, the empty object `{}` is created. @note This function is only added for symmetry reasons. In contrast to the related function @ref basic_json array(list_init_t), there are no cases which can only be expressed by this function. That is, any initializer list @a init can also be passed to the initializer list constructor @ref basic_json(list_init_t, bool, value_t). @param init initializer list to create an object from (optional) @return JSON object value @throw std::domain_error if @a init is not a pair whose first elements are strings; thrown by @ref basic_json(list_init_t, bool, value_t) @complexity Linear in the size of @a init. @liveexample{The following code shows an example for the @ref object function.,object} @sa basic_json(list_init_t, bool, value_t) - create a JSON value from an initializer list @sa basic_json array(list_init_t) - create a JSON array value from an initializer list */ static basic_json object(list_init_t init = list_init_t()) { return basic_json(init, false, value_t::object); } /*! @brief construct an array with count copies of given value Constructs a JSON array value by creating @a count copies of a passed value. In case @a count is `0`, an empty array is created. As postcondition, `std::distance(begin(),end()) == count` holds. @param count the number of JSON copies of @a value to create @param value the JSON value to copy @complexity Linear in @a count. @liveexample{The following code shows examples for the @ref basic_json(size_type\, const basic_json&) constructor.,basic_json__size_type_basic_json} */ basic_json(size_type count, const basic_json& value) : m_type(value_t::array) { AllocatorType alloc; m_value.array = alloc.allocate(1); alloc.construct(m_value.array, count, value); } /// construct a JSON container given an iterator range template ::value or std::is_same::value , int>::type = 0> basic_json(T first, T last) { // make sure iterator fits the current value if (first.m_object != last.m_object or first.m_object->m_type != last.m_object->m_type) { throw std::domain_error("iterators are not compatible"); } // set the type m_type = first.m_object->m_type; // check if iterator range is complete for non-compound values switch (m_type) { case value_t::number_integer: case value_t::number_float: case value_t::boolean: case value_t::string: { if (first.m_it.generic_iterator != 0 or last.m_it.generic_iterator != 1) { throw std::out_of_range("iterators out of range"); } break; } default: { break; } } switch (m_type) { case value_t::number_integer: { m_value.number_integer = first.m_object->m_value.number_integer; break; } case value_t::number_float: { m_value.number_float = first.m_object->m_value.number_float; break; } case value_t::boolean: { m_value.boolean = first.m_object->m_value.boolean; break; } case value_t::string: { m_value = *first.m_object->m_value.string; break; } case value_t::object: { AllocatorType alloc; m_value.object = alloc.allocate(1); alloc.construct(m_value.object, first.m_it.object_iterator, last.m_it.object_iterator); break; } case value_t::array: { AllocatorType alloc; m_value.array = alloc.allocate(1); alloc.construct(m_value.array, first.m_it.array_iterator, last.m_it.array_iterator); break; } default: { throw std::domain_error("cannot use construct with iterators from " + first.m_object->type_name()); } } } /////////////////////////////////////// // other constructors and destructor // /////////////////////////////////////// /*! @brief copy constructor Creates a copy of a given JSON value. @param other the JSON value to copy @complexity Linear in the size of @a other. @requirement This function satisfies the Container requirements: - The complexity is linear. - As postcondition, it holds: `other == basic_json(other)`. @exception std::bad_alloc if allocation for object, array, or string fails. @liveexample{The following code shows an example for the copy constructor.,basic_json__basic_json} @ingroup container */ basic_json(const basic_json& other) : m_type(other.m_type) { switch (m_type) { case (value_t::null): case (value_t::discarded): { break; } case (value_t::object): { m_value = *other.m_value.object; break; } case (value_t::array): { m_value = *other.m_value.array; break; } case (value_t::string): { m_value = *other.m_value.string; break; } case (value_t::boolean): { m_value = other.m_value.boolean; break; } case (value_t::number_integer): { m_value = other.m_value.number_integer; break; } case (value_t::number_float): { m_value = other.m_value.number_float; break; } } } /// move constructor basic_json(basic_json&& other) noexcept : m_type(std::move(other.m_type)), m_value(std::move(other.m_value)) { // invalidate payload other.m_type = value_t::null; other.m_value = {}; } /*! @brief copy assignment The copy assignment operator is expressed in terms of the copy constructor, destructor, and the swap() member function. @complexity Linear. @requirement This function satisfies the Container requirements: - The complexity is linear. @ingroup container */ reference& operator=(basic_json other) noexcept ( std::is_nothrow_move_constructible::value and std::is_nothrow_move_assignable::value and std::is_nothrow_move_constructible::value and std::is_nothrow_move_assignable::value ) { using std::swap; std::swap(m_type, other.m_type); std::swap(m_value, other.m_value); return *this; } /*! @brief destructor Destroys the JSON value and frees all memory. @complexity Linear. @requirement This function satisfies the Container requirements: - The complexity is linear. - All stored elements are destroyed and all memory is freed. @ingroup container */ ~basic_json() noexcept { switch (m_type) { case (value_t::object): { AllocatorType alloc; alloc.destroy(m_value.object); alloc.deallocate(m_value.object, 1); m_value.object = nullptr; break; } case (value_t::array): { AllocatorType alloc; alloc.destroy(m_value.array); alloc.deallocate(m_value.array, 1); m_value.array = nullptr; break; } case (value_t::string): { AllocatorType alloc; alloc.destroy(m_value.string); alloc.deallocate(m_value.string, 1); m_value.string = nullptr; break; } default: { // all other types need no specific destructor break; } } } public: /////////////////////// // object inspection // /////////////////////// /// @name object inspection /// @{ /*! @brief serialization Serialization function for JSON objects. The function tries to mimick Python's @p json.dumps() function, and currently supports its @p indent parameter. @param indent if indent is nonnegative, then array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. -1 (the default) selects the most compact representation @see https://docs.python.org/2/library/json.html#json.dump */ string_t dump(const int indent = -1) const noexcept { std::stringstream ss; if (indent >= 0) { dump(ss, true, static_cast(indent)); } else { dump(ss, false, 0); } return ss.str(); } /// return the type of the object (explicit) value_t type() const noexcept { return m_type; } /*! @brief return whether value is null This function returns true iff the JSON value is null. @return `true` if value type is null, `false` otherwise. @complexity Constant. @liveexample{The following code exemplifies @ref is_null for all JSON value types.,is_null} */ bool is_null() const noexcept { return m_type == value_t::null; } /*! @brief return whether value is a boolean This function returns true iff the JSON value is a boolean. @return `true` if value type is boolean, `false` otherwise. @complexity Constant. @liveexample{The following code exemplifies @ref is_boolean for all JSON value types.,is_boolean} */ bool is_boolean() const noexcept { return m_type == value_t::boolean; } /*! @brief return whether value is a number This function returns true iff the JSON value is a number. This includes both integer and floating-point values. @return `true` if value type is number, `false` otherwise. @complexity Constant. @liveexample{The following code exemplifies @ref is_number for all JSON value types.,is_number} */ bool is_number() const noexcept { return (m_type == value_t::number_integer) or (m_type == value_t::number_float); } /*! @brief return whether value is an integer number This function returns true iff the JSON value is an integer number. This excludes floating-point values. @return `true` if value type is an integer number, `false` otherwise. @complexity Constant. @liveexample{The following code exemplifies @ref is_number_integer for all JSON value types.,is_number_integer} */ bool is_number_integer() const noexcept { return m_type == value_t::number_integer; } /*! @brief return whether value is a floating-point number This function returns true iff the JSON value is a floating-point number. This excludes integer values. @return `true` if value type is a floating-point number, `false` otherwise. @complexity Constant. @liveexample{The following code exemplifies @ref is_number_float for all JSON value types.,is_number_float} */ bool is_number_float() const noexcept { return m_type == value_t::number_float; } /*! @brief return whether value is an object This function returns true iff the JSON value is an object. @return `true` if value type is object, `false` otherwise. @complexity Constant. @liveexample{The following code exemplifies @ref is_object for all JSON value types.,is_object} */ bool is_object() const noexcept { return m_type == value_t::object; } /*! @brief return whether value is an array This function returns true iff the JSON value is an array. @return `true` if value type is array, `false` otherwise. @complexity Constant. @liveexample{The following code exemplifies @ref is_array for all JSON value types.,is_array} */ bool is_array() const noexcept { return m_type == value_t::array; } /*! @brief return whether value is a string This function returns true iff the JSON value is a string. @return `true` if value type is string, `false` otherwise. @complexity Constant. @liveexample{The following code exemplifies @ref is_string for all JSON value types.,is_string} */ bool is_string() const noexcept { return m_type == value_t::string; } // return whether value is discarded bool is_discarded() const noexcept { return m_type == value_t::discarded; } /// return the type of the object (implicit) operator value_t() const noexcept { return m_type; } /// @} private: ////////////////// // value access // ////////////////// /// get an object (explicit) template ::value and std::is_convertible<__basic_json, typename T::mapped_type>::value , int>::type = 0> T get_impl(T*) const { switch (m_type) { case (value_t::object): { return T(m_value.object->begin(), m_value.object->end()); } default: { throw std::domain_error("value type must be object, but is " + type_name()); } } } /// get an object (explicit) object_t get_impl(object_t*) const { switch (m_type) { case (value_t::object): { return *(m_value.object); } default: { throw