/* __ _____ _____ _____ __| | __| | | | JSON for Modern C++ (test suite) | | |__ | | | | | | version 3.6.1 |_____|_____|_____|_|___| https://github.com/nlohmann/json Licensed under the MIT License . SPDX-License-Identifier: MIT Copyright (c) 2013-2019 Niels Lohmann . Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // XXX: // Only compile these tests if 'float' and 'double' are IEEE-754 single- and // double-precision numbers, resp. #include "catch.hpp" #include using nlohmann::detail::dtoa_impl::reinterpret_bits; static float make_float(uint32_t sign_bit, uint32_t biased_exponent, uint32_t significand) { assert(sign_bit == 0 || sign_bit == 1); assert(biased_exponent <= 0xFF); assert(significand <= 0x007FFFFF); uint32_t bits = 0; bits |= sign_bit << 31; bits |= biased_exponent << 23; bits |= significand; return reinterpret_bits(bits); } // ldexp -- convert f * 2^e to IEEE single precision static float make_float(uint64_t f, int e) { constexpr uint64_t kHiddenBit = 0x00800000; constexpr uint64_t kSignificandMask = 0x007FFFFF; constexpr int kPhysicalSignificandSize = 23; // Excludes the hidden bit. constexpr int kExponentBias = 0x7F + kPhysicalSignificandSize; constexpr int kDenormalExponent = 1 - kExponentBias; constexpr int kMaxExponent = 0xFF - kExponentBias; while (f > kHiddenBit + kSignificandMask) { f >>= 1; e++; } if (e >= kMaxExponent) { return std::numeric_limits::infinity(); } if (e < kDenormalExponent) { return 0.0; } while (e > kDenormalExponent && (f & kHiddenBit) == 0) { f <<= 1; e--; } uint64_t biased_exponent = (e == kDenormalExponent && (f & kHiddenBit) == 0) ? 0 : static_cast(e + kExponentBias); uint64_t bits = (f & kSignificandMask) | (biased_exponent << kPhysicalSignificandSize); return reinterpret_bits(static_cast(bits)); } static double make_double(uint64_t sign_bit, uint64_t biased_exponent, uint64_t significand) { assert(sign_bit == 0 || sign_bit == 1); assert(biased_exponent <= 0x7FF); assert(significand <= 0x000FFFFFFFFFFFFF); uint64_t bits = 0; bits |= sign_bit << 63; bits |= biased_exponent << 52; bits |= significand; return reinterpret_bits(bits); } // ldexp -- convert f * 2^e to IEEE double precision static double make_double(uint64_t f, int e) { constexpr uint64_t kHiddenBit = 0x0010000000000000; constexpr uint64_t kSignificandMask = 0x000FFFFFFFFFFFFF; constexpr int kPhysicalSignificandSize = 52; // Excludes the hidden bit. constexpr int kExponentBias = 0x3FF + kPhysicalSignificandSize; constexpr int kDenormalExponent = 1 - kExponentBias; constexpr int kMaxExponent = 0x7FF - kExponentBias; while (f > kHiddenBit + kSignificandMask) { f >>= 1; e++; } if (e >= kMaxExponent) { return std::numeric_limits::infinity(); } if (e < kDenormalExponent) { return 0.0; } while (e > kDenormalExponent && (f & kHiddenBit) == 0) { f <<= 1; e--; } uint64_t biased_exponent = (e == kDenormalExponent && (f & kHiddenBit) == 0) ? 