#pragma once #include // array #include // localeconv #include // size_t #include // snprintf #include // strtof, strtod, strtold, strtoll, strtoull #include // initializer_list #include // char_traits, string #include // move #include // vector #include #include #include namespace nlohmann { namespace detail { /////////// // lexer // /////////// template class lexer_base { public: /// token types for the parser enum class token_type { uninitialized, ///< indicating the scanner is uninitialized literal_true, ///< the `true` literal literal_false, ///< the `false` literal literal_null, ///< the `null` literal value_string, ///< a string -- use get_string() for actual value value_unsigned, ///< an unsigned integer -- use get_number_unsigned() for actual value value_integer, ///< a signed integer -- use get_number_integer() for actual value value_float, ///< an floating point number -- use get_number_float() for actual value begin_array, ///< the character for array begin `[` begin_object, ///< the character for object begin `{` end_array, ///< the character for array end `]` end_object, ///< the character for object end `}` name_separator, ///< the name separator `:` value_separator, ///< the value separator `,` parse_error, ///< indicating a parse error end_of_input, ///< indicating the end of the input buffer literal_or_value ///< a literal or the begin of a value (only for diagnostics) }; /// return name of values of type token_type (only used for errors) JSON_HEDLEY_RETURNS_NON_NULL JSON_HEDLEY_CONST static const char* token_type_name(const token_type t) noexcept { switch (t) { case token_type::uninitialized: return ""; case token_type::literal_true: return "true literal"; case token_type::literal_false: return "false literal"; case token_type::literal_null: return "null literal"; case token_type::value_string: return "string literal"; case token_type::value_unsigned: case token_type::value_integer: case token_type::value_float: return "number literal"; case token_type::begin_array: return "'['"; case token_type::begin_object: return "'{'"; case token_type::end_array: return "']'"; case token_type::end_object: return "'}'"; case token_type::name_separator: return "':'"; case token_type::value_separator: return "','"; case token_type::parse_error: return ""; case token_type::end_of_input: return "end of input"; case token_type::literal_or_value: return "'[', '{', or a literal"; // LCOV_EXCL_START default: // catch non-enum values return "unknown token"; // LCOV_EXCL_STOP } } }; /*! @brief lexical analysis This class organizes the lexical analysis during JSON deserialization. */ template class lexer : public lexer_base { using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; using char_type = typename InputAdapterType::char_type; using char_int_type = typename std::char_traits::int_type; public: using token_type = typename lexer_base::token_type; explicit lexer(InputAdapterType&& adapter) : ia(std::move(adapter)), decimal_point_char(static_cast(get_decimal_point())) {} // delete because of pointer members lexer(const lexer&) = delete; lexer(lexer&&) = default; lexer& operator=(lexer&) = delete; lexer& operator=(lexer&&) = default; ~lexer() = default; private: ///////////////////// // locales ///////////////////// /// return the locale-dependent decimal point JSON_HEDLEY_PURE static char get_decimal_point() noexcept { const auto* loc = localeconv(); assert(loc != nullptr); return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point); } ///////////////////// // scan functions ///////////////////// /*! @brief get codepoint from 4 hex characters following `\u` For input "\u c1 c2 c3 c4" the codepoint is: (c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4 = (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0) Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f' must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The conversion is done by subtracting the offset (0x30, 0x37, and 0x57) between the ASCII value of the character and the desired integer value. @return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or non-hex character) */ int get_codepoint() { // this function only makes sense after reading `\u` assert(current == 'u'); int codepoint = 0; const auto