std::domain_error("value type must be object, but is " + type_name()); } } } /// get an array (explicit) template ::value and not std::is_same<__basic_json, typename T::value_type>::value and not std::is_arithmetic::value and not std::is_convertible::value and not internals::has_mapped_type::value , int>::type = 0> T get_impl(T*) const { switch (m_type) { case (value_t::array): { T to_vector; std::transform(m_value.array->begin(), m_value.array->end(), std::inserter(to_vector, to_vector.end()), [](basic_json i) { return i.get(); }); return to_vector; } default: { throw std::domain_error("value type must be array, but is " + type_name()); } } } /// get an array (explicit) template ::value and not std::is_same<__basic_json, T>::value , int>::type = 0> std::vector get_impl(std::vector*) const { switch (m_type) { case (value_t::array): { std::vector to_vector; to_vector.reserve(m_value.array->size()); std::transform(m_value.array->begin(), m_value.array->end(), std::inserter(to_vector, to_vector.end()), [](basic_json i) { return i.get(); }); return to_vector; } default: { throw std::domain_error("value type must be array, but is " + type_name()); } } } /// get an array (explicit) template ::value and not internals::has_mapped_type::value , int>::type = 0> T get_impl(T*) const { switch (m_type) { case (value_t::array): { return T(m_value.array->begin(), m_value.array->end()); } default: { throw std::domain_error("value type must be array, but is " + type_name()); } } } array_t get_impl(array_t*) const { switch (m_type) { case (value_t::array): { return *(m_value.array); } default: { throw std::domain_error("value type must be array, but is " + type_name()); } } } /// get a string (explicit) template ::value , int>::type = 0> T get_impl(T*) const { switch (m_type) { case (value_t::string): { return *m_value.string; } default: { throw std::domain_error("value type must be string, but is " + type_name()); } } } /// get a number (explicit) template::value , int>::type = 0> T get_impl(T*) const { switch (m_type) { case (value_t::number_integer): { return static_cast(m_value.number_integer); } case (value_t::number_float): { return static_cast(m_value.number_float); } default: { throw std::domain_error("value type must be number, but is " + type_name()); } } } /// get a boolean (explicit) boolean_t get_impl(boolean_t*) const { switch (m_type) { case (value_t::boolean): { return m_value.boolean; } default: { throw std::domain_error("value type must be boolean, but is " + type_name()); } } } public: /// @name value access /// @{ /// get a value (explicit) // template T get() const { return get_impl(static_cast(nullptr)); } /// get a value (implicit) template operator T() const { return get(); } /// @} //////////////////// // element access // //////////////////// /// @name element access /// @{ /// access specified element with bounds checking reference at(size_type idx) { // at only works for arrays if (m_type != value_t::array) { throw std::domain_error("cannot use at() with " + type_name()); } return m_value.array->at(idx); } /// access specified element with bounds checking const_reference at(size_type idx) const { // at only works for arrays if (m_type != value_t::array) { throw std::domain_error("cannot use at() with " + type_name()); } return m_value.array->at(idx); } /// access specified element with bounds checking reference at(const typename object_t::key_type& key) { // at only works for objects if (m_type != value_t::object) { throw std::domain_error("cannot use at() with " + type_name()); } return m_value.object->at(key); } /// access specified element with bounds checking const_reference at(const typename object_t::key_type& key) const { // at only works for objects if (m_type != value_t::object) { throw std::domain_error("cannot use at() with " + type_name()); } return m_value.object->at(key); } /// access specified element reference operator[](size_type idx) { // implicitly convert null to object if (m_type == value_t::null) { m_type = value_t::array; AllocatorType alloc; m_value.array = alloc.allocate(1); alloc.construct(m_value.array); } // [] only works for arrays if (m_type != value_t::array) { throw std::domain_error("cannot use operator[] with " + type_name()); } for (size_t i = m_value.array->size(); i <= idx; ++i) { m_value.array->push_back(basic_json()); } return m_value.array->operator[](idx); } /// access specified element const_reference operator[](size_type idx) const { // at only works for arrays if (m_type != value_t::array) { throw std::domain_error("cannot use operator[] with " + type_name()); } return m_value.array->operator[](idx); } /// access specified element reference operator[](const typename object_t::key_type& key) { // implicitly convert null to object if (m_type == value_t::null) { m_type = value_t::object; AllocatorType alloc; m_value.object = alloc.allocate(1); alloc.construct(m_value.object); } // [] only works for objects if (m_type != value_t::object) { throw std::domain_error("cannot use operator[] with " + type_name()); } return m_value.object->operator[](key); } /// access specified element const_reference operator[](const typename object_t::key_type& key) const { // at only works for objects if (m_type != value_t::object) { throw std::domain_error("cannot use operator[] with " + type_name()); } return m_value.object->operator[](key); } /// access specified element (needed for clang) template reference operator[](const T (&key)[n]) { // implicitly convert null to object if (m_type == value_t::null) { m_type = value_t::object; m_value = value_t::object; } // at only works for objects if (m_type != value_t::object) { throw std::domain_error("cannot use operator[] with " + type_name()); } return m_value.object->operator[](key); } /// access specified element (needed for clang) template const_reference operator[](const T (&key)[n]) const { // at only works for objects if (m_type != value_t::object) { throw std::domain_error("cannot use operator[] with " + type_name()); } return m_value.object->operator[](key); } /*! @brief access the first element Returns a reference to the first element in the container. For a JSON container `c`, the expression `c.front()` is equivalent to `*c.begin()`. @return In case of a compound value (array or object), a reference to the first element is returned. In cast of number, string, or boolean values, a reference to the value is returned. @complexity Constant. @note Calling `front` on an empty container is undefined. @throw std::out_of_range when called on null value. @liveexample{The following code shows an example for @ref front.,front} */ reference front() { return *begin(); } /*! @copydoc basic_json::front() */ const_reference front() const { return *cbegin(); } /*! @brief access the last element Returns a reference to the last element in the container. For a JSON container `c`, the expression `c.back()` is equivalent to `{ auto tmp = c.end(); --tmp; return *tmp; }`. @return In case of a compound value (array or object), a reference to the last element is returned. In cast of number, string, or boolean values, a reference to the value is returned. @complexity Constant. @note Calling `back` on an empty container is undefined. @throw std::out_of_range when called on null value. @liveexample{The following code shows an example for @ref back.,back} */ reference back() { auto tmp = end(); --tmp; return *tmp; } /*! @copydoc basic_json::back() */ const_reference back() const { auto tmp = cend(); --tmp; return *tmp; } /// remove element given an iterator template ::value or std::is_same::value , int>::type = 0> T erase(T pos) { // make sure iterator fits the current value if (this != pos.m_object or m_type != pos.m_object->m_type) { throw std::domain_error("iterator does not fit current value"); } T result = end(); switch (m_type) { case value_t::number_integer: case value_t::number_float: case value_t::boolean: case value_t::string: { if (pos.m_it.generic_iterator != 0) { throw std::out_of_range("iterator out of range"); } if (m_type == value_t::string) { delete m_value.string; m_value.string = nullptr; } m_type = value_t::null; break; } case value_t::object: { result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator); break; } case value_t::array: { result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator); break; } default: { throw std::domain_error("cannot use erase() with " + type_name()); } } return result; } /// remove elements given an iterator range template ::value or std::is_same::value , int>::type = 0> T erase(T first, T last) { // make sure iterator fits the current value if (this != first.m_object or this != last.m_object or m_type != first.m_object->m_type or m_type != last.m_object->m_type) { throw std::domain_error("iterators do not fit current value"); } T result = end(); switch (m_type) { case value_t::number_integer: case value_t::number_float: case value_t::boolean: case value_t::string: { if (first.m_it.generic_iterator != 0 or last.m_it.generic_iterator != 1) { throw std::out_of_range("iterators out of range"); } if (m_type == value_t::string) { delete m_value.string; m_value.string = nullptr; } m_type = value_t::null; break; } case value_t::object: { result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator, last.m_it.object_iterator); break; } case value_t::array: { result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator, last.m_it.array_iterator); break; } default: { throw std::domain_error("cannot use erase with " + type_name()); } } return result; } /// remove element from an object given a key size_type erase(const typename object_t::key_type& key) { // this erase only works for objects if (m_type != value_t::object) { throw std::domain_error("cannot use erase() with " + type_name()); } return m_value.object->erase(key); } /// remove element from an array given an index void erase(const size_type idx) { // this erase only works for arrays if (m_type != value_t::array) { throw std::domain_error("cannot use erase() with " + type_name()); } if (idx >= size()) { throw std::out_of_range("index out of range"); } m_value.array->erase(m_value.array->begin() + static_cast(idx)); } /// find an element in an object iterator find(typename object_t::key_type key) { auto result = end(); if (m_type == value_t::object) { result.m_it.object_iterator = m_value.object->find(key); } return result; } /// find an element in an object const_iterator find(typename object_t::key_type key) const { auto result = cend(); if (m_type == value_t::object) { result.m_it.object_iterator = m_value.object->find(key); } return result; } /// returns the number of occurrences of a key in an object size_type count(typename object_t::key_type key) const { // return 0 for all nonobject types return (m_type == value_t::object) ? m_value.object->count(key) : 