0 : static_cast(e + kExponentBias); uint64_t bits = (f & kSignificandMask) | (biased_exponent << kPhysicalSignificandSize); return reinterpret_bits(bits); } TEST_CASE("digit gen") { SECTION("single precision") { auto check_float = [](float number, const std::string & digits, int expected_exponent) { CAPTURE(number) CAPTURE(digits) CAPTURE(expected_exponent) char buf[32]; int len = 0; int exponent = 0; nlohmann::detail::dtoa_impl::grisu2(buf, len, exponent, number); CHECK(digits == std::string(buf, buf + len)); CHECK(expected_exponent == exponent); }; check_float(make_float(0, 0, 0x00000001), "1", -45); // min denormal check_float(make_float(0, 0, 0x007FFFFF), "11754942", -45); // max denormal check_float(make_float(0, 1, 0x00000000), "11754944", -45); // min normal check_float(make_float(0, 1, 0x00000001), "11754945", -45); check_float(make_float(0, 1, 0x007FFFFF), "23509886", -45); check_float(make_float(0, 2, 0x00000000), "23509887", -45); check_float(make_float(0, 2, 0x00000001), "2350989", -44); check_float(make_float(0, 24, 0x00000000), "98607613", -39); // fail if no special case in normalized boundaries check_float(make_float(0, 30, 0x00000000), "63108872", -37); // fail if no special case in normalized boundaries check_float(make_float(0, 31, 0x00000000), "12621775", -36); // fail if no special case in normalized boundaries check_float(make_float(0, 57, 0x00000000), "84703295", -29); // fail if no special case in normalized boundaries check_float(make_float(0, 254, 0x007FFFFE), "34028233", 31); check_float(make_float(0, 254, 0x007FFFFF), "34028235", 31); // max normal // V. Paxson and W. Kahan, "A Program for Testing IEEE Binary-Decimal Conversion", manuscript, May 1991, // ftp://ftp.ee.lbl.gov/testbase-report.ps.Z (report) // ftp://ftp.ee.lbl.gov/testbase.tar.Z (program) // Table 16: Stress Inputs for Converting 24-bit Binary to Decimal, < 1/2 ULP check_float(make_float(12676506, -102), "25", -25); check_float(make_float(12676506, -103), "125", -26); check_float(make_float(15445013, 86), "1195", 30); check_float(make_float(13734123, -138), "39415", -39); check_float(make_float(12428269, -130), "913085", -38); check_float(make_float(15334037, -146), "1719005", -43); check_float(make_float(11518287, -41), "52379105", -13); check_float(make_float(12584953, -145), "2821644", -43); check_float(make_float(15961084, -125), "37524328", -38); check_float(make_float(14915817, -146), "16721209", -44); check_float(make_float(10845484, -102), "21388946", -31); check_float(make_float(16431059, -61), "7125836", -18); // Table 17: Stress Inputs for Converting 24-bit Binary to Decimal, > 1/2 ULP check_float(make_float(16093626, 69), "95", 26); check_float(make_float( 9983778, 25), "335", 12); check_float(make_float(12745034, 104), "2585", 35); check_float(make_float(12706553, 72), "60005", 24); check_float(make_float(11005028, 45), "387205", 15); check_float(make_float(15059547, 71), "3555835", 22); check_float(make_float(16015691, -99), "25268305", -30); check_float(make_float( 8667859, 56), "6245851", 17); check_float(make_float(14855922, -82), "30721327", -25); check_float(make_float(14855922, -83), "15360663", -25); check_float(make_float(10144164, -110), "781478", -32); check_float(make_float(13248074, 95), "52481028", 28); } SECTION("double precision") { auto check_double = [](double number, const std::string & digits, int expected_exponent) { CAPTURE(number) CAPTURE(digits) CAPTURE(expected_exponent) char buf[32]; int len = 0; int exponent = 0; nlohmann::detail::dtoa_impl::grisu2(buf, len, exponent, number); CHECK(digits == std::string(buf, buf + len)); CHECK(expected_exponent == exponent); }; check_double(make_double(0, 0, 0x0000000000000001), "5", -324); // min denormal check_double(make_double(0, 0, 0x000FFFFFFFFFFFFF), "2225073858507201", -323); // max denormal check_double(make_double(0, 1, 