/* __ _____ _____ _____ __| | __| | | | JSON for Modern C++ | | |__ | | | | | | version 2.1.0 |_____|_____|_____|_|___| https://github.com/nlohmann/json Licensed under the MIT License <http://opensource.org/licenses/MIT>. Copyright (c) 2013-2017 Niels Lohmann <http://nlohmann.me>. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef NLOHMANN_JSON_HPP #define NLOHMANN_JSON_HPP #include <algorithm> // all_of, for_each, transform #include <array> // array #include <cassert> // assert #include <cctype> // isdigit #include <ciso646> // and, not, or #include <cmath> // isfinite, ldexp, signbit #include <cstddef> // nullptr_t, ptrdiff_t, size_t #include <cstdint> // int64_t, uint64_t #include <cstdlib> // strtod, strtof, strtold, strtoul #include <cstring> // strlen #include <forward_list> // forward_list #include <functional> // function, hash, less #include <initializer_list> // initializer_list #include <iomanip> // setw #include <iostream> // istream, ostream #include <iterator> // advance, begin, bidirectional_iterator_tag, distance, end, inserter, iterator, iterator_traits, next, random_access_iterator_tag, reverse_iterator #include <limits> // numeric_limits #include <locale> // locale #include <map> // map #include <memory> // addressof, allocator, allocator_traits, unique_ptr #include <numeric> // accumulate #include <sstream> // stringstream #include <stdexcept> // domain_error, invalid_argument, out_of_range #include <string> // getline, stoi, string, to_string #include <type_traits> // add_pointer, enable_if, is_arithmetic, is_base_of, is_const, is_constructible, is_convertible, is_floating_point, is_integral, is_nothrow_move_assignable, std::is_nothrow_move_constructible, std::is_pointer, std::is_reference, std::is_same, remove_const, remove_pointer, remove_reference #include <utility> // declval, forward, make_pair, move, pair, swap #include <vector> // vector // exclude unsupported compilers #if defined(__clang__) #if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400 #error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers" #endif #elif defined(__GNUC__) #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40900 #error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers" #endif #endif // disable float-equal warnings on GCC/clang #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" #endif // disable documentation warnings on clang #if defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdocumentation" #endif // allow for portable deprecation warnings #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__) #define JSON_DEPRECATED __attribute__((deprecated)) #elif defined(_MSC_VER) #define JSON_DEPRECATED __declspec(deprecated) #else #define JSON_DEPRECATED #endif // allow to disable exceptions #if not defined(JSON_NOEXCEPTION) || defined(__EXCEPTIONS) #define JSON_THROW(exception) throw exception #define JSON_TRY try #define JSON_CATCH(exception) catch(exception) #else #define JSON_THROW(exception) std::abort() #define JSON_TRY if(true) #define JSON_CATCH(exception) if(false) #endif /*! @brief namespace for Niels Lohmann @see https://github.com/nlohmann @since version 1.0.0 */ namespace nlohmann { /*! @brief unnamed namespace with internal helper functions This namespace collects some functions that could not be defined inside the @ref basic_json class. @since version 2.1.0 */ namespace detail { /////////////////////////// // JSON type enumeration // /////////////////////////// /*! @brief the JSON type enumeration This enumeration collects the different JSON types. It is internally used to distinguish the stored values, and the functions @ref basic_json::is_null(), @ref basic_json::is_object(), @ref basic_json::is_array(), @ref basic_json::is_string(), @ref basic_json::is_boolean(), @ref basic_json::is_number() (with @ref basic_json::is_number_integer(), @ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()), @ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and @ref basic_json::is_structured() rely on it. @note There are three enumeration entries (number_integer, number_unsigned, and number_float), because the library distinguishes these three types for numbers: @ref basic_json::number_unsigned_t is used for unsigned integers, @ref basic_json::number_integer_t is used for signed integers, and @ref basic_json::number_float_t is used for floating-point numbers or to approximate integers which do not fit in the limits of their respective type. @sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON value with the default value for a given type @since version 1.0.0 */ enum class value_t : uint8_t { null, ///< null value object, ///< object (unordered set of name/value pairs) array, ///< array (ordered collection of values) string, ///< string value boolean, ///< boolean value number_integer, ///< number value (signed integer) number_unsigned, ///< number value (unsigned integer) number_float, ///< number value (floating-point) discarded ///< discarded by the the parser callback function }; /*! @brief comparison operator for JSON types Returns an ordering that is similar to Python: - order: null < boolean < number < object < array < string - furthermore, each type is not smaller than itself @since version 1.0.0 */ inline bool operator<(const value_t lhs, const value_t rhs) noexcept { static constexpr std::array<uint8_t, 8> order = {{ 0, // null 3, // object 4, // array 5, // string 1, // boolean 2, // integer 2, // unsigned 2, // float } }; // discarded values are not comparable if (lhs == value_t::discarded or rhs == value_t::discarded) { return false; } return order[static_cast<std::size_t>(lhs)] < order[static_cast<std::size_t>(rhs)]; } ///////////// // helpers // ///////////// // alias templates to reduce boilerplate template<bool B, typename T = void> using enable_if_t = typename std::enable_if<B, T>::type; template<typename T> using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type; // taken from http://stackoverflow.com/a/26936864/266378 template<typename T> using is_unscoped_enum = std::integral_constant<bool, std::is_convertible<T, int>::value and std::is_enum<T>::value>; /* Implementation of two C++17 constructs: conjunction, negation. This is needed to avoid evaluating all the traits in a condition For example: not std::is_same<void, T>::value and has_value_type<T>::value will not compile when T = void (on MSVC at least). Whereas conjunction<negation<std::is_same<void, T>>, has_value_type<T>>::value will stop evaluating if negation<...>::value == false Please note that those constructs must be used with caution, since symbols can become very long quickly (which can slow down compilation and cause MSVC internal compiler errors). Only use it when you have to (see example ahead). */ template<class...> struct conjunction : std::true_type {}; template<class B1> struct conjunction<B1> : B1 {}; template<class B1, class... Bn> struct conjunction<B1, Bn...> : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {}; template<class B> struct negation : std::integral_constant < bool, !B::value > {}; // dispatch utility (taken from ranges-v3) template<unsigned N> struct priority_tag : priority_tag < N - 1 > {}; template<> struct priority_tag<0> {}; ////////////////// // constructors // ////////////////// template<value_t> struct external_constructor; template<> struct external_constructor<value_t::boolean> { template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept { j.m_type = value_t::boolean; j.m_value = b; j.assert_invariant(); } }; template<> struct external_constructor<value_t::string> { template<typename BasicJsonType> static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s) { j.m_type = value_t::string; j.m_value = s; j.assert_invariant(); } }; template<> struct external_constructor<value_t::number_float> { template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept { // replace infinity and NAN by null if (not std::isfinite(val)) { j = BasicJsonType{}; } else { j.m_type = value_t::number_float; j.m_value = val; } j.assert_invariant(); } }; template<> struct external_constructor<value_t::number_unsigned> { template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept { j.m_type = value_t::number_unsigned; j.m_value = val; j.assert_invariant(); } }; template<> struct external_constructor<value_t::number_integer> { template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept { j.m_type = value_t::number_integer; j.m_value = val; j.assert_invariant(); } }; template<> struct external_constructor<value_t::array> { template<typename BasicJsonType> static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr) { j.m_type = value_t::array; j.m_value = arr; j.assert_invariant(); } template<typename BasicJsonType, typename CompatibleArrayType, enable_if_t<not std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value, int> = 0> static void construct(BasicJsonType& j, const CompatibleArrayType& arr) { using std::begin; using std::end; j.m_type = value_t::array; j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr)); j.assert_invariant(); } }; template<> struct external_constructor<value_t::object> { template<typename BasicJsonType> static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj) { j.m_type = value_t::object; j.m_value = obj; j.assert_invariant(); } template<typename BasicJsonType, typename CompatibleObjectType, enable_if_t<not std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int> = 0> static void construct(BasicJsonType& j, const CompatibleObjectType& obj) { using std::begin; using std::end; j.m_type = value_t::object; j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj)); j.assert_invariant(); } }; //////////////////////// // has_/is_ functions // //////////////////////// /*! @brief Helper to determine whether there's a key_type for T. This helper is used to tell associative containers apart from other containers such as sequence containers. For instance, `std::map` passes the test as it contains a `mapped_type`, whereas `std::vector` fails the test. @sa http://stackoverflow.com/a/7728728/266378 @since version 1.0.0, overworked in version 2.0.6 */ #define NLOHMANN_JSON_HAS_HELPER(type) \ template<typename T> struct has_##type { \ private: \ template<typename U, typename = typename U::type> \ static int detect(U &&); \ static void detect(...); \ public: \ static constexpr bool value = \ std::is_integral<decltype(detect(std::declval<T>()))>::value; \ } NLOHMANN_JSON_HAS_HELPER(mapped_type); NLOHMANN_JSON_HAS_HELPER(key_type); NLOHMANN_JSON_HAS_HELPER(value_type); NLOHMANN_JSON_HAS_HELPER(iterator); #undef NLOHMANN_JSON_HAS_HELPER template<bool B, class RealType, class CompatibleObjectType> struct is_compatible_object_type_impl : std::false_type {}; template<class RealType, class CompatibleObjectType> struct is_compatible_object_type_impl<true, RealType, CompatibleObjectType> { static constexpr auto value = std::is_constructible<typename RealType::key_type, typename CompatibleObjectType::key_type>::value and std::is_constructible<typename RealType::mapped_type, typename CompatibleObjectType::mapped_type>::value; }; template<class BasicJsonType, class CompatibleObjectType> struct is_compatible_object_type { static auto constexpr value = is_compatible_object_type_impl < conjunction<negation<std::is_same<void, CompatibleObjectType>>, has_mapped_type<CompatibleObjectType>, has_key_type<CompatibleObjectType>>::value, typename BasicJsonType::object_t, CompatibleObjectType >::value; }; template<typename BasicJsonType, typename T> struct is_basic_json_nested_type { static auto constexpr value = std::is_same<T, typename BasicJsonType::iterator>::value or std::is_same<T, typename BasicJsonType::const_iterator>::value or std::is_same<T, typename BasicJsonType::reverse_iterator>::value or std::is_same<T, typename BasicJsonType::const_reverse_iterator>::value or std::is_same<T, typename BasicJsonType::json_pointer>::value; }; template<class BasicJsonType, class CompatibleArrayType> struct is_compatible_array_type { static auto constexpr value = conjunction<negation<std::is_same<void, CompatibleArrayType>>, negation<is_compatible_object_type< BasicJsonType, CompatibleArrayType>>, negation<std::is_constructible<typename BasicJsonType::string_t, CompatibleArrayType>>, negation<is_basic_json_nested_type<BasicJsonType, CompatibleArrayType>>, has_value_type<CompatibleArrayType>, has_iterator<CompatibleArrayType>>::value; }; template<bool, typename, typename> struct is_compatible_integer_type_impl : std::false_type {}; template<typename RealIntegerType, typename CompatibleNumberIntegerType> struct is_compatible_integer_type_impl<true, RealIntegerType, CompatibleNumberIntegerType> { // is there an assert somewhere on overflows? using RealLimits = std::numeric_limits<RealIntegerType>; using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>; static constexpr auto value = std::is_constructible<RealIntegerType, CompatibleNumberIntegerType>::value and CompatibleLimits::is_integer and RealLimits::is_signed == CompatibleLimits::is_signed; }; template<typename RealIntegerType, typename CompatibleNumberIntegerType> struct is_compatible_integer_type { static constexpr auto value = is_compatible_integer_type_impl < std::is_integral<CompatibleNumberIntegerType>::value and not std::is_same<bool, CompatibleNumberIntegerType>::value, RealIntegerType, CompatibleNumberIntegerType > ::value; }; // trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists template<typename BasicJsonType, typename T> struct has_from_json { private: // also check the return type of from_json template<typename U, typename = enable_if_t<std::is_same<void, decltype(uncvref_t<U>::from_json( std::declval<BasicJsonType>(), std::declval<T&>()))>::value>> static int detect(U&&); static void detect(...); public: static constexpr bool value = std::is_integral<decltype( detect(std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value; }; // This trait checks if JSONSerializer<T>::from_json(json const&) exists // this overload is used for non-default-constructible user-defined-types template<typename BasicJsonType, typename T> struct has_non_default_from_json { private: template < typename U, typename = enable_if_t<std::is_same< T, decltype(uncvref_t<U>::from_json(std::declval<BasicJsonType>()))>::value >> static int detect(U&&); static void detect(...); public: static constexpr bool value = std::is_integral<decltype(detect( std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value; }; // This trait checks if BasicJsonType::json_serializer<T>::to_json exists template<typename BasicJsonType, typename T> struct has_to_json { private: template<typename U, typename = decltype(uncvref_t<U>::to_json( std::declval<BasicJsonType&>(), std::declval<T>()))> static int detect(U&&); static void detect(...); public: static constexpr bool value = std::is_integral<decltype(detect( std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value; }; ///////////// // to_json // ///////////// template<typename BasicJsonType> void to_json(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept { external_constructor<value_t::boolean>::construct(j, b); } template<typename BasicJsonType, typename CompatibleString, enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0> void to_json(BasicJsonType& j, const CompatibleString& s) { external_constructor<value_t::string>::construct(j, s); } template<typename BasicJsonType, typename FloatType, enable_if_t<std::is_floating_point<FloatType>::value, int> = 0> void to_json(BasicJsonType& j, FloatType val) noexcept { external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val)); } template < typename BasicJsonType, typename CompatibleNumberUnsignedType, enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0 > void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept { external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val)); } template < typename BasicJsonType, typename CompatibleNumberIntegerType, enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0 > void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept { external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val)); } template<typename BasicJsonType, typename UnscopedEnumType, enable_if_t<is_unscoped_enum<UnscopedEnumType>::value, int> = 0> void to_json(BasicJsonType& j, UnscopedEnumType e) noexcept { external_constructor<value_t::number_integer>::construct(j, e); } template < typename BasicJsonType, typename CompatibleArrayType, enable_if_t < is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value or std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value, int > = 0 > void to_json(BasicJsonType& j, const CompatibleArrayType& arr) { external_constructor<value_t::array>::construct(j, arr); } template < typename BasicJsonType, typename CompatibleObjectType, enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value, int> = 0 > void to_json(BasicJsonType& j, const CompatibleObjectType& arr) { external_constructor<value_t::object>::construct(j, arr); } /////////////// // from_json // /////////////// // overloads for basic_json template parameters template<typename BasicJsonType, typename ArithmeticType, enable_if_t<std::is_arithmetic<ArithmeticType>::value and not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value, int> = 0> void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val) { switch (static_cast<value_t>(j)) { case value_t::number_unsigned: { val = static_cast<ArithmeticType>( *j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>()); break; } case value_t::number_integer: { val = static_cast<ArithmeticType>( *j.template get_ptr<const typename BasicJsonType::number_integer_t*>()); break; } case value_t::number_float: { val = static_cast<ArithmeticType>( *j.template get_ptr<const typename BasicJsonType::number_float_t*>()); break; } default: { JSON_THROW( std::domain_error("type must be number, but is " + j.type_name())); } } } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b) { if (not j.is_boolean()) { JSON_THROW(std::domain_error("type must be boolean, but is " + j.type_name())); } b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>(); } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s) { if (not j.is_string()) { JSON_THROW(std::domain_error("type must be string, but is " + j.type_name())); } s = *j.template get_ptr<const typename BasicJsonType::string_t*>(); } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val) { get_arithmetic_value(j, val); } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val) { get_arithmetic_value(j, val); } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val) { get_arithmetic_value(j, val); } template<typename BasicJsonType, typename UnscopedEnumType, enable_if_t<is_unscoped_enum<UnscopedEnumType>::value, int> = 0> void from_json(const BasicJsonType& j, UnscopedEnumType& e) { typename std::underlying_type<UnscopedEnumType>::type val = e; get_arithmetic_value(j, val); e = static_cast<UnscopedEnumType>(val); } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::array_t& arr) { if (not j.is_array()) { JSON_THROW(std::domain_error("type must be array, but is " + j.type_name())); } arr = *j.template get_ptr<const typename BasicJsonType::array_t*>(); } // forward_list doesn't have an insert method template<typename BasicJsonType, typename T, typename Allocator> void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l) { // do not perform the check when user wants to retrieve jsons // (except when it's null.. ?) if (j.is_null()) { JSON_THROW(std::domain_error("type must be array, but is " + j.type_name())); } if (not std::is_same<T, BasicJsonType>::value) { if (not j.is_array()) { JSON_THROW(std::domain_error("type must be array, but is " + j.type_name())); } } for (auto it = j.rbegin(), end = j.rend(); it != end; ++it) { l.push_front(it->template get<T>()); } } template<typename BasicJsonType, typename CompatibleArrayType> void from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<0>) { using std::begin; using std::end; std::transform(j.begin(), j.end(), std::inserter(arr, end(arr)), [](const BasicJsonType & i) { // get<BasicJsonType>() returns *this, this won't call a from_json // method when value_type is BasicJsonType return i.template get<typename CompatibleArrayType::value_type>(); }); } template<typename BasicJsonType, typename CompatibleArrayType> auto from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<1>) -> decltype( arr.reserve(std::declval<typename CompatibleArrayType::size_type>()), void()) { using std::begin; using std::end; arr.reserve(j.size()); std::transform( j.begin(), j.end(), std::inserter(arr, end(arr)), [](const BasicJsonType & i) { // get<BasicJsonType>() returns *this, this won't call a from_json // method when value_type is BasicJsonType return i.template get<typename CompatibleArrayType::value_type>(); }); } template<typename BasicJsonType, typename CompatibleArrayType, enable_if_t<is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value and not std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value, int> = 0> void from_json(const BasicJsonType& j, CompatibleArrayType& arr) { if (j.is_null()) { JSON_THROW(std::domain_error("type must be array, but is " + j.type_name())); } // when T == BasicJsonType, do not check if value_t is correct if (not std::is_same<typename CompatibleArrayType::value_type, BasicJsonType>::value) { if (not j.is_array()) { JSON_THROW(std::domain_error("type must be array, but is " + j.type_name())); } } from_json_array_impl(j, arr, priority_tag<1> {}); } template<typename BasicJsonType, typename CompatibleObjectType, enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value, int> = 0> void from_json(const BasicJsonType& j, CompatibleObjectType& obj) { if (not j.is_object()) { JSON_THROW(std::domain_error("type must be object, but is " + j.type_name())); } auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>(); using std::begin; using std::end; // we could avoid the assignment, but this might require a for loop, which // might be less efficient than the container constructor for some // containers (would it?) obj = CompatibleObjectType(begin(*inner_object), end(*inner_object)); } // overload for arithmetic types, not chosen for basic_json template arguments // (BooleanType, etc..); note: Is it really necessary to provide explicit // overloads for boolean_t etc. in case of a custom BooleanType which is not // an arithmetic type? template<typename BasicJsonType, typename ArithmeticType, enable_if_t < std::is_arithmetic<ArithmeticType>::value and not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value, int> = 0> void from_json(const BasicJsonType& j, ArithmeticType& val) { switch (static_cast<value_t>(j)) { case value_t::number_unsigned: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>()); break; } case value_t::number_integer: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>()); break; } case value_t::number_float: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>()); break; } case value_t::boolean: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>()); break; } default: { JSON_THROW(std::domain_error("type must be number, but is " + j.type_name())); } } } struct to_json_fn { private: template<typename BasicJsonType, typename T> auto call(BasicJsonType& j, T&& val, priority_tag<1>) const noexcept(noexcept(to_json(j, std::forward<T>(val)))) -> decltype(to_json(j, std::forward<T>(val)), void()) { return to_json(j, std::forward<T>(val)); } template<typename BasicJsonType, typename T> void call(BasicJsonType&, T&&, priority_tag<0>) const noexcept { static_assert(sizeof(BasicJsonType) == 0, "could not find to_json() method in T's namespace"); } public: template<typename BasicJsonType, typename T> void operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(std::declval<to_json_fn>().call(j, std::forward<T>(val), priority_tag<1> {}))) { return call(j, std::forward<T>(val), priority_tag<1> {}); } }; struct from_json_fn { private: template<typename BasicJsonType, typename T> auto call(const BasicJsonType& j, T& val, priority_tag<1>) const noexcept(noexcept(from_json(j, val))) -> decltype(from_json(j, val), void()) { return from_json(j, val); } template<typename BasicJsonType, typename T> void call(const BasicJsonType&, T&, priority_tag<0>) const noexcept { static_assert(sizeof(BasicJsonType) == 0, "could not find from_json() method in T's namespace"); } public: template<typename BasicJsonType, typename T> void operator()(const BasicJsonType& j, T& val) const noexcept(noexcept(std::declval<from_json_fn>().call(j, val, priority_tag<1> {}))) { return call(j, val, priority_tag<1> {}); } }; // taken from ranges-v3 template<typename T> struct static_const { static constexpr T value{}; }; template<typename T> constexpr T static_const<T>::value; } // namespace detail /// namespace to hold default `to_json` / `from_json` functions namespace { constexpr const auto& to_json = detail::static_const<detail::to_json_fn>::value; constexpr const auto& from_json = detail::static_const<detail::from_json_fn>::value; } /*! @brief default JSONSerializer template argument This serializer ignores the template arguments and uses ADL ([argument-dependent lookup](http://en.cppreference.com/w/cpp/language/adl)) for serialization. */ template<typename = void, typename = void> struct adl_serializer { /*! @brief convert a JSON value to any value type This function is usually called by the `get()` function of the @ref basic_json class (either explicit or via conversion operators). @param[in] j JSON value to read from @param[in, out] val value to write to */ template<typename BasicJsonType, typename ValueType> static void from_json(BasicJsonType&& j, ValueType& val) noexcept( noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val))) { ::nlohmann::from_json(std::forward<BasicJsonType>(j), val); } /*! @brief convert any value type to a JSON value This function is usually called by the constructors of the @ref basic_json class. @param[in, out] j JSON value to write to @param[in] val value to read from */ template<typename BasicJsonType, typename ValueType> static void to_json(BasicJsonType& j, ValueType&& val) noexcept( noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val)))) { ::nlohmann::to_json(j, std::forward<ValueType>(val)); } }; /*! @brief a class to store JSON values @tparam ObjectType type for JSON objects (`std::map` by default; will be used in @ref object_t) @tparam ArrayType type for JSON arrays (`std::vector` by default; will be used in @ref array_t) @tparam StringType type for JSON strings and object keys (`std::string` by default; will be used in @ref string_t) @tparam BooleanType type for JSON booleans (`bool` by default; will be used in @ref boolean_t) @tparam NumberIntegerType type for JSON integer numbers (`int64_t` by default; will be used in @ref number_integer_t) @tparam NumberUnsignedType type for JSON unsigned integer numbers (@c `uint64_t` by default; will be used in @ref number_unsigned_t) @tparam NumberFloatType type for JSON floating-point numbers (`double` by default; will be used in @ref number_float_t) @tparam AllocatorType type of the allocator to use (`std::allocator` by default) @tparam JSONSerializer the serializer to resolve internal calls to `to_json()` and `from_json()` (@ref adl_serializer by default) @requirement The class satisfies the following concept requirements: - Basic - [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible): JSON values can be default constructed. The result will be a JSON null value. - [MoveConstructible](http://en.cppreference.com/w/cpp/concept/MoveConstructible): A JSON value can be constructed from an rvalue argument. - [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible): A JSON value can be copy-constructed from an lvalue expression. - [MoveAssignable](http://en.cppreference.com/w/cpp/concept/MoveAssignable): A JSON value van be assigned from an rvalue argument. - [CopyAssignable](http://en.cppreference.com/w/cpp/concept/CopyAssignable): A JSON value can be copy-assigned from an lvalue expression. - [Destructible](http://en.cppreference.com/w/cpp/concept/Destructible): JSON values can be destructed. - Layout - [StandardLayoutType](http://en.cppreference.com/w/cpp/concept/StandardLayoutType): JSON values have [standard layout](http://en.cppreference.com/w/cpp/language/data_members#Standard_layout): All non-static data members are private and standard layout types, the class has no virtual functions or (virtual) base classes. - Library-wide - [EqualityComparable](http://en.cppreference.com/w/cpp/concept/EqualityComparable): JSON values can be compared with `==`, see @ref operator==(const_reference,const_reference). - [LessThanComparable](http://en.cppreference.com/w/cpp/concept/LessThanComparable): JSON values can be compared with `<`, see @ref operator<(const_reference,const_reference). - [Swappable](http://en.cppreference.com/w/cpp/concept/Swappable): Any JSON lvalue or rvalue of can be swapped with any lvalue or rvalue of other compatible types, using unqualified function call @ref swap(). - [NullablePointer](http://en.cppreference.com/w/cpp/concept/NullablePointer): JSON values can be compared against `std::nullptr_t` objects which are used to model the `null` value. - Container - [Container](http://en.cppreference.com/w/cpp/concept/Container): JSON values can be used like STL containers and provide iterator access. - [ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer); JSON values can be used like STL containers and provide reverse iterator access. @invariant The member variables @a m_value and @a m_type have the following relationship: - If `m_type == value_t::object`, then `m_value.object != nullptr`. - If `m_type == value_t::array`, then `m_value.array != nullptr`. - If `m_type == value_t::string`, then `m_value.string != nullptr`. The invariants are checked by member function assert_invariant(). @internal @note ObjectType trick from http://stackoverflow.com/a/9860911 @endinternal @see [RFC 7159: The JavaScript Object Notation (JSON) Data Interchange Format](http://rfc7159.net/rfc7159) @since version 1.0.0 @nosubgrouping */ template < template<typename U, typename V, typename... Args> class ObjectType = std::map, template<typename U, typename... Args> class ArrayType = std::vector, class StringType = std::string, class BooleanType = bool, class NumberIntegerType = std::int64_t, class NumberUnsignedType = std::uint64_t, class NumberFloatType = double, template<typename U> class AllocatorType = std::allocator, template<typename T, typename SFINAE = void> class JSONSerializer = adl_serializer > class basic_json { private: template<detail::value_t> friend struct detail::external_constructor; /// workaround type for MSVC using basic_json_t = basic_json<ObjectType, ArrayType, StringType, BooleanType, NumberIntegerType, NumberUnsignedType, NumberFloatType, AllocatorType, JSONSerializer>; public: using value_t = detail::value_t; // forward declarations template<typename U> class iter_impl; template<typename Base> class json_reverse_iterator; class json_pointer; template<typename T, typename SFINAE> using json_serializer = JSONSerializer<T, SFINAE>; ///////////////////// // container types // ///////////////////// /// @name container types /// The canonic container types to use @ref basic_json like any other STL /// container. /// @{ /// the type of elements in a basic_json container using value_type = basic_json; /// the type of an element reference using reference = value_type&; /// the type of an element const reference using const_reference = const value_type&; /// a type to represent differences between iterators using difference_type = std::ptrdiff_t; /// a type to represent container sizes using size_type = std::size_t; /// the allocator type using allocator_type = AllocatorType<basic_json>; /// the type of an element pointer using pointer = typename std::allocator_traits<allocator_type>::pointer; /// the type of an element const pointer using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer; /// an iterator for a basic_json container using iterator = iter_impl<basic_json>; /// a const iterator for a basic_json container using const_iterator = iter_impl<const basic_json>; /// a reverse iterator for a basic_json container using reverse_iterator = json_reverse_iterator<typename basic_json::iterator>; /// a const reverse iterator for a basic_json container using const_reverse_iterator = json_reverse_iterator<typename basic_json::const_iterator>; /// @} /*! @brief returns the allocator associated with the container */ static allocator_type get_allocator() { return allocator_type(); } /*! @brief returns version information on the library This function returns a JSON object with infiormation about the library, including the version number and information on the platform and compiler. @return JSON object holding version information key | description ----------- | --------------- `compiler` | Information on the used compiler. It is an object with the following keys: `c++` (the used C++ standard), `family` (the compiler family; possible values are `clang`, `icc`, `gcc`, `ilecpp`, `msvc`, `pgcpp`, `sunpro`, and `unknown`), and `version` (the compiler version). `copyright` | The copyright line for the library as string. `name` | The name of the library as string. `platform` | The used platform as string. Possible values are `win32`, `linux`, `apple`, `unix`, and `unknown`. `url` | The URL of the project as string. `version` | The version of the library. It is an object with the following keys: `major`, `minor`, and `patch` as defined by [Semantic Versioning](http://semver.org), and `string` (the version string). @liveexample{The following code shows an example output of the `meta()` function.,meta} @complexity Constant. @since 2.1.0 */ static basic_json meta() { basic_json result; result["copyright"] = "(C) 2013-2017 Niels Lohmann"; result["name"] = "JSON for Modern C++"; result["url"] = "https://github.com/nlohmann/json"; result["version"] = { {"string", "2.1.0"}, {"major", 2}, {"minor", 1}, {"patch", 0}, }; #ifdef _WIN32 result["platform"] = "win32"; #elif defined __linux__ result["platform"] = "linux"; #elif defined __APPLE__ result["platform"] = "apple"; #elif defined __unix__ result["platform"] = "unix"; #else result["platform"] = "unknown"; #endif #if defined(__clang__) result["compiler"] = {{"family", "clang"}, {"version", __clang_version__}}; #elif defined(__ICC) || defined(__INTEL_COMPILER) result["compiler"] = {{"family", "icc"}, {"version", __INTEL_COMPILER}}; #elif defined(__GNUC__) || defined(__GNUG__) result["compiler"] = {{"family", "gcc"}, {"version", std::to_string(__GNUC__) + "." + std::to_string(__GNUC_MINOR__) + "." + std::to_string(__GNUC_PATCHLEVEL__)}}; #elif defined(__HP_cc) || defined(__HP_aCC) result["compiler"] = "hp" #elif defined(__IBMCPP__) result["compiler"] = {{"family", "ilecpp"}, {"version", __IBMCPP__}}; #elif defined(_MSC_VER) result["compiler"] = {{"family", "msvc"}, {"version", _MSC_VER}}; #elif defined(__PGI) result["compiler"] = {{"family", "pgcpp"}, {"version", __PGI}}; #elif defined(__SUNPRO_CC) result["compiler"] = {{"family", "sunpro"}, {"version", __SUNPRO_CC}}; #else result["compiler"] = {{"family", "unknown"}, {"version", "unknown"}}; #endif #ifdef __cplusplus result["compiler"]["c++"] = std::to_string(__cplusplus); #else result["compiler"]["c++"] = "unknown"; #endif return result; } /////////////////////////// // JSON value data types // /////////////////////////// /// @name JSON value data types /// The data types to store a JSON value. These types are derived from /// the template arguments passed to class @ref basic_json. /// @{ /*! @brief a type for an object [RFC 7159](http://rfc7159.net/rfc7159) describes JSON objects as follows: > An object is an unordered collection of zero or more name/value pairs, > where a name is a string and a value is a string, number, boolean, null, > object, or array. To store objects in C++, a type is defined by the template parameters described below. @tparam ObjectType the container to store objects (e.g., `std::map` or `std::unordered_map`) @tparam StringType the type of the keys or names (e.g., `std::string`). The comparison function `std::less<StringType>` is used to order elements inside the container. @tparam AllocatorType the allocator to use for objects (e.g., `std::allocator`) #### Default type With the default values for @a ObjectType (`std::map`), @a StringType (`std::string`), and @a AllocatorType (`std::allocator`), the default value for @a object_t is: @code {.cpp} std::map< std::string, // key_type basic_json, // value_type std::less<std::string>, // key_compare std::allocator<std::pair<const std::string, basic_json>> // allocator_type > @endcode #### Behavior The choice of @a object_t influences the behavior of the JSON class. With the default type, objects have the following behavior: - When all names are unique, objects will be interoperable in the sense that all software implementations receiving that object will agree on the name-value mappings. - When the names within an object are not unique, later stored name/value pairs overwrite previously stored name/value pairs, leaving the used names unique. For instance, `{"key": 1}` and `{"key": 2, "key": 1}` will be treated as equal and both stored as `{"key": 1}`. - Internally, name/value pairs are stored in lexicographical order of the names. Objects will also be serialized (see @ref dump) in this order. For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be stored and serialized as `{"a": 2, "b": 1}`. - When comparing objects, the order of the name/value pairs is irrelevant. This makes objects interoperable in the sense that they will not be affected by these differences. For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be treated as equal. #### Limits [RFC 7159](http://rfc7159.net/rfc7159) specifies: > An implementation may set limits on the maximum depth of nesting. In this class, the object's limit of nesting is not constraint explicitly. However, a maximum depth of nesting may be introduced by the compiler or runtime environment. A theoretical limit can be queried by calling the @ref max_size function of a JSON object. #### Storage Objects are stored as pointers in a @ref basic_json type. That is, for any access to object values, a pointer of type `object_t*` must be dereferenced. @sa @ref array_t -- type for an array value @since version 1.0.0 @note The order name/value pairs are added to the object is *not* preserved by the library. Therefore, iterating an object may return name/value pairs in a different order than they were originally stored. In fact, keys will be traversed in alphabetical order as `std::map` with `std::less` is used by default. Please note this behavior conforms to [RFC 7159](http://rfc7159.net/rfc7159), because any order implements the specified "unordered" nature of JSON objects. */ using object_t = ObjectType<StringType, basic_json, std::less<StringType>, AllocatorType<std::pair<const StringType, basic_json>>>; /*! @brief a type for an array [RFC 7159](http://rfc7159.net/rfc7159) describes JSON arrays as follows: > An array is an ordered sequence of zero or more values. To store objects in C++, a type is defined by the template parameters explained below. @tparam ArrayType container type to store arrays (e.g., `std::vector` or `std::list`) @tparam AllocatorType allocator to use for arrays (e.g., `std::allocator`) #### Default type With the default values for @a ArrayType (`std::vector`) and @a AllocatorType (`std::allocator`), the default value for @a array_t is: @code {.cpp} std::vector< basic_json, // value_type std::allocator<basic_json> // allocator_type > @endcode #### Limits [RFC 7159](http://rfc7159.net/rfc7159) specifies: > An implementation may set limits on the maximum depth of nesting. In this class, the array's limit of nesting is not constraint explicitly. However, a maximum depth of nesting may be introduced by the compiler or runtime environment. A theoretical limit can be queried by calling the @ref max_size function of a JSON array. #### Storage Arrays are stored as pointers in a @ref basic_json type. That is, for any access to array values, a pointer of type `array_t*` must be dereferenced. @sa @ref object_t -- type for an object value @since version 1.0.0 */ using array_t = ArrayType<basic_json, AllocatorType<basic_json>>; /*! @brief a type for a string [RFC 7159](http://rfc7159.net/rfc7159) describes JSON strings as follows: > A string is a sequence of zero or more Unicode characters. To store objects in C++, a type is defined by the template parameter described below. Unicode values are split by the JSON class into byte-sized characters during deserialization. @tparam StringType the container to store strings (e.g., `std::string`). Note this container is used for keys/names in objects, see @ref object_t. #### Default type With the default values for @a StringType (`std::string`), the default value for @a string_t is: @code {.cpp} std::string @endcode #### Encoding Strings are stored in UTF-8 encoding. Therefore, functions like `std::string::size()` or `std::string::length()` return the number of bytes in the string rather than the number of characters or glyphs. #### String comparison [RFC 7159](http://rfc7159.net/rfc7159) states: > Software implementations are typically required to test names of object > members for equality. Implementations that transform the textual > representation into sequences of Unicode code units and then perform the > comparison numerically, code unit by code unit, are interoperable in the > sense that implementations will agree in all cases on equality or > inequality of two strings. For example, implementations that compare > strings with escaped characters unconverted may incorrectly find that > `"a\\b"` and `"a\u005Cb"` are not equal. This implementation is interoperable as it does compare strings code unit by code unit. #### Storage String values are stored as pointers in a @ref basic_json type. That is, for any access to string values, a pointer of type `string_t*` must be dereferenced. @since version 1.0.0 */ using string_t = StringType; /*! @brief a type for a boolean [RFC 7159](http://rfc7159.net/rfc7159) implicitly describes a boolean as a type which differentiates the two literals `true` and `false`. To store objects in C++, a type is defined by the template parameter @a BooleanType which chooses the type to use. #### Default type With the default values for @a BooleanType (`bool`), the default value for @a boolean_t is: @code {.cpp} bool @endcode #### Storage Boolean values are stored directly inside a @ref basic_json type. @since version 1.0.0 */ using boolean_t = BooleanType; /*! @brief a type for a number (integer) [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows: > The representation of numbers is similar to that used in most > programming languages. A number is represented in base 10 using decimal > digits. It contains an integer component that may be prefixed with an > optional minus sign, which may be followed by a fraction part and/or an > exponent part. Leading zeros are not allowed. (...) Numeric values that > cannot be represented in the grammar below (such as Infinity and NaN) > are not permitted. This description includes both integer and floating-point numbers. However, C++ allows more precise storage if it is known whether the number is a signed integer, an unsigned integer or a floating-point number. Therefore, three different types, @ref number_integer_t, @ref number_unsigned_t and @ref number_float_t are used. To store integer numbers in C++, a type is defined by the template parameter @a NumberIntegerType which chooses the type to use. #### Default type With the default values for @a NumberIntegerType (`int64_t`), the default value for @a number_integer_t is: @code {.cpp} int64_t @endcode #### Default behavior - The restrictions about leading zeros is not enforced in C++. Instead, leading zeros in integer literals lead to an interpretation as octal number. Internally, the value will be stored as decimal number. For instance, the C++ integer literal `010` will be serialized to `8`. During deserialization, leading zeros yield an error. - Not-a-number (NaN) values will be serialized to `null`. #### Limits [RFC 7159](http://rfc7159.net/rfc7159) specifies: > An implementation may set limits on the range and precision of numbers. When the default type is used, the maximal integer number that can be stored is `9223372036854775807` (INT64_MAX) and the minimal integer number that can be stored is `-9223372036854775808` (INT64_MIN). Integer numbers that are out of range will yield over/underflow when used in a constructor. During deserialization, too large or small integer numbers will be automatically be stored as @ref number_unsigned_t or @ref number_float_t. [RFC 7159](http://rfc7159.net/rfc7159) further states: > Note that when such software is used, numbers that are integers and are > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense > that implementations will agree exactly on their numeric values. As this range is a subrange of the exactly supported range [INT64_MIN, INT64_MAX], this class's integer type is interoperable. #### Storage Integer number values are stored directly inside a @ref basic_json type. @sa @ref number_float_t -- type for number values (floating-point) @sa @ref number_unsigned_t -- type for number values (unsigned integer) @since version 1.0.0 */ using number_integer_t = NumberIntegerType; /*! @brief a type for a number (unsigned) [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows: > The representation of numbers is similar to that used in most > programming languages. A number is represented in base 10 using decimal > digits. It contains an integer component that may be prefixed with an > optional minus sign, which may be followed by a fraction part and/or an > exponent part. Leading zeros are not allowed. (...) Numeric values that > cannot be represented in the grammar below (such as Infinity and NaN) > are not permitted. This description includes both integer and floating-point numbers. However, C++ allows more precise storage if it is known whether the number is a signed integer, an unsigned integer or a floating-point number. Therefore, three different types, @ref number_integer_t, @ref number_unsigned_t and @ref number_float_t are used. To store unsigned integer numbers in C++, a type is defined by the template parameter @a NumberUnsignedType which chooses the type to use. #### Default type With the default values for @a NumberUnsignedType (`uint64_t`), the default value for @a number_unsigned_t is: @code {.cpp} uint64_t @endcode #### Default behavior - The restrictions about leading zeros is not enforced in C++. Instead, leading zeros in integer literals lead to an interpretation as octal number. Internally, the value will be stored as decimal number. For instance, the C++ integer literal `010` will be serialized to `8`. During deserialization, leading zeros yield an error. - Not-a-number (NaN) values will be serialized to `null`. #### Limits [RFC 7159](http://rfc7159.net/rfc7159) specifies: > An implementation may set limits on the range and precision of numbers. When the default type is used, the maximal integer number that can be stored is `18446744073709551615` (UINT64_MAX) and the minimal integer number that can be stored is `0`. Integer numbers that are out of range will yield over/underflow when used in a constructor. During deserialization, too large or small integer numbers will be automatically be stored as @ref number_integer_t or @ref number_float_t. [RFC 7159](http://rfc7159.net/rfc7159) further states: > Note that when such software is used, numbers that are integers and are > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense > that implementations will agree exactly on their numeric values. As this range is a subrange (when considered in conjunction with the number_integer_t type) of the exactly supported range [0, UINT64_MAX], this class's integer type is interoperable. #### Storage Integer number values are stored directly inside a @ref basic_json type. @sa @ref number_float_t -- type for number values (floating-point) @sa @ref number_integer_t -- type for number values (integer) @since version 2.0.0 */ using number_unsigned_t = NumberUnsignedType; /*! @brief a type for a number (floating-point) [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows: > The representation of numbers is similar to that used in most > programming languages. A number is represented in base 10 using decimal > digits. It contains an integer component that may be prefixed with an > optional minus sign, which may be followed by a fraction part and/or an > exponent part. Leading zeros are not allowed. (...) Numeric values that > cannot be represented in the grammar below (such as Infinity and NaN) > are not permitted. This description includes both integer and floating-point numbers. However, C++ allows more precise storage if it is known whether the number is a signed integer, an unsigned integer or a floating-point number. Therefore, three different types, @ref number_integer_t, @ref number_unsigned_t and @ref number_float_t are used. To store floating-point numbers in C++, a type is defined by the template parameter @a NumberFloatType which chooses the type to use. #### Default type With the default values for @a NumberFloatType (`double`), the default value for @a number_float_t is: @code {.cpp} double @endcode #### Default behavior - The restrictions about leading zeros is not enforced in C++. Instead, leading zeros in floating-point literals will be ignored. Internally, the value will be stored as decimal number. For instance, the C++ floating-point literal `01.2` will be serialized to `1.2`. During deserialization, leading zeros yield an error. - Not-a-number (NaN) values will be serialized to `null`. #### Limits [RFC 7159](http://rfc7159.net/rfc7159) states: > This specification allows implementations to set limits on the range and > precision of numbers accepted. Since software that implements IEEE > 754-2008 binary64 (double precision) numbers is generally available and > widely used, good interoperability can be achieved by implementations > that expect no more precision or range than these provide, in the sense > that implementations will approximate JSON numbers within the expected > precision. This implementation does exactly follow this approach, as it uses double precision floating-point numbers. Note values smaller than `-1.79769313486232e+308` and values greater than `1.79769313486232e+308` will be stored as NaN internally and be serialized to `null`. #### Storage Floating-point number values are stored directly inside a @ref basic_json type. @sa @ref number_integer_t -- type for number values (integer) @sa @ref number_unsigned_t -- type for number values (unsigned integer) @since version 1.0.0 */ using number_float_t = NumberFloatType; /// @} private: /// helper for exception-safe object creation template<typename T, typename... Args> static T* create(Args&& ... args) { AllocatorType<T> alloc; auto deleter = [&](T * object) { alloc.deallocate(object, 1); }; std::unique_ptr<T, decltype(deleter)> object(alloc.allocate(1), deleter); alloc.construct(object.get(), std::forward<Args>(args)...); assert(object != nullptr); return object.release(); } //////////////////////// // JSON value storage // //////////////////////// /*! @brief a JSON value The actual storage for a JSON value of the @ref basic_json class. This union combines the different storage types for the JSON value types defined in @ref value_t. JSON type | value_t type | used type --------- | --------------- | ------------------------ object | object | pointer to @ref object_t array | array | pointer to @ref array_t string | string | pointer to @ref string_t boolean | boolean | @ref boolean_t number | number_integer | @ref number_integer_t number | number_unsigned | @ref number_unsigned_t number | number_float | @ref number_float_t null | null | *no value is stored* @note Variable-length types (objects, arrays, and strings) are stored as pointers. The size of the union should not exceed 64 bits if the default value types are used. @since version 1.0.0 */ union json_value { /// object (stored with pointer to save storage) object_t* object; /// array (stored with pointer to save storage) array_t* array; /// string (stored with pointer to save storage) string_t* string; /// boolean boolean_t boolean; /// number (integer) number_integer_t number_integer; /// number (unsigned integer) number_unsigned_t number_unsigned; /// number (floating-point) number_float_t number_float; /// default constructor (for null values) json_value() = default; /// constructor for booleans json_value(boolean_t v) noexcept : boolean(v) {} /// constructor for numbers (integer) json_value(number_integer_t v) noexcept : number_integer(v) {} /// constructor for numbers (unsigned) json_value(number_unsigned_t v) noexcept : number_unsigned(v) {} /// constructor for numbers (floating-point) json_value(number_float_t v) noexcept : number_float(v) {} /// constructor for empty values of a given type json_value(value_t t) { switch (t) { case value_t::object: { object = create<object_t>(); break; } case value_t::array: { array = create<array_t>(); break; } case value_t::string: { string = create<string_t>(""); break; } case value_t::boolean: { boolean = boolean_t(false); break; } case value_t::number_integer: { number_integer = number_integer_t(0); break; } case value_t::number_unsigned: { number_unsigned = number_unsigned_t(0); break; } case value_t::number_float: { number_float = number_float_t(0.0); break; } case value_t::null: { break; } default: { if (t == value_t::null) { JSON_THROW(std::domain_error("961c151d2e87f2686a955a9be24d316f1362bf21 2.1.0")); // LCOV_EXCL_LINE } break; } } } /// constructor for strings json_value(const string_t& value) { string = create<string_t>(value); } /// constructor