0; } /// @} /////////////// // iterators // /////////////// /// @name iterators /// @{ /*! @brief returns an iterator to the first element Returns an iterator to the first element. @image html range-begin-end.svg "Illustration from cppreference.com" @return iterator to the first element @complexity Constant. @requirement This function satisfies the Container requirements: - The complexity is constant. @liveexample{The following code shows an example for @ref begin.,begin} @ingroup container */ iterator begin() noexcept { iterator result(this); result.set_begin(); return result; } /*! @copydoc basic_json::cbegin() @ingroup container */ const_iterator begin() const noexcept { return cbegin(); } /*! @brief returns a const iterator to the first element Returns a const iterator to the first element. @image html range-begin-end.svg "Illustration from cppreference.com" @return const iterator to the first element @complexity Constant. @requirement This function satisfies the Container requirements: - The complexity is constant. - Has the semantics of `const_cast(*this).begin()`. @liveexample{The following code shows an example for @ref cbegin.,cbegin} @ingroup container */ const_iterator cbegin() const noexcept { const_iterator result(this); result.set_begin(); return result; } /*! @brief returns an iterator to one past the last element Returns an iterator to one past the last element. @image html range-begin-end.svg "Illustration from cppreference.com" @return iterator one past the last element @complexity Constant. @requirement This function satisfies the Container requirements: - The complexity is constant. @liveexample{The following code shows an example for @ref end.,end} @ingroup container */ iterator end() noexcept { iterator result(this); result.set_end(); return result; } /*! @copydoc basic_json::cend() @ingroup container */ const_iterator end() const noexcept { return cend(); } /*! @brief returns a const iterator to one past the last element Returns a const iterator to one past the last element. @image html range-begin-end.svg "Illustration from cppreference.com" @return const iterator one past the last element @complexity Constant. @requirement This function satisfies the Container requirements: - The complexity is constant. - Has the semantics of `const_cast(*this).end()`. @liveexample{The following code shows an example for @ref cend.,cend} @ingroup container */ const_iterator cend() const noexcept { const_iterator result(this); result.set_end(); return result; } /*! @brief returns an iterator to the reverse-beginning Returns an iterator to the reverse-beginning; that is, the last element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function satisfies the ReversibleContainer requirements: - The complexity is constant. - Has the semantics of `reverse_iterator(end())`. @liveexample{The following code shows an example for @ref rbegin.,rbegin} @ingroup reversiblecontainer */ reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } /*! @copydoc basic_json::crbegin() @ingroup reversiblecontainer */ const_reverse_iterator rbegin() const noexcept { return crbegin(); } /*! @brief returns an iterator to the reverse-end Returns an iterator to the reverse-end; that is, one before the first element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function satisfies the ReversibleContainer requirements: - The complexity is constant. - Has the semantics of `reverse_iterator(begin())`. @liveexample{The following code shows an example for @ref rend.,rend} @ingroup reversiblecontainer */ reverse_iterator rend() noexcept { return reverse_iterator(begin()); } /*! @copydoc basic_json::crend() @ingroup reversiblecontainer */ const_reverse_iterator rend() const noexcept { return crend(); } /*! @brief returns a const reverse iterator to the last element Returns a const iterator to the reverse-beginning; that is, the last element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function satisfies the ReversibleContainer requirements: - The complexity is constant. - Has the semantics of `const_cast(*this).rbegin()`. @liveexample{The following code shows an example for @ref crbegin.,crbegin} @ingroup reversiblecontainer */ const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(cend()); } /*! @brief returns a const reverse iterator to one before the first Returns a const reverse iterator to the reverse-end; that is, one before the first element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function satisfies the ReversibleContainer requirements: - The complexity is constant. - Has the semantics of `const_cast(*this).rend()`. @liveexample{The following code shows an example for @ref crend.,crend} @ingroup reversiblecontainer */ const_reverse_iterator crend() const noexcept { return const_reverse_iterator(cbegin()); } /// @} ////////////// // capacity // ////////////// /// @name capacity /// @{ /*! @brief checks whether the container is empty Checks if a JSON value has no elements. @return The return value depends on the different value types and is defined as follows: Value type | return value ----------- | ------------- null | @c true boolean | @c false string | @c false number | @c false object | result of function object_t::empty() array | result of function array_t::empty() @complexity Constant, as long as @ref array_t and @ref object_t satisfy the Container concept; that is, their empty() functions have constant complexity. @requirement This function satisfies the Container requirements: - The complexity is constant. - Has the semantics of `begin() == end()`. @liveexample{The following code uses @ref empty to check if a @ref json object contains any elements.,empty} @ingroup container */ bool empty() const noexcept { switch (m_type) { case (value_t::null): { return true; } case (value_t::array): { return m_value.array->empty(); } case (value_t::object): { return m_value.object->empty(); } default: { // all other types are nonempty return false; } } } /*! @brief returns the number of elements Returns the number of elements in a JSON value. @return The return value depends on the different value types and is defined as follows: Value type | return value ----------- | ------------- null | @c 0 boolean | @c 1 string | @c 1 number | @c 1 object | result of function object_t::size() array | result of function array_t::size() @complexity Constant, as long as @ref array_t and @ref object_t satisfy the Container concept; that is, their size() functions have constant complexity. @requirement This function satisfies the Container requirements: - The complexity is constant. - Has the semantics of `std::distance(begin(), end())`. @liveexample{The following code calls @ref size on the different value types.,size} @ingroup container */ size_type size() const noexcept { switch (m_type) { case (value_t::null): { return 0; } case (value_t::array): { return m_value.array->size(); } case (value_t::object): { return m_value.object->size(); } default: { // all other types have size 1 return 1; } } } /*! @brief returns the maximum possible number of elements Returns the maximum number of elements a JSON value is able to hold due to system or library implementation limitations, i.e. `std::distance(begin(), end())` for the JSON value. @return The return value depends on the different value types and is defined as follows: Value type | return value ----------- | ------------- null | @c 0 boolean | @c 1 string | @c 1 number | @c 1 object | result of function object_t::max_size() array | result of function array_t::max_size() @complexity Constant, as long as @ref array_t and @ref object_t satisfy the Container concept; that is, their max_size() functions have constant complexity. @requirement This function satisfies the Container requirements: - The complexity is constant. - Has the semantics of returning `b.size()` where `b` is the largest possible JSON value. @liveexample{The following code calls @ref max_size on the different value types. Note the output is implementation specific.,max_size} @ingroup container */ size_type max_size() const noexcept { switch (m_type) { case (value_t::null): { return 0; } case (value_t::array): { return m_value.array->max_size(); } case (value_t::object): { return m_value.object->max_size(); } default: { // all other types have max_size 1 return 1; } } } /// @} /////////////// // modifiers // /////////////// /// @name modifiers /// @{ /*! @brief clears the contents Clears the content of a JSON value and resets it to the default value as if @ref basic_json(value_t) would have been called: Value type | initial value ----------- | ------------- null | `null` boolean | `false` string | `""` number | `0` object | `{}` array | `[]` @note Floating-point numbers are set to `0.0` which will be serialized to `0`. The vale type remains @ref number_float_t. @complexity Linear in the size of the JSON value. @liveexample{The example below shows the effect of @ref clear to different JSON value types.,clear} */ void clear() noexcept { switch (m_type) { case (value_t::null): case (value_t::discarded): { break; } case (value_t::number_integer): { m_value.number_integer = 0; break; } case (value_t::number_float): { m_value.number_float = 0.0; break; } case (value_t::boolean): { m_value.boolean = false; break; } case (value_t::string): { m_value.string->clear(); break; } case (value_t::array): { m_value.array->clear(); break; } case (value_t::object): { m_value.object->clear(); break; } } } /// add an object to an array void push_back(basic_json&& value) { // push_back only works for null objects or arrays if (not(m_type == value_t::null or m_type == value_t::array)) { throw std::domain_error("cannot use push_back() with " + type_name()); } // transform null object into an array if (m_type == value_t::null) { m_type = value_t::array; m_value = value_t::array; } // add element to array (move semantics) m_value.array->push_back(std::move(value)); // invalidate object value.m_type = value_t::null; } /// add an object to an array reference operator+=(basic_json&& value) { push_back(std::move(value)); return *this; } /// add an object to an array void push_back(const basic_json& value) { // push_back only works for null objects or arrays if (not(m_type == value_t::null or m_type == value_t::array)) { throw std::domain_error("cannot use push_back() with " + type_name()); } // transform null object into an array if (m_type == value_t::null) { m_type = value_t::array; m_value = value_t::array; } // add element to array m_value.array->push_back(value); } /// add an object to an array reference operator+=(const basic_json& value) { push_back(value); return *this; } /// add an object to an object void push_back(const typename object_t::value_type& value) { // push_back only works for null objects or objects if (not(m_type == value_t::null or m_type == value_t::object)) { throw