0x0000000000000000), "22250738585072014", -324); // min normal check_double(make_double(0, 1, 0x0000000000000001), "2225073858507202", -323); check_double(make_double(0, 1, 0x000FFFFFFFFFFFFF), "44501477170144023", -324); check_double(make_double(0, 2, 0x0000000000000000), "4450147717014403", -323); check_double(make_double(0, 2, 0x0000000000000001), "4450147717014404", -323); check_double(make_double(0, 4, 0x0000000000000000), "17800590868057611", -323); // fail if no special case in normalized boundaries check_double(make_double(0, 5, 0x0000000000000000), "35601181736115222", -323); // fail if no special case in normalized boundaries check_double(make_double(0, 6, 0x0000000000000000), "7120236347223045", -322); // fail if no special case in normalized boundaries check_double(make_double(0, 10, 0x0000000000000000), "11392378155556871", -321); // fail if no special case in normalized boundaries check_double(make_double(0, 2046, 0x000FFFFFFFFFFFFE), "17976931348623155", 292); check_double(make_double(0, 2046, 0x000FFFFFFFFFFFFF), "17976931348623157", 292); // max normal // Test different paths in DigitGen check_double( 10000, "1", 4); check_double( 1200000, "12", 5); check_double(4.9406564584124654e-324, "5", -324); // exit integral loop check_double(2.2250738585072009e-308, "2225073858507201", -323); // exit fractional loop check_double( 1.82877982605164e-99, "182877982605164", -113); check_double( 1.1505466208671903e-09, "11505466208671903", -25); check_double( 5.5645893133766722e+20, "5564589313376672", 5); check_double( 53.034830388866226, "53034830388866226", -15); check_double( 0.0021066531670178605, "21066531670178605", -19); // V. Paxson and W. Kahan, "A Program for Testing IEEE Binary-Decimal Conversion", manuscript, May 1991, // ftp://ftp.ee.lbl.gov/testbase-report.ps.Z (report) // ftp://ftp.ee.lbl.gov/testbase.tar.Z (program) // Table 3: Stress Inputs for Converting 53-bit Binary to Decimal, < 1/2 ULP check_double(make_double(8511030020275656, -342) /* 9.5e-088 */, "95", -89); check_double(make_double(5201988407066741, -824) /* 4.65e-233 */, "465", -235); check_double(make_double(6406892948269899, +237) /* 1.415e+087 */, "1415", 84); check_double(make_double(8431154198732492, +72) /* 3.9815e+037 */, "39815", 33); check_double(make_double(6475049196144587, +99) /* 4.10405e+045 */, "410405", 40); check_double(make_double(8274307542972842, +726) /* 2.920845e+234 */, "2920845", 228); check_double(make_double(5381065484265332, -456) /* 2.8919465e-122 */, "28919465", -129); check_double(make_double(6761728585499734, -1057) /* 4.37877185e-303 */, "437877185", -311); check_double(make_double(7976538478610756, +376) /* 1.227701635e+129 */, "1227701635", 120); check_double(make_double(5982403858958067, +377) /* 1.8415524525e+129 */, "18415524525", 119); check_double(make_double(5536995190630837, +93) /* 5.48357443505e+043 */, "548357443505", 32); check_double(make_double(7225450889282194, +710) /* 3.891901811465e+229 */, "3891901811465", 217); check_double(make_double(7225450889282194, +709) /* 1.9459509057325e+229 */, "19459509057325", 216); check_double(make_double(8703372741147379, +117) /* 1.44609583816055e+051 */, "144609583816055", 37); check_double(make_double(8944262675275217, -1001) /* 4.173677474585315e-286 */, "4173677474585315", -301); check_double(make_double(7459803696087692, -707) /* 1.1079507728788885e-197 */, "11079507728788885", -213); check_double(make_double(6080469016670379, -381) /* 1.234550136632744e-099 */, "1234550136632744", -114); check_double(make_double(8385515147034757, +721) /* 9.2503171196036502e+232 */, "925031711960365", 218); check_double(make_double(7514216811389786, -828) /* 4.1980471502848898e-234 */, "419804715028489", -248); check_double(make_double(8397297803260511, -345) /* 1.1716315319786511e-088 */, "11716315319786511", -104); check_double(make_double(6733459239310543, +202) /* 4.3281007284461249e+076 */, "4328100728446125", 61); check_double(make_double(8091450587292794, -473) /* 3.3177101181600311e-127 */, "3317710118160031", -142); // Table 4: Stress Inputs for Converting 53-bit Binary to Decimal, > 1/2 ULP check_double(make_double(6567258882077402, +952) /* 2.5e+302 */, "25", 301); check_double(make_double(6712731423444934, +535) /* 7.55e+176 */, "755", 174); check_double(make_double(6712731423444934, +534) /* 3.775e+176 */, "3775", 173); check_double(make_double(5298405411573037, -957) /* 4.3495e-273 */, "43495", -277); check_double(make_double(5137311167659507, -144) /* 2.30365e-028 */, "230365", -33); check_double(make_double(6722280709661868, +363) /* 1.263005e+125 */, "1263005", 119); check_double(make_double(5344436398034927, -169) /* 7.1422105e-036 */, "71422105", -43); check_double(make_double(8369123604277281, -853) /* 1.39345735e-241 */, "139345735", -249); check_double(make_double(8995822108487663, -780) /* 1.414634485e-219 */, "1414634485", -228); check_double(make_double(8942832835564782, -383) /* 4.5392779195e-100 */, "45392779195", -110); check_double(make_double(8942832835564782, -384) /* 2.26963895975e-100 */, "226963895975", -111); check_double(make_double(8942832835564782, -385) /* 1.134819479875e-100 */, "1134819479875", -112); check_double(make_double(6965949469487146, -249) /* 7.7003665618895e-060 */, "77003665618895", -73); check_double(make_double(6965949469487146, -250) /* 3.85018328094475e-060 */, "385018328094475", -74); check_double(make_double(6965949469487146, -251) /* 1.925091640472375e-060 */, "1925091640472375", -75); check_double(make_double(7487252720986826, +548) /* 6.8985865317742005e+180 */, "68985865317742005", 164); check_double(make_double(5592117679628511, +164) /* 1.3076622631878654e+065 */, "13076622631878654", 49); check_double(make_double(8887055249355788, +665) /* 1.3605202075612124e+216 */, "13605202075612124", 200); check_double(make_double(6994187472632449, +690) /* 3.5928102174759597e+223 */, "35928102174759597", 207); check_double(make_double(8797576579012143, +588) /* 8.9125197712484552e+192 */, "8912519771248455", 177); check_double(make_double(7363326733505337, +272) /* 5.5876975736230114e+097 */, "55876975736230114", 81); check_double(make_double(8549497411294502, -448) /* 1.1762578307285404e-119 */, "11762578307285404", -135); // Table 20: Stress Inputs for Converting 56-bit Binary to Decimal, < 1/2 ULP check_double(make_double(50883641005312716, -172) /* 8.4999999999999993e-036 */, "8499999999999999", -51); check_double(make_double(38162730753984537, -170) /* 2.5499999999999999e-035 */, "255", -37); check_double(make_double(50832789069151999, -101) /* 2.0049999999999997e-014 */, "20049999999999997", -30); check_double(make_double(51822367833714164, -109) /* 7.9844999999999994e-017 */, "7984499999999999", -32); check_double(make_double(66840152193508133, -172) /* 