factors = { 12u, 8u, 4u, 0u }; for (const auto factor : factors) { get(); if (current >= '0' and current <= '9') { codepoint += static_cast((static_cast(current) - 0x30u) << factor); } else if (current >= 'A' and current <= 'F') { codepoint += static_cast((static_cast(current) - 0x37u) << factor); } else if (current >= 'a' and current <= 'f') { codepoint += static_cast((static_cast(current) - 0x57u) << factor); } else { return -1; } } assert(0x0000 <= codepoint and codepoint <= 0xFFFF); return codepoint; } /*! @brief check if the next byte(s) are inside a given range Adds the current byte and, for each passed range, reads a new byte and checks if it is inside the range. If a violation was detected, set up an error message and return false. Otherwise, return true. @param[in] ranges list of integers; interpreted as list of pairs of inclusive lower and upper bound, respectively @pre The passed list @a ranges must have 2, 4, or 6 elements; that is, 1, 2, or 3 pairs. This precondition is enforced by an assertion. @return true if and only if no range violation was detected */ bool next_byte_in_range(std::initializer_list ranges) { assert(ranges.size() == 2 or ranges.size() == 4 or ranges.size() == 6); add(current); for (auto range = ranges.begin(); range != ranges.end(); ++range) { get(); if (JSON_HEDLEY_LIKELY(*range <= current and current <= *(++range))) { add(current); } else { error_message = "invalid string: ill-formed UTF-8 byte"; return false; } } return true; } /*! @brief scan a string literal This function scans a string according to Sect. 7 of RFC 7159. While scanning, bytes are escaped and copied into buffer token_buffer. Then the function returns successfully, token_buffer is *not* null-terminated (as it may contain \0 bytes), and token_buffer.size() is the number of bytes in the string. @return token_type::value_string if string could be successfully scanned, token_type::parse_error otherwise @note In case of errors, variable error_message contains a textual description. */ token_type scan_string() { // reset token_buffer (ignore opening quote) reset(); // we entered the function by reading an open quote assert(current == '\"'); while (true) { // get next character switch (get()) { // end of file while parsing string case std::char_traits::eof(): { error_message = "invalid string: missing closing quote"; return token_type::parse_error; } // closing quote case '\"': { return token_type::value_string; } // escapes case '\\': { switch (get()) { // quotation mark case '\"': add('\"'); break; // reverse solidus case '\\': add('\\'); break; // solidus case '/': add('/'); break; // backspace case 'b': add('\b'); break; // form feed case 'f': add('\f'); break; // line feed case 'n': add('\n'); break; // carriage return case 'r': add('\r'); break; // tab case 't': add('\t'); break; // unicode escapes case 'u': { const int codepoint1 = get_codepoint(); int codepoint = codepoint1; // start with codepoint1 if (JSON_HEDLEY_UNLIKELY(codepoint1 == -1)) { error_message = "invalid string: '\\u' must be followed by 4 hex digits"; return token_type::parse_error; } // check if code point is a high surrogate if (0xD800 <= codepoint1 and codepoint1 <= 0xDBFF) { // expect next \uxxxx entry if (JSON_HEDLEY_LIKELY(get() == '\\' and get() == 'u')) { const int codepoint2 = get_codepoint(); if (JSON_HEDLEY_UNLIKELY(codepoint2 == -1)) { error_message = "invalid string: '\\u' must be followed by 4 hex digits"; return token_type::parse_error; } // check if codepoint2 is a low surrogate if (JSON_HEDLEY_LIKELY(0xDC00 <= codepoint2 and codepoint2 <= 0xDFFF)) { // overwrite codepoint codepoint = static_cast( // high surrogate occupies the most significant 22 bits (static_cast(codepoint1) << 10u) // low surrogate occupies the least significant 15 bits + static_cast(codepoint2) // there is still the 0xD800, 0xDC00 and 0x10000 noise // in the result so we have to subtract with: // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00 - 0x35FDC00u); } else { error_message = "invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF"; return token_type::parse_error; } } else { error_message = "invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF"; return token_type::parse_error; } } else { if (JSON_HEDLEY_UNLIKELY(0xDC00 <= codepoint1 and codepoint1 <= 0xDFFF)) { error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF"; return token_type::parse_error; } } // result of the above calculation yields a proper codepoint assert(0x00 <= codepoint and codepoint <= 0x10FFFF); // translate codepoint into bytes if (codepoint < 0x80) { // 1-byte characters: 0xxxxxxx (ASCII) add(static_cast(codepoint)); } else if (codepoint <= 0x7FF) { // 2-byte characters: 110xxxxx 10xxxxxx add(static_cast(0xC0u | (static_cast(codepoint) >> 6u))); add(static_cast(0x80u | (static_cast(codepoint) & 0x3Fu))); } else if (codepoint <= 0xFFFF) { // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx add(static_cast(0xE0u | (static_cast(codepoint) >> 12u))); add(static_cast(0x80u | ((static_cast(codepoint) >> 6u) & 0x3Fu))); add(static_cast(0x80u | (static_cast(codepoint) & 0x3Fu))); } else { // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx add(static_cast(0xF0u | (static_cast(codepoint) >> 18u))); add(static_cast(0x80u | ((static_cast(codepoint) >> 12u) & 0x3Fu))); add(static_cast(0x80u | ((static_cast(codepoint) >> 6u) & 0x3Fu))); add(static_cast(0x80u | (static_cast(codepoint) & 0x3Fu))); } break; } // other characters after escape default: error_message = "invalid string: forbidden character after backslash"; return token_type::parse_error; } break; } // invalid control characters case 0x00: { error_message = "invalid string: control character U+0000 (NUL) must be escaped to \\u0000"; return token_type::parse_error; } case 0x01: { error_message = "invalid string: control character U+0001 (SOH) must be escaped to \\u0001"; return token_type::parse_error; } case 0x02: { error_message = "invalid string: control character U+0002 (STX) must be escaped to \\u0002"; return token_type::parse_error; } case 0x03: { error_message = "invalid string: control character U+0003 (ETX) must be escaped to \\u0003"; return token_type::parse_error; } case 0x04: { error_message = "invalid string: control character U+0004 (EOT) must be escaped to \\u0004"; return token_type::parse_error; } case 0x05: { error_message = "invalid string: control character U+0005 (ENQ) must be escaped to \\u0005"; return token_type::parse_error; } case 0x06: { error_message = "invalid string: control character U+0006 (ACK) must be escaped to \\u0006"; return token_type::parse_error; } case 0x07: { error_message = "invalid string: control character U+0007 (BEL) must be escaped to \\u0007"; return token_type::parse_error; } case 0x08: { error_message = "invalid string: control character U+0008 (BS) must be escaped to \\u0008 or \\b"; return token_type::parse_error; } case 0x09: { error_message = "invalid string: control character U+0009 (HT) must be escaped to \\u0009 or \\t"; return token_type::parse_error; } case 0x0A: { error_message = "invalid string: control character U+000A (LF) must be escaped to \\u000A or \\n"; return token_type::parse_error; } case 0x0B: { error_message = "invalid string: control character U+000B (VT) must be escaped to \\u000B"; return token_type::parse_error; } case 0x0C: { error_message = "invalid string: control character U+000C (FF) must be escaped to \\u000C or \\f"; return token_type::parse_error; } case 0x0D: { error_message = "invalid string: control character U+000D (CR) must be escaped to \\u000D or \\r"; return token_type::parse_error; } case 0x0E: { error_message = "invalid string: control character U+000E (SO) must be escaped to \\u000E"; return token_type::parse_error; } case 0x0F: { error_message = "invalid string: control character U+000F (SI) must be escaped to \\u000F"; return token_type::parse_error; } case 0x10: { error_message = "invalid string: control character U+0010 (DLE) must be escaped to \\u0010"; return token_type::parse_error; } case 0x11: { error_message = "invalid string: control character U+0011 (DC1) must be escaped to \\u0011"; return token_type::parse_error; } case 0x12: { error_message = "invalid string: control character U+0012 (DC2) must be escaped to \\u0012"; return token_type::parse_error; } case 0x13: { error_message = "invalid string: control character U+0013 (DC3) must be escaped to \\u0013"; return token_type::parse_error; } case 0x14: { error_message = "invalid string: control