std::domain_error("cannot use push_back() with " + type_name()); } // transform null object into an object if (m_type == value_t::null) { m_type = value_t::object; m_value = value_t::object; } // add element to array m_value.object->insert(value); } /// add an object to an object reference operator+=(const typename object_t::value_type& value) { push_back(value); return operator[](value.first); } /*! @brief exchanges the values @ingroup container */ void swap(reference other) noexcept ( std::is_nothrow_move_constructible::value and std::is_nothrow_move_assignable::value and std::is_nothrow_move_constructible::value and std::is_nothrow_move_assignable::value ) { std::swap(m_type, other.m_type); std::swap(m_value, other.m_value); } /// swaps the contents void swap(array_t& other) { // swap only works for arrays if (m_type != value_t::array) { throw std::domain_error("cannot use swap() with " + type_name()); } // swap arrays std::swap(*(m_value.array), other); } /// swaps the contents void swap(object_t& other) { // swap only works for objects if (m_type != value_t::object) { throw std::domain_error("cannot use swap() with " + type_name()); } // swap arrays std::swap(*(m_value.object), other); } /// swaps the contents void swap(string_t& other) { // swap only works for strings if (m_type != value_t::string) { throw std::domain_error("cannot use swap() with " + type_name()); } // swap arrays std::swap(*(m_value.string), other); } /// @} ////////////////////////////////////////// // lexicographical comparison operators // ////////////////////////////////////////// /// @name lexicographical comparison operators /// @{ /*! @brief comparison: equal @ingroup container */ friend bool operator==(const_reference lhs, const_reference rhs) noexcept { const auto lhs_type = lhs.type(); const auto rhs_type = rhs.type(); if (lhs_type == rhs_type) { switch (lhs_type) { case (value_t::array): return *lhs.m_value.array == *rhs.m_value.array; case (value_t::object): return *lhs.m_value.object == *rhs.m_value.object; case (value_t::null): return true; case (value_t::string): return *lhs.m_value.string == *rhs.m_value.string; case (value_t::boolean): return lhs.m_value.boolean == rhs.m_value.boolean; case (value_t::number_integer): return lhs.m_value.number_integer == rhs.m_value.number_integer; case (value_t::number_float): return approx(lhs.m_value.number_float, rhs.m_value.number_float); case (value_t::discarded): return false; } } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float) { return approx(static_cast(lhs.m_value.number_integer), rhs.m_value.number_float); } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer) { return approx(lhs.m_value.number_float, static_cast(rhs.m_value.number_integer)); } return false; } /*! @brief comparison: not equal @ingroup container */ friend bool operator!=(const_reference lhs, const_reference rhs) noexcept { return not (lhs == rhs); } /// comparison: less than friend bool operator<(const_reference lhs, const_reference rhs) noexcept { const auto lhs_type = lhs.type(); const auto rhs_type = rhs.type(); if (lhs_type == rhs_type) { switch (lhs_type) { case (value_t::array): return *lhs.m_value.array < *rhs.m_value.array; case (value_t::object): return *lhs.m_value.object < *rhs.m_value.object; case (value_t::null): return false; case (value_t::string): return *lhs.m_value.string < *rhs.m_value.string; case (value_t::boolean): return lhs.m_value.boolean < rhs.m_value.boolean; case (value_t::number_integer): return lhs.m_value.number_integer < rhs.m_value.number_integer; case (value_t::number_float): return lhs.m_value.number_float < rhs.m_value.number_float; case (value_t::discarded): return false; } } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float) { return static_cast(lhs.m_value.number_integer) < rhs.m_value.number_float; } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer) { return lhs.m_value.number_float < static_cast(rhs.m_value.number_integer); } // We only reach this line if we cannot compare values. In that case, // we compare types. return lhs_type < rhs_type; } /// comparison: less than or equal friend bool operator<=(const_reference lhs, const_reference rhs) noexcept { return not (rhs < lhs); } /// comparison: greater than friend bool operator>(const_reference lhs, const_reference rhs) noexcept { return not (lhs <= rhs); } /// comparison: greater than or equal friend bool operator>=(const_reference lhs, const_reference rhs) noexcept { return not (lhs < rhs); } /// @} /////////////////// // serialization // /////////////////// /// @name serialization /// @{ /// serialize to stream friend std::ostream& operator<<(std::ostream& o, const basic_json& j) { // read width member and use it as indentation parameter if nonzero const bool pretty_print = (o.width() > 0); const auto indentation = (pretty_print ? o.width() : 0); // reset width to 0 for subsequent calls to this stream o.width(0); // do the actual serialization j.dump(o, pretty_print, static_cast(indentation)); return o; } /// serialize to stream friend std::ostream& operator>>(const basic_json& j, std::ostream& o) { return o << j; } /// @} ///////////////////// // deserialization // ///////////////////// /// @name deserialization /// @{ /// deserialize from string static basic_json parse(const string_t& s, parser_callback_t cb = nullptr) { return parser(s, cb).parse(); } /// deserialize from stream static basic_json parse(std::istream& i, parser_callback_t cb = nullptr) { return parser(i, cb).parse(); } /// deserialize from stream friend std::istream& operator>>(std::istream& i, basic_json& j) { j = parser(i).parse(); return i; } /// deserialize from stream friend std::istream& operator<<(basic_json& j, std::istream& i) { j = parser(i).parse(); return i; } /// @} private: /////////////////////////// // convenience functions // /////////////////////////// /// return the type as string string_t type_name() const noexcept { switch (m_type) { case (value_t::null): { return "null"; } case (value_t::object): { return "object"; } case (value_t::array): { return "array"; } case (value_t::string): { return "string"; } case (value_t::boolean): { return "boolean"; } case (value_t::discarded): { return "discarded"; } default: { return "number"; } } } /*! @brief escape a string Escape a string by replacing certain special characters by a sequence of an escape character (backslash) and another character and other control characters by a sequence of "\u" followed by a four-digit hex representation. @param o the stream to write the escaped string to @param s the string to escape */ static void escape_string(std::ostream& o, const string_t& s) noexcept { for (const auto c : s) { switch (c) { // quotation mark (0x22) case '"': { o << "\\\""; break; } // reverse solidus (0x5c) case '\\': { o << "\\\\"; break; } // backspace (0x08) case '\b': { o << "\\b"; break; } // formfeed (0x0c) case '\f': { o << "\\f"; break; } // newline (0x0a) case '\n': { o << "\\n"; break; } // carriage return (0x0d) case '\r': { o << "\\r"; break; } // horizontal tab (0x09) case '\t': { o << "\\t"; break; } default: { if (c >= 0 and c <= 0x1f) { // control characters (everything between 0x00 and 0x1f) // -> create four-digit hex representation o << "\\u" << std::hex << std::setw(4) << std::setfill('0') << int(c); } else { // all other characters are added as-is o << c; } break; } } } } /*! @brief internal implementation of the serialization function This function is called by the public member function dump and organizes the serializaion internally. The indentation level is propagated as additional parameter. In case of arrays and objects, the function is called recursively. Note that - strings and object keys are escaped using escape_string() - integer numbers are converted implictly via operator<< - floating-point numbers are converted to a string using "%g" format @param o stream to write to @param pretty_print whether the output shall be pretty-printed @param indent_step the indent level @param current_indent the current indent level (only used internally) */ void dump(std::ostream& o, const bool pretty_print, const unsigned int indent_step, const unsigned int current_indent = 0) const noexcept { // variable to hold indentation for recursive calls unsigned int new_indent = current_indent; switch (m_type) { case (value_t::object): { if (m_value.object->empty()) { o << "{}"; return; } o << "{"; // increase indentation if (pretty_print) { new_indent += indent_step; o << "\n"; } for (auto i = m_value.object->cbegin(); i != m_value.object->cend(); ++i) { if (i != m_value.object->cbegin()) { o << (pretty_print ? ",\n" : ","); } o << string_t(new_indent, ' ') << "\""; escape_string(o, i->first); o << "\":" << (pretty_print ? " " : ""); i->second.dump(o, pretty_print, indent_step, new_indent); } // decrease indentation if (pretty_print) { new_indent -= indent_step; o << "\n"; } o << string_t(new_indent, ' ') + "}"; return; } case (value_t::array): { if (m_value.array->empty()) { o << "[]"; return; } o << "["; // increase indentation if (pretty_print) { new_indent += indent_step; o << "\n"; } for (auto i = m_value.array->cbegin(); i != m_value.array->cend(); ++i) { if (i != m_value.array->cbegin()) { o << (pretty_print ? ",\n" : ","); } o << string_t(new_indent, ' '); i->dump(o, pretty_print, indent_step, new_indent); } // decrease indentation if (pretty_print) { new_indent -= indent_step; o << "\n"; } o << string_t(new_indent, ' ') << "]"; return; } case (value_t::string): { o << string_t("\""); escape_string(o, *m_value.string); o << "\""; return; } case (value_t::boolean): { o << (m_value.boolean ? "true" : "false"); return; } case (value_t::number_integer): { o << m_value.number_integer; return; } case (value_t::number_float): { // 15 digits of precision allows round-trip IEEE 754 // string->double->string; to be safe, we read this value from // std::numeric_limits::digits10 o << std::setprecision(std::numeric_limits::digits10) << m_value.number_float; return; } case (value_t::discarded): { o << ""; return; } default: { o << "null"; return; } } } /// "equality" comparison for floating point numbers template static bool approx(const T a, const T b) { return not (a > b or a < b); } private: ////////////////////// // member variables // ////////////////////// /// the type of the current element value_t m_type = value_t::null; /// the value of the current element json_value m_value = {}; private: /////////////// // iterators // /////////////// /// an iterator value union internal_iterator { /// iterator for JSON objects typename object_t::iterator object_iterator; /// iterator for JSON arrays typename array_t::iterator array_iterator; /// generic iterator for all other value types difference_type generic_iterator; /// default constructor internal_iterator() : generic_iterator(-1) {} }; public: /// a random access iterator for the basic_json class class iterator : public std::iterator { // allow basic_json class to access m_it friend class basic_json; public: /// the type of the values when the iterator is dereferenced using value_type = typename basic_json::value_type; /// a type to represent differences between iterators using difference_type = typename basic_json::difference_type; /// defines a pointer to the type iterated over (value_type) using pointer = typename basic_json::pointer; /// defines a reference to the type iterated over (value_type) using reference = typename basic_json::reference; /// the category of the iterator using iterator_category = std::bidirectional_iterator_tag; /// default constructor iterator() = default; /// constructor for a given JSON instance iterator(pointer object) noexcept : m_object(object) { switch (m_object->m_type) { case (basic_json::value_t::object): { m_it.object_iterator = typename object_t::iterator(); break; } case (basic_json::value_t::array): { m_it.array_iterator = typename array_t::iterator(); break; } default: { m_it.generic_iterator = -1; break; } } } /// copy constructor iterator(const iterator& other) noexcept : m_object(other.m_object), m_it(other.m_it) {} /// copy assignment iterator& operator=(iterator other) noexcept ( std::is_nothrow_move_constructible::value and std::is_nothrow_move_assignable::value and std::is_nothrow_move_constructible::value and std::is_nothrow_move_assignable::value ) { std::swap(m_object, other.m_object); std::swap(m_it, other.m_it); return *this; } private: /// set the iterator to the first value void set_begin() noexcept { switch (m_object->m_type) { case (basic_json::value_t::object): { m_it.object_iterator = m_object->m_value.object->begin(); break; } case (basic_json::value_t::array): { m_it.array_iterator = m_object->m_value.array->begin(); break; } case (basic_json::value_t::null): { // set to end so begin()==end() is true: null is empty m_it.generic_iterator = 1; break; } default: { m_it.generic_iterator = 0; break; } } } /// set the iterator past the last value void set_end() noexcept { switch (m_object->m_type) { case (basic_json::value_t::object): { m_it.object_iterator = m_object->m_value.object->end(); break; } case (basic_json::value_t::array): { m_it.array_iterator = m_object->m_value.array->end(); break; } default: { m_it.generic_iterator = 1; break; } } } public: /// return a reference to the value pointed to by the iterator reference operator*() { switch (m_object->m_type) { case (basic_json::value_t::object): { return m_it.object_iterator->second; } case (basic_json::value_t::array): { return *m_it.array_iterator; } case (basic_json::value_t::null): { throw std::out_of_range("cannot get value"); } default: { if (m_it.generic_iterator == 0) { return *m_object; } else { throw std::out_of_range("cannot get value"); } } } } /// dereference the iterator pointer operator->() { switch (m_object->m_type) { case (basic_json::value_t::object): { return &(m_it.object_iterator->second); } case (basic_json::value_t::array): { return &*m_it.array_iterator; } case (basic_json::value_t::null): { throw std::out_of_range("cannot get value"); } default: { if (m_it.generic_iterator == 0) { return m_object; } else { throw std::out_of_range("cannot get value"); } } } } /// post-increment (it++) iterator operator++(int) { auto result = *this; switch (m_object->m_type) { case (basic_json::value_t::object): { m_it.object_iterator++; break; } case (basic_json::value_t::array): { m_it.array_iterator++; break; } default: { m_it.generic_iterator++; break; } } return result; } /// pre-increment (++it) iterator& operator++() { switch (m_object->m_type) { case (basic_json::value_t::object): { ++m_it.object_iterator; break; } case (basic_json::value_t::array): { ++m_it.array_iterator; break; } default: { ++m_it.generic_iterator; break; } } return *this; } /// post-decrement (it--) iterator operator--(int) { auto result = *this; switch (m_object->m_type) { case (basic_json::value_t::object): { m_it.object_iterator--; break; } case (basic_json::value_t::array): { m_it.array_iterator--; break; } default: { m_it.generic_iterator--; break; } } return result; } /// pre-decrement (--it) iterator& operator--() { switch (m_object->m_type) { case (basic_json::value_t::object): { --m_it.object_iterator; break; } case (basic_json::value_t::array): { --m_it.array_iterator; break; } default: { --m_it.generic_iterator; break; } } return *this; } /// comparison: equal bool operator==(const iterator& other) const { // if objects are not the same, the comparison is undefined if (m_object != other.m_object) { throw std::domain_error("cannot compare iterators of different containers"); } switch (m_object->m_type) { case (basic_json::value_t::object): { return (m_it.object_iterator == other.m_it.object_iterator); } case (basic_json::value_t::array): { return (m_it.array_iterator == other.m_it.array_iterator); } default: { return (m_it.generic_iterator == other.m_it.generic_iterator); } } } /// comparison: not equal bool operator!=(const iterator& other) const { return not operator==(other); } /// comparison: smaller bool operator<(const iterator& other) const { // if objects are not the same, the comparison is undefined if (m_object != other.m_object) { throw std::domain_error("cannot compare iterators of different containers"); } switch (m_object->m_type) { case (basic_json::value_t::object): { throw std::domain_error("cannot use operator< for object iterators"); } case (basic_json::value_t::array): { return (m_it.array_iterator < other.m_it.array_iterator); } default: { return (m_it.generic_iterator < other.m_it.generic_iterator); } } } /// comparison: less than or equal bool operator<=(const iterator& other) const { return not other.operator < (*this); } /// comparison: greater than bool operator>(const iterator& other) const { return not operator<=(other); } /// comparison: greater than or equal bool operator>=(const iterator& other) const { return not operator<(other); } /// add to iterator iterator& operator+=(difference_type i) { switch (m_object->m_type) { case (basic_json::value_t::object): { throw std::domain_error("cannot use operator+= for object iterators"); } case (basic_json::value_t::array): { m_it.array_iterator += i; break; } default: { m_it.generic_iterator += i; break; } } return *this; } /// subtract from iterator iterator& operator-=(difference_type i) { return operator+=(-i); } /// add to iterator iterator operator+(difference_type i) { auto result = *this; result += i; return result; } /// subtract from iterator iterator operator-(difference_type i) { auto result = *this; result -= i; return result; } /// return difference difference_type operator-(const iterator& other) const { switch (m_object->m_type) { case (basic_json::value_t::object): { throw std::domain_error("cannot use operator- for object iterators"); return 0; } case (basic_json::value_t::array): { return m_it.array_iterator - other.m_it.array_iterator; } default: { return m_it.generic_iterator - other.m_it.generic_iterator; } } } /// access to successor reference operator[](difference_type n) { switch (m_object->m_type) { case (basic_json::value_t::object): { throw std::domain_error("cannot use operator[] for object iterators"); } case (basic_json::value_t::array): { return *(m_it.array_iterator + n); } case (basic_json::value_t::null): { throw std::out_of_range("cannot get value"); } default: { if (m_it.generic_iterator == -n) { return *m_object; } else { throw std::out_of_range("cannot get value"); } } } } /// return the key of an object iterator typename object_t::key_type key() const { switch (m_object->m_type) { case (basic_json::value_t::object): { return m_it.object_iterator->first; } default: { throw std::domain_error("cannot use key() for non-object iterators"); } } } /// return the key of an iterator reference value() { return operator*(); } private: /// associated JSON instance pointer m_object = nullptr; /// the actual iterator of the associated instance internal_iterator m_it = internal_iterator(); }; /// a const random access iterator for the basic_json class class const_iterator : public std::iterator { // allow basic_json class to access m_it friend class basic_json; public: /// the type of the values when the iterator is dereferenced using value_type = typename basic_json::value_type; /// a type to represent differences between iterators using difference_type = typename basic_json::difference_type; /// defines a pointer to the type iterated over (value_type) using pointer = typename basic_json::const_pointer; /// defines a reference to the type iterated over (value_type) using reference = typename basic_json::const_reference; /// the category of the iterator using iterator_category = std::bidirectional_iterator_tag; /// default constructor const_iterator() = default; /// constructor for a given JSON instance const_iterator(pointer object) noexcept : m_object(object) { switch (m_object->m_type) { case (basic_json::value_t::object): { m_it.object_iterator = typename object_t::iterator(); break; } case (basic_json::value_t::array): { m_it.array_iterator = typename array_t::iterator(); break; } default: { m_it.generic_iterator = -1; break; } } } /// copy constructor given a nonconst iterator const_iterator(const iterator& other) noexcept : m_object(other.m_object) { switch (m_object->m_type) { case (basic_json::value_t::object): { m_it.object_iterator = other.m_it.object_iterator; break; } case (basic_json::value_t::array): { m_it.array_iterator = other.m_it.array_iterator; break; } default: { m_it.generic_iterator = other.m_it.generic_iterator; break; } } } /// copy constructor const_iterator(const const_iterator& other) noexcept : m_object(other.m_object), m_it(other.m_it) {} /// copy assignment const_iterator& operator=(const_iterator other) noexcept( std::is_nothrow_move_constructible::value and std::is_nothrow_move_assignable::value and std::is_nothrow_move_constructible::value and std::is_nothrow_move_assignable::value ) { std::swap(m_object, other.m_object); std::swap(m_it, other.m_it); return *this; } private: /// set the iterator to the first value void set_begin() noexcept { switch (m_object->m_type) { case (basic_json::value_t::object): { m_it.object_iterator = m_object->m_value.object->begin(); break; } case (basic_json::value_t::array): { m_it.array_iterator = m_object->m_value.array->begin(); break; } case (basic_json::value_t::null): { // set to end so begin()==end() is true: null is empty m_it.generic_iterator = 1; break; } default: { m_it.generic_iterator = 0; break; } } } /// set the iterator past the last value void set_end() noexcept { switch (m_object->m_type) { case (basic_json::value_t::object): { m_it.object_iterator = m_object->m_value.object->end(); break; } case (basic_json::value_t::array): { m_it.array_iterator = m_object->m_value.array->end(); break; } default: { m_it.generic_iterator = 1; break; } } } public: /// return a reference to the value pointed to by the iterator reference operator*() const { switch (m_object->m_type) { case (basic_json::value_t::object): { return m_it.object_iterator->second; } case (basic_json::value_t::array): { return *m_it.array_iterator; } case (basic_json::value_t::null): { throw std::out_of_range("cannot get value"); } default: { if (m_it.generic_iterator == 0) { return *m_object; } else { throw std::out_of_range("cannot get value"); } } } } /// dereference the iterator pointer operator->() const { switch (m_object->m_type) { case (basic_json::value_t::object): { return &(m_it.object_iterator->second); } case (basic_json::value_t::array): { return &*m_it.array_iterator; } default: { if (m_it.generic_iterator == 0) { return m_object; } else { throw std::out_of_range("cannot get value"); } } } } /// post-increment (it++) const_iterator operator++(int) { auto result = *this; ++(*this); return result; } /// pre-increment (++it) const_iterator& operator++() { switch (m_object->m_type) { case (basic_json::value_t::object): { ++m_it.object_iterator; break; } case (basic_json::value_t::array): { ++m_it.array_iterator; break; } default: { ++m_it.generic_iterator; break; } } return *this; } /// post-decrement (it--) const_iterator operator--(int) { auto result = *this; --(*this); return result; } /// pre-decrement (--it) const_iterator& operator--() { switch (m_object->m_type) { case (basic_json::value_t::object): { --m_it.object_iterator; break; } case (basic_json::value_t::array): { --m_it.array_iterator; break; } default: { --m_it.generic_iterator; break; } } return *this; } /// comparison: equal bool operator==(const const_iterator& other) const { // if objects are not the same, the comparison is undefined if (m_object != other.m_object) { throw std::domain_error("cannot compare iterators of different containers"); } switch (m_object->m_type) { case (basic_json::value_t::object): { return (m_it.object_iterator == other.m_it.object_iterator); } case (basic_json::value_t::array): { return (m_it.array_iterator == other.m_it.array_iterator); } default: { return (m_it.generic_iterator == other.m_it.generic_iterator); } } } /// comparison: not equal bool operator!=(const const_iterator& other) const { return not operator==(other); } /// comparison: smaller bool operator<(const const_iterator& other) const { // if objects are not the same, the comparison is undefined if (m_object != other.m_object) { throw std::domain_error("cannot compare iterators of different containers"); } switch (m_object->m_type) { case (basic_json::value_t::object): { throw std::domain_error("cannot use operator< for object iterators"); } case (basic_json::value_t::array): { return (m_it.array_iterator < other.m_it.array_iterator); } default: { return (m_it.generic_iterator < other.m_it.generic_iterator); } } } /// comparison: less than or equal bool operator<=(const const_iterator& other) const { return not other.operator < (*this); } /// comparison: greater than bool operator>(const const_iterator& other) const { return not operator<=(other); } /// comparison: greater than or equal bool operator>=(const const_iterator& other) const { return not operator<(other); } /// add to iterator const_iterator& operator+=(difference_type i) { switch (m_object->m_type) { case (basic_json::value_t::object): { throw std::domain_error("cannot use operator+= for object iterators"); } case (basic_json::value_t::array): { m_it.array_iterator += i; break; } default: { m_it.generic_iterator += i; break; } } return *this; } /// subtract from iterator const_iterator& operator-=(difference_type i) { return operator+=(-i); } /// add to iterator const_iterator operator+(difference_type i) { auto result = *this; result += i; return result; } /// subtract from iterator const_iterator operator-(difference_type i) { auto result = *this; result -= i; return result; } /// return difference difference_type operator-(const const_iterator& other) const { switch (m_object->m_type) { case (basic_json::value_t::object): { throw std::domain_error("cannot use operator- for object iterators"); } case (basic_json::value_t::array): { return m_it.array_iterator - other.m_it.array_iterator; } default: { return m_it.generic_iterator - other.m_it.generic_iterator; } } } /// access to successor reference operator[](difference_type n) const { switch (m_object->m_type) { case (basic_json::value_t::object): { throw std::domain_error("cannot use operator[] for object iterators"); } case (basic_json::value_t::array): { return *(m_it.array_iterator + n); } case (basic_json::value_t::null): { throw std::out_of_range("cannot get value"); } default: { if (m_it.generic_iterator == -n) { return *m_object; } else { throw std::out_of_range("cannot get value"); } } } } /// return the key of an object iterator typename object_t::key_type key() const { switch (m_object->m_type) { case (basic_json::value_t::object): { return m_it.object_iterator->first; } default: { throw std::domain_error("cannot use key() for non-object iterators"); } } } /// return the value of an iterator reference value() const { return operator*(); } private: /// associated JSON instance pointer m_object = nullptr; /// the actual iterator of the associated instance internal_iterator m_it = internal_iterator(); }; /// a reverse random access iterator for the basic_json class class reverse_iterator : public std::reverse_iterator { public: reverse_iterator(const typename std::reverse_iterator::iterator_type& it) : std::reverse_iterator(it) {} /// return the key of an object iterator typename object_t::key_type key() const { return this->base().key(); } /// return the value of an iterator reference value() const { return this->base().operator * (); } }; /// a const reverse random access iterator for the basic_json class class const_reverse_iterator : public std::reverse_iterator { public: const_reverse_iterator(const typename std::reverse_iterator::iterator_type& it) : std::reverse_iterator(it) {} /// return the key of an object iterator typename object_t::key_type key() const { return this->base().key(); } /// return the value of an iterator const_reference value() const { return this->base().operator * (); } }; private: ////////////////////// // lexer and parser // ////////////////////// /*! @brief lexical analysis This class organizes the lexical analysis during JSON deserialization. The core of it is a scanner generated by re2c that processes a buffer and recognizes tokens according to RFC 7159 and ECMA-404. */ class lexer { public: /// token types for the parser enum class token_type { uninitialized, ///< indicating the scanner is uninitialized literal_true, ///< the "true" literal literal_false, ///< the "false" literal literal_null, ///< the "null" literal value_string, ///< a string - use get_string() for actual value value_number, ///< a number - use get_number() for actual value begin_array, ///< the character for array begin "[" begin_object, ///< the character for object begin "{" end_array, ///< the character for array end "]" end_object, ///< the character for object end "}" name_separator, ///< the name separator ":" value_separator, ///< the value separator "," parse_error, ///< indicating a parse error end_of_input ///< indicating the end of the input buffer }; /// the char type to use in the lexer using lexer_char_t = unsigned char; /// constructor with a given buffer lexer(const string_t& s) noexcept : m_stream(nullptr), m_buffer(s) { m_content = reinterpret_cast(s.c_str()); m_start = m_cursor = m_content; m_limit = m_content + s.size(); } lexer(std::istream* s) noexcept : m_stream(s), m_buffer() { getline(*m_stream, m_buffer); m_content = reinterpret_cast(m_buffer.c_str()); m_start = m_cursor = m_content; m_limit = m_content + m_buffer.size(); } /// default constructor lexer() = default; // switch of unwanted functions lexer(const lexer&) = delete; lexer operator=(const lexer&) = delete; /*! @brief create a string from a Unicode code point @param codepoint1 the code point (can be high surrogate) @param codepoint2 the code point (can be low surrogate or 0) @return string representation of the code point @exception std::out_of_range if code point is >0x10ffff @exception std::invalid_argument if the low surrogate is invalid @see */ static string_t to_unicode(const std::size_t codepoint1, const std::size_t codepoint2 = 0) { string_t result; // calculate the codepoint from the given code points std::size_t codepoint = codepoint1; // check if codepoint1 is a high surrogate if (codepoint1 >= 0xD800 and codepoint1 <= 0xDBFF) { // check if codepoint2 is a low surrogate if (codepoint2 >= 0xDC00 and codepoint2 <= 0xDFFF) { codepoint = // high surrogate occupies the most significant 22 bits (codepoint1 << 10) // low surrogate occupies the least significant 15 bits + codepoint2 // there is still the 0xD800, 0xDC00 and 0x10000 noise // in the result so we have to substract with: // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00 - 0x35FDC00; } else { throw std::invalid_argument("missing or wrong low surrogate"); } } if (codepoint < 0x80) { // 1-byte characters: 0xxxxxxx (ASCII) result.append(1, static_cast(codepoint)); } else if (codepoint <= 0x7ff) { // 2-byte characters: 110xxxxx 10xxxxxx result.append(1, static_cast(0xC0 | ((codepoint >> 6) & 0x1F))); result.append(1, static_cast(0x80 | (codepoint & 0x3F))); } else if (codepoint <= 0xffff) { // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx result.append(1, static_cast(0xE0 | ((codepoint >> 12) & 0x0F))); result.append(1, static_cast(0x80 | ((codepoint >> 6) & 0x3F))); result.append(1, static_cast(0x80 | (codepoint & 0x3F))); } else if (codepoint <= 0x10ffff) { // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx result.append(1, static_cast(0xF0 | ((codepoint >> 18) & 0x07))); result.append(1, static_cast(0x80 | ((codepoint >> 12) & 0x3F))); result.append(1, static_cast(0x80 | ((codepoint >> 6) & 0x3F))); result.append(1, static_cast(0x80 | (codepoint & 0x3F))); } else { throw std::out_of_range("code points above 0x10FFFF are invalid"); } return result; } /// return name of values of type token_type static std::string token_type_name(token_type t) noexcept { switch (t) { case (token_type::uninitialized): return ""; case (token_type::literal_true): return "true literal"; case (token_type::literal_false): return "false literal"; case (token_type::literal_null): return "null literal"; case (token_type::value_string): return "string literal"; case (token_type::value_number): return "number literal"; case (token_type::begin_array): return "["; case (token_type::begin_object): return "{"; case (token_type::end_array): return "]"; case (token_type::end_object): return "}"; case (token_type::name_separator): return ":"; case (token_type::value_separator): return ","; case (token_type::end_of_input): return ""; default: return ""; } } /*! This function implements a scanner for JSON. It is specified using regular expressions that try to follow RFC 7159 and ECMA-404 as close as possible. These regular expressions are then translated into a deterministic finite automaton (DFA) by the tool re2c . As a result, the translated code for this function consists of a large block of code with goto jumps. @return the class of the next token read from the buffer */ token_type scan() noexcept { // pointer for backtracking information m_marker = nullptr; // remember the begin of the token m_start = m_cursor; { lexer_char_t yych; unsigned int yyaccept = 0; static const unsigned char yybm[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 32, 0, 0, 32, 0, 0, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 96, 64, 0, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 0, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; if ((m_limit - m_cursor) < 5) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; if (yych <= '9') { if (yych <= ' ') { if (yych <= '\n') { if (yych <= 0x00) { goto basic_json_parser_27; } if (yych <= 0x08) { goto basic_json_parser_29; } if (yych >= '\n') { goto basic_json_parser_4; } } else { if (yych == '\r') { goto basic_json_parser_2; } if (yych <= 0x1F) { goto basic_json_parser_29; } } } else { if (yych <= ',') { if (yych == '"') { goto basic_json_parser_26; } if (yych <= '+') { goto basic_json_parser_29; } goto basic_json_parser_14; } else { if (yych <= '-') { goto basic_json_parser_22; } if (yych <= '/') { goto basic_json_parser_29; } if (yych <= '0') { goto basic_json_parser_23; } goto basic_json_parser_25; } } } else { if (yych <= 'm') { if (yych <= '\\') { if (yych <= ':') { goto basic_json_parser_16; } if (yych == '[') { goto basic_json_parser_6; } goto basic_json_parser_29; } else { if (yych <= ']') { goto basic_json_parser_8; } if (yych == 'f') { goto basic_json_parser_21; } goto basic_json_parser_29; } } else { if (yych <= 'z') { if (yych <= 'n') { goto basic_json_parser_18; } if (yych == 't') { goto basic_json_parser_20; } goto basic_json_parser_29; } else { if (yych <= '{') { goto basic_json_parser_10; } if (yych == '}') { goto basic_json_parser_12; } goto basic_json_parser_29; } } } basic_json_parser_2: ++m_cursor; yych = *m_cursor; goto basic_json_parser_5; basic_json_parser_3: { return scan(); } basic_json_parser_4: ++m_cursor; if (m_limit <= m_cursor) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; basic_json_parser_5: if (yybm[0 + yych] & 32) { goto basic_json_parser_4; } goto basic_json_parser_3; basic_json_parser_6: ++m_cursor; { return token_type::begin_array; } basic_json_parser_8: ++m_cursor; { return token_type::end_array; } basic_json_parser_10: ++m_cursor; { return token_type::begin_object; } basic_json_parser_12: ++m_cursor; { return token_type::end_object; } basic_json_parser_14: ++m_cursor; { return token_type::value_separator; } basic_json_parser_16: ++m_cursor; { return token_type::name_separator; } basic_json_parser_18: yyaccept = 0; yych = *(m_marker = ++m_cursor); if (yych == 'u') { goto basic_json_parser_59; } basic_json_parser_19: { return token_type::parse_error; } basic_json_parser_20: yyaccept = 0; yych = *(m_marker = ++m_cursor); if (yych == 'r') { goto basic_json_parser_55; } goto basic_json_parser_19; basic_json_parser_21: yyaccept = 0; yych = *(m_marker = ++m_cursor); if (yych == 'a') { goto basic_json_parser_50; } goto basic_json_parser_19; basic_json_parser_22: yych = *++m_cursor; if (yych <= '/') { goto basic_json_parser_19; } if (yych <= '0') { goto basic_json_parser_49; } if (yych <= '9') { goto basic_json_parser_40; } goto basic_json_parser_19; basic_json_parser_23: yyaccept = 1; yych = *(m_marker = ++m_cursor); if (yych <= 'D') { if (yych == '.') { goto basic_json_parser_42; } } else { if (yych <= 'E') { goto basic_json_parser_43; } if (yych == 'e') { goto basic_json_parser_43; } } basic_json_parser_24: { return token_type::value_number; } basic_json_parser_25: yyaccept = 1; yych = *(m_marker = ++m_cursor); goto basic_json_parser_41; basic_json_parser_26: yyaccept = 0; yych = *(m_marker = ++m_cursor); if (yych <= 0x0F) { goto basic_json_parser_19; } goto basic_json_parser_31; basic_json_parser_27: ++m_cursor; { return token_type::end_of_input; } basic_json_parser_29: yych = *++m_cursor; goto basic_json_parser_19; basic_json_parser_30: ++m_cursor; if (m_limit <= m_cursor) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; basic_json_parser_31: if (yybm[0 + yych] & 64) { goto basic_json_parser_30; } if (yych <= 0x0F) { goto basic_json_parser_32; } if (yych <= '"') { goto basic_json_parser_34; } goto basic_json_parser_33; basic_json_parser_32: m_cursor = m_marker; if (yyaccept == 0) { goto basic_json_parser_19; } else { goto basic_json_parser_24; } basic_json_parser_33: ++m_cursor; if (m_limit <= m_cursor) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; if (yych <= 'e') { if (yych <= '/') { if (yych == '"') { goto basic_json_parser_30; } if (yych <= '.') { goto basic_json_parser_32; } goto basic_json_parser_30; } else { if (yych <= '\\') { if (yych <= '[') { goto basic_json_parser_32; } goto basic_json_parser_30; } else { if (yych == 'b') { goto basic_json_parser_30; } goto basic_json_parser_32; } } } else { if (yych <= 'q') { if (yych <= 'f') { goto basic_json_parser_30; } if (yych == 'n') { goto basic_json_parser_30; } goto basic_json_parser_32; } else { if (yych <= 's') { if (yych <= 'r') { goto basic_json_parser_30; } goto basic_json_parser_32; } else { if (yych <= 't') { goto basic_json_parser_30; } if (yych <= 'u') { goto basic_json_parser_36; } goto basic_json_parser_32; } } } basic_json_parser_34: ++m_cursor; { return token_type::value_string; } basic_json_parser_36: ++m_cursor; if (m_limit <= m_cursor) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; if (yych <= '@') { if (yych <= '/') { goto basic_json_parser_32; } if (yych >= ':') { goto basic_json_parser_32; } } else { if (yych <= 'F') { goto basic_json_parser_37; } if (yych <= '`') { goto basic_json_parser_32; } if (yych >= 'g') { goto basic_json_parser_32; } } basic_json_parser_37: ++m_cursor; if (m_limit <= m_cursor) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; if (yych <= '@') { if (yych <= '/') { goto basic_json_parser_32; } if (yych >= ':') { goto basic_json_parser_32; } } else { if (yych <= 'F') { goto basic_json_parser_38; } if (yych <= '`') { goto basic_json_parser_32; } if (yych >= 'g') { goto basic_json_parser_32; } } basic_json_parser_38: ++m_cursor; if (m_limit <= m_cursor) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; if (yych <= '@') { if (yych <= '/') { goto basic_json_parser_32; } if (yych >= ':') { goto basic_json_parser_32; } } else { if (yych <= 'F') { goto basic_json_parser_39; } if (yych <= '`') { goto basic_json_parser_32; } if (yych >= 'g') { goto basic_json_parser_32; } } basic_json_parser_39: ++m_cursor; if (m_limit <= m_cursor) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; if (yych <= '@') { if (yych <= '/') { goto basic_json_parser_32; } if (yych <= '9') { goto basic_json_parser_30; } goto basic_json_parser_32; } else { if (yych <= 'F') { goto basic_json_parser_30; } if (yych <= '`') { goto basic_json_parser_32; } if (yych <= 'f') { goto basic_json_parser_30; } goto basic_json_parser_32; } basic_json_parser_40: yyaccept = 1; m_marker = ++m_cursor; if ((m_limit - m_cursor) < 3) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; basic_json_parser_41: if (yybm[0 + yych] & 128) { goto basic_json_parser_40; } if (yych <= 'D') { if (yych != '.') { goto basic_json_parser_24; } } else { if (yych <= 'E') { goto basic_json_parser_43; } if (yych == 'e') { goto basic_json_parser_43; } goto basic_json_parser_24; } basic_json_parser_42: yych = *++m_cursor; if (yych <= '/') { goto basic_json_parser_32; } if (yych <= '9') { goto basic_json_parser_47; } goto basic_json_parser_32; basic_json_parser_43: yych = *++m_cursor; if (yych <= ',') { if (yych != '+') { goto basic_json_parser_32; } } else { if (yych <= '-') { goto basic_json_parser_44; } if (yych <= '/') { goto basic_json_parser_32; } if (yych <= '9') { goto basic_json_parser_45; } goto basic_json_parser_32; } basic_json_parser_44: yych = *++m_cursor; if (yych <= '/') { goto basic_json_parser_32; } if (yych >= ':') { goto basic_json_parser_32; } basic_json_parser_45: ++m_cursor; if (m_limit <= m_cursor) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; if (yych <= '/') { goto basic_json_parser_24; } if (yych <= '9') { goto basic_json_parser_45; } goto basic_json_parser_24; basic_json_parser_47: yyaccept = 1; m_marker = ++m_cursor; if ((m_limit - m_cursor) < 3) { yyfill(); // LCOV_EXCL_LINE; } yych = *m_cursor; if (yych <= 'D') { if (yych <= '/') { goto basic_json_parser_24; } if (yych <= '9') { goto basic_json_parser_47; } goto basic_json_parser_24; } else { if (yych <= 'E') { goto basic_json_parser_43; } if (yych == 'e') { goto basic_json_parser_43; } goto basic_json_parser_24; } basic_json_parser_49: yyaccept = 1; yych = *(m_marker = ++m_cursor); if (yych <= 'D') { if (yych == '.') { goto basic_json_parser_42; } goto basic_json_parser_24; } else { if (yych <= 'E') { goto basic_json_parser_43; } if (yych == 'e') { goto basic_json_parser_43; } goto basic_json_parser_24; } basic_json_parser_50: yych = *++m_cursor; if (yych != 'l') { goto basic_json_parser_32; } yych = *++m_cursor; if (yych != 's') { goto basic_json_parser_32; } yych = *++m_cursor; if (yych != 'e') { goto basic_json_parser_32; } ++m_cursor; { return token_type::literal_false; } basic_json_parser_55: yych = *++m_cursor; if (yych != 'u') { goto basic_json_parser_32; } yych = *++m_cursor; if (yych != 'e') { goto basic_json_parser_32; } ++m_cursor; { return token_type::literal_true; } basic_json_parser_59: yych = *++m_cursor; if (yych != 'l') { goto basic_json_parser_32; } yych = *++m_cursor; if (yych != 'l') { goto basic_json_parser_32; } ++m_cursor; { return token_type::literal_null; } } } /// append data from the stream to the internal buffer void yyfill() noexcept { if (not m_stream or not * m_stream) { return; } const ssize_t offset_start = m_start - m_content; const ssize_t offset_marker = m_marker - m_start; const ssize_t offset_cursor = m_cursor - m_start; m_buffer.erase(0, static_cast(offset_start)); std::string line; std::getline(*m_stream, line); m_buffer += "\n" + line; // add line with newline symbol m_content = reinterpret_cast(m_buffer.c_str()); m_start = m_content; m_marker = m_start + offset_marker; m_cursor = m_start + offset_cursor; m_limit = m_start + m_buffer.size() - 1; } /// return string representation of last read token string_t get_token() const noexcept { return string_t(reinterpret_cast(m_start), static_cast(m_cursor - m_start)); } /*! @brief return string value for string tokens The function iterates the characters between the opening and closing quotes of the string value. The complete string is the range [m_start,m_cursor). Consequently, we iterate from m_start+1 to m_cursor-1. We differentiate two cases: 1. Escaped characters. In this case, a new character is constructed according to the nature of the escape. Some escapes create new characters (e.g., @c "\\n" is replaced by @c "\n"), some are copied as is (e.g., @c "\\\\"). Furthermore, Unicode escapes of the shape @c "\\uxxxx" need special care. In this case, to_unicode takes care of the construction of the values. 