1.1165499999999999e-035 */, "11165499999999999", -51); check_double(make_double(55111239245584393, -138) /* 1.581615e-025 */, "1581615", -31); check_double(make_double(71704866733321482, -112) /* 1.3809855e-017 */, "13809855", -24); check_double(make_double(67160949328233173, -142) /* 1.2046404499999999e-026 */, "12046404499999999", -42); check_double(make_double(53237141308040189, -152) /* 9.3251405449999991e-030 */, "9325140544999999", -45); check_double(make_double(62785329394975786, -112) /* 1.2092014595e-017 */, "12092014595", -27); check_double(make_double(48367680154689523, -77) /* 3.2007045838499998e-007 */, "320070458385", -18); check_double(make_double(42552223180606797, -102) /* 8.391946324354999e-015 */, "8391946324354999", -30); check_double(make_double(63626356173011241, -112) /* 1.2253990460585e-017 */, "12253990460585", -30); check_double(make_double(43566388595783643, -99) /* 6.8735641489760495e-014 */, "687356414897605", -28); check_double(make_double(54512669636675272, -159) /* 7.459816430480385e-032 */, "7459816430480385", -47); check_double(make_double(52306490527514614, -167) /* 2.7960588398142552e-034 */, "2796058839814255", -49); check_double(make_double(52306490527514614, -168) /* 1.3980294199071276e-034 */, "13980294199071276", -50); check_double(make_double(41024721590449423, -89) /* 6.6279012373057359e-011 */, "6627901237305736", -26); check_double(make_double(37664020415894738, -132) /* 6.9177880043968072e-024 */, "6917788004396807", -39); check_double(make_double(37549883692866294, -93) /* 3.7915693108349708e-012 */, "3791569310834971", -27); check_double(make_double(69124110374399839, -104) /* 3.4080817676591365e-015 */, "34080817676591365", -31); check_double(make_double(69124110374399839, -105) /* 1.7040408838295683e-015 */, "17040408838295683", -31); // Table 21: Stress Inputs for Converting 56-bit Binary to Decimal, > 1/2 ULP check_double(make_double(49517601571415211, -94) /* 2.4999999999999998e-012 */, "25", -13); check_double(make_double(49517601571415211, -95) /* 1.2499999999999999e-012 */, "125", -14); check_double(make_double(54390733528642804, -133) /* 4.9949999999999996e-024 */, "49949999999999996", -40); // shortest: 4995e-27 check_double(make_double(71805402319113924, -157) /* 3.9304999999999998e-031 */, "39304999999999998", -47); // shortest: 39305e-35 check_double(make_double(40435277969631694, -179) /* 5.2770499999999992e-038 */, "5277049999999999", -53); check_double(make_double(57241991568619049, -165) /* 1.223955e-033 */, "1223955", -39); check_double(make_double(65224162876242886, +58) /* 1.8799584999999998e+034 */, "18799584999999998", 18); check_double(make_double(70173376848895368, -138) /* 2.01387715e-025 */, "201387715", -33); check_double(make_double(37072848117383207, -99) /* 5.8490641049999989e-014 */, "5849064104999999", -29); check_double(make_double(56845051585389697, -176) /* 5.9349003054999999e-037 */, "59349003055", -47); check_double(make_double(54791673366936431, -145) /* 1.2284718039499998e-027 */, "12284718039499998", -43); check_double(make_double(66800318669106231, -169) /* 8.9270767180849991e-035 */, "8927076718084999", -50); check_double(make_double(66800318669106231, -170) /* 4.4635383590424995e-035 */, "44635383590424995", -51); check_double(make_double(66574323440112438, -119) /* 1.0016990862549499e-019 */, "10016990862549499", -35); check_double(make_double(65645179969330963, -173) /* 