character U+0014 (DC4) must be escaped to \\u0014"; return token_type::parse_error; } case 0x15: { error_message = "invalid string: control character U+0015 (NAK) must be escaped to \\u0015"; return token_type::parse_error; } case 0x16: { error_message = "invalid string: control character U+0016 (SYN) must be escaped to \\u0016"; return token_type::parse_error; } case 0x17: { error_message = "invalid string: control character U+0017 (ETB) must be escaped to \\u0017"; return token_type::parse_error; } case 0x18: { error_message = "invalid string: control character U+0018 (CAN) must be escaped to \\u0018"; return token_type::parse_error; } case 0x19: { error_message = "invalid string: control character U+0019 (EM) must be escaped to \\u0019"; return token_type::parse_error; } case 0x1A: { error_message = "invalid string: control character U+001A (SUB) must be escaped to \\u001A"; return token_type::parse_error; } case 0x1B: { error_message = "invalid string: control character U+001B (ESC) must be escaped to \\u001B"; return token_type::parse_error; } case 0x1C: { error_message = "invalid string: control character U+001C (FS) must be escaped to \\u001C"; return token_type::parse_error; } case 0x1D: { error_message = "invalid string: control character U+001D (GS) must be escaped to \\u001D"; return token_type::parse_error; } case 0x1E: { error_message = "invalid string: control character U+001E (RS) must be escaped to \\u001E"; return token_type::parse_error; } case 0x1F: { error_message = "invalid string: control character U+001F (US) must be escaped to \\u001F"; return token_type::parse_error; } // U+0020..U+007F (except U+0022 (quote) and U+005C (backspace)) case 0x20: case 0x21: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: case 0x29: case 0x2A: case 0x2B: case 0x2C: case 0x2D: case 0x2E: case 0x2F: case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: case 0x3A: case 0x3B: case 0x3C: case 0x3D: case 0x3E: case 0x3F: case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4A: case 0x4B: case 0x4C: case 0x4D: case 0x4E: case 0x4F: case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: case 0x58: case 0x59: case 0x5A: case 0x5B: case 0x5D: case 0x5E: case 0x5F: case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: case 0x68: case 0x69: case 0x6A: case 0x6B: case 0x6C: case 0x6D: case 0x6E: case 0x6F: case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: case 0x78: case 0x79: case 0x7A: case 0x7B: case 0x7C: case 0x7D: case 0x7E: case 0x7F: { add(current); break; } // U+0080..U+07FF: bytes C2..DF 80..BF case 0xC2: case 0xC3: case 0xC4: case 0xC5: case 0xC6: case 0xC7: case 0xC8: case 0xC9: case 0xCA: case 0xCB: case 0xCC: case 0xCD: case 0xCE: case 0xCF: case 0xD0: case 0xD1: case 0xD2: case 0xD3: case 0xD4: case 0xD5: case 0xD6: case 0xD7: case 0xD8: case 0xD9: case 0xDA: case 0xDB: case 0xDC: case 0xDD: case 0xDE: case 0xDF: { if (JSON_HEDLEY_UNLIKELY(not next_byte_in_range({0x80, 0xBF}))) { return token_type::parse_error; } break; } // U+0800..U+0FFF: bytes E0 A0..BF 80..BF case 0xE0: { if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF // U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF case 0xE1: case 0xE2: case 0xE3: case 0xE4: case 0xE5: case 0xE6: case 0xE7: case 0xE8: case 0xE9: case 0xEA: case 0xEB: case 0xEC: case 0xEE: case 0xEF: { if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+D000..U+D7FF: bytes ED 80..9F 80..BF case 0xED: { if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0x9F, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+10000..U+3FFFF F0 90..BF 80..BF 80..BF case 0xF0: { if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF case 0xF1: case 0xF2: case 0xF3: { if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+100000..U+10FFFF F4 80..8F 80..BF 80..BF case 0xF4: { if (JSON_HEDLEY_UNLIKELY(not (next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // remaining bytes (80..C1 and F5..FF) are ill-formed default: { error_message = "invalid string: ill-formed UTF-8 byte"; return token_type::parse_error; } } } } JSON_HEDLEY_NON_NULL(2) static void strtof(float& f, const char* str, char** endptr) noexcept { f = std::strtof(str, endptr); } JSON_HEDLEY_NON_NULL(2) static void strtof(double& f, const