for objects json_value(const object_t& value) { object = create<object_t>(value); } /// constructor for arrays json_value(const array_t& value) { array = create<array_t>(value); } }; /*! @brief checks the class invariants This function asserts the class invariants. It needs to be called at the end of every constructor to make sure that created objects respect the invariant. Furthermore, it has to be called each time the type of a JSON value is changed, because the invariant expresses a relationship between @a m_type and @a m_value. */ void assert_invariant() const { assert(m_type != value_t::object or m_value.object != nullptr); assert(m_type != value_t::array or m_value.array != nullptr); assert(m_type != value_t::string or m_value.string != nullptr); } public: ////////////////////////// // JSON parser callback // ////////////////////////// /*! @brief JSON callback events This enumeration lists the parser events that can trigger calling a callback function of type @ref parser_callback_t during parsing. @image html callback_events.png "Example when certain parse events are triggered" @since version 1.0.0 */ enum class parse_event_t : uint8_t { /// the parser read `{` and started to process a JSON object object_start, /// the parser read `}` and finished processing a JSON object object_end, /// the parser read `[` and started to process a JSON array array_start, /// the parser read `]` and finished processing a JSON array array_end, /// the parser read a key of a value in an object key, /// the parser finished reading a JSON value value }; /*! @brief per-element parser callback type With a parser callback function, the result of parsing a JSON text can be influenced. When passed to @ref parse(std::istream&, const parser_callback_t) or @ref parse(const CharT, const parser_callback_t), it is called on certain events (passed as @ref parse_event_t via parameter @a event) with a set recursion depth @a depth and context JSON value @a parsed. The return value of the callback function is a boolean indicating whether the element that emitted the callback shall be kept or not. We distinguish six scenarios (determined by the event type) in which the callback function can be called. The following table describes the values of the parameters @a depth, @a event, and @a parsed. parameter @a event | description | parameter @a depth | parameter @a parsed ------------------ | ----------- | ------------------ | ------------------- parse_event_t::object_start | the parser read `{` and started to process a JSON object | depth of the parent of the JSON object | a JSON value with type discarded parse_event_t::key | the parser read a key of a value in an object | depth of the currently parsed JSON object | a JSON string containing the key parse_event_t::object_end | the parser read `}` and finished processing a JSON object | depth of the parent of the JSON object | the parsed JSON object parse_event_t::array_start | the parser read `[` and started to process a JSON array | depth of the parent of the JSON array | a JSON value with type discarded parse_event_t::array_end | the parser read `]` and finished processing a JSON array | depth of the parent of the JSON array | the parsed JSON array parse_event_t::value | the parser finished reading a JSON value | depth of the value | the parsed JSON value @image html callback_events.png "Example when certain parse events are triggered" Discarding a value (i.e., returning `false`) has different effects depending on the context in which function was called: - Discarded values in structured types are skipped. That is, the parser will behave as if the discarded value was never read. - In case a value outside a structured type is skipped, it is replaced with `null`. This case happens if the top-level element is skipped. @param[in] depth the depth of the recursion during parsing @param[in] event an event of type parse_event_t indicating the context in the callback function has been called @param[in,out] parsed the current intermediate parse result; note that writing to this value has no effect for parse_event_t::key events @return Whether the JSON value which called the function during parsing should be kept (`true`) or not (`false`). In the latter case, it is either skipped completely or replaced by an empty discarded object. @sa @ref parse(std::istream&, parser_callback_t) or @ref parse(const CharT, const parser_callback_t) for examples @since version 1.0.0 */ using parser_callback_t = std::function<bool(int depth, parse_event_t event, basic_json& parsed)>; ////////////////// // constructors // ////////////////// /// @name constructors and destructors /// Constructors of class @ref basic_json, copy/move constructor, copy /// assignment, static functions creating objects, and the destructor. /// @{ /*! @brief create an empty value with a given type Create an empty JSON value with a given type. The value will be default initialized with an empty value which depends on the type: Value type | initial value ----------- | ------------- null | `null` boolean | `false` string | `""` number | `0` object | `{}` array | `[]` @param[in] value_type the type of the value to create @complexity Constant. @throw std::bad_alloc if allocation for object, array, or string value fails @liveexample{The following code shows the constructor for different @ref value_t values,basic_json__value_t} @since version 1.0.0 */ basic_json(const value_t value_type) : m_type(value_type), m_value(value_type) { assert_invariant(); } /*! @brief create a null object Create a `null` JSON value. It either takes a null pointer as parameter (explicitly creating `null`) or no parameter (implicitly creating `null`). The passed null pointer itself is not read -- it is only used to choose the right constructor. @complexity Constant. @exceptionsafety No-throw guarantee: this constructor never throws exceptions. @liveexample{The following code shows the constructor with and without a null pointer parameter.,basic_json__nullptr_t} @since version 1.0.0 */ basic_json(std::nullptr_t = nullptr) noexcept : basic_json(value_t::null) { assert_invariant(); } /*! @brief create a JSON value This is a "catch all" constructor for all compatible JSON types; that is, types for which a `to_json()` method exsits. The constructor forwards the parameter @a val to that method (to `json_serializer<U>::to_json` method with `U = uncvref_t<CompatibleType>`, to be exact). Template type @a CompatibleType includes, but is not limited to, the following types: - **arrays**: @ref array_t and all kinds of compatible containers such as `std::vector`, `std::deque`, `std::list`, `std::forward_list`, `std::array`, `std::set`, `std::unordered_set`, `std::multiset`, and `unordered_multiset` with a `value_type` from which a @ref basic_json value can be constructed. - **objects**: @ref object_t and all kinds of compatible associative containers such as `std::map`, `std::unordered_map`, `std::multimap`, and `std::unordered_multimap` with a `key_type` compatible to @ref string_t and a `value_type` from which a @ref basic_json value can be constructed. - **strings**: @ref string_t, string literals, and all compatible string containers can be used. - **numbers**: @ref number_integer_t, @ref number_unsigned_t, @ref number_float_t, and all convertible number types such as `int`, `size_t`, `int64_t`, `float` or `double` can be used. - **boolean**: @ref boolean_t / `bool` can be used. See the examples below. @tparam CompatibleType a type such that: - @a CompatibleType is not derived from `std::istream`, - @a CompatibleType is not @ref basic_json (to avoid hijacking copy/move constructors), - @a CompatibleType is not a @ref basic_json nested type (e.g., @ref json_pointer, @ref iterator, etc ...) - @ref @ref json_serializer<U> has a `to_json(basic_json_t&, CompatibleType&&)` method @tparam U = `uncvref_t<CompatibleType>` @param[in] val the value to be forwarded @complexity Usually linear in the size of the passed @a val, also depending on the implementation of the called `to_json()` method. @throw what `json_serializer<U>::to_json()` throws @liveexample{The following code shows the constructor with several compatible types.,basic_json__CompatibleType} @since version 2.1.0 */ template<typename CompatibleType, typename U = detail::uncvref_t<CompatibleType>, detail::enable_if_t<not std::is_base_of<std::istream, U>::value and not std::is_same<U, basic_json_t>::value and not detail::is_basic_json_nested_type< basic_json_t, U>::value and detail::has_to_json<basic_json, U>::value, int> = 0> basic_json(CompatibleType && val) noexcept(noexcept(JSONSerializer<U>::to_json( std::declval<basic_json_t&>(), std::forward<CompatibleType>(val)))) { JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val)); assert_invariant(); } /*! @brief create a container (array or object) from an initializer list Creates a JSON value of type array or object from the passed initializer list @a init. In case @a type_deduction is `true` (default), the type of the JSON value to be created is deducted from the initializer list @a init according to the following rules: 1. If the list is empty, an empty JSON object value `{}` is created. 2. If the list consists of pairs whose first element is a string, a JSON object value is created where the first elements of the pairs are treated as keys and the second elements are as values. 3. In all other cases, an array is created. The rules aim to create the best fit between a C++ initializer list and JSON values. The rationale is as follows: 1. The empty initializer list is written as `{}` which is exactly an empty JSON object. 2. C++ has now way of describing mapped types other than to list a list of pairs. As JSON requires that keys must be of type string, rule 2 is the weakest constraint one can pose on initializer lists to interpret them as an object. 3. In all other cases, the initializer list could not be interpreted as JSON object type, so interpreting it as JSON array type is safe. With the rules described above, the following JSON values cannot be expressed by an initializer list: - the empty array (`[]`): use @ref array(std::initializer_list<basic_json>) with an empty initializer list in this case - arrays whose elements satisfy rule 2: use @ref array(std::initializer_list<basic_json>) with the same initializer list in this case @note When used without parentheses around an empty initializer list, @ref basic_json() is called instead of this function, yielding the JSON null value. @param[in] init initializer list with JSON values @param[in] type_deduction internal parameter; when set to `true`, the type of the JSON value is deducted from the initializer list @a init; when set to `false`, the type provided via @a manual_type is forced. This mode is used by the functions @ref array(std::initializer_list<basic_json>) and @ref object(std::initializer_list<basic_json>). @param[in] manual_type internal parameter; when @a type_deduction is set to `false`, the created JSON value will use the provided type (only @ref value_t::array and @ref value_t::object are valid); when @a type_deduction is set to `true`, this parameter has no effect @throw std::domain_error if @a type_deduction is `false`, @a manual_type is `value_t::object`, but @a init contains an element which is not a pair whose first element is a string; example: `"cannot create object from initializer list"` @complexity Linear in the size of the initializer list @a init. @liveexample{The example below shows how JSON values are created from initializer lists.,basic_json__list_init_t} @sa @ref array(std::initializer_list<basic_json>) -- create a JSON array value from an initializer list @sa @ref object(std::initializer_list<basic_json>) -- create a JSON object value from an initializer list @since version 1.0.0 */ basic_json(std::initializer_list<basic_json> init, bool type_deduction = true, value_t manual_type = value_t::array) { // check if each element is an array with two elements whose first // element is a string bool is_an_object = std::all_of(init.begin(), init.end(), [](const basic_json & element) { return element.is_array() and element.size() == 2 and element[0].is_string(); }); // adjust type if type deduction is not wanted if (not type_deduction) { // if array is wanted, do not create an object though possible if (manual_type == value_t::array) { is_an_object = false; } // if object is wanted but impossible, throw an exception if (manual_type == value_t::object and not is_an_object) { JSON_THROW(std::domain_error("cannot create object from initializer list")); } } if (is_an_object) { // the initializer list is a list of pairs -> create object m_type = value_t::object; m_value = value_t::object; std::for_each(init.begin(), init.end(), [this](const basic_json & element) { m_value.object->emplace(*(element[0].m_value.string), element[1]); }); } else { // the initializer list describes an array -> create array m_type = value_t::array; m_value.array = create<array_t>(init); } assert_invariant(); } /*! @brief explicitly create an array from an initializer list Creates a JSON array value from a given initializer list. That is, given a list of values `a, b, c`, creates the JSON value `[a, b, c]`. If the initializer list is empty, the empty array `[]` is created. @note This function is only needed to express two edge cases that cannot be realized with the initializer list constructor (@ref basic_json(std::initializer_list<basic_json>, bool, value_t)). These cases are: 1. creating an array whose elements are all pairs whose first element is a string -- in this case, the initializer list constructor would create an object, taking the first elements as keys 2. creating an empty array -- passing the empty initializer list to the initializer list constructor yields an empty object @param[in] init initializer list with JSON values to create an array from (optional) @return JSON array value @complexity Linear in the size of @a init. @liveexample{The following code shows an example for the `array` function.,array} @sa @ref basic_json(std::initializer_list<basic_json>, bool, value_t) -- create a JSON value from an initializer list @sa @ref object(std::initializer_list<basic_json>) -- create a JSON object value from an initializer list @since version 1.0.0 */ static basic_json array(std::initializer_list<basic_json> init = std::initializer_list<basic_json>()) { return basic_json(init, false, value_t::array); } /*! @brief explicitly create an object from an initializer list Creates a JSON object value from a given initializer list. The initializer lists elements must be pairs, and their first elements must be strings. If the initializer list is empty, the empty object `{}` is created. @note This function is only added for symmetry reasons. In contrast to the related function @ref array(std::initializer_list<basic_json>), there are no cases which can only be expressed by this function. That is, any initializer list @a init can also be passed to the initializer list constructor @ref basic_json(std::initializer_list<basic_json>, bool, value_t). @param[in] init initializer list to create an object from (optional) @return JSON object value @throw std::domain_error if @a init is not a pair whose first elements are strings; thrown by @ref basic_json(std::initializer_list<basic_json>, bool, value_t) @complexity Linear in the size of @a init. @liveexample{The following code shows an example for the `object` function.,object} @sa @ref basic_json(std::initializer_list<basic_json>, bool, value_t) -- create a JSON value from an initializer list @sa @ref array(std::initializer_list<basic_json>) -- create a JSON array value from an initializer list @since version 1.0.0 */ static basic_json object(std::initializer_list<basic_json> init = std::initializer_list<basic_json>()) { return basic_json(init, false, value_t::object); } /*! @brief construct an array with count copies of given value Constructs a JSON array value by creating @a cnt copies of a passed value. In case @a cnt is `0`, an empty array is created. As postcondition, `std::distance(begin(),end()) == cnt` holds. @param[in] cnt the number of JSON copies of @a val to create @param[in] val the JSON value to copy @complexity Linear in @a cnt. @liveexample{The following code shows examples for the @ref basic_json(size_type\, const basic_json&) constructor.,basic_json__size_type_basic_json} @since version 1.0.0 */ basic_json(size_type cnt, const basic_json& val) : m_type(value_t::array) { m_value.array = create<array_t>(cnt, val); assert_invariant(); } /*! @brief construct a JSON container given an iterator range Constructs the JSON value with the contents of the range `[first, last)`. The semantics depends on the different types a JSON value can have: - In case of primitive types (number, boolean, or string), @a first must be `begin()` and @a last must be `end()`. In this case, the value is copied. Otherwise, std::out_of_range is thrown. - In case of structured types (array, object), the constructor behaves as similar versions for `std::vector`. - In case of a null type, std::domain_error is thrown. @tparam InputIT an input iterator type (@ref iterator or @ref const_iterator) @param[in] first begin of the range to copy from (included) @param[in] last end of the range to copy from (excluded) @pre Iterators @a first and @a last must be initialized. **This precondition is enforced with an assertion.** @throw std::domain_error if iterators are not compatible; that is, do not belong to the same JSON value; example: `"iterators are not compatible"` @throw std::out_of_range if iterators are for a primitive type (number, boolean, or string) where an out of range error can be detected easily; example: `"iterators out of range"` @throw std::bad_alloc if allocation for object, array, or string fails @throw std::domain_error if called with a null value; example: `"cannot use construct with iterators from null"` @complexity Linear in distance between @a first and @a last. @liveexample{The example below shows several ways to create JSON values by specifying a subrange with iterators.,basic_json__InputIt_InputIt} @since version 1.0.0 */ template<class InputIT, typename std::enable_if< std::is_same<InputIT, typename basic_json_t::iterator>::value or std::is_same<InputIT, typename basic_json_t::const_iterator>::value, int>::type = 0> basic_json(InputIT first, InputIT last) { assert(first.m_object != nullptr); assert(last.m_object != nullptr); // make sure iterator fits the current value if (first.m_object != last.m_object) { JSON_THROW(std::domain_error("iterators are not compatible")); } // copy type from first iterator m_type = first.m_object->m_type; // check if iterator range is complete for primitive values switch (m_type) { case value_t::boolean: case value_t::number_float: case value_t::number_integer: case value_t::number_unsigned: case value_t::string: { if (not first.m_it.primitive_iterator.is_begin() or not last.m_it.primitive_iterator.is_end()) { JSON_THROW(std::out_of_range("iterators out of range")); } break; } default: { break; } } switch (m_type) { case value_t::number_integer: { m_value.number_integer = first.m_object->m_value.number_integer; break; } case value_t::number_unsigned: { m_value.number_unsigned = first.m_object->m_value.number_unsigned; break; } case value_t::number_float: { m_value.number_float = first.m_object->m_value.number_float; break; } case value_t::boolean: { m_value.boolean = first.m_object->m_value.boolean; break; } case value_t::string: { m_value = *first.m_object->m_value.string; break; } case value_t::object: { m_value.object = create<object_t>(first.m_it.object_iterator, last.m_it.object_iterator); break; } case value_t::array: { m_value.array = create<array_t>(first.m_it.array_iterator, last.m_it.array_iterator); break; } default: { JSON_THROW(std::domain_error("cannot use construct with iterators from " + first.m_object->type_name())); } } assert_invariant(); } /*! @brief construct a JSON value given an input stream @param[in,out] i stream to read a serialized JSON value from @param[in] cb a parser callback function of type @ref parser_callback_t which is used to control the deserialization by filtering unwanted values (optional) @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. The complexity can be higher if the parser callback function @a cb has a super-linear complexity. @note A UTF-8 byte order mark is silently ignored. @deprecated This constructor is deprecated and will be removed in version 3.0.0 to unify the interface of the library. Deserialization will be done by stream operators or by calling one of the `parse` functions, e.g. @ref parse(std::istream&, const parser_callback_t). That is, calls like `json j(i);` for an input stream @a i need to be replaced by `json j = json::parse(i);`. See the example below. @liveexample{The example below demonstrates constructing a JSON value from a `std::stringstream` with and without callback function.,basic_json__istream} @since version 2.0.0, deprecated in version 2.0.3, to be removed in version 3.0.0 */ JSON_DEPRECATED explicit basic_json(std::istream& i, const parser_callback_t cb = nullptr) { *this = parser(i, cb).parse(); assert_invariant(); } /////////////////////////////////////// // other constructors and destructor // /////////////////////////////////////// /*! @brief copy constructor Creates a copy of a given JSON value. @param[in] other the JSON value to copy @complexity Linear in the size of @a other. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is linear. - As postcondition, it holds: `other == basic_json(other)`. @throw std::bad_alloc if allocation for object, array, or string fails. @liveexample{The following code shows an example for the copy constructor.,basic_json__basic_json} @since version 1.0.0 */ basic_json(const basic_json& other) : m_type(other.m_type) { // check of passed value is valid other.assert_invariant(); switch (m_type) { case value_t::object: { m_value = *other.m_value.object; break; } case value_t::array: { m_value = *other.m_value.array; break; } case value_t::string: { m_value = *other.m_value.string; break; } case value_t::boolean: { m_value = other.m_value.boolean; break; } case value_t::number_integer: { m_value = other.m_value.number_integer; break; } case value_t::number_unsigned: { m_value = other.m_value.number_unsigned; break; } case value_t::number_float: { m_value = other.m_value.number_float; break; } default: { break; } } assert_invariant(); } /*! @brief move constructor Move constructor. Constructs a JSON value with the contents of the given value @a other using move semantics. It "steals" the resources from @a other and leaves it as JSON null value. @param[in,out] other value to move to this object @post @a other is a JSON null value @complexity Constant. @liveexample{The code below shows the move constructor explicitly called via std::move.,basic_json__moveconstructor} @since version 1.0.0 */ basic_json(basic_json&& other) noexcept : m_type(std::move(other.m_type)), m_value(std::move(other.m_value)) { // check that passed value is valid other.assert_invariant(); // invalidate payload other.m_type = value_t::null; other.m_value = {}; assert_invariant(); } /*! @brief copy assignment Copy assignment operator. Copies a JSON value via the "copy and swap" strategy: It is expressed in terms of the copy constructor, destructor, and the swap() member function. @param[in] other value to copy from @complexity Linear. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is linear. @liveexample{The code below shows and example for the copy assignment. It creates a copy of value `a` which is then swapped with `b`. Finally\, the copy of `a` (which is the null value after the swap) is destroyed.,basic_json__copyassignment} @since version 1.0.0 */ reference& operator=(basic_json other) noexcept ( std::is_nothrow_move_constructible<value_t>::value and std::is_nothrow_move_assignable<value_t>::value and std::is_nothrow_move_constructible<json_value>::value and std::is_nothrow_move_assignable<json_value>::value ) { // check that passed value is valid other.assert_invariant(); using std::swap; swap(m_type, other.m_type); swap(m_value, other.m_value); assert_invariant(); return *this; } /*! @brief destructor Destroys the JSON value and frees all allocated memory. @complexity Linear. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is linear. - All stored elements are destroyed and all memory is freed. @since version 1.0.0 */ ~basic_json() { assert_invariant(); switch (m_type) { case value_t::object: { AllocatorType<object_t> alloc; alloc.destroy(m_value.object); alloc.deallocate(m_value.object, 1); break; } case value_t::array: { AllocatorType<array_t> alloc; alloc.destroy(m_value.array); alloc.deallocate(m_value.array, 1); break; } case value_t::string: { AllocatorType<string_t> alloc; alloc.destroy(m_value.string); alloc.deallocate(m_value.string, 1); break; } default: { // all other types need no specific destructor break; } } } /// @} public: /////////////////////// // object inspection // /////////////////////// /// @name object inspection /// Functions to inspect the type of a JSON value. /// @{ /*! @brief serialization Serialization function for JSON values. The function tries to mimic Python's `json.dumps()` function, and currently supports its @a indent parameter. @param[in] indent If indent is nonnegative, then array elements and object members will be pretty-printed with that indent level. An indent level of `0` will only insert newlines. `-1` (the default) selects the most compact representation. @return string containing the serialization of the JSON value @complexity Linear. @liveexample{The following example shows the effect of different @a indent parameters to the result of the serialization.,dump} @see https://docs.python.org/2/library/json.html#json.dump @since version 1.0.0 */ string_t dump(const int indent = -1) const { std::stringstream ss; // fix locale problems ss.imbue(std::locale::classic()); // 6, 15 or 16 digits of precision allows round-trip IEEE 754 // string->float->string, string->double->string or string->long // double->string; to be safe, we read this value from // std::numeric_limits<number_float_t>::digits10 ss.precision(std::numeric_limits<double>::digits10); if (indent >= 0) { dump(ss, true, static_cast<unsigned int>(indent)); } else { dump(ss, false, 0); } return ss.str(); } /*! @brief return the type of the JSON value (explicit) Return the type of the JSON value as a value from the @ref value_t enumeration. @return the type of the JSON value @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `type()` for all JSON types.,type} @since version 1.0.0 */ constexpr value_t type() const noexcept { return m_type; } /*! @brief return whether type is primitive This function returns true iff the JSON type is primitive (string, number, boolean, or null). @return `true` if type is primitive (string, number, boolean, or null), `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_primitive()` for all JSON types.,is_primitive} @sa @ref is_structured() -- returns whether JSON value is structured @sa @ref is_null() -- returns whether JSON value is `null` @sa @ref is_string() -- returns whether JSON value is a string @sa @ref is_boolean() -- returns whether JSON value is a boolean @sa @ref is_number() -- returns whether JSON value is a number @since version 1.0.0 */ constexpr bool is_primitive() const noexcept { return is_null() or is_string() or is_boolean() or is_number(); } /*! @brief return whether type is structured This function returns true iff the JSON type is structured (array or object). @return `true` if type is structured (array or object), `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_structured()` for all JSON types.,is_structured} @sa @ref is_primitive() -- returns whether value is primitive @sa @ref is_array() -- returns whether value is an array @sa @ref is_object() -- returns whether value is an object @since version 1.0.0 */ constexpr bool is_structured() const noexcept { return is_array() or is_object(); } /*! @brief return whether value is null This function returns true iff the JSON value is null. @return `true` if type is null, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_null()` for all JSON types.,is_null} @since version 1.0.0 */ constexpr bool is_null() const noexcept { return m_type == value_t::null; } /*! @brief return whether value is a boolean This function returns true iff the JSON value is a boolean. @return `true` if type is boolean, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_boolean()` for all JSON types.,is_boolean} @since version 1.0.0 */ constexpr bool is_boolean() const noexcept { return m_type == value_t::boolean; } /*! @brief return whether value is a number This function returns true iff the JSON value is a number. This includes both integer and floating-point values. @return `true` if type is number (regardless whether integer, unsigned integer or floating-type), `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_number()` for all JSON types.,is_number} @sa @ref is_number_integer() -- check if value is an integer or unsigned integer number @sa @ref is_number_unsigned() -- check if value is an unsigned integer number @sa @ref is_number_float() -- check if value is a floating-point number @since version 1.0.0 */ constexpr bool is_number() const noexcept { return is_number_integer() or is_number_float(); } /*! @brief return whether value is an integer number This function returns true iff the JSON value is an integer or unsigned integer number. This excludes floating-point values. @return `true` if type is an integer or unsigned integer number, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_number_integer()` for all JSON types.,is_number_integer} @sa @ref is_number() -- check if value is a number @sa @ref is_number_unsigned() -- check if value is an unsigned integer number @sa @ref is_number_float() -- check if value is a floating-point number @since version 1.0.0 */ constexpr bool is_number_integer() const noexcept { return m_type == value_t::number_integer or m_type == value_t::number_unsigned; } /*! @brief return whether value is an unsigned integer number This function returns true iff the JSON value is an unsigned integer number. This excludes floating-point and (signed) integer values. @return `true` if type is an unsigned integer number, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_number_unsigned()` for all JSON types.,is_number_unsigned} @sa @ref is_number() -- check if value is a number @sa @ref is_number_integer() -- check if value is an integer or unsigned integer number @sa @ref is_number_float() -- check if value is a floating-point number @since version 2.0.0 */ constexpr bool is_number_unsigned() const noexcept { return m_type == value_t::number_unsigned; } /*! @brief return whether value is a floating-point number This function returns true iff the JSON value is a floating-point number. This excludes integer and unsigned integer values. @return `true` if type is a floating-point number, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_number_float()` for all JSON types.,is_number_float} @sa @ref is_number() -- check if value is number @sa @ref is_number_integer() -- check if value is an integer number @sa @ref is_number_unsigned() -- check if value is an unsigned integer number @since version 1.0.0 */ constexpr bool is_number_float() const noexcept { return m_type == value_t::number_float; } /*! @brief return whether value is an object This function returns true iff the JSON value is an object. @return `true` if type is object, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_object()` for all JSON types.,is_object} @since version 1.0.0 */ constexpr bool is_object() const noexcept { return m_type == value_t::object; } /*! @brief return whether value is an array This function returns true iff the JSON value is an array. @return `true` if type is array, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_array()` for all JSON types.,is_array} @since version 1.0.0 */ constexpr bool is_array() const noexcept { return m_type == value_t::array; } /*! @brief return whether value is a string This function returns true iff the JSON value is a string. @return `true` if type is string, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_string()` for all JSON types.,is_string} @since version 1.0.0 */ constexpr bool is_string() const noexcept { return m_type == value_t::string; } /*! @brief return whether value is discarded This function returns true iff the JSON value was discarded during parsing with a callback function (see @ref parser_callback_t). @note This function will always be `false` for JSON values after parsing. That is, discarded values can only occur during parsing, but will be removed when inside a structured value or replaced by null in other cases. @return `true` if type is discarded, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_discarded()` for all JSON types.,is_discarded} @since version 1.0.0 */ constexpr bool is_discarded() const noexcept { return m_type == value_t::discarded; } /*! @brief return the type of the JSON value (implicit) Implicitly return the type of the JSON value as a value from the @ref value_t enumeration. @return the type of the JSON value @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies the @ref value_t operator for all JSON types.,operator__value_t} @since version 1.0.0 */ constexpr operator value_t() const noexcept { return m_type; } /// @} private: ////////////////// // value access // ////////////////// /// get a boolean (explicit) boolean_t get_impl(boolean_t* /*unused*/) const { if (is_boolean()) { return m_value.boolean; } JSON_THROW(std::domain_error("type must be boolean, but is " + type_name())); } /// get a pointer to the value (object) object_t* get_impl_ptr(object_t* /*unused*/) noexcept { return is_object() ? m_value.object : nullptr; } /// get a pointer to the value (object) constexpr const object_t* get_impl_ptr(const object_t* /*unused*/) const noexcept { return is_object() ? m_value.object : nullptr; } /// get a pointer to the value (array) array_t* get_impl_ptr(array_t* /*unused*/) noexcept { return is_array() ? m_value.array : nullptr; } /// get a pointer to the value (array) constexpr const array_t* get_impl_ptr(const array_t* /*unused*/) const noexcept { return is_array() ? m_value.array : nullptr; } /// get a pointer to the value (string) string_t* get_impl_ptr(string_t* /*unused*/) noexcept { return is_string() ? m_value.string : nullptr; } /// get a pointer to the value (string) constexpr const string_t* get_impl_ptr(const string_t* /*unused*/) const noexcept { return is_string() ? m_value.string : nullptr; } /// get a pointer to the value (boolean) boolean_t* get_impl_ptr(boolean_t* /*unused*/) noexcept { return is_boolean() ? &m_value.boolean : nullptr; } /// get a pointer to the value (boolean) constexpr const boolean_t* get_impl_ptr(const boolean_t* /*unused*/) const noexcept { return is_boolean() ? &m_value.boolean : nullptr; } /// get a pointer to the value (integer number) number_integer_t* get_impl_ptr(number_integer_t* /*unused*/) noexcept { return is_number_integer() ? &m_value.number_integer : nullptr; } /// get a pointer to the value (integer number) constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept { return is_number_integer() ? &m_value.number_integer : nullptr; } /// get a pointer to the value (unsigned number) number_unsigned_t* get_impl_ptr(number_unsigned_t* /*unused*/) noexcept { return is_number_unsigned() ? &m_value.number_unsigned : nullptr; } /// get a pointer to the value (unsigned number) constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t* /*unused*/) const noexcept { return is_number_unsigned() ? &m_value.number_unsigned : nullptr; } /// get a pointer to the value (floating-point number) number_float_t* get_impl_ptr(number_float_t* /*unused*/) noexcept { return is_number_float() ? &m_value.number_float : nullptr; } /// get a pointer to the value (floating-point number) constexpr const number_float_t* get_impl_ptr(const number_float_t* /*unused*/) const noexcept { return is_number_float() ? &m_value.number_float : nullptr; } /*! @brief helper function to implement get_ref() This funcion helps to implement get_ref() without code duplication for const and non-const overloads @tparam ThisType will be deduced as `basic_json` or `const basic_json` @throw std::domain_error if ReferenceType does not match underlying value type of the current JSON */ template<typename ReferenceType, typename ThisType> static ReferenceType get_ref_impl(ThisType& obj) { // helper type using PointerType = typename std::add_pointer<ReferenceType>::type; // delegate the call to get_ptr<>() auto ptr = obj.template get_ptr<PointerType>(); if (ptr != nullptr) { return *ptr; } throw std::domain_error("incompatible ReferenceType for get_ref, actual type is " + obj.type_name()); } public: /// @name value access /// Direct access to the stored value of a JSON value. /// @{ /*! @brief get special-case overload This overloads avoids a lot of template boilerplate, it can be seen as the identity method @tparam BasicJsonType == @ref basic_json @return a copy of *this @complexity Constant. @since version 2.1.0 */ template < typename BasicJsonType, detail::enable_if_t<std::is_same<typename std::remove_const<BasicJsonType>::type, basic_json_t>::value, int> = 0 > basic_json get() const { return *this; } /*! @brief get a value (explicit) Explicit type conversion between the JSON value and a compatible value which is [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible) and [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible). The value is converted by calling the @ref json_serializer<ValueType> `from_json()` method. The function is equivalent to executing @code {.cpp} ValueType ret; JSONSerializer<ValueType>::from_json(*this, ret); return ret; @endcode This overloads is chosen if: - @a ValueType is not @ref basic_json, - @ref json_serializer<ValueType> has a `from_json()` method of the form `void from_json(const @ref basic_json&, ValueType&)`, and - @ref json_serializer<ValueType> does not have a `from_json()` method of the form `ValueType from_json(const @ref basic_json&)` @tparam ValueTypeCV the provided value type @tparam ValueType the returned value type @return copy of the JSON value, converted to @a ValueType @throw what @ref json_serializer<ValueType> `from_json()` method throws @liveexample{The example below shows several conversions from JSON values to other types. There a few things to note: (1) Floating-point numbers can be converted to integers\, (2) A JSON array can be converted to a standard `std::vector<short>`\, (3) A JSON object can be converted to C++ associative containers such as `std::unordered_map<std::string\, json>`.,get__ValueType_const} @since version 2.1.0 */ template < typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>, detail::enable_if_t < not std::is_same<basic_json_t, ValueType>::value and detail::has_from_json<basic_json_t, ValueType>::value and not detail::has_non_default_from_json<basic_json_t, ValueType>::value, int > = 0 > ValueType get() const noexcept(noexcept( JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>()))) { // we cannot static_assert on ValueTypeCV being non-const, because // there is support for get<const basic_json_t>(), which is why we // still need the uncvref static_assert(not std::is_reference<ValueTypeCV>::value, "get() cannot be used with reference types, you might want to use get_ref()"); static_assert(std::is_default_constructible<ValueType>::value, "types must be DefaultConstructible when used with get()"); ValueType ret; JSONSerializer<ValueType>::from_json(*this, ret); return ret; } /*! @brief get a value (explicit); special case Explicit type conversion between the JSON value and a compatible value which is **not** [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible) and **not** [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible). The value is converted by calling the @ref json_serializer<ValueType> `from_json()` method. The function is equivalent to executing @code {.cpp} return JSONSerializer<ValueTypeCV>::from_json(*this); @endcode This overloads is chosen if: - @a ValueType is not @ref basic_json and - @ref json_serializer<ValueType> has a `from_json()` method of the form `ValueType from_json(const @ref basic_json&)` @note If @ref json_serializer<ValueType> has both overloads of `from_json()`, this one is chosen. @tparam ValueTypeCV the provided value type @tparam ValueType the returned value type @return copy of the JSON value, converted to @a ValueType @throw what @ref json_serializer<ValueType> `from_json()` method throws @since version 2.1.0 */ template < typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>, detail::enable_if_t<not std::is_same<basic_json_t, ValueType>::value and detail::has_non_default_from_json<basic_json_t, ValueType>::value, int> = 0 > ValueType get() const noexcept(noexcept( JSONSerializer<ValueTypeCV>::from_json(std::declval<const basic_json_t&>()))) { static_assert(not std::is_reference<ValueTypeCV>::value, "get() cannot be used with reference types, you might want to use get_ref()"); return JSONSerializer<ValueTypeCV>::from_json(*this); } /*! @brief get a pointer value (explicit) Explicit pointer access to the internally stored JSON value. No copies are made. @warning The pointer becomes invalid if the underlying JSON object changes. @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, @ref number_unsigned_t, or @ref number_float_t. @return pointer to the internally stored JSON value if the requested pointer type @a PointerType fits to the JSON value; `nullptr` otherwise @complexity Constant. @liveexample{The example below shows how pointers to internal values of a JSON value can be requested. Note that no type conversions are made and a `nullptr` is returned if the value and the requested pointer type does not match.,get__PointerType} @sa @ref get_ptr() for explicit pointer-member access @since version 1.0.0 */ template<typename PointerType, typename std::enable_if< std::is_pointer<PointerType>::value, int>::type = 0> PointerType get() noexcept { // delegate the call to get_ptr return get_ptr<PointerType>(); } /*! @brief get a pointer value (explicit) @copydoc get() */ template<typename PointerType, typename std::enable_if< std::is_pointer<PointerType>::value, int>::type = 0> constexpr const PointerType get() const noexcept { // delegate the call to get_ptr return get_ptr<PointerType>(); } /*! @brief get a pointer value (implicit) Implicit pointer access to the internally stored JSON value. No copies are made. @warning Writing data to the pointee of the result yields an undefined state. @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, @ref number_unsigned_t, or @ref number_float_t. Enforced by a static assertion. @return pointer to the internally stored JSON value if the requested pointer type @a PointerType fits to the JSON value; `nullptr` otherwise @complexity Constant. @liveexample{The example below shows how pointers to internal values of a JSON value can be requested. Note that no type conversions are made and a `nullptr` is returned if the value and the requested pointer type does not match.,get_ptr} @since version 1.0.0 */ template<typename PointerType, typename std::enable_if< std::is_pointer<PointerType>::value, int>::type = 0> PointerType get_ptr() noexcept { // get the type of the PointerType (remove pointer and const) using pointee_t = typename std::remove_const<typename std::remove_pointer<typename std::remove_const<PointerType>::type>::type>::type; // make sure the type matches the allowed types static_assert( std::is_same<object_t, pointee_t>::value or std::is_same<array_t, pointee_t>::value or std::is_same<string_t, pointee_t>::value or std::is_same<boolean_t, pointee_t>::value or std::is_same<number_integer_t, pointee_t>::value or std::is_same<number_unsigned_t, pointee_t>::value or std::is_same<number_float_t, pointee_t>::value , "incompatible pointer type"); // delegate the call to get_impl_ptr<>() return get_impl_ptr(static_cast<PointerType>(nullptr)); } /*! @brief get a pointer value (implicit) @copydoc get_ptr() */ template<typename PointerType, typename std::enable_if< std::is_pointer<PointerType>::value and std::is_const<typename std::remove_pointer<PointerType>::type>::value, int>::type = 0> constexpr const PointerType get_ptr() const noexcept { // get the type of the PointerType (remove pointer and const) using pointee_t = typename std::remove_const<typename std::remove_pointer<typename std::remove_const<PointerType>::type>::type>::type; // make sure the type matches the allowed types static_assert( std::is_same<object_t, pointee_t>::value or std::is_same<array_t, pointee_t>::value or std::is_same<string_t, pointee_t>::value or std::is_same<boolean_t, pointee_t>::value or std::is_same<number_integer_t, pointee_t>::value or std::is_same<number_unsigned_t, pointee_t>::value or std::is_same<number_float_t, pointee_t>::value , "incompatible pointer type"); // delegate the call to get_impl_ptr<>() const return get_impl_ptr(static_cast<const PointerType>(nullptr)); } /*! @brief get a reference value (implicit) Implict reference access to the internally stored JSON value. No copies are made. @warning Writing data to the referee of the result yields an undefined state. @tparam ReferenceType reference type; must be a reference to @ref array_t, @ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, or @ref number_float_t. Enforced by static assertion. @return reference to the internally stored JSON value if the requested reference type @a ReferenceType fits to the JSON value; throws std::domain_error otherwise @throw std::domain_error in case passed type @a ReferenceType is incompatible with the stored JSON value @complexity Constant. @liveexample{The example shows several calls to `get_ref()`.,get_ref} @since version 1.1.0 */ template<typename ReferenceType, typename std::enable_if< std::is_reference<ReferenceType>::value, int>::type = 0> ReferenceType get_ref() { // delegate call to get_ref_impl return get_ref_impl<ReferenceType>(*this); } /*! @brief get a reference value (implicit) @copydoc get_ref() */ template<typename ReferenceType, typename std::enable_if< std::is_reference<ReferenceType>::value and std::is_const<typename std::remove_reference<ReferenceType>::type>::value, int>::type = 0> ReferenceType get_ref() const { // delegate call to get_ref_impl return get_ref_impl<ReferenceType>(*this); } /*! @brief get a value (implicit) Implicit type conversion between the JSON value and a compatible value. The call is realized by calling @ref get() const. @tparam ValueType non-pointer type compatible to the JSON value, for instance `int` for JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for JSON arrays. The character type of @ref string_t as well as an initializer list of this type is excluded to avoid ambiguities as these types implicitly convert to `std::string`. @return copy of the JSON value, converted to type @a ValueType @throw std::domain_error in case passed type @a ValueType is incompatible to JSON, thrown by @ref get() const @complexity Linear in the size of the JSON value. @liveexample{The example below shows several conversions from JSON values to other types. There a few things to note: (1) Floating-point numbers can be converted to integers\, (2) A JSON array can be converted to a standard `std::vector<short>`\, (3) A JSON object can be converted to C++ associative containers such as `std::unordered_map<std::string\, json>`.,operator__ValueType} @since version 1.0.0 */ template < typename ValueType, typename std::enable_if < not std::is_pointer<ValueType>::value and not std::is_same<ValueType, typename string_t::value_type>::value #ifndef _MSC_VER // fix for issue #167 operator<< abiguity under VS2015 and not std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>::value #endif , int >::type = 0 > operator ValueType() const { // delegate the call to get<>() const return get<ValueType>(); } /// @} //////////////////// // element access // //////////////////// /// @name element access /// Access to the JSON value. /// @{ /*! @brief access specified array element with bounds checking Returns a reference to the element at specified location @a idx, with bounds checking. @param[in] idx index of the element to access @return reference to the element at index @a idx @throw std::domain_error if the JSON value is not an array; example: `"cannot use at() with string"` @throw std::out_of_range if the index @a idx is out of range of the array; that is, `idx >= size()`; example: `"array index 7 is out of range"` @complexity Constant. @liveexample{The example below shows how array elements can be read and written using `at()`.,at__size_type} @since version 1.0.0 */ reference at(size_type idx) { // at only works for arrays if (is_array()) { JSON_TRY { return m_value.array->at(idx); } JSON_CATCH (std::out_of_range&) { // create better exception explanation JSON_THROW(std::out_of_range("array index " + std::to_string(idx) + " is out of range")); } } else { JSON_THROW(std::domain_error("cannot use at() with " + type_name())); } } /*! @brief access specified array element with bounds checking Returns a const reference to the element at specified location @a idx, with bounds checking. @param[in] idx index of the element to access @return const reference to the element at index @a idx @throw std::domain_error if the JSON value is not an array; example: `"cannot use at() with string"` @throw std::out_of_range if the index @a idx is out of range of the array; that is, `idx >= size()`; example: `"array index 7 is out of range"` @complexity Constant. @liveexample{The example below shows how array elements can be read using `at()`.,at__size_type_const} @since version 1.0.0 */ const_reference at(size_type idx) const { // at only works for arrays if (is_array()) { JSON_TRY { return m_value.array->at(idx); } JSON_CATCH (std::out_of_range&) { // create better exception explanation JSON_THROW(std::out_of_range("array index " + std::to_string(idx) + " is out of range")); } } else { JSON_THROW(std::domain_error("cannot use at() with " + type_name())); } } /*! @brief access specified object element with bounds checking Returns a reference to the element at with specified key @a key, with bounds checking. @param[in] key key of the element to access @return reference to the element at key @a key @throw std::domain_error if the JSON value is not an object; example: `"cannot use at() with boolean"` @throw std::out_of_range if the key @a key is is not stored in the object; that is, `find(key) == end()`; example: `"key "the fast" not found"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read and written using `at()`.,at__object_t_key_type} @sa @ref operator[](const typename object_t::key_type&) for unchecked access by reference @sa @ref value() for access by value with a default value @since version 1.0.0 */ reference at(const typename object_t::key_type& key) { // at only works for objects if (is_object()) { JSON_TRY { return m_value.object->at(key); } JSON_CATCH (std::out_of_range&) { // create better exception explanation JSON_THROW(std::out_of_range("key '" + key + "' not found")); } } else { JSON_THROW(std::domain_error("cannot use at() with " + type_name())); } } /*! @brief access specified object element with bounds checking Returns a const reference to the element at with specified key @a key, with bounds checking. @param[in] key key of the element to access @return const reference to the element at key @a key @throw std::domain_error if the JSON value is not an object; example: `"cannot use at() with boolean"` @throw std::out_of_range if the key @a key is is not stored in the object; that is, `find(key) == end()`; example: `"key "the fast" not found"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read using `at()`.,at__object_t_key_type_const} @sa @ref operator[](const typename object_t::key_type&) for unchecked access by reference @sa @ref value() for access by value with a default value @since version 1.0.0 */ const_reference at(const typename object_t::key_type& key) const { // at only works for objects if (is_object()) { JSON_TRY { return m_value.object->at(key); } JSON_CATCH (std::out_of_range&) { // create better exception explanation JSON_THROW(std::out_of_range("key '" + key + "' not found")); } } else { JSON_THROW(std::domain_error("cannot use at() with " + type_name())); } } /*! @brief access specified array element Returns a reference to the element at specified location @a idx. @note If @a idx is beyond the range of the array (i.e., `idx >= size()`), then the array is silently filled up with `null` values to make `idx` a valid reference to the last stored element. @param[in] idx index of the element to access @return reference to the element at index @a idx @throw std::domain_error if JSON is not an array or null; example: `"cannot use operator[] with string"` @complexity Constant if @a idx is in the range of the array. Otherwise linear in `idx - size()`. @liveexample{The example below shows how array elements can be read and written using `[]` operator. Note the addition of `null` values.,operatorarray__size_type} @since version 1.0.0 */ reference operator[](size_type idx) { // implicitly convert null value to an empty array if (is_null()) { m_type = value_t::array; m_value.array = create<array_t>(); assert_invariant(); } // operator[] only works for arrays if (is_array()) { // fill up array with null values if given idx is outside range if (idx >= m_value.array->size()) { m_value.array->insert(m_value.array->end(), idx - m_value.array->size() + 1, basic_json()); } return m_value.array->operator[](idx); } JSON_THROW(std::domain_error("cannot use operator[] with " + type_name())); } /*! @brief access specified array element Returns a const reference to the element at specified location @a idx. @param[in] idx index of the element to access @return const reference to the element at index @a idx @throw std::domain_error if JSON is not an array; example: `"cannot use operator[] with null"` @complexity Constant. @liveexample{The example below shows how array elements can be read using the `[]` operator.,operatorarray__size_type_const} @since version 1.0.0 */ const_reference operator[](size_type idx) const { // const operator[] only works for arrays if (is_array()) { return m_value.array->operator[](idx); } JSON_THROW(std::domain_error("cannot use operator[] with " + type_name())); } /*! @brief access specified object element Returns a reference to the element at with specified key @a key. @note If @a key is not found in the object, then it is silently added to the object and filled with a `null` value to make `key` a valid reference. In case the value was `null` before, it is converted to an object. @param[in] key key of the element to access @return reference to the element at key @a key @throw std::domain_error if JSON is not an object or null; example: `"cannot use operator[] with string"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read and written using the `[]` operator.,operatorarray__key_type} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.0.0 */ reference operator[](const typename object_t::key_type& key) { // implicitly convert null value to an empty object if (is_null()) { m_type = value_t::object; m_value.object = create<object_t>(); assert_invariant(); } // operator[] only works for objects if (is_object()) { return m_value.object->operator[](key); } JSON_THROW(std::domain_error("cannot use operator[] with " + type_name())); } /*! @brief read-only access specified object element Returns a const reference to the element at with specified key @a key. No bounds checking is performed. @warning If the element with key @a key does not exist, the behavior is undefined. @param[in] key key of the element to access @return const reference to the element at key @a key @pre The element with key @a key must exist. **This precondition is enforced with an assertion.