5.4829412628024647e-036 */, "5482941262802465", -51); check_double(make_double(61847254334681076, -109) /* 9.5290783281036439e-017 */, "9529078328103644", -32); check_double(make_double(39990712921393606, -145) /* 8.9662279366405553e-028 */, "8966227936640555", -43); check_double(make_double(59292318184400283, -149) /* 8.3086234418058538e-029 */, "8308623441805854", -44); check_double(make_double(69116558615326153, -143) /* 6.1985873566126555e-027 */, "61985873566126555", -43); check_double(make_double(69116558615326153, -144) /* 3.0992936783063277e-027 */, "30992936783063277", -43); check_double(make_double(39462549494468513, -152) /* 6.9123512506176015e-030 */, "6912351250617602", -45); check_double(make_double(39462549494468513, -153) /* 3.4561756253088008e-030 */, "3456175625308801", -45); } } TEST_CASE("formatting") { SECTION("single precision") { auto check_float = [](float number, const std::string & expected) { char buf[32]; char* end = nlohmann::detail::to_chars(buf, buf + 32, number); std::string actual(buf, end); CHECK(actual == expected); }; // %.9g check_float( -1.2345e-22f, "-1.2345e-22" ); // -1.23450004e-22 check_float( -1.2345e-21f, "-1.2345e-21" ); // -1.23450002e-21 check_float( -1.2345e-20f, "-1.2345e-20" ); // -1.23450002e-20 check_float( -1.2345e-19f, "-1.2345e-19" ); // -1.23449999e-19 check_float( -1.2345e-18f, "-1.2345e-18" ); // -1.23449996e-18 check_float( -1.2345e-17f, "-1.2345e-17" ); // -1.23449998e-17 check_float( -1.2345e-16f, "-1.2345e-16" ); // -1.23449996e-16 check_float( -1.2345e-15f, "-1.2345e-15" ); // -1.23450002e-15 check_float( -1.2345e-14f, "-1.2345e-14" ); // -1.23450004e-14 check_float( -1.2345e-13f, "-1.2345e-13" ); // -1.23449997e-13 check_float( -1.2345e-12f, "-1.2345e-12" ); // -1.23450002e-12 check_float( -1.2345e-11f, "-1.2345e-11" ); // -1.2345e-11 check_float( -1.2345e-10f, "-1.2345e-10" ); // -1.2345e-10 check_float( -1.2345e-9f, "-1.2345e-09" ); // -1.23449995e-09 check_float( -1.2345e-8f, "-1.2345e-08" ); // -1.23449997e-08 check_float( -1.2345e-7f, "-1.2345e-07" ); // -1.23449993e-07 check_float( -1.2345e-6f, "-1.2345e-06" ); // -1.23450002e-06 check_float( -1.2345e-5f, "-1.2345e-05" ); // -1.2345e-05 check_float( -1.2345e-4f, "-0.00012345" ); // -0.000123449994 check_float( -1.2345e-3f, "-0.0012345" ); // -0.00123449997 check_float( -1.2345e-2f, "-0.012345" ); // -0.0123450002 check_float( -1.2345e-1f, "-0.12345" ); // -0.123450004 check_float( -0.0f, "-0.0" ); // -0 check_float( 0.0f, "0.0" ); // 0 check_float( 1.2345e+0f, "1.2345" ); // 1.23450005 check_float( 1.2345e+1f, "12.345" ); // 12.3450003 check_float( 1.2345e+2f, "123.45" ); // 123.449997 check_float( 1.2345e+3f, "1234.5" ); // 1234.5 check_float( 1.2345e+4f, "12345.0" ); // 12345 check_float( 1.2345e+5f, "123450.0" ); // 123450 check_float( 1.2345e+6f, "1.2345e+06" ); // 1234500 check_float( 1.2345e+7f, "1.2345e+07" ); // 12345000 check_float( 1.2345e+8f, "1.2345e+08" ); // 123450000 check_float( 1.2345e+9f, "1.2345e+09" ); // 1.23449997e+09 check_float( 1.2345e+10f, "1.2345e+10" ); // 1.23449999e+10 check_float( 1.2345e+11f, "1.2345e+11" ); // 1.23449999e+11 check_float( 1.2345e+12f, "1.2345e+12" ); // 1.23450006e+12 check_float( 1.2345e+13f, "1.2345e+13" ); // 1.23449995e+13 check_float( 1.2345e+14f, "1.2345e+14" ); // 1.23450002e+14 check_float( 1.2345e+15f, "1.2345e+15" ); // 