char* str, char** endptr) noexcept { f = std::strtod(str, endptr); } JSON_HEDLEY_NON_NULL(2) static void strtof(long double& f, const char* str, char** endptr) noexcept { f = std::strtold(str, endptr); } /*! @brief scan a number literal This function scans a string according to Sect. 6 of RFC 7159. The function is realized with a deterministic finite state machine derived from the grammar described in RFC 7159. Starting in state "init", the input is read and used to determined the next state. Only state "done" accepts the number. State "error" is a trap state to model errors. In the table below, "anything" means any character but the ones listed before. state | 0 | 1-9 | e E | + | - | . | anything ---------|----------|----------|----------|---------|---------|----------|----------- init | zero | any1 | [error] | [error] | minus | [error] | [error] minus | zero | any1 | [error] | [error] | [error] | [error] | [error] zero | done | done | exponent | done | done | decimal1 | done any1 | any1 | any1 | exponent | done | done | decimal1 | done decimal1 | decimal2 | decimal2 | [error] | [error] | [error] | [error] | [error] decimal2 | decimal2 | decimal2 | exponent | done | done | done | done exponent | any2 | any2 | [error] | sign | sign | [error] | [error] sign | any2 | any2 | [error] | [error] | [error] | [error] | [error] any2 | any2 | any2 | done | done | done | done | done The state machine is realized with one label per state (prefixed with "scan_number_") and `goto` statements between them. The state machine contains cycles, but any cycle can be left when EOF is read. Therefore, the function is guaranteed to terminate. During scanning, the read bytes are stored in token_buffer. This string is then converted to a signed integer, an unsigned integer, or a floating-point number. @return token_type::value_unsigned, token_type::value_integer, or token_type::value_float if number could be successfully scanned, token_type::parse_error otherwise @note The scanner is independent of the current locale. Internally, the locale's decimal point is used instead of `.` to work with the locale-dependent converters. */ token_type scan_number() // lgtm [cpp/use-of-goto] { // reset token_buffer to store the number's bytes reset(); // the type of the parsed number; initially set to unsigned; will be // changed if minus sign, decimal point or exponent is read token_type number_type = token_type::value_unsigned; // state (init): we just found out we need to scan a number switch (current) { case '-': { add(current); goto scan_number_minus; } case '0': { add(current); goto scan_number_zero; } case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any1; } // all other characters are rejected outside scan_number() default: // LCOV_EXCL_LINE assert(false); // LCOV_EXCL_LINE } scan_number_minus: // state: we just parsed a leading minus sign number_type = token_type::value_integer; switch (get()) { case '0': { add(current); goto scan_number_zero; } case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any1; } default: { error_message = "invalid number; expected digit after '-'"; return token_type::parse_error; } } scan_number_zero: // state: we just parse a zero (maybe with a leading minus sign) switch (get()) { case '.': { add(decimal_point_char); goto scan_number_decimal1; } case 'e': case 'E': { add(current); goto scan_number_exponent; } default: goto scan_number_done; } scan_number_any1: // state: we just parsed a number 0-9 (maybe with a leading minus sign) switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any1; } case '.': { add(decimal_point_char); goto scan_number_decimal1; } case 'e': case 'E': { add(current); goto scan_number_exponent; } default: goto scan_number_done; } scan_number_decimal1: // state: we just parsed a decimal point number_type = token_type::value_float; switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_decimal2; } default: { error_message = "invalid number; expected digit after '.'"; return token_type::parse_error; } } scan_number_decimal2: // we just parsed at least one number after a decimal point switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_decimal2; } case 'e': case 'E': { add(current); goto scan_number_exponent; } default: goto scan_number_done; } scan_number_exponent: // we just parsed an exponent number_type = token_type::value_float; switch (get()) { case '+': case '-': { add(current); goto scan_number_sign; } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any2; } default: { error_message = "invalid number; expected '+', '-', or digit after exponent"; return token_type::parse_error; } } scan_number_sign: // we just parsed an exponent sign switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any2; } default: { error_message = "invalid number; expected digit after exponent sign"; return token_type::parse_error; } } scan_number_any2: // we just parsed a number after the exponent or exponent sign switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any2; } default: goto scan_number_done; } scan_number_done: // unget the character after the number (we only read it to know that // we are done scanning a number) unget(); char* endptr = nullptr; errno = 0; // try to parse integers first and fall back to floats if (number_type == token_type::value_unsigned) { const auto x = std::strtoull(token_buffer.data(), &endptr, 10); // we checked the number format before assert(endptr == token_buffer.data() + token_buffer.size()); if (errno == 0) { value_unsigned = static_cast(x); if (value_unsigned == x) { return token_type::value_unsigned; } } } else if (number_type == token_type::value_integer) { const auto x = std::strtoll(token_buffer.data(), &endptr, 10); // we checked the number format before assert(endptr == token_buffer.data() + token_buffer.size()); if (errno == 0) { value_integer = static_cast(x); if (value_integer == x) { return token_type::value_integer; } } } // this code is reached if we parse a floating-point number or if an // integer conversion above failed strtof(value_float, token_buffer.data(), &endptr); // we checked the number format before assert(endptr == token_buffer.data() + token_buffer.size()); return token_type::value_float; } /*! @param[in] literal_text the literal text to expect @param[in] length the length of the passed literal text @param[in] return_type the token type to return on success */ JSON_HEDLEY_NON_NULL(2) token_type scan_literal(const char_type* literal_text, const std::size_t length, token_type return_type) { assert(std::char_traits::to_char_type(current) == literal_text[0]); for (std::size_t i = 1; i < length; ++i) { if (JSON_HEDLEY_UNLIKELY(std::char_traits::to_char_type(get()) != literal_text[i])) { error_message = "invalid literal"; return token_type::parse_error; } } return return_type; } ///////////////////// // input management ///////////////////// /// reset token_buffer; current character is beginning of token void reset() noexcept { token_buffer.clear(); token_string.clear(); token_string.push_back(std::char_traits::to_char_type(current)); } /* @brief get next character from the input This function provides the interface to the used input adapter. It does not throw in case the input reached EOF, but returns a `std::char_traits::eof()` in that case. Stores the scanned characters for use in error messages. @return character read from the input */ char_int_type get() { ++position.chars_read_total; ++position.chars_read_current_line; if (next_unget) { // just reset the next_unget variable and work with current next_unget = false; } else { current = ia.get_character(); } if (JSON_HEDLEY_LIKELY(current != std::char_traits::eof())) { token_string.push_back(std::char_traits::to_char_type(current)); } if (current == '\n') { ++position.lines_read; position.chars_read_current_line = 0; } return current; } /*! @brief unget current character (read it again on next get) We implement unget by setting variable next_unget to true. The input is not changed - we just simulate ungetting by modifying chars_read_total, chars_read_current_line, and token_string. The next call to get() will behave as if the unget character is read again. */ void unget() { next_unget = true; --position.chars_read_total; // in case we "unget" a newline, we have to also decrement the lines_read if (position.chars_read_current_line == 0) { if (position.lines_read > 0) { --position.lines_read; } } else { --position.chars_read_current_line; } if (JSON_HEDLEY_LIKELY(current != std::char_traits::eof())) { assert(not