** @throw std::domain_error if JSON is not an object; example: `"cannot use operator[] with null"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read using the `[]` operator.,operatorarray__key_type_const} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.0.0 */ const_reference operator[](const typename object_t::key_type& key) const { // const operator[] only works for objects if (is_object()) { assert(m_value.object->find(key) != m_value.object->end()); return m_value.object->find(key)->second; } JSON_THROW(std::domain_error("cannot use operator[] with " + type_name())); } /*! @brief access specified object element Returns a reference to the element at with specified key @a key. @note If @a key is not found in the object, then it is silently added to the object and filled with a `null` value to make `key` a valid reference. In case the value was `null` before, it is converted to an object. @param[in] key key of the element to access @return reference to the element at key @a key @throw std::domain_error if JSON is not an object or null; example: `"cannot use operator[] with string"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read and written using the `[]` operator.,operatorarray__key_type} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.0.0 */ template<typename T, std::size_t n> reference operator[](T * (&key)[n]) { return operator[](static_cast<const T>(key)); } /*! @brief read-only access specified object element Returns a const reference to the element at with specified key @a key. No bounds checking is performed. @warning If the element with key @a key does not exist, the behavior is undefined. @note This function is required for compatibility reasons with Clang. @param[in] key key of the element to access @return const reference to the element at key @a key @throw std::domain_error if JSON is not an object; example: `"cannot use operator[] with null"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read using the `[]` operator.,operatorarray__key_type_const} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.0.0 */ template<typename T, std::size_t n> const_reference operator[](T * (&key)[n]) const { return operator[](static_cast<const T>(key)); } /*! @brief access specified object element Returns a reference to the element at with specified key @a key. @note If @a key is not found in the object, then it is silently added to the object and filled with a `null` value to make `key` a valid reference. In case the value was `null` before, it is converted to an object. @param[in] key key of the element to access @return reference to the element at key @a key @throw std::domain_error if JSON is not an object or null; example: `"cannot use operator[] with string"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read and written using the `[]` operator.,operatorarray__key_type} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.1.0 */ template<typename T> reference operator[](T* key) { // implicitly convert null to object if (is_null()) { m_type = value_t::object; m_value = value_t::object; assert_invariant(); } // at only works for objects if (is_object()) { return m_value.object->operator[](key); } JSON_THROW(std::domain_error("cannot use operator[] with " + type_name())); } /*! @brief read-only access specified object element Returns a const reference to the element at with specified key @a key. No bounds checking is performed. @warning If the element with key @a key does not exist, the behavior is undefined. @param[in] key key of the element to access @return const reference to the element at key @a key @pre The element with key @a key must exist. **This precondition is enforced with an assertion.** @throw std::domain_error if JSON is not an object; example: `"cannot use operator[] with null"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read using the `[]` operator.,operatorarray__key_type_const} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.1.0 */ template<typename T> const_reference operator[](T* key) const { // at only works for objects if (is_object()) { assert(m_value.object->find(key) != m_value.object->end()); return m_value.object->find(key)->second; } JSON_THROW(std::domain_error("cannot use operator[] with " + type_name())); } /*! @brief access specified object element with default value Returns either a copy of an object's element at the specified key @a key or a given default value if no element with key @a key exists. The function is basically equivalent to executing @code {.cpp} try { return at(key); } catch(std::out_of_range) { return default_value; } @endcode @note Unlike @ref at(const typename object_t::key_type&), this function does not throw if the given key @a key was not found. @note Unlike @ref operator[](const typename object_t::key_type& key), this function does not implicitly add an element to the position defined by @a key. This function is furthermore also applicable to const objects. @param[in] key key of the element to access @param[in] default_value the value to return if @a key is not found @tparam ValueType type compatible to JSON values, for instance `int` for JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for JSON arrays. Note the type of the expected value at @a key and the default value @a default_value must be compatible. @return copy of the element at key @a key or @a default_value if @a key is not found @throw std::domain_error if JSON is not an object; example: `"cannot use value() with null"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be queried with a default value.,basic_json__value} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref operator[](const typename object_t::key_type&) for unchecked access by reference @since version 1.0.0 */ template<class ValueType, typename std::enable_if< std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0> ValueType value(const typename object_t::key_type& key, ValueType default_value) const { // at only works for objects if (is_object()) { // if key is found, return value and given default value otherwise const auto it = find(key); if (it != end()) { return *it; } return default_value; } else { JSON_THROW(std::domain_error("cannot use value() with " + type_name())); } } /*! @brief overload for a default value of type const char* @copydoc basic_json::value(const typename object_t::key_type&, ValueType) const */ string_t value(const typename object_t::key_type& key, const char* default_value) const { return value(key, string_t(default_value)); } /*! @brief access specified object element via JSON Pointer with default value Returns either a copy of an object's element at the specified key @a key or a given default value if no element with key @a key exists. The function is basically equivalent to executing @code {.cpp} try { return at(ptr); } catch(std::out_of_range) { return default_value; } @endcode @note Unlike @ref at(const json_pointer&), this function does not throw if the given key @a key was not found. @param[in] ptr a JSON pointer to the element to access @param[in] default_value the value to return if @a ptr found no value @tparam ValueType type compatible to JSON values, for instance `int` for JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for JSON arrays. Note the type of the expected value at @a key and the default value @a default_value must be compatible. @return copy of the element at key @a key or @a default_value if @a key is not found @throw std::domain_error if JSON is not an object; example: `"cannot use value() with null"` @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be queried with a default value.,basic_json__value_ptr} @sa @ref operator[](const json_pointer&) for unchecked access by reference @since version 2.0.2 */ template<class ValueType, typename std::enable_if< std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0> ValueType value(const json_pointer& ptr, ValueType default_value) const { // at only works for objects if (is_object()) { // if pointer resolves a value, return it or use default value JSON_TRY { return ptr.get_checked(this); } JSON_CATCH (std::out_of_range&) { return default_value; } } JSON_THROW(std::domain_error("cannot use value() with " + type_name())); } /*! @brief overload for a default value of type const char* @copydoc basic_json::value(const json_pointer&, ValueType) const */ string_t value(const json_pointer& ptr, const char* default_value) const { return value(ptr, string_t(default_value)); } /*! @brief access the first element Returns a reference to the first element in the container. For a JSON container `c`, the expression `c.front()` is equivalent to `*c.begin()`. @return In case of a structured type (array or object), a reference to the first element is returned. In case of number, string, or boolean values, a reference to the value is returned. @complexity Constant. @pre The JSON value must not be `null` (would throw `std::out_of_range`) or an empty array or object (undefined behavior, **guarded by assertions**). @post The JSON value remains unchanged. @throw std::out_of_range when called on `null` value @liveexample{The following code shows an example for `front()`.,front} @sa @ref back() -- access the last element @since version 1.0.0 */ reference front() { return *begin(); } /*! @copydoc basic_json::front() */ const_reference front() const { return *cbegin(); } /*! @brief access the last element Returns a reference to the last element in the container. For a JSON container `c`, the expression `c.back()` is equivalent to @code {.cpp} auto tmp = c.end(); --tmp; return *tmp; @endcode @return In case of a structured type (array or object), a reference to the last element is returned. In case of number, string, or boolean values, a reference to the value is returned. @complexity Constant. @pre The JSON value must not be `null` (would throw `std::out_of_range`) or an empty array or object (undefined behavior, **guarded by assertions**). @post The JSON value remains unchanged. @throw std::out_of_range when called on `null` value. @liveexample{The following code shows an example for `back()`.,back} @sa @ref front() -- access the first element @since version 1.0.0 */ reference back() { auto tmp = end(); --tmp; return *tmp; } /*! @copydoc basic_json::back() */ const_reference back() const { auto tmp = cend(); --tmp; return *tmp; } /*! @brief remove element given an iterator Removes the element specified by iterator @a pos. The iterator @a pos must be valid and dereferenceable. Thus the `end()` iterator (which is valid, but is not dereferenceable) cannot be used as a value for @a pos. If called on a primitive type other than `null`, the resulting JSON value will be `null`. @param[in] pos iterator to the element to remove @return Iterator following the last removed element. If the iterator @a pos refers to the last element, the `end()` iterator is returned. @tparam IteratorType an @ref iterator or @ref const_iterator @post Invalidates iterators and references at or after the point of the erase, including the `end()` iterator. @throw std::domain_error if called on a `null` value; example: `"cannot use erase() with null"` @throw std::domain_error if called on an iterator which does not belong to the current JSON value; example: `"iterator does not fit current value"` @throw std::out_of_range if called on a primitive type with invalid iterator (i.e., any iterator which is not `begin()`); example: `"iterator out of range"` @complexity The complexity depends on the type: - objects: amortized constant - arrays: linear in distance between pos and the end of the container - strings: linear in the length of the string - other types: constant @liveexample{The example shows the result of `erase()` for different JSON types.,erase__IteratorType} @sa @ref erase(IteratorType, IteratorType) -- removes the elements in the given range @sa @ref erase(const typename object_t::key_type&) -- removes the element from an object at the given key @sa @ref erase(const size_type) -- removes the element from an array at the given index @since version 1.0.0 */ template<class IteratorType, typename std::enable_if< std::is_same<IteratorType, typename basic_json_t::iterator>::value or std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type = 0> IteratorType erase(IteratorType pos) { // make sure iterator fits the current value if (this != pos.m_object) { JSON_THROW(std::domain_error("iterator does not fit current value")); } IteratorType result = end(); switch (m_type) { case value_t::boolean: case value_t::number_float: case value_t::number_integer: case value_t::number_unsigned: case value_t::string: { if (not pos.m_it.primitive_iterator.is_begin()) { JSON_THROW(std::out_of_range("iterator out of range")); } if (is_string()) { AllocatorType<string_t> alloc; alloc.destroy(m_value.string); alloc.deallocate(m_value.string, 1); m_value.string = nullptr; } m_type = value_t::null; assert_invariant(); break; } case value_t::object: { result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator); break; } case value_t::array: { result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator); break; } default: { JSON_THROW(std::domain_error("cannot use erase() with " + type_name())); } } return result; } /*! @brief remove elements given an iterator range Removes the element specified by the range `[first; last)`. The iterator @a first does not need to be dereferenceable if `first == last`: erasing an empty range is a no-op. If called on a primitive type other than `null`, the resulting JSON value will be `null`. @param[in] first iterator to the beginning of the range to remove @param[in] last iterator past the end of the range to remove @return Iterator following the last removed element. If the iterator @a second refers to the last element, the `end()` iterator is returned. @tparam IteratorType an @ref iterator or @ref const_iterator @post Invalidates iterators and references at or after the point of the erase, including the `end()` iterator. @throw std::domain_error if called on a `null` value; example: `"cannot use erase() with null"` @throw std::domain_error if called on iterators which does not belong to the current JSON value; example: `"iterators do not fit current value"` @throw std::out_of_range if called on a primitive type with invalid iterators (i.e., if `first != begin()` and `last != end()`); example: `"iterators out of range"` @complexity The complexity depends on the type: - objects: `log(size()) + std::distance(first, last)` - arrays: linear in the distance between @a first and @a last, plus linear in the distance between @a last and end of the container - strings: linear in the length of the string - other types: constant @liveexample{The example shows the result of `erase()` for different JSON types.,erase__IteratorType_IteratorType} @sa @ref erase(IteratorType) -- removes the element at a given position @sa @ref erase(const typename object_t::key_type&) -- removes the element from an object at the given key @sa @ref erase(const size_type) -- removes the element from an array at the given index @since version 1.0.0 */ template<class IteratorType, typename std::enable_if< std::is_same<IteratorType, typename basic_json_t::iterator>::value or std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type = 0> IteratorType erase(IteratorType first, IteratorType last) { // make sure iterator fits the current value if (this != first.m_object or this != last.m_object) { JSON_THROW(std::domain_error("iterators do not fit current value")); } IteratorType result = end(); switch (m_type) { case value_t::boolean: case value_t::number_float: case value_t::number_integer: case value_t::number_unsigned: case value_t::string: { if (not first.m_it.primitive_iterator.is_begin() or not last.m_it.primitive_iterator.is_end()) { JSON_THROW(std::out_of_range("iterators out of range")); } if (is_string()) { AllocatorType<string_t> alloc; alloc.destroy(m_value.string); alloc.deallocate(m_value.string, 1); m_value.string = nullptr; } m_type = value_t::null; assert_invariant(); break; } case value_t::object: { result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator, last.m_it.object_iterator); break; } case value_t::array: { result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator, last.m_it.array_iterator); break; } default: { JSON_THROW(std::domain_error("cannot use erase() with " + type_name())); } } return result; } /*! @brief remove element from a JSON object given a key Removes elements from a JSON object with the key value @a key. @param[in] key value of the elements to remove @return Number of elements removed. If @a ObjectType is the default `std::map` type, the return value will always be `0` (@a key was not found) or `1` (@a key was found). @post References and iterators to the erased elements are invalidated. Other references and iterators are not affected. @throw std::domain_error when called on a type other than JSON object; example: `"cannot use erase() with null"` @complexity `log(size()) + count(key)` @liveexample{The example shows the effect of `erase()`.,erase__key_type} @sa @ref erase(IteratorType) -- removes the element at a given position @sa @ref erase(IteratorType, IteratorType) -- removes the elements in the given range @sa @ref erase(const size_type) -- removes the element from an array at the given index @since version 1.0.0 */ size_type erase(const typename object_t::key_type& key) { // this erase only works for objects if (is_object()) { return m_value.object->erase(key); } JSON_THROW(std::domain_error("cannot use erase() with " + type_name())); } /*! @brief remove element from a JSON array given an index Removes element from a JSON array at the index @a idx. @param[in] idx index of the element to remove @throw std::domain_error when called on a type other than JSON array; example: `"cannot use erase() with null"` @throw std::out_of_range when `idx >= size()`; example: `"array index 17 is out of range"` @complexity Linear in distance between @a idx and the end of the container. @liveexample{The example shows the effect of `erase()`.,erase__size_type} @sa @ref erase(IteratorType) -- removes the element at a given position @sa @ref erase(IteratorType, IteratorType) -- removes the elements in the given range @sa @ref erase(const typename object_t::key_type&) -- removes the element from an object at the given key @since version 1.0.0 */ void erase(const size_type idx) { // this erase only works for arrays if (is_array()) { if (idx >= size()) { JSON_THROW(std::out_of_range("array index " + std::to_string(idx) + " is out of range")); } m_value.array->erase(m_value.array->begin() + static_cast<difference_type>(idx)); } else { JSON_THROW(std::domain_error("cannot use erase() with " + type_name())); } } /// @} //////////// // lookup // //////////// /// @name lookup /// @{ /*! @brief find an element in a JSON object Finds an element in a JSON object with key equivalent to @a key. If the element is not found or the JSON value is not an object, end() is returned. @note This method always returns @ref end() when executed on a JSON type that is not an object. @param[in] key key value of the element to search for @return Iterator to an element with key equivalent to @a key. If no such element is found or the JSON value is not an object, past-the-end (see @ref end()) iterator is returned. @complexity Logarithmic in the size of the JSON object. @liveexample{The example shows how `find()` is used.,find__key_type} @since version 1.0.0 */ iterator find(typename object_t::key_type key) { auto result = end(); if (is_object()) { result.m_it.object_iterator = m_value.object->find(key); } return result; } /*! @brief find an element in a JSON object @copydoc find(typename object_t::key_type) */ const_iterator find(typename object_t::key_type key) const { auto result = cend(); if (is_object()) { result.m_it.object_iterator = m_value.object->find(key); } return result; } /*! @brief returns the number of occurrences of a key in a JSON object Returns the number of elements with key @a key. If ObjectType is the default `std::map` type, the return value will always be `0` (@a key was not found) or `1` (@a key was found). @note This method always returns `0` when executed on a JSON type that is not an object. @param[in] key key value of the element to count @return Number of elements with key @a key. If the JSON value is not an object, the return value will be `0`. @complexity Logarithmic in the size of the JSON object. @liveexample{The example shows how `count()` is used.,count} @since version 1.0.0 */ size_type count(typename object_t::key_type key) const { // return 0 for all nonobject types return is_object() ? m_value.object->count(key) : 0; } /// @} /////////////// // iterators // /////////////// /// @name iterators /// @{ /*! @brief returns an iterator to the first element Returns an iterator to the first element. @image html range-begin-end.svg "Illustration from cppreference.com" @return iterator to the first element @complexity Constant. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is constant. @liveexample{The following code shows an example for `begin()`.,begin} @sa @ref cbegin() -- returns a const iterator to the beginning @sa @ref end() -- returns an iterator to the end @sa @ref cend() -- returns a const iterator to the end @since version 1.0.0 */ iterator begin() noexcept { iterator result(this); result.set_begin(); return result; } /*! @copydoc basic_json::cbegin() */ const_iterator begin() const noexcept { return cbegin(); } /*! @brief returns a const iterator to the first element Returns a const iterator to the first element. @image html range-begin-end.svg "Illustration from cppreference.com" @return const iterator to the first element @complexity Constant. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is constant. - Has the semantics of `const_cast<const basic_json&>(*this).begin()`. @liveexample{The following code shows an example for `cbegin()`.,cbegin} @sa @ref begin() -- returns an iterator to the beginning @sa @ref end() -- returns an iterator to the end @sa @ref cend() -- returns a const iterator to the end @since version 1.0.0 */ const_iterator cbegin() const noexcept { const_iterator result(this); result.set_begin(); return result; } /*! @brief returns an iterator to one past the last element Returns an iterator to one past the last element. @image html range-begin-end.svg "Illustration from cppreference.com" @return iterator one past the last element @complexity Constant. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is constant. @liveexample{The following code shows an example for `end()`.,end} @sa @ref cend() -- returns a const iterator to the end @sa @ref begin() -- returns an iterator to the beginning @sa @ref cbegin() -- returns a const iterator to the beginning @since version 1.0.0 */ iterator end() noexcept { iterator result(this); result.set_end(); return result; } /*! @copydoc basic_json::cend() */ const_iterator end() const noexcept { return cend(); } /*! @brief returns a const iterator to one past the last element Returns a const iterator to one past the last element. @image html range-begin-end.svg "Illustration from cppreference.com" @return const iterator one past the last element @complexity Constant. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is constant. - Has the semantics of `const_cast<const basic_json&>(*this).end()`. @liveexample{The following code shows an example for `cend()`.,cend} @sa @ref end() -- returns an iterator to the end @sa @ref begin() -- returns an iterator to the beginning @sa @ref cbegin() -- returns a const iterator to the beginning @since version 1.0.0 */ const_iterator cend() const noexcept { const_iterator result(this); result.set_end(); return result; } /*! @brief returns an iterator to the reverse-beginning Returns an iterator to the reverse-beginning; that is, the last element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function helps `basic_json` satisfying the [ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer) requirements: - The complexity is constant. - Has the semantics of `reverse_iterator(end())`. @liveexample{The following code shows an example for `rbegin()`.,rbegin} @sa @ref crbegin() -- returns a const reverse iterator to the beginning @sa @ref rend() -- returns a reverse iterator to the end @sa @ref crend() -- returns a const reverse iterator to the end @since version 1.0.0 */ reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } /*! @copydoc basic_json::crbegin() */ const_reverse_iterator rbegin() const noexcept { return crbegin(); } /*! @brief returns an iterator to the reverse-end Returns an iterator to the reverse-end; that is, one before the first element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function helps `basic_json` satisfying the [ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer) requirements: - The complexity is constant. - Has the semantics of `reverse_iterator(begin())`. @liveexample{The following code shows an example for `rend()`.,rend} @sa @ref crend() -- returns a const reverse iterator to the end @sa @ref rbegin() -- returns a reverse iterator to the beginning @sa @ref crbegin() -- returns a const reverse iterator to the beginning @since version 1.0.0 */ reverse_iterator rend() noexcept { return reverse_iterator(begin()); } /*! @copydoc basic_json::crend() */ const_reverse_iterator rend() const noexcept { return crend(); } /*! @brief returns a const reverse iterator to the last element Returns a const iterator to the reverse-beginning; that is, the last element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function helps `basic_json` satisfying the [ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer) requirements: - The complexity is constant. - Has the semantics of `const_cast<const basic_json&>(*this).rbegin()`. @liveexample{The following code shows an example for `crbegin()`.,crbegin} @sa @ref rbegin() -- returns a reverse iterator to the beginning @sa @ref rend() -- returns a reverse iterator to the end @sa @ref crend() -- returns a const reverse iterator to the end @since version 1.0.0 */ const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(cend()); } /*! @brief returns a const reverse iterator to one before the first Returns a const reverse iterator to the reverse-end; that is, one before the first element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function helps `basic_json` satisfying the [ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer) requirements: - The complexity is constant. - Has the semantics of `const_cast<const basic_json&>(*this).rend()`. @liveexample{The following code shows an example for `crend()`.,crend} @sa @ref rend() -- returns a reverse iterator to the end @sa @ref rbegin() -- returns a reverse iterator to the beginning @sa @ref crbegin() -- returns a const reverse iterator to the beginning @since version 1.0.0 */ const_reverse_iterator crend() const noexcept { return const_reverse_iterator(cbegin()); } private: // forward declaration template<typename IteratorType> class iteration_proxy; public: /*! @brief wrapper to access iterator member functions in range-based for This function allows to access @ref iterator::key() and @ref iterator::value() during range-based for loops. In these loops, a reference to the JSON values is returned, so there is no access to the underlying iterator. @note The name of this function is not yet final and may change in the future. */ static iteration_proxy<iterator> iterator_wrapper(reference cont) { return iteration_proxy<iterator>(cont); } /*! @copydoc iterator_wrapper(reference) */ static iteration_proxy<const_iterator> iterator_wrapper(const_reference cont) { return iteration_proxy<const_iterator>(cont); } /// @} ////////////// // capacity // ////////////// /// @name capacity /// @{ /*! @brief checks whether the container is empty Checks if a JSON value has no elements. @return The return value depends on the different types and is defined as follows: Value type | return value ----------- | ------------- null | `true` boolean | `false` string | `false` number | `false` object | result of function `object_t::empty()` array | result of function `array_t::empty()` @note This function does not return whether a string stored as JSON value is empty - it returns whether the JSON container itself is empty which is false in the case of a string. @complexity Constant, as long as @ref array_t and @ref object_t satisfy the Container concept; that is, their `empty()` functions have constant complexity. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is constant. - Has the semantics of `begin() == end()`. @liveexample{The following code uses `empty()` to check if a JSON object contains any elements.,empty} @sa @ref size() -- returns the number of elements @since version 1.0.0 */ bool empty() const noexcept { switch (m_type) { case value_t::null: { // null values are empty return true; } case value_t::array: { // delegate call to array_t::empty() return m_value.array->empty(); } case value_t::object: { // delegate call to object_t::empty() return m_value.object->empty(); } default: { // all other types are nonempty return false; } } } /*! @brief returns the number of elements Returns the number of elements in a JSON value. @return The return value depends on the different types and is defined as follows: Value type | return value ----------- | ------------- null | `0` boolean | `1` string | `1` number | `1` object | result of function object_t::size() array | result of function array_t::size() @note This function does not return the length of a string stored as JSON value - it returns the number of elements in the JSON value which is 1 in the case of a string. @complexity Constant, as long as @ref array_t and @ref object_t satisfy the Container concept; that is, their size() functions have constant complexity. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is constant. - Has the semantics of `std::distance(begin(), end())`. @liveexample{The following code calls `size()` on the different value types.,size} @sa @ref empty() -- checks whether the container is empty @sa @ref max_size() -- returns the maximal number of elements @since version 1.0.0 */ size_type size() const noexcept { switch (m_type) { case value_t::null: { // null values are empty return 0; } case value_t::array: { // delegate call to array_t::size() return m_value.array->size(); } case value_t::object: { // delegate call to object_t::size() return m_value.object->size(); } default: { // all other types have size 1 return 1; } } } /*! @brief returns the maximum possible number of elements Returns the maximum number of elements a JSON value is able to hold due to system or library implementation limitations, i.e. `std::distance(begin(), end())` for the JSON value. @return The return value depends on the different types and is defined as follows: Value type | return value ----------- | ------------- null | `0` (same as `size()`) boolean | `1` (same as `size()`) string | `1` (same as `size()`) number | `1` (same as `size()`) object | result of function `object_t::max_size()` array | result of function `array_t::max_size()` @complexity Constant, as long as @ref array_t and @ref object_t satisfy the Container concept; that is, their `max_size()` functions have constant complexity. @requirement This function helps `basic_json` satisfying the [Container](http://en.cppreference.com/w/cpp/concept/Container) requirements: - The complexity is constant. - Has the semantics of returning `b.size()` where `b` is the largest possible JSON value. @liveexample{The following code calls `max_size()` on the different value types. Note the output is implementation specific.,max_size} @sa @ref size() -- returns the number of elements @since version 1.0.0 */ size_type max_size() const noexcept { switch (m_type) { case value_t::array: { // delegate call to array_t::max_size() return m_value.array->max_size(); } case value_t::object: { // delegate call to object_t::max_size() return m_value.object->max_size(); } default: { // all other types have max_size() == size() return size(); } } } /// @} /////////////// // modifiers // /////////////// /// @name modifiers /// @{ /*! @brief clears the contents Clears the content of a JSON value and resets it to the default value as if @ref basic_json(value_t) would have been called: Value type | initial value ----------- | ------------- null | `null` boolean | `false` string | `""` number | `0` object | `{}` array | `[]` @complexity Linear in the size of the JSON value. @liveexample{The example below shows the effect of `clear()` to different JSON types.,clear} @since version 1.0.0 */ void clear() noexcept { switch (m_type) { case value_t::number_integer: { m_value.number_integer = 0; break; } case value_t::number_unsigned: { m_value.number_unsigned = 0; break; } case value_t::number_float: { m_value.number_float = 0.0; break; } case value_t::boolean: { m_value.boolean = false; break; } case value_t::string: { m_value.string->clear(); break; } case value_t::array: { m_value.array->clear(); break; } case value_t::object: { m_value.object->clear(); break; } default: { break; } } } /*! @brief add an object to an array Appends the given element @a val to the end of the JSON value. If the function is called on a JSON null value, an empty array is created before appending @a val. @param[in] val the value to add to the JSON array @throw std::domain_error when called on a type other than JSON array or null; example: `"cannot use push_back() with number"` @complexity Amortized constant. @liveexample{The example shows how `push_back()` and `+=` can be used to add elements to a JSON array. Note how the `null` value was silently converted to a JSON array.,push_back} @since version 1.0.0 */ void push_back(basic_json&& val) { // push_back only works for null objects or arrays if (not(is_null() or is_array())) { JSON_THROW(std::domain_error("cannot use push_back() with " + type_name())); } // transform null object into an array if (is_null()) { m_type = value_t::array; m_value = value_t::array; assert_invariant(); } // add element to array (move semantics) m_value.array->push_back(std::move(val)); // invalidate object val.m_type = value_t::null; } /*! @brief add an object to an array @copydoc push_back(basic_json&&) */ reference operator+=(basic_json&& val) { push_back(std::move(val)); return *this; } /*! @brief add an object to an array @copydoc push_back(basic_json&&) */ void push_back(const basic_json& val) { // push_back only works for null objects or arrays if (not(is_null() or is_array())) { JSON_THROW(std::domain_error("cannot use push_back() with " + type_name())); } // transform null object into an array if (is_null()) { m_type = value_t::array; m_value = value_t::array; assert_invariant(); } // add element to array m_value.array->push_back(val); } /*! @brief add an object to an array @copydoc push_back(basic_json&&) */ reference operator+=(const basic_json& val) { push_back(val); return *this; } /*! @brief add an object to an object Inserts the given element @a val to the JSON object. If the function is called on a JSON null value, an empty object is created before inserting @a val. @param[in] val the value to add to the JSON object @throw std::domain_error when called on a type other than JSON object or null; example: `"cannot use push_back() with number"` @complexity Logarithmic in the size of the container, O(log(`size()`)). @liveexample{The example shows how `push_back()` and `+=` can be used to add elements to a JSON object. Note how the `null` value was silently converted to a JSON object.,push_back__object_t__value} @since version 1.0.0 */ void push_back(const typename object_t::value_type& val) { // push_back only works for null objects or objects if (not(is_null() or is_object())) { JSON_THROW(std::domain_error("cannot use push_back() with " + type_name())); } // transform null object into an object if (is_null()) { m_type = value_t::object; m_value = value_t::object; assert_invariant(); } // add element to array m_value.object->insert(val); } /*! @brief add an object to an object @copydoc push_back(const typename object_t::value_type&) */ reference operator+=(const typename object_t::value_type& val) { push_back(val); return *this; } /*! @brief add an object to an object This function allows to use `push_back` with an initializer list. In case 1. the current value is an object, 2. the initializer list @a init contains only two elements, and 3. the first element of @a init is a string, @a init is converted into an object element and added using @ref push_back(const typename object_t::value_type&). Otherwise, @a init is converted to a JSON value and added using @ref push_back(basic_json&&). @param init an initializer list @complexity Linear in the size of the initializer list @a init. @note This function is required to resolve an ambiguous overload error, because pairs like `{"key", "value"}` can be both interpreted as `object_t::value_type` or `std::initializer_list<basic_json>`, see https://github.com/nlohmann/json/issues/235 for more information. @liveexample{The example shows how initializer lists are treated as objects when possible.,push_back__initializer_list} */ void push_back(std::initializer_list<basic_json> init) { if (is_object() and init.size() == 2 and init.begin()->is_string()) { const string_t key = *init.begin(); push_back(typename object_t::value_type(key, *(init.begin() + 1))); } else { push_back(basic_json(init)); } } /*! @brief add an object to an object @copydoc push_back(std::initializer_list<basic_json>) */ reference operator+=(std::initializer_list<basic_json> init) { push_back(init); return *this; } /*! @brief add an object to an array Creates a JSON value from the passed parameters @a args to the end of the JSON value. If the function is called on a JSON null value, an empty array is created before appending the value created from @a args. @param[in] args arguments to forward to a constructor of @ref basic_json @tparam Args compatible types to create a @ref basic_json object @throw std::domain_error when called on a type other than JSON array or null; example: `"cannot use emplace_back() with number"` @complexity Amortized constant. @liveexample{The example shows how `push_back()` can be used to add elements to a JSON array. Note how the `null` value was silently converted to a JSON array.,emplace_back} @since version 2.0.8 */ template<class... Args> void emplace_back(Args&& ... args) { // emplace_back only works for null objects or arrays if (not(is_null() or is_array())) { JSON_THROW(std::domain_error("cannot use emplace_back() with " + type_name())); } // transform null object into an array if (is_null()) { m_type = value_t::array; m_value = value_t::array; assert_invariant(); } // add element to array (perfect forwarding) m_value.array->emplace_back(std::forward<Args>(args)...); } /*! @brief add an object to an object if key does not exist Inserts a new element into a JSON object constructed in-place with the given @a args if there is no element with the key in the container. If the function is called on a JSON null value, an empty object is created before appending the value created from @a args. @param[in] args arguments to forward to a constructor of @ref basic_json @tparam Args compatible types to create a @ref basic_json object @return a pair consisting of an iterator to the inserted element, or the already-existing element if no insertion happened, and a bool denoting whether the insertion took place. @throw std::domain_error when called on a type other than JSON object or null; example: `"cannot use emplace() with number"` @complexity Logarithmic in the size of the container, O(log(`size()`)). @liveexample{The example shows how `emplace()` can be used to add elements to a JSON object. Note how the `null` value was silently converted to a JSON object. Further note how no value is added if there was already one value stored with the same key.,emplace} @since version 2.0.8 */ template<class... Args> std::pair<iterator, bool> emplace(Args&& ... args) { // emplace only works for null objects or arrays if (not(is_null() or is_object())) { JSON_THROW(std::domain_error("cannot use emplace() with " + type_name())); } // transform null object into an object if (is_null()) { m_type = value_t::object; m_value = value_t::object; assert_invariant(); } // add element to array (perfect forwarding) auto res = m_value.object->emplace(std::forward<Args>(args)...); // create result iterator and set iterator to the result of emplace auto it = begin(); it.m_it.object_iterator = res.first; // return pair of iterator and boolean return {it, res.second}; } /*! @brief inserts element Inserts element @a val before iterator @a pos. @param[in] pos iterator before which the content will be inserted; may be the end() iterator @param[in] val element to insert @return iterator pointing to the inserted @a val. @throw std::domain_error if called on JSON values other than arrays; example: `"cannot use insert() with string"` @throw std::domain_error if @a pos is not an iterator of *this; example: `"iterator does not fit current value"` @complexity Constant plus linear in the distance between pos and end of the container. @liveexample{The example shows how `insert()` is used.,insert} @since version 1.0.0 */ iterator insert(const_iterator pos, const basic_json& val) { // insert only works for arrays if (is_array()) { // check if iterator pos fits to this JSON value if (pos.m_object != this) { JSON_THROW(std::domain_error("iterator does not fit current value")); } // insert to array and return iterator iterator result(this); result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, val); return result; } JSON_THROW(std::domain_error("cannot use insert() with " + type_name())); } /*! @brief inserts element @copydoc insert(const_iterator, const basic_json&) */ iterator insert(const_iterator pos, basic_json&& val) { return insert(pos, val); } /*! @brief inserts elements Inserts @a cnt copies of @a val before iterator @a pos. @param[in] pos iterator before which the content will be inserted; may be the end() iterator @param[in] cnt number of copies of @a val to insert @param[in] val element to insert @return iterator pointing to the first element inserted, or @a pos if `cnt==0` @throw std::domain_error if called on JSON values other than arrays; example: `"cannot use insert() with string"` @throw std::domain_error if @a pos is not an iterator of *this; example: `"iterator does not fit current value"` @complexity Linear in @a cnt plus linear in the distance between @a pos and end of the container. @liveexample{The example shows how `insert()` is used.,insert__count} @since version 1.0.0 */ iterator insert(const_iterator pos, size_type cnt, const basic_json& val) { // insert only works for arrays if (is_array()) { // check if iterator pos fits to this JSON value if (pos.m_object != this) { JSON_THROW(std::domain_error("iterator does not fit current value")); } // insert to array and return iterator iterator result(this); result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, cnt, val); return result; } JSON_THROW(std::domain_error("cannot use insert() with " + type_name())); } /*! @brief inserts elements Inserts elements from range `[first, last)` before iterator @a pos. @param[in] pos iterator before which the content will be inserted; may be the end() iterator @param[in] first begin of the range of elements to insert @param[in] last end of the range of elements to insert @throw std::domain_error if called on JSON values other than arrays; example: `"cannot use insert() with string"` @throw std::domain_error if @a pos is not an iterator of *this; example: `"iterator does not fit current value"` @throw std::domain_error if @a first and @a last do not belong to the same JSON value; example: `"iterators do not fit"` @throw std::domain_error if @a first or @a last are iterators into container for which insert is called; example: `"passed iterators may not belong to container"` @return iterator pointing to the first element inserted, or @a pos if `first==last` @complexity Linear in `std::distance(first, last)` plus linear in the distance between @a pos and end of the container. @liveexample{The example shows how `insert()` is used.,insert__range} @since version 1.0.0 */ iterator insert(const_iterator pos, const_iterator first, const_iterator last) { // insert only works for arrays if (not is_array()) { JSON_THROW(std::domain_error("cannot use insert() with " + type_name())); } // check if iterator pos fits to this JSON value if (pos.m_object != this) { JSON_THROW(std::domain_error("iterator does not fit current value")); } // check if range iterators belong to the same JSON object if (first.m_object != last.m_object) { JSON_THROW(std::domain_error("iterators do not fit")); } if (first.m_object == this or last.m_object == this) { JSON_THROW(std::domain_error("passed iterators may not belong to container")); } // insert to array and return iterator iterator result(this); result.m_it.array_iterator = m_value.array->insert( pos.m_it.array_iterator, first.m_it.array_iterator, last.m_it.array_iterator); return result; } /*! @brief inserts elements Inserts elements from initializer list @a ilist before iterator @a pos. @param[in] pos iterator before which the content will be inserted; may be the end() iterator @param[in] ilist initializer list to insert the values from @throw std::domain_error if called on JSON values other than arrays; example: `"cannot use insert() with string"` @throw std::domain_error if @a pos is not an iterator of *this; example: `"iterator does not fit current value"` @return iterator pointing to the first element inserted, or @a pos if `ilist` is empty @complexity Linear in `ilist.size()` plus linear in the distance between @a pos and end of the container. @liveexample{The example shows how `insert()` is used.,insert__ilist} @since version 1.0.0 */ iterator insert(const_iterator pos, std::initializer_list<basic_json> ilist) { // insert only works for arrays if (not is_array()) { JSON_THROW(std::domain_error("cannot use insert() with " + type_name())); } // check if iterator pos fits to this JSON value if (pos.m_object != this) { JSON_THROW(std::domain_error("iterator does not fit current value")); } // insert to array and return iterator iterator result(this); result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, ilist); return result; } /*! @brief exchanges the values Exchanges the contents of the JSON value with those of @a other. Does not invoke any move, copy, or swap operations on individual elements. All iterators and references remain valid. The past-the-end iterator is invalidated. @param[in,out] other JSON value to exchange the contents with @complexity Constant. @liveexample{The example below shows how JSON values can be swapped with `swap()`.,swap__reference} @since version 1.0.0 */ void swap(reference other) noexcept ( std::is_nothrow_move_constructible<value_t>::value and std::is_nothrow_move_assignable<value_t>::value and std::is_nothrow_move_constructible<json_value>::value and std::is_nothrow_move_assignable<json_value>::value ) { std::swap(m_type, other.m_type); std::swap(m_value, other.m_value); assert_invariant(); } /*! @brief exchanges the values Exchanges the contents of a JSON array with those of @a other. Does not invoke any move, copy, or swap operations on individual elements. All iterators and references remain valid. The past-the-end iterator is invalidated. @param[in,out] other array to exchange the contents with @throw std::domain_error when JSON value is not an array; example: `"cannot use swap() with string"` @complexity Constant. @liveexample{The example below shows how arrays can be swapped with `swap()`.,swap__array_t} @since version 1.0.0 */ void swap(array_t& other) { // swap only works for arrays if (is_array()) { std::swap(*(m_value.array), other); } else { JSON_THROW(std::domain_error("cannot use swap() with " + type_name())); } } /*! @brief exchanges the values Exchanges the contents of a JSON object with those of @a other. Does not invoke any move, copy, or swap operations on individual elements. All iterators and references remain valid. The past-the-end iterator is invalidated. @param[in,out] other object to exchange the contents with @throw std::domain_error when JSON value is not an object; example: `"cannot use swap() with string"` @complexity Constant. @liveexample{The example below shows how objects can be swapped with `swap()`.,swap__object_t} @since version 1.0.0 */ void swap(object_t& other) { // swap only works for objects if (is_object()) { std::swap(*(m_value.object), other); } else { JSON_THROW(std::domain_error("cannot use swap() with " + type_name())); } } /*! @brief exchanges the values Exchanges the contents of a JSON string with those of @a other. Does not invoke any move, copy, or swap operations on individual elements. All iterators and references remain valid. The past-the-end iterator is invalidated. @param[in,out] other string to exchange the contents with @throw std::domain_error when JSON value is not a string; example: `"cannot use swap() with boolean"` @complexity Constant. @liveexample{The example below shows how strings can be swapped with `swap()`.,swap__string_t} @since version 1.0.0 */ void swap(string_t& other) { // swap only works for strings if (is_string()) { std::swap(*(m_value.string), other); } else { JSON_THROW(std::domain_error("cannot use swap() with " + type_name())); } } /// @} public: ////////////////////////////////////////// // lexicographical comparison operators // ////////////////////////////////////////// /// @name lexicographical comparison operators /// @{ /*! @brief comparison: equal Compares two JSON values for equality according to the following rules: - Two JSON values are equal if (1) they are from the same type and (2) their stored values are the same. - Integer and floating-point numbers are automatically converted before comparison. Floating-point numbers are compared indirectly: two floating-point numbers `f1` and `f2` are considered equal if neither `f1 > f2` nor `f2 > f1` holds. - Two JSON null values are equal. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether the values @a lhs and @a rhs are equal @complexity Linear. @liveexample{The example demonstrates comparing several JSON types.,operator__equal} @since version 1.0.0 */ friend bool operator==(const_reference lhs, const_reference rhs) noexcept { const auto lhs_type = lhs.type(); const auto rhs_type = rhs.type(); if (lhs_type == rhs_type) { switch (lhs_type) { case value_t::array: { return *lhs.m_value.array == *rhs.m_value.array; } case value_t::object: { return *lhs.m_value.object == *rhs.m_value.object; } case value_t::null: { return true; } case value_t::string: { return *lhs.m_value.string == *rhs.m_value.string; } case value_t::boolean: { return lhs.m_value.boolean == rhs.m_value.boolean; } case value_t::number_integer: { return lhs.m_value.number_integer == rhs.m_value.number_integer; } case value_t::number_unsigned: { return lhs.m_value.number_unsigned == rhs.m_value.number_unsigned; } case value_t::number_float: { return lhs.m_value.number_float == rhs.m_value.number_float; } default: { return false; } } } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float) { return static_cast<number_float_t>(lhs.m_value.number_integer) == rhs.m_value.number_float; } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer) { return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer); } else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float) { return static_cast<number_float_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_float; } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned) { return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_unsigned); } else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer) { return static_cast<number_integer_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_integer; } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned) { return lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_unsigned); } return false; } /*! @brief comparison: equal The functions compares the given JSON value against a null pointer. As the null pointer can be used to initialize a JSON value to null, a comparison of JSON value @a v with a null pointer should be equivalent to call `v.is_null()`. @param[in] v JSON value to consider @return whether @a v is null @complexity Constant. @liveexample{The example compares several JSON types to the null pointer. ,operator__equal__nullptr_t} @since version 1.0.0 */ friend bool operator==(const_reference v, std::nullptr_t) noexcept { return v.is_null(); } /*! @brief comparison: equal @copydoc operator==(const_reference, std::nullptr_t) */ friend bool operator==(std::nullptr_t, const_reference v) noexcept { return v.is_null(); } /*! @brief comparison: not equal Compares two JSON values for inequality by calculating `not (lhs == rhs)`. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether the values @a lhs and @a rhs are not equal @complexity Linear. @liveexample{The example demonstrates comparing several JSON types.,operator__notequal} @since version 1.0.0 */ friend bool operator!=(const_reference lhs, const_reference rhs) noexcept { return not (lhs == rhs); } /*! @brief comparison: not equal The functions compares the given JSON value against a null pointer. As the null pointer can be used to initialize a JSON value to null, a comparison of JSON value @a v with a null pointer should be equivalent to call `not v.is_null()`. @param[in] v JSON value to consider @return whether @a v is not null @complexity Constant. @liveexample{The example compares several JSON types to the null pointer. ,operator__notequal__nullptr_t} @since version 1.0.0 */ friend bool operator!=(const_reference v, std::nullptr_t) noexcept { return not v.is_null(); } /*! @brief comparison: not equal @copydoc operator!=(const_reference, std::nullptr_t) */ friend bool operator!=(std::nullptr_t, const_reference v) noexcept { return not v.is_null(); } /*! @brief comparison: less than Compares whether one JSON value @a lhs is less than another JSON value @a rhs according to the following rules: - If @a lhs and @a rhs have the same type, the values are compared using the default `<` operator. - Integer and floating-point numbers are automatically converted before comparison - In case @a lhs and @a rhs have different types, the values are ignored and the order of the types is considered, see @ref operator<(const value_t, const value_t). @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether @a lhs is less than @a rhs @complexity Linear. @liveexample{The example demonstrates comparing several JSON types.,operator__less} @since version 1.0.0 */ friend bool operator<(const_reference lhs, const_reference rhs) noexcept { const auto lhs_type = lhs.type(); const auto rhs_type = rhs.type(); if (lhs_type == rhs_type) { switch (lhs_type) { case value_t::array: { return *lhs.m_value.array < *rhs.m_value.array; } case value_t::object: { return *lhs.m_value.object < *rhs.m_value.object; } case value_t::null: { return false; } case value_t::string: { return *lhs.m_value.string < *rhs.m_value.string; } case value_t::boolean: { return lhs.m_value.boolean < rhs.m_value.boolean; } case value_t::number_integer: { return lhs.m_value.number_integer < rhs.m_value.number_integer; } case value_t::number_unsigned: { return lhs.m_value.number_unsigned < rhs.m_value.number_unsigned; } case value_t::number_float: { return lhs.m_value.number_float < rhs.m_value.number_float; } default: { return false; } } } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float) { return static_cast<number_float_t>(lhs.m_value.number_integer) < rhs.m_value.number_float; } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer) { return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer); } else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float) { return static_cast<number_float_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_float; } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned) { return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_unsigned); } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned) { return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_unsigned); } else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer) { return static_cast<number_integer_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_integer; } // We only reach this line if we cannot compare values. In that case, // we compare types. Note we have to call the operator explicitly, // because MSVC has problems otherwise. return operator<(lhs_type, rhs_type); } /*! @brief comparison: less than or equal Compares whether one JSON value @a lhs is less than or equal to another JSON value by calculating `not (rhs < lhs)`. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether @a lhs is less than or equal to @a rhs @complexity Linear. @liveexample{The example demonstrates comparing several JSON types.,operator__greater} @since version 1.0.0 */ friend bool operator<=(const_reference lhs, const_reference rhs) noexcept { return not (rhs < lhs); } /*! @brief comparison: greater than Compares whether one JSON value @a lhs is greater than another JSON value by calculating `not (lhs <= rhs)`. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether @a lhs is greater than to @a rhs @complexity Linear. @liveexample{The example demonstrates comparing several JSON types.,operator__lessequal} @since version 1.0.0 */ friend bool operator>(const_reference lhs, const_reference rhs) noexcept { return not (lhs <= rhs); } /*! @brief comparison: greater than or equal Compares whether one JSON value @a lhs is greater than or equal to another JSON value by calculating `not (lhs < rhs)`. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether @a lhs is greater than or equal to @a rhs @complexity Linear. @liveexample{The example demonstrates comparing several JSON types.,operator__greaterequal} @since version 1.0.0 */ friend bool operator>=(const_reference lhs, const_reference rhs) noexcept { return not (lhs < rhs); } /// @} /////////////////// // serialization // /////////////////// /// @name serialization /// @{ /*! @brief serialize to stream Serialize the given JSON value @a j to the output stream @a o. The JSON value will be serialized using the @ref dump member function. The indentation of the output can be controlled with the member variable `width` of the output stream @a o. For instance, using the manipulator `std::setw(4)` on @a o sets the indentation level to `4` and the serialization result is the same as calling `dump(4)`. @note During serializaion, the locale and the precision of the output stream @a o are changed. The original values are restored when the function returns. @param[in,out] o stream to serialize to @param[in] j JSON value to serialize @return the stream @a o @complexity Linear. @liveexample{The example below shows the serialization with different parameters to `width` to adjust the indentation level.,operator_serialize} @since version 1.0.0 */ friend std::ostream& operator<<(std::ostream& o, const basic_json& j) { // read width member and use it as indentation parameter if nonzero const bool pretty_print = (o.width() > 0); const auto indentation = (pretty_print ? o.width() : 0); // reset width to 0 for subsequent calls to this stream o.width(0); // fix locale problems const auto old_locale = o.imbue(std::locale::classic()); // set precision // 6, 15 or 16 digits of precision allows round-trip IEEE 754 // string->float->string, string->double->string or string->long // double->string; to be safe, we read this value from // std::numeric_limits<number_float_t>::digits10 const auto old_precision = o.precision(std::numeric_limits<double>::digits10); // do the actual serialization j.dump(o, pretty_print, static_cast<unsigned int>(indentation)); // reset locale and precision o.imbue(old_locale); o.precision(old_precision); return o; } /*! @brief serialize to stream @copydoc operator<<(std::ostream&, const basic_json&) */ friend std::ostream& operator>>(const basic_json& j, std::ostream& o) { return o << j; } /// @} ///////////////////// // deserialization // ///////////////////// /// @name deserialization /// @{ /*! @brief deserialize from an array This function reads from an array of 1-byte values. @pre Each element of the container has a size of 1 byte. Violating this precondition yields undefined behavior. **This precondition is enforced with a static assertion.** @param[in] array array to read from @param[in] cb a parser callback function of type @ref parser_callback_t which is used to control the deserialization by filtering unwanted values (optional) @return result of the deserialization @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. The complexity can be higher if the parser callback function @a cb has a super-linear complexity. @note A UTF-8 byte order mark is silently ignored. @liveexample{The example below demonstrates the `parse()` function reading from an array.,parse__array__parser_callback_t} @since version 2.0.3 */ template<class T, std::size_t N> static basic_json parse(T (&array)[N], const parser_callback_t cb = nullptr) { // delegate the call to the iterator-range parse overload return parse(std::begin(array), std::end(array), cb); } /*! @brief deserialize from string literal @tparam CharT character/literal type with size of 1 byte @param[in] s string literal to read a serialized JSON value from @param[in] cb a parser callback function of type @ref parser_callback_t which is used to control the deserialization by filtering unwanted values (optional) @return result of the deserialization @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. The complexity can be higher if the parser callback function @a cb has a super-linear complexity. @note A UTF-8 byte order mark is silently ignored. @note String containers like `std::string` or @ref string_t can be parsed with @ref parse(const ContiguousContainer&, const parser_callback_t) @liveexample{The example below demonstrates the `parse()` function with and without callback function.,parse__string__parser_callback_t} @sa @ref parse(std::istream&, const parser_callback_t) for a version that reads from an input stream @since version 1.0.0 (originally for @ref string_t) */ template<typename CharT, typename std::enable_if< std::is_pointer<CharT>::value and std::is_integral<typename std::remove_pointer<CharT>::type>::value and sizeof(typename std::remove_pointer<CharT>::type) == 1, int>::type = 0> static basic_json parse(const CharT s, const parser_callback_t cb = nullptr) { return parser(reinterpret_cast<const char*>(s), cb).parse(); } /*! @brief deserialize from stream @param[in,out] i stream to read a serialized JSON value from @param[in] cb a parser callback function of type @ref parser_callback_t which is used to control the deserialization by filtering unwanted values (optional) @return result of the deserialization @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. The complexity can be higher if the parser callback function @a cb has a super-linear complexity. @note A UTF-8 byte order mark is silently ignored. @liveexample{The example below demonstrates the `parse()` function with and without callback function.,parse__istream__parser_callback_t} @sa @ref parse(const CharT, const parser_callback_t) for a version that reads from a string @since version 1.0.0 */ static basic_json parse(std::istream& i, const parser_callback_t cb = nullptr) { return parser(i, cb).parse(); } /*! @copydoc parse(std::istream&, const parser_callback_t) */ static basic_json parse(std::istream&& i, const parser_callback_t cb = nullptr) { return parser(i, cb).parse(); } /*! @brief deserialize from an iterator range with contiguous storage This function reads from an iterator range of a container with contiguous storage of 1-byte values. Compatible container types include `std::vector`, `std::string`, `std::array`, `std::valarray`, and `std::initializer_list`. Furthermore, C-style arrays can be used with `std::begin()`/`std::end()`. User-defined containers can be used as long as they implement random-access iterators and a contiguous storage. @pre The iterator range is contiguous. Violating this precondition yields undefined behavior. **This precondition is enforced with an assertion.** @pre Each element in the range has a size of 1 byte. Violating this precondition yields undefined behavior. **This precondition is enforced with a static assertion.** @warning There is no way to enforce all preconditions at compile-time. If the function is called with noncompliant iterators and with assertions switched off, the behavior is undefined and will most likely yield segmentation violation. @tparam IteratorType iterator of container with contiguous storage @param[in] first begin of the range to parse (included) @param[in] last end of the range to parse (excluded) @param[in] cb a parser callback function of type @ref parser_callback_t which is used to control the deserialization by filtering unwanted values (optional) @return result of the deserialization @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. The complexity can be higher if the parser callback function @a cb has a super-linear complexity. @note A UTF-8 byte order mark is silently ignored. @liveexample{The example below demonstrates the `parse()` function reading from an iterator range.,parse__iteratortype__parser_callback_t} @since version 2.0.3 */ template<class IteratorType, typename std::enable_if< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0> static basic_json parse(IteratorType first, IteratorType last, const parser_callback_t cb = nullptr) { // assertion to check that the iterator range is indeed contiguous, // see http://stackoverflow.com/a/35008842/266378 for more discussion assert(std::accumulate(first, last, std::pair<bool, int>(true, 0), [&first](std::pair<bool, int> res, decltype(*first) val) { res.first &= (val == *(std::next(std::addressof(*first), res.second++))); return res; }).first); // assertion to check that each element is 1 byte long static_assert(sizeof(typename std::iterator_traits<IteratorType>::value_type) == 1, "each element in the iterator range must have the size of 1 byte"); // if iterator range is empty, create a parser with an empty string // to generate "unexpected EOF" error message if (std::distance(first, last) <= 0) { return parser("").parse(); } return parser(first, last, cb).parse(); } /*! @brief deserialize from a container with contiguous storage This function reads from a container with contiguous storage of 1-byte values. Compatible container types include `std::vector`, `std::string`, `std::array`, and `std::initializer_list`. User-defined containers can be used as long as they implement random-access iterators and a contiguous storage. @pre The container storage is contiguous. Violating this precondition yields undefined behavior. **This precondition is enforced with an assertion.** @pre Each element of the container has a size of 1 byte. Violating this precondition yields undefined behavior. **This precondition is enforced with a static assertion.** @warning There is no way to enforce all preconditions at compile-time. If the function is called with a noncompliant container and with assertions switched off, the behavior is undefined and will most likely yield segmentation violation. @tparam ContiguousContainer container type with contiguous storage @param[in] c container to read from @param[in] cb a parser callback function of type @ref parser_callback_t which is used to control the deserialization by filtering unwanted values (optional) @return result of the deserialization @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. The complexity can be higher if the parser callback function @a cb has a super-linear complexity. @note A UTF-8 byte order mark is silently ignored. @liveexample{The example below demonstrates the `parse()` function reading from a contiguous container.,parse__contiguouscontainer__parser_callback_t} @since version 2.0.3 */ template<class ContiguousContainer, typename std::enable_if< not std::is_pointer<ContiguousContainer>::value and std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value , int>::type = 0> static basic_json parse(const ContiguousContainer& c, const parser_callback_t cb = nullptr) { // delegate the call to the iterator-range parse overload return parse(std::begin(c), std::end(c), cb); } /*! @brief deserialize from stream Deserializes an input stream to a JSON value. @param[in,out] i input stream to read a serialized JSON value from @param[in,out] j JSON value to write the deserialized input to @throw std::invalid_argument in case of parse errors @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. @note A UTF-8 byte order mark is silently ignored. @liveexample{The example below shows how a JSON value is constructed by reading a serialization from a stream.,operator_deserialize} @sa parse(std::istream&, const parser_callback_t) for a variant with a parser callback function to filter values while parsing @since version 1.0.0 */ friend std::istream& operator<<(basic_json& j, std::istream& i) { j = parser(i).parse(); return i; } /*! @brief deserialize from stream @copydoc operator<<(basic_json&, std::istream&) */ friend std::istream& operator>>(std::istream& i, basic_json& j) { j = parser(i).parse(); return i; } /// @} ////////////////////////////////////////// // binary serialization/deserialization // ////////////////////////////////////////// /// @name binary serialization/deserialization support /// @{ private: template<typename T> static void add_to_vector(std::vector<uint8_t>& vec, size_t bytes, const T number) { assert(bytes == 1 or bytes == 2 or bytes == 4 or bytes == 8); switch (bytes) { case 8: { vec.push_back(static_cast<uint8_t>((number >> 070) & 0xff)); vec.push_back(static_cast<uint8_t>((number >> 060) & 0xff)); vec.push_back(static_cast<uint8_t>((number >> 050) & 0xff)); vec.push_back(static_cast<uint8_t>((number >> 040) & 0xff)); // intentional fall-through } case 4: { vec.push_back(static_cast<uint8_t>((number >> 030) & 0xff)); vec.push_back(static_cast<uint8_t>((number >> 020) & 0xff)); // intentional fall-through } case 2: { vec.push_back(static_cast<uint8_t>((number >> 010) & 0xff)); // intentional fall-through } case 1: { vec.push_back(static_cast<uint8_t>(number & 0xff)); break; } } } /*! @brief take sufficient bytes from a vector to fill an integer variable In the context of binary serialization formats, we need to read several bytes from a byte vector and combine them to multi-byte integral data types. @param[in] vec byte vector to read from @param[in] current_index the position in the vector after which to read @return the next sizeof(T) bytes from @a vec, in reverse order as T @tparam T the integral return type @throw std::out_of_range if there are less than sizeof(T)+1 bytes in the vector @a vec to read In the for loop, the bytes from the vector are copied in reverse order into the return value. In the figures below, let sizeof(T)=4 and `i` be the loop variable. Precondition: vec: | | | a | b | c | d | T: | | | | | ^ ^ ^ ^ current_index i ptr sizeof(T) Postcondition: vec: | | | a | b | c | d | T: | d | c | b | a | ^ ^ ^ | i ptr current_index @sa Code adapted from <http://stackoverflow.com/a/41031865/266378>. */ template<typename T> static T get_from_vector(const std::vector<uint8_t>& vec, const size_t current_index) { if (current_index + sizeof(T) + 1 > vec.size()) { JSON_THROW(std::out_of_range("cannot read " + std::to_string(sizeof(T)) + " bytes from vector")); } T result; auto* ptr = reinterpret_cast<uint8_t*>(&result); for (size_t i = 0; i < sizeof(T); ++i) { *ptr++ = vec[current_index + sizeof(T) - i]; } return result; } /*! @brief create a MessagePack serialization of a given JSON value This is a straightforward implementation of the MessagePack specification. @param[in] j JSON value to serialize @param[in,out] v byte vector to write the serialization to @sa https://github.com/msgpack/msgpack/blob/master/spec.md */ static void to_msgpack_internal(const basic_json& j, std::vector<uint8_t>& v) { switch (j.type()) { case value_t::null: { // nil v.push_back(0xc0); break; } case value_t::boolean: { // true and false v.push_back(j.m_value.boolean ? 0xc3 : 0xc2); break; } case value_t::number_integer: { if (j.m_value.number_integer >= 0) { // MessagePack does not differentiate between positive // signed integers and unsigned integers. Therefore, we // used the code from the value_t::number_unsigned case // here. if (j.m_value.number_unsigned < 128) { // positive fixnum add_to_vector(v, 1, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= UINT8_MAX) { // uint 8 v.push_back(0xcc); add_to_vector(v, 1, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= UINT16_MAX) { // uint 16 v.push_back(0xcd); add_to_vector(v, 2, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= UINT32_MAX) { // uint 32 v.push_back(0xce); add_to_vector(v, 4, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= UINT64_MAX) { // uint 64 v.push_back(0xcf); add_to_vector(v, 8, j.m_value.number_unsigned); } } else { if (j.m_value.number_integer >= -32) { // negative fixnum add_to_vector(v, 1, j.m_value.number_integer); } else if (j.m_value.number_integer >= INT8_MIN and j.m_value.number_integer <= INT8_MAX) { // int 8 v.push_back(0xd0); add_to_vector(v, 1, j.m_value.number_integer); } else if (j.m_value.number_integer >= INT16_MIN and j.m_value.number_integer <= INT16_MAX) { // int 16 v.push_back(0xd1); add_to_vector(v, 2, j.m_value.number_integer); } else if (j.m_value.number_integer >= INT32_MIN and j.m_value.number_integer <= INT32_MAX) { // int 32 v.push_back(0xd2); add_to_vector(v, 4, j.m_value.number_integer); } else if (j.m_value.number_integer >= INT64_MIN and j.m_value.number_integer <= INT64_MAX) { // int 64 v.push_back(0xd3); add_to_vector(v, 8, j.m_value.number_integer); } } break; } case value_t::number_unsigned: { if (j.m_value.number_unsigned < 128) { // positive fixnum add_to_vector(v, 1, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= UINT8_MAX) { // uint 8 v.push_back(0xcc); add_to_vector(v, 1, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= UINT16_MAX) { // uint 16 v.push_back(0xcd); add_to_vector(v, 2, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= UINT32_MAX) { // uint 32 v.push_back(0xce); add_to_vector(v, 4, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= UINT64_MAX) { // uint 64 v.push_back(0xcf); add_to_vector(v, 8, j.m_value.number_unsigned); } break; } case value_t::number_float: { // float 64 v.push_back(0xcb); const auto* helper = reinterpret_cast<const uint8_t*>(&(j.m_value.number_float)); for (size_t i = 0; i < 8; ++i) { v.push_back(helper[7 - i]); } break; } case value_t::string: { const auto N = j.m_value.string->size(); if (N <= 31) { // fixstr v.push_back(static_cast<uint8_t>(0xa0 | N)); } else if (N <= 255) { // str 8 v.push_back(0xd9); add_to_vector(v, 1, N); } else if (N <= 65535) { // str 16 v.push_back(0xda); add_to_vector(v, 2, N); } else if (N <= 4294967295) { // str 32 v.push_back(0xdb); add_to_vector(v, 4, N); } // append string std::copy(j.m_value.string->begin(), j.m_value.string->end(), std::back_inserter(v)); break; } case value_t::array: { const auto N = j.m_value.array->size(); if (N <= 15) { // fixarray v.push_back(static_cast<uint8_t>(0x90 | N)); } else if (N <= 0xffff) { // array 16 v.push_back(0xdc); add_to_vector(v, 2, N); } else if (N <= 0xffffffff) { // array 32 v.push_back(0xdd); add_to_vector(v, 4, N); } // append each element for (const auto& el : *j.m_value.array) { to_msgpack_internal(el, v); } break; } case value_t::object: { const auto N = j.m_value.object->size(); if (N <= 15) { // fixmap v.push_back(static_cast<uint8_t>(0x80 | (N & 0xf))); } else if (N <= 65535) { // map 16 v.push_back(0xde); add_to_vector(v, 2, N); } else if (N <= 4294967295) { // map 32 v.push_back(0xdf); add_to_vector(v, 4, N); } // append each element for (const auto& el : *j.m_value.object) { to_msgpack_internal(el.first, v); to_msgpack_internal(el.second, v); } break; } default: { break; } } } /*! @brief create a CBOR serialization of a given JSON value This is a straightforward implementation of the CBOR specification. @param[in] j JSON value to serialize @param[in,out] v byte vector to write the serialization to @sa https://tools.ietf.org/html/rfc7049 */ static void to_cbor_internal(const basic_json& j, std::vector<uint8_t>& v) { switch (j.type()) { case value_t::null: { v.push_back(0xf6); break; } case value_t::boolean: { v.push_back(j.m_value.boolean ? 