1.23450003e+15 check_float( 1.2345e+16f, "1.2345e+16" ); // 1.23449998e+16 check_float( 1.2345e+17f, "1.2345e+17" ); // 1.23449996e+17 check_float( 1.2345e+18f, "1.2345e+18" ); // 1.23450004e+18 check_float( 1.2345e+19f, "1.2345e+19" ); // 1.23449999e+19 check_float( 1.2345e+20f, "1.2345e+20" ); // 1.23449999e+20 check_float( 1.2345e+21f, "1.2345e+21" ); // 1.23449999e+21 check_float( 1.2345e+22f, "1.2345e+22" ); // 1.23450005e+22 } SECTION("double precision") { auto check_double = [](double number, const std::string & expected) { char buf[32]; char* end = nlohmann::detail::to_chars(buf, buf + 32, number); std::string actual(buf, end); CHECK(actual == expected); }; // dtoa %.15g %.17g shortest check_double( -1.2345e-22, "-1.2345e-22" ); // -1.2345e-22 -1.2345000000000001e-22 -1.2345e-22 check_double( -1.2345e-21, "-1.2345e-21" ); // -1.2345e-21 -1.2345000000000001e-21 -1.2345e-21 check_double( -1.2345e-20, "-1.2345e-20" ); // -1.2345e-20 -1.2345e-20 -1.2345e-20 check_double( -1.2345e-19, "-1.2345e-19" ); // -1.2345e-19 -1.2345000000000001e-19 -1.2345e-19 check_double( -1.2345e-18, "-1.2345e-18" ); // -1.2345e-18 -1.2345000000000001e-18 -1.2345e-18 check_double( -1.2345e-17, "-1.2345e-17" ); // -1.2345e-17 -1.2345e-17 -1.2345e-17 check_double( -1.2345e-16, "-1.2345e-16" ); // -1.2345e-16 -1.2344999999999999e-16 -1.2345e-16 check_double( -1.2345e-15, "-1.2345e-15" ); // -1.2345e-15 -1.2345e-15 -1.2345e-15 check_double( -1.2345e-14, "-1.2345e-14" ); // -1.2345e-14 -1.2345e-14 -1.2345e-14 check_double( -1.2345e-13, "-1.2345e-13" ); // -1.2345e-13 -1.2344999999999999e-13 -1.2345e-13 check_double( -1.2345e-12, "-1.2345e-12" ); // -1.2345e-12 -1.2345e-12 -1.2345e-12 check_double( -1.2345e-11, "-1.2345e-11" ); // -1.2345e-11 -1.2345e-11 -1.2345e-11 check_double( -1.2345e-10, "-1.2345e-10" ); // -1.2345e-10 -1.2345e-10 -1.2345e-10 check_double( -1.2345e-9, "-1.2345e-09" ); // -1.2345e-09 -1.2345e-09 -1.2345e-9 check_double( -1.2345e-8, "-1.2345e-08" ); // -1.2345e-08 -1.2345000000000001e-08 -1.2345e-8 check_double( -1.2345e-7, "-1.2345e-07" ); // -1.2345e-07 -1.2345000000000001e-07 -1.2345e-7 check_double( -1.2345e-6, "-1.2345e-06" ); // -1.2345e-06 -1.2345e-06 -1.2345e-6 check_double( -1.2345e-5, "-1.2345e-05" ); // -1.2345e-05 -1.2345e-05 -1.2345e-5 check_double( -1.2345e-4, "-0.00012345" ); // -0.00012345 -0.00012344999999999999 -0.00012345 check_double( -1.2345e-3, "-0.0012345" ); // -0.0012345 -0.0012344999999999999 -0.0012345 check_double( -1.2345e-2, "-0.012345" ); // -0.012345 -0.012345 -0.012345 check_double( -1.2345e-1, "-0.12345" ); // -0.12345 -0.12345 -0.12345 check_double( -0.0, "-0.0" ); // -0 -0 -0 check_double( 0.0, "0.0" ); // 0 0 0 check_double( 1.2345e+0, "1.2345" ); // 1.2345 1.2344999999999999 1.2345 check_double( 1.2345e+1, "12.345" ); // 12.345 12.345000000000001 12.345 check_double( 1.2345e+2, "123.45" ); // 123.45 123.45 123.45 check_double( 1.2345e+3, "1234.5" ); // 1234.5 1234.5 1234.5 check_double( 1.2345e+4, "12345.0" ); // 12345 12345 12345 check_double( 1.2345e+5, "123450.0" ); // 123450 123450 123450 check_double( 1.2345e+6, "1234500.0" ); // 1234500 1234500 1234500 check_double( 1.2345e+7, "12345000.0" ); // 12345000 12345000 12345000 check_double( 1.2345e+8, "123450000.0" ); // 123450000 123450000 123450000 check_double( 1.2345e+9, "1234500000.0" ); // 1234500000 1234500000 1234500000 check_double( 