token_string.empty()); token_string.pop_back(); } } /// add a character to token_buffer void add(char_int_type c) { token_buffer.push_back(static_cast(c)); } public: ///////////////////// // value getters ///////////////////// /// return integer value constexpr number_integer_t get_number_integer() const noexcept { return value_integer; } /// return unsigned integer value constexpr number_unsigned_t get_number_unsigned() const noexcept { return value_unsigned; } /// return floating-point value constexpr number_float_t get_number_float() const noexcept { return value_float; } /// return current string value (implicitly resets the token; useful only once) string_t& get_string() { return token_buffer; } ///////////////////// // diagnostics ///////////////////// /// return position of last read token constexpr position_t get_position() const noexcept { return position; } /// return the last read token (for errors only). Will never contain EOF /// (an arbitrary value that is not a valid char value, often -1), because /// 255 may legitimately occur. May contain NUL, which should be escaped. std::string get_token_string() const { // escape control characters std::string result; for (const auto c : token_string) { if (static_cast(c) <= '\x1F') { // escape control characters std::array cs{{}}; (std::snprintf)(cs.data(), cs.size(), "", static_cast(c)); result += cs.data(); } else { // add character as is result.push_back(static_cast(c)); } } return result; } /// return syntax error message JSON_HEDLEY_RETURNS_NON_NULL constexpr const char* get_error_message() const noexcept { return error_message; } ///////////////////// // actual scanner ///////////////////// /*! @brief skip the UTF-8 byte order mark @return true iff there is no BOM or the correct BOM has been skipped */ bool skip_bom() { if (get() == 0xEF) { // check if we completely parse the BOM return get() == 0xBB and get() == 0xBF; } // the first character is not the beginning of the BOM; unget it to // process is later unget(); return true; } token_type scan() { // initially, skip the BOM if (position.chars_read_total == 0 and not skip_bom()) { error_message = "invalid BOM; must be 0xEF 0xBB 0xBF if given"; return token_type::parse_error; } // read next character and ignore whitespace do { get(); } while (current == ' ' or current == '\t' or current == '\n' or current == '\r'); switch (current) { // structural characters case '[': return token_type::begin_array; case ']': return token_type::end_array; case '{': return token_type::begin_object; case '}': return token_type::end_object; case ':': return token_type::name_separator; case ',': return token_type::value_separator; // literals case 't': { std::array true_literal = {{'t', 'r', 'u', 'e'}}; return scan_literal(true_literal.data(), true_literal.size(), token_type::literal_true); } case 'f': { std::array false_literal = {{'f', 'a', 'l', 's', 'e'}}; return scan_literal(false_literal.data(), false_literal.size(), token_type::literal_false); } case 'n': { std::array null_literal = {{'n', 'u', 'l', 'l'}}; return scan_literal(null_literal.data(), null_literal.size(), token_type::literal_null); } // string case '\"': return scan_string(); // number case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return scan_number(); // end of input (the null byte is needed when parsing from // string literals) case '\0': case std::char_traits::eof(): return token_type::end_of_input; // error default: error_message = "invalid literal"; return token_type::parse_error; } } private: /// input adapter InputAdapterType ia; /// the current character char_int_type current = std::char_traits::eof(); /// whether the next get() call should just return current bool next_unget = false; /// the start position of the current token position_t position {}; /// raw input token string (for error messages) std::vector token_string {}; /// buffer for variable-length tokens (numbers, strings) string_t token_buffer {}; /// a description of occurred lexer errors const char* error_message = ""; // number values number_integer_t value_integer = 0; number_unsigned_t value_unsigned = 0; number_float_t value_float = 0; /// the decimal point const char_int_type decimal_point_char = '.'; }; } // namespace detail } // namespace nlohmann