2. Unescaped characters are copied as is. @return string value of current token without opening and closing quotes @exception std::out_of_range if to_unicode fails */ string_t get_string() const { string_t result; result.reserve(static_cast(m_cursor - m_start - 2)); // iterate the result between the quotes for (const lexer_char_t* i = m_start + 1; i < m_cursor - 1; ++i) { // process escaped characters if (*i == '\\') { // read next character ++i; switch (*i) { // the default escapes case 't': { result += "\t"; break; } case 'b': { result += "\b"; break; } case 'f': { result += "\f"; break; } case 'n': { result += "\n"; break; } case 'r': { result += "\r"; break; } case '\\': { result += "\\"; break; } case '/': { result += "/"; break; } case '"': { result += "\""; break; } // unicode case 'u': { // get code xxxx from uxxxx auto codepoint = std::strtoul(std::string(reinterpret_cast(i + 1), 4).c_str(), nullptr, 16); // check if codepoint is a high surrogate if (codepoint >= 0xD800 and codepoint <= 0xDBFF) { // make sure there is a subsequent unicode if ((i + 6 >= m_limit) or * (i + 5) != '\\' or * (i + 6) != 'u') { throw std::invalid_argument("missing low surrogate"); } // get code yyyy from uxxxx\uyyyy auto codepoint2 = std::strtoul(std::string(reinterpret_cast (i + 7), 4).c_str(), nullptr, 16); result += to_unicode(codepoint, codepoint2); // skip the next 11 characters (xxxx\uyyyy) i += 11; } else { // add unicode character(s) result += to_unicode(codepoint); // skip the next four characters (xxxx) i += 4; } break; } } } else { // all other characters are just copied to the end of the // string result.append(1, static_cast(*i)); } } return result; } /*! @brief return number value for number tokens This function translates the last token into a floating point number. The pointer m_begin points to the beginning of the parsed number. We pass this pointer to std::strtod which sets endptr to the first character past the converted number. If this pointer is not the same as m_cursor, then either more or less characters have been used during the comparison. This can happen for inputs like "01" which will be treated like number 0 followed by number 1. @return the result of the number conversion or NAN if the conversion read past the current token. The latter case needs to be treated by the caller function. @exception std::range_error if passed value is out of range */ long double get_number() const { // conversion typename string_t::value_type* endptr; const auto float_val = std::strtold(reinterpret_cast(m_start), &endptr); // return float_val if the whole number was translated and NAN // otherwise return (reinterpret_cast(endptr) == m_cursor) ? float_val : NAN; } private: /// optional input stream std::istream* m_stream; /// the buffer string_t m_buffer; /// the buffer pointer const lexer_char_t* m_content = nullptr; /// pointer to the beginning of the current symbol const lexer_char_t* m_start = nullptr; /// pointer for backtracking information const lexer_char_t* m_marker = nullptr; /// pointer to the current symbol const lexer_char_t* m_cursor = nullptr; /// pointer to the end of the buffer const lexer_char_t* m_limit = nullptr; }; /*! @brief syntax analysis */ class parser { public: /// constructor for strings parser(const string_t& s, parser_callback_t cb = nullptr) : callback(cb), m_lexer(s) { // read first token get_token(); } /// a parser reading from an input stream parser(std::istream& _is, parser_callback_t cb = nullptr) : callback(cb), m_lexer(&_is) { // read first token get_token(); } /// public parser interface basic_json parse() { basic_json result = parse_internal(true); expect(lexer::token_type::end_of_input); return result; } private: /// the actual parser basic_json parse_internal(bool keep) { auto result = basic_json(value_t::discarded); switch (last_token) { case (lexer::token_type::begin_object): { if (keep and (not callback or (keep = callback(depth++, parse_event_t::object_start, result)))) { // explicitly set result to object to cope with {} result.m_type = value_t::object; result.m_value = json_value(value_t::object); } // read next token get_token(); // closing } -> we are done if (last_token == lexer::token_type::end_object) { get_token(); if (keep and callback and not callback(--depth, parse_event_t::object_end, result)) { result = basic_json(value_t::discarded); } return result; } // no comma is expected here unexpect(lexer::token_type::value_separator); // otherwise: parse key-value pairs do { // ugly, but could be fixed with loop reorganization if (last_token == lexer::token_type::value_separator) { get_token(); } // store key expect(lexer::token_type::value_string); const auto key = m_lexer.get_string(); bool keep_tag = false; if (keep) { keep_tag = callback ? callback(depth, parse_event_t::key, basic_json(key)) : true; } // parse separator (:) get_token(); expect(lexer::token_type::name_separator); // parse and add value get_token(); auto value = parse_internal(keep); if (keep and keep_tag and not value.is_discarded()) { result[key] = std::move(value); } } while (last_token == lexer::token_type::value_separator); // closing } expect(lexer::token_type::end_object); get_token(); if (keep and callback and not callback(--depth, parse_event_t::object_end, result)) { result = basic_json(value_t::discarded); } return result; } case (lexer::token_type::begin_array): { if (keep and (not callback or (keep = callback(depth++, parse_event_t::array_start, result)))) { // explicitly set result to object to cope with [] result.m_type = value_t::array; result.m_value = json_value(value_t::array); } // read next token get_token(); // closing ] -> we are done if (last_token == lexer::token_type::end_array) { get_token(); if (callback and not callback(--depth, parse_event_t::array_end, result)) { result = basic_json(value_t::discarded); } return result; } // no comma is expected here unexpect(lexer::token_type::value_separator); // otherwise: parse values do { // ugly, but could be fixed with loop reorganization if (last_token == lexer::token_type::value_separator) { get_token(); } // parse value auto value = parse_internal(keep); if (keep and not value.is_discarded()) { result.push_back(std::move(value)); } } while (last_token == lexer::token_type::value_separator); // closing ] expect(lexer::token_type::end_array); get_token(); if (keep and callback and not callback(--depth, parse_event_t::array_end, result)) { result = basic_json(value_t::discarded); } return result; } case (lexer::token_type::literal_null): { get_token(); result.m_type = value_t::null; break; } case (lexer::token_type::value_string): { const auto s = m_lexer.get_string(); get_token(); result = basic_json(s); break; } case (lexer::token_type::literal_true): { get_token(); result.m_type = value_t::boolean; result.m_value = true; break; } case (lexer::token_type::literal_false): { get_token(); result.m_type = value_t::boolean; result.m_value = false; break; } case (lexer::token_type::value_number): { auto float_val = m_lexer.get_number(); // NAN is returned if token could not be translated // completely if (std::isnan(float_val)) { throw std::invalid_argument(std::string("parse error - ") + m_lexer.get_token() + " is not a number"); } get_token(); // check if conversion loses precision const auto int_val = static_cast(float_val); if (approx(float_val, static_cast(int_val))) { // we basic_json not lose precision -> return int result.m_type = value_t::number_integer; result.m_value = int_val; } else { // we would lose precision -> returnfloat result.m_type = value_t::number_float; result.m_value = static_cast(float_val); } break; } default: { // the last token was unexpected unexpect(last_token); } } if (keep and callback and not callback(depth, parse_event_t::value, result)) { result = basic_json(value_t::discarded); } return result; } /// get next token from lexer typename lexer::token_type get_token() { last_token = m_lexer.scan(); return last_token; } void expect(typename lexer::token_type t) const { if (t != last_token) { std::string error_msg = "parse error - unexpected \'"; error_msg += m_lexer.get_token(); error_msg += "\' (" + lexer::token_type_name(last_token); error_msg += "); expected " + lexer::token_type_name(t); throw std::invalid_argument(error_msg); } } void unexpect(typename lexer::token_type t) const { if (t == last_token) { std::string error_msg = "parse error - unexpected \'"; error_msg += m_lexer.get_token(); error_msg += "\' ("; error_msg += lexer::token_type_name(last_token) + ")"; throw std::invalid_argument(error_msg); } } private: /// levels of recursion int depth = 0; /// callback function parser_callback_t callback; /// the type of the last read token typename lexer::token_type last_token = lexer::token_type::uninitialized; /// the lexer lexer m_lexer; }; }; ///////////// // presets // ///////////// /*! @brief default JSON class This type is the default specialization of the @ref basic_json class which uses the standard template types. */ using json = basic_json<>; } ///////////////////////// // nonmember functions // ///////////////////////// // specialization of std::swap, and std::hash namespace std { /*! @brief exchanges the values of two JSON objects @ingroup container */ template <> inline void swap(nlohmann::json& j1, nlohmann::json& j2) noexcept( is_nothrow_move_constructible::value and is_nothrow_move_assignable::value ) { j1.swap(j2); } /// hash value for JSON objects template <> struct hash { /// return a hash value for a JSON object std::size_t operator()(const nlohmann::json& j) const { // a naive hashing via the string representation const auto& h = hash(); return h(j.dump()); } }; } /*! This operator implements a user-defined string literal for JSON objects. It can be used by adding \p "_json" to a string literal and returns a JSON object if no parse error occurred. @param s a string representation of a JSON object @return a JSON object */ inline nlohmann::json operator "" _json(const char* s, std::size_t) { return nlohmann::json::parse(reinterpret_cast (const_cast(s))); } #endif