1.2345e+10, "12345000000.0" ); // 12345000000 12345000000 12345000000 check_double( 1.2345e+11, "123450000000.0" ); // 123450000000 123450000000 123450000000 check_double( 1.2345e+12, "1234500000000.0" ); // 1234500000000 1234500000000 1234500000000 check_double( 1.2345e+13, "12345000000000.0" ); // 12345000000000 12345000000000 12345000000000 check_double( 1.2345e+14, "123450000000000.0" ); // 123450000000000 123450000000000 123450000000000 check_double( 1.2345e+15, "1.2345e+15" ); // 1.2345e+15 1234500000000000 1.2345e15 check_double( 1.2345e+16, "1.2345e+16" ); // 1.2345e+16 12345000000000000 1.2345e16 check_double( 1.2345e+17, "1.2345e+17" ); // 1.2345e+17 1.2345e+17 1.2345e17 check_double( 1.2345e+18, "1.2345e+18" ); // 1.2345e+18 1.2345e+18 1.2345e18 check_double( 1.2345e+19, "1.2345e+19" ); // 1.2345e+19 1.2345e+19 1.2345e19 check_double( 1.2345e+20, "1.2345e+20" ); // 1.2345e+20 1.2345e+20 1.2345e20 check_double( 1.2345e+21, "1.2344999999999999e+21" ); // 1.2345e+21 1.2344999999999999e+21 1.2345e21 check_double( 1.2345e+22, "1.2345e+22" ); // 1.2345e+22 1.2345e+22 1.2345e22 } SECTION("integer") { auto check_integer = [](std::int64_t number, const std::string & expected) { nlohmann::json j = number; CHECK(j.dump() == expected); }; // edge cases check_integer(INT64_MIN, "-9223372036854775808"); check_integer(INT64_MAX, "9223372036854775807"); // few random big integers check_integer(-3456789012345678901LL, "-3456789012345678901"); check_integer(3456789012345678901LL, "3456789012345678901"); check_integer(-5678901234567890123LL, "-5678901234567890123"); check_integer(5678901234567890123LL, "5678901234567890123"); // integers with various digit counts check_integer(-1000000000000000000LL, "-1000000000000000000"); check_integer(-100000000000000000LL, "-100000000000000000"); check_integer(-10000000000000000LL, "-10000000000000000"); check_integer(-1000000000000000LL, "-1000000000000000"); check_integer(-100000000000000LL, "-100000000000000"); check_integer(-10000000000000LL, "-10000000000000"); check_integer(-1000000000000LL, "-1000000000000"); check_integer(-100000000000LL, "-100000000000"); check_integer(-10000000000LL, "-10000000000"); check_integer(-1000000000LL, "-1000000000"); check_integer(-100000000LL, "-100000000"); check_integer(-10000000LL, "-10000000"); check_integer(-1000000LL, "-1000000"); check_integer(-100000LL, "-100000"); check_integer(-10000LL, "-10000"); check_integer(-1000LL, "-1000"); check_integer(-100LL, "-100"); check_integer(-10LL, "-10"); check_integer(-1LL, "-1"); check_integer(0, "0"); check_integer(1LL, "1"); check_integer(10LL, "10"); check_integer(100LL, "100"); check_integer(1000LL, "1000"); check_integer(10000LL, "10000"); check_integer(100000LL, "100000"); check_integer(1000000LL, "1000000"); check_integer(10000000LL, "10000000"); check_integer(100000000LL, "100000000"); check_integer(1000000000LL, "1000000000"); check_integer(10000000000LL, "10000000000"); check_integer(100000000000LL, "100000000000"); check_integer(1000000000000LL, "1000000000000"); check_integer(10000000000000LL, "10000000000000"); check_integer(100000000000000LL, "100000000000000"); check_integer(1000000000000000LL, "1000000000000000"); check_integer(10000000000000000LL, "10000000000000000"); check_integer(100000000000000000LL, "100000000000000000"); check_integer(1000000000000000000LL, "1000000000000000000"); } }