0xf5 : 0xf4); break; } case value_t::number_integer: { if (j.m_value.number_integer >= 0) { // CBOR does not differentiate between positive signed // integers and unsigned integers. Therefore, we used the // code from the value_t::number_unsigned case here. if (j.m_value.number_integer <= 0x17) { add_to_vector(v, 1, j.m_value.number_integer); } else if (j.m_value.number_integer <= UINT8_MAX) { v.push_back(0x18); // one-byte uint8_t add_to_vector(v, 1, j.m_value.number_integer); } else if (j.m_value.number_integer <= UINT16_MAX) { v.push_back(0x19); // two-byte uint16_t add_to_vector(v, 2, j.m_value.number_integer); } else if (j.m_value.number_integer <= UINT32_MAX) { v.push_back(0x1a); // four-byte uint32_t add_to_vector(v, 4, j.m_value.number_integer); } else { v.push_back(0x1b); // eight-byte uint64_t add_to_vector(v, 8, j.m_value.number_integer); } } else { // The conversions below encode the sign in the first // byte, and the value is converted to a positive number. const auto positive_number = -1 - j.m_value.number_integer; if (j.m_value.number_integer >= -24) { v.push_back(static_cast<uint8_t>(0x20 + positive_number)); } else if (positive_number <= UINT8_MAX) { // int 8 v.push_back(0x38); add_to_vector(v, 1, positive_number); } else if (positive_number <= UINT16_MAX) { // int 16 v.push_back(0x39); add_to_vector(v, 2, positive_number); } else if (positive_number <= UINT32_MAX) { // int 32 v.push_back(0x3a); add_to_vector(v, 4, positive_number); } else { // int 64 v.push_back(0x3b); add_to_vector(v, 8, positive_number); } } break; } case value_t::number_unsigned: { if (j.m_value.number_unsigned <= 0x17) { v.push_back(static_cast<uint8_t>(j.m_value.number_unsigned)); } else if (j.m_value.number_unsigned <= 0xff) { v.push_back(0x18); // one-byte uint8_t add_to_vector(v, 1, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= 0xffff) { v.push_back(0x19); // two-byte uint16_t add_to_vector(v, 2, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= 0xffffffff) { v.push_back(0x1a); // four-byte uint32_t add_to_vector(v, 4, j.m_value.number_unsigned); } else if (j.m_value.number_unsigned <= 0xffffffffffffffff) { v.push_back(0x1b); // eight-byte uint64_t add_to_vector(v, 8, j.m_value.number_unsigned); } break; } case value_t::number_float: { // Double-Precision Float v.push_back(0xfb); const auto* helper = reinterpret_cast<const uint8_t*>(&(j.m_value.number_float)); for (size_t i = 0; i < 8; ++i) { v.push_back(helper[7 - i]); } break; } case value_t::string: { const auto N = j.m_value.string->size(); if (N <= 0x17) { v.push_back(0x60 + N); // 1 byte for string + size } else if (N <= 0xff) { v.push_back(0x78); // one-byte uint8_t for N add_to_vector(v, 1, N); } else if (N <= 0xffff) { v.push_back(0x79); // two-byte uint16_t for N add_to_vector(v, 2, N); } else if (N <= 0xffffffff) { v.push_back(0x7a); // four-byte uint32_t for N add_to_vector(v, 4, N); } // LCOV_EXCL_START else if (N <= 0xffffffffffffffff) { v.push_back(0x7b); // eight-byte uint64_t for N add_to_vector(v, 8, N); } // LCOV_EXCL_STOP // append string std::copy(j.m_value.string->begin(), j.m_value.string->end(), std::back_inserter(v)); break; } case value_t::array: { const auto N = j.m_value.array->size(); if (N <= 0x17) { v.push_back(0x80 + N); // 1 byte for array + size } else if (N <= 0xff) { v.push_back(0x98); // one-byte uint8_t for N add_to_vector(v, 1, N); } else if (N <= 0xffff) { v.push_back(0x99); // two-byte uint16_t for N add_to_vector(v, 2, N); } else if (N <= 0xffffffff) { v.push_back(0x9a); // four-byte uint32_t for N add_to_vector(v, 4, N); } // LCOV_EXCL_START else if (N <= 0xffffffffffffffff) { v.push_back(0x9b); // eight-byte uint64_t for N add_to_vector(v, 8, N); } // LCOV_EXCL_STOP // append each element for (const auto& el : *j.m_value.array) { to_cbor_internal(el, v); } break; } case value_t::object: { const auto N = j.m_value.object->size(); if (N <= 0x17) { v.push_back(0xa0 + N); // 1 byte for object + size } else if (N <= 0xff) { v.push_back(0xb8); add_to_vector(v, 1, N); // one-byte uint8_t for N } else if (N <= 0xffff) { v.push_back(0xb9); add_to_vector(v, 2, N); // two-byte uint16_t for N } else if (N <= 0xffffffff) { v.push_back(0xba); add_to_vector(v, 4, N); // four-byte uint32_t for N } // LCOV_EXCL_START else if (N <= 0xffffffffffffffff) { v.push_back(0xbb); add_to_vector(v, 8, N); // eight-byte uint64_t for N } // LCOV_EXCL_STOP // append each element for (const auto& el : *j.m_value.object) { to_cbor_internal(el.first, v); to_cbor_internal(el.second, v); } break; } default: { break; } } } /* @brief checks if given lengths do not exceed the size of a given vector To secure the access to the byte vector during CBOR/MessagePack deserialization, bytes are copied from the vector into buffers. This function checks if the number of bytes to copy (@a len) does not exceed the size @s size of the vector. Additionally, an @a offset is given from where to start reading the bytes. This function checks whether reading the bytes is safe; that is, offset is a valid index in the vector, offset+len @param[in] size size of the byte vector @param[in] len number of bytes to read @param[in] offset offset where to start reading vec: x x x x x X X X X X ^ ^ ^ 0 offset len @throws out_of_range if `len > v.size()` */ static void check_length(const size_t size, const size_t len, const size_t offset) { // simple case: requested length is greater than the vector's length if (len > size or offset > size) { JSON_THROW(std::out_of_range("len out of range")); } // second case: adding offset would result in overflow if ((size > (std::numeric_limits<size_t>::max() - offset))) { JSON_THROW(std::out_of_range("len+offset out of range")); } // last case: reading past the end of the vector if (len + offset > size) { JSON_THROW(std::out_of_range("len+offset out of range")); } } /*! @brief create a JSON value from a given MessagePack vector @param[in] v MessagePack serialization @param[in] idx byte index to start reading from @a v @return deserialized JSON value @throw std::invalid_argument if unsupported features from MessagePack were used in the given vector @a v or if the input is not valid MessagePack @throw std::out_of_range if the given vector ends prematurely @sa https://github.com/msgpack/msgpack/blob/master/spec.md */ static basic_json from_msgpack_internal(const std::vector<uint8_t>& v, size_t& idx) { // make sure reading 1 byte is safe check_length(v.size(), 1, idx); // store and increment index const size_t current_idx = idx++; if (v[current_idx] <= 0xbf) { if (v[current_idx] <= 0x7f) // positive fixint { return v[current_idx]; } if (v[current_idx] <= 0x8f) // fixmap { basic_json result = value_t::object; const size_t len = v[current_idx] & 0x0f; for (size_t i = 0; i < len; ++i) { std::string key = from_msgpack_internal(v, idx); result[key] = from_msgpack_internal(v, idx); } return result; } else if (v[current_idx] <= 0x9f) // fixarray { basic_json result = value_t::array; const size_t len = v[current_idx] & 0x0f; for (size_t i = 0; i < len; ++i) { result.push_back(from_msgpack_internal(v, idx)); } return result; } else // fixstr { const size_t len = v[current_idx] & 0x1f; const size_t offset = current_idx + 1; idx += len; // skip content bytes check_length(v.size(), len, offset); return std::string(reinterpret_cast<const char*>(v.data()) + offset, len); } } else if (v[current_idx] >= 0xe0) // negative fixint { return static_cast<int8_t>(v[current_idx]); } else { switch (v[current_idx]) { case 0xc0: // nil { return value_t::null; } case 0xc2: // false { return false; } case 0xc3: // true { return true; } case 0xca: // float 32 { // copy bytes in reverse order into the double variable float res; for (size_t byte = 0; byte < sizeof(float); ++byte) { reinterpret_cast<uint8_t*>(&res)[sizeof(float) - byte - 1] = v.at(current_idx + 1 + byte); } idx += sizeof(float); // skip content bytes return res; } case 0xcb: // float 64 { // copy bytes in reverse order into the double variable double res; for (size_t byte = 0; byte < sizeof(double); ++byte) { reinterpret_cast<uint8_t*>(&res)[sizeof(double) - byte - 1] = v.at(current_idx + 1 + byte); } idx += sizeof(double); // skip content bytes return res; } case 0xcc: // uint 8 { idx += 1; // skip content byte return get_from_vector<uint8_t>(v, current_idx); } case 0xcd: // uint 16 { idx += 2; // skip 2 content bytes return get_from_vector<uint16_t>(v, current_idx); } case 0xce: // uint 32 { idx += 4; // skip 4 content bytes return get_from_vector<uint32_t>(v, current_idx); } case 0xcf: // uint 64 { idx += 8; // skip 8 content bytes return get_from_vector<uint64_t>(v, current_idx); } case 0xd0: // int 8 { idx += 1; // skip content byte return get_from_vector<int8_t>(v, current_idx); } case 0xd1: // int 16 { idx += 2; // skip 2 content bytes return get_from_vector<int16_t>(v, current_idx); } case 0xd2: // int 32 { idx += 4; // skip 4 content bytes return get_from_vector<int32_t>(v, current_idx); } case 0xd3: // int 64 { idx += 8; // skip 8 content bytes return get_from_vector<int64_t>(v, current_idx); } case 0xd9: // str 8 { const auto len = static_cast<size_t>(get_from_vector<uint8_t>(v, current_idx)); const size_t offset = current_idx + 2; idx += len + 1; // skip size byte + content bytes check_length(v.size(), len, offset); return std::string(reinterpret_cast<const char*>(v.data()) + offset, len); } case 0xda: // str 16 { const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx)); const size_t offset = current_idx + 3; idx += len + 2; // skip 2 size bytes + content bytes check_length(v.size(), len, offset); return std::string(reinterpret_cast<const char*>(v.data()) + offset, len); } case 0xdb: // str 32 { const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx)); const size_t offset = current_idx + 5; idx += len + 4; // skip 4 size bytes + content bytes check_length(v.size(), len, offset); return std::string(reinterpret_cast<const char*>(v.data()) + offset, len); } case 0xdc: // array 16 { basic_json result = value_t::array; const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx)); idx += 2; // skip 2 size bytes for (size_t i = 0; i < len; ++i) { result.push_back(from_msgpack_internal(v, idx)); } return result; } case 0xdd: // array 32 { basic_json result = value_t::array; const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx)); idx += 4; // skip 4 size bytes for (size_t i = 0; i < len; ++i) { result.push_back(from_msgpack_internal(v, idx)); } return result; } case 0xde: // map 16 { basic_json result = value_t::object; const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx)); idx += 2; // skip 2 size bytes for (size_t i = 0; i < len; ++i) { std::string key = from_msgpack_internal(v, idx); result[key] = from_msgpack_internal(v, idx); } return result; } case 0xdf: // map 32 { basic_json result = value_t::object; const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx)); idx += 4; // skip 4 size bytes for (size_t i = 0; i < len; ++i) { std::string key = from_msgpack_internal(v, idx); result[key] = from_msgpack_internal(v, idx); } return result; } default: { JSON_THROW(std::invalid_argument("error parsing a msgpack @ " + std::to_string(current_idx) + ": " + std::to_string(static_cast<int>(v[current_idx])))); } } } } /*! @brief create a JSON value from a given CBOR vector @param[in] v CBOR serialization @param[in] idx byte index to start reading from @a v @return deserialized JSON value @throw std::invalid_argument if unsupported features from CBOR were used in the given vector @a v or if the input is not valid CBOR @throw std::out_of_range if the given vector ends prematurely @sa https://tools.ietf.org/html/rfc7049 */ static basic_json from_cbor_internal(const std::vector<uint8_t>& v, size_t& idx) { // store and increment index const size_t current_idx = idx++; switch (v.at(current_idx)) { // Integer 0x00..0x17 (0..23) case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: { return v[current_idx]; } case 0x18: // Unsigned integer (one-byte uint8_t follows) { idx += 1; // skip content byte return get_from_vector<uint8_t>(v, current_idx); } case 0x19: // Unsigned integer (two-byte uint16_t follows) { idx += 2; // skip 2 content bytes return get_from_vector<uint16_t>(v, current_idx); } case 0x1a: // Unsigned integer (four-byte uint32_t follows) { idx += 4; // skip 4 content bytes return get_from_vector<uint32_t>(v, current_idx); } case 0x1b: // Unsigned integer (eight-byte uint64_t follows) { idx += 8; // skip 8 content bytes return get_from_vector<uint64_t>(v, current_idx); } // Negative integer -1-0x00..-1-0x17 (-1..-24) case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f: case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: { return static_cast<int8_t>(0x20 - 1 - v[current_idx]); } case 0x38: // Negative integer (one-byte uint8_t follows) { idx += 1; // skip content byte // must be uint8_t ! return static_cast<number_integer_t>(-1) - get_from_vector<uint8_t>(v, current_idx); } case 0x39: // Negative integer -1-n (two-byte uint16_t follows) { idx += 2; // skip 2 content bytes return static_cast<number_integer_t>(-1) - get_from_vector<uint16_t>(v, current_idx); } case 0x3a: // Negative integer -1-n (four-byte uint32_t follows) { idx += 4; // skip 4 content bytes return static_cast<number_integer_t>(-1) - get_from_vector<uint32_t>(v, current_idx); } case 0x3b: // Negative integer -1-n (eight-byte uint64_t follows) { idx += 8; // skip 8 content bytes return static_cast<number_integer_t>(-1) - static_cast<number_integer_t>(get_from_vector<uint64_t>(v, current_idx)); } // UTF-8 string (0x00..0x17 bytes follow) case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f: case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: { const auto len = static_cast<size_t>(v[current_idx] - 0x60); const size_t offset = current_idx + 1; idx += len; // skip content bytes check_length(v.size(), len, offset); return std::string(reinterpret_cast<const char*>(v.data()) + offset, len); } case 0x78: // UTF-8 string (one-byte uint8_t for n follows) { const auto len = static_cast<size_t>(get_from_vector<uint8_t>(v, current_idx)); const size_t offset = current_idx + 2; idx += len + 1; // skip size byte + content bytes check_length(v.size(), len, offset); return std::string(reinterpret_cast<const char*>(v.data()) + offset, len); } case 0x79: // UTF-8 string (two-byte uint16_t for n follow) { const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx)); const size_t offset = current_idx + 3; idx += len + 2; // skip 2 size bytes + content bytes check_length(v.size(), len, offset); return std::string(reinterpret_cast<const char*>(v.data()) + offset, len); } case 0x7a: // UTF-8 string (four-byte uint32_t for n follow) { const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx)); const size_t offset = current_idx + 5; idx += len + 4; // skip 4 size bytes + content bytes check_length(v.size(), len, offset); return std::string(reinterpret_cast<const char*>(v.data()) + offset, len); } case 0x7b: // UTF-8 string (eight-byte uint64_t for n follow) { const auto len = static_cast<size_t>(get_from_vector<uint64_t>(v, current_idx)); const size_t offset = current_idx + 9; idx += len + 8; // skip 8 size bytes + content bytes check_length(v.size(), len, offset); return std::string(reinterpret_cast<const char*>(v.data()) + offset, len); } case 0x7f: // UTF-8 string (indefinite length) { std::string result; while (v.at(idx) != 0xff) { string_t s = from_cbor_internal(v, idx); result += s; } // skip break byte (0xFF) idx += 1; return result; } // array (0x00..0x17 data items follow) case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f: case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: { basic_json result = value_t::array; const auto len = static_cast<size_t>(v[current_idx] - 0x80); for (size_t i = 0; i < len; ++i) { result.push_back(from_cbor_internal(v, idx)); } return result; } case 0x98: // array (one-byte uint8_t for n follows) { basic_json result = value_t::array; const auto len = static_cast<size_t>(get_from_vector<uint8_t>(v, current_idx)); idx += 1; // skip 1 size byte for (size_t i = 0; i < len; ++i) { result.push_back(from_cbor_internal(v, idx)); } return result; } case 0x99: // array (two-byte uint16_t for n follow) { basic_json result = value_t::array; const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx)); idx += 2; // skip 4 size bytes for (size_t i = 0; i < len; ++i) { result.push_back(from_cbor_internal(v, idx)); } return result; } case 0x9a: // array (four-byte uint32_t for n follow) { basic_json result = value_t::array; const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx)); idx += 4; // skip 4 size bytes for (size_t i = 0; i < len; ++i) { result.push_back(from_cbor_internal(v, idx)); } return result; } case 0x9b: // array (eight-byte uint64_t for n follow) { basic_json result = value_t::array; const auto len = static_cast<size_t>(get_from_vector<uint64_t>(v, current_idx)); idx += 8; // skip 8 size bytes for (size_t i = 0; i < len; ++i) { result.push_back(from_cbor_internal(v, idx)); } return result; } case 0x9f: // array (indefinite length) { basic_json result = value_t::array; while (v.at(idx) != 0xff) { result.push_back(from_cbor_internal(v, idx)); } // skip break byte (0xFF) idx += 1; return result; } // map (0x00..0x17 pairs of data items follow) case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7: case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf: case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7: { basic_json result = value_t::object; const auto len = static_cast<size_t>(v[current_idx] - 0xa0); for (size_t i = 0; i < len; ++i) { std::string key = from_cbor_internal(v, idx); result[key] = from_cbor_internal(v, idx); } return result; } case 0xb8: // map (one-byte uint8_t for n follows) { basic_json result = value_t::object; const auto len = static_cast<size_t>(get_from_vector<uint8_t>(v, current_idx)); idx += 1; // skip 1 size byte for (size_t i = 0; i < len; ++i) { std::string key = from_cbor_internal(v, idx); result[key] = from_cbor_internal(v, idx); } return result; } case 0xb9: // map (two-byte uint16_t for n follow) { basic_json result = value_t::object; const auto len = static_cast<size_t>(get_from_vector<uint16_t>(v, current_idx)); idx += 2; // skip 2 size bytes for (size_t i = 0; i < len; ++i) { std::string key = from_cbor_internal(v, idx); result[key] = from_cbor_internal(v, idx); } return result; } case 0xba: // map (four-byte uint32_t for n follow) { basic_json result = value_t::object; const auto len = static_cast<size_t>(get_from_vector<uint32_t>(v, current_idx)); idx += 4; // skip 4 size bytes for (size_t i = 0; i < len; ++i) { std::string key = from_cbor_internal(v, idx); result[key] = from_cbor_internal(v, idx); } return result; } case 0xbb: // map (eight-byte uint64_t for n follow) { basic_json result = value_t::object; const auto len = static_cast<size_t>(get_from_vector<uint64_t>(v, current_idx)); idx += 8; // skip 8 size bytes for (size_t i = 0; i < len; ++i) { std::string key = from_cbor_internal(v, idx); result[key] = from_cbor_internal(v, idx); } return result; } case 0xbf: // map (indefinite length) { basic_json result = value_t::object; while (v.at(idx) != 0xff) { std::string key = from_cbor_internal(v, idx); result[key] = from_cbor_internal(v, idx); } // skip break byte (0xFF) idx += 1; return result; } case 0xf4: // false { return false; } case 0xf5: // true { return true; } case 0xf6: // null { return value_t::null; } case 0xf9: // Half-Precision Float (two-byte IEEE 754) { idx += 2; // skip two content bytes // code from RFC 7049, Appendix D, Figure 3: // As half-precision floating-point numbers were only added to // IEEE 754 in 2008, today's programming platforms often still // only have limited support for them. It is very easy to // include at least decoding support for them even without such // support. An example of a small decoder for half-precision // floating-point numbers in the C language is shown in Fig. 3. const int half = (v.at(current_idx + 1) << 8) + v.at(current_idx + 2); const int exp = (half >> 10) & 0x1f; const int mant = half & 0x3ff; double val; if (exp == 0) { val = std::ldexp(mant, -24); } else if (exp != 31) { val = std::ldexp(mant + 1024, exp - 25); } else { val = mant == 0 ? INFINITY : NAN; } return (half & 0x8000) != 0 ? -val : val; } case 0xfa: // Single-Precision Float (four-byte IEEE 754) { // copy bytes in reverse order into the float variable float res; for (size_t byte = 0; byte < sizeof(float); ++byte) { reinterpret_cast<uint8_t*>(&res)[sizeof(float) - byte - 1] = v.at(current_idx + 1 + byte); } idx += sizeof(float); // skip content bytes return res; } case 0xfb: // Double-Precision Float (eight-byte IEEE 754) { // copy bytes in reverse order into the double variable double res; for (size_t byte = 0; byte < sizeof(double); ++byte) { reinterpret_cast<uint8_t*>(&res)[sizeof(double) - byte - 1] = v.at(current_idx + 1 + byte); } idx += sizeof(double); // skip content bytes return res; } default: // anything else (0xFF is handled inside the other types) { JSON_THROW(std::invalid_argument("error parsing a CBOR @ " + std::to_string(current_idx) + ": " + std::to_string(static_cast<int>(v[current_idx])))); } } } public: /*! @brief create a MessagePack serialization of a given JSON value Serializes a given JSON value @a j to a byte vector using the MessagePack serialization format. MessagePack is a binary serialization format which aims to be more compact than JSON itself, yet more efficient to parse. @param[in] j JSON value to serialize @return MessagePack serialization as byte vector @complexity Linear in the size of the JSON value @a j. @liveexample{The example shows the serialization of a JSON value to a byte vector in MessagePack format.,to_msgpack} @sa http://msgpack.org @sa @ref from_msgpack(const std::vector<uint8_t>&) for the analogous deserialization @sa @ref to_cbor(const basic_json& for the related CBOR format */ static std::vector<uint8_t> to_msgpack(const basic_json& j) { std::vector<uint8_t> result; to_msgpack_internal(j, result); return result; } /*! @brief create a JSON value from a byte vector in MessagePack format Deserializes a given byte vector @a v to a JSON value using the MessagePack serialization format. @param[in] v a byte vector in MessagePack format @return deserialized JSON value @throw std::invalid_argument if unsupported features from MessagePack were used in the given vector @a v or if the input is not valid MessagePack @throw std::out_of_range if the given vector ends prematurely @complexity Linear in the size of the byte vector @a v. @liveexample{The example shows the deserialization of a byte vector in MessagePack format to a JSON value.,from_msgpack} @sa http://msgpack.org @sa @ref to_msgpack(const basic_json&) for the analogous serialization @sa @ref from_cbor(const std::vector<uint8_t>&) for the related CBOR format */ static basic_json from_msgpack(const std::vector<uint8_t>& v) { size_t i = 0; return from_msgpack_internal(v, i); } /*! @brief create a MessagePack serialization of a given JSON value Serializes a given JSON value @a j to a byte vector using the CBOR (Concise Binary Object Representation) serialization format. CBOR is a binary serialization format which aims to be more compact than JSON itself, yet more efficient to parse. @param[in] j JSON value to serialize @return MessagePack serialization as byte vector @complexity Linear in the size of the JSON value @a j. @liveexample{The example shows the serialization of a JSON value to a byte vector in CBOR format.,to_cbor} @sa http://cbor.io @sa @ref from_cbor(const std::vector<uint8_t>&) for the analogous deserialization @sa @ref to_msgpack(const basic_json& for the related MessagePack format */ static std::vector<uint8_t> to_cbor(const basic_json& j) { std::vector<uint8_t> result; to_cbor_internal(j, result); return result; } /*! @brief create a JSON value from a byte vector in CBOR format Deserializes a given byte vector @a v to a JSON value using the CBOR (Concise Binary Object Representation) serialization format. @param[in] v a byte vector in CBOR format @return deserialized JSON value @throw std::invalid_argument if unsupported features from CBOR were used in the given vector @a v or if the input is not valid MessagePack @throw std::out_of_range if the given vector ends prematurely @complexity Linear in the size of the byte vector @a v. @liveexample{The example shows the deserialization of a byte vector in CBOR format to a JSON value.,from_cbor} @sa http://cbor.io @sa @ref to_cbor(const basic_json&) for the analogous serialization @sa @ref from_msgpack(const std::vector<uint8_t>&) for the related MessagePack format */ static basic_json from_cbor(const std::vector<uint8_t>& v) { size_t i = 0; return from_cbor_internal(v, i); } /// @} /////////////////////////// // convenience functions // /////////////////////////// /*! @brief return the type as string Returns the type name as string to be used in error messages - usually to indicate that a function was called on a wrong JSON type. @return basically a string representation of a the @a m_type member @complexity Constant. @liveexample{The following code exemplifies `type_name()` for all JSON types.,type_name} @since version 1.0.0, public since 2.1.0 */ std::string type_name() const { { switch (m_type) { case value_t::null: return "null"; case value_t::object: return "object"; case value_t::array: return "array"; case value_t::string: return "string"; case value_t::boolean: return "boolean"; case value_t::discarded: return "discarded"; default: return "number"; } } } private: /*! @brief calculates the extra space to escape a JSON string @param[in] s the string to escape @return the number of characters required to escape string @a s @complexity Linear in the length of string @a s. */ static std::size_t extra_space(const string_t& s) noexcept { return std::accumulate(s.begin(), s.end(), size_t{}, [](size_t res, typename string_t::value_type c) { switch (c) { case '"': case '\\': case '\b': case '\f': case '\n': case '\r': case '\t': { // from c (1 byte) to \x (2 bytes) return res + 1; } default: { if (c >= 0x00 and c <= 0x1f) { // from c (1 byte) to \uxxxx (6 bytes) return res + 5; } return res; } } }); } /*! @brief escape a string Escape a string by replacing certain special characters by a sequence of an escape character (backslash) and another character and other control characters by a sequence of "\u" followed by a four-digit hex representation. @param[in] s the string to escape @return the escaped string @complexity Linear in the length of string @a s. */ static string_t escape_string(const string_t& s) { const auto space = extra_space(s); if (space == 0) { return s; } // create a result string of necessary size string_t result(s.size() + space, '\\'); std::size_t pos = 0; for (const auto& c : s) { switch (c) { // quotation mark (0x22) case '"': { result[pos + 1] = '"'; pos += 2; break; } // reverse solidus (0x5c) case '\\': { // nothing to change pos += 2; break; } // backspace (0x08) case '\b': { result[pos + 1] = 'b'; pos += 2; break; } // formfeed (0x0c) case '\f': { result[pos + 1] = 'f'; pos += 2; break; } // newline (0x0a) case '\n': { result[pos + 1] = 'n'; pos += 2; break; } // carriage return (0x0d) case '\r': { result[pos + 1] = 'r'; pos += 2; break; } // horizontal tab (0x09) case '\t': { result[pos + 1] = 't'; pos += 2; break; } default: { if (c >= 0x00 and c <= 0x1f) { // convert a number 0..15 to its hex representation // (0..f) static const char hexify[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; // print character c as \uxxxx for (const char m : { 'u', '0', '0', hexify[c >> 4], hexify[c & 0x0f] }) { result[++pos] = m; } ++pos; } else { // all other characters are added as-is result[pos++] = c; } break; } } } return result; } /*! @brief internal implementation of the serialization function This function is called by the public member function dump and organizes the serialization internally. The indentation level is propagated as additional parameter. In case of arrays and objects, the function is called recursively. Note that - strings and object keys are escaped using `escape_string()` - integer numbers are converted implicitly via `operator<<` - floating-point numbers are converted to a string using `"%g"` format @param[out] o stream to write to @param[in] pretty_print whether the output shall be pretty-printed @param[in] indent_step the indent level @param[in] current_indent the current indent level (only used internally) */ void dump(std::ostream& o, const bool pretty_print, const unsigned int indent_step, const unsigned int current_indent = 0) const { // variable to hold indentation for recursive calls unsigned int new_indent = current_indent; switch (m_type) { case value_t::object: { if (m_value.object->empty()) { o << "{}"; return; } o << "{"; // increase indentation if (pretty_print) { new_indent += indent_step; o << "\n"; } for (auto i = m_value.object->cbegin(); i != m_value.object->cend(); ++i) { if (i != m_value.object->cbegin()) { o << (pretty_print ? ",\n" : ","); } o << string_t(new_indent, ' ') << "\"" << escape_string(i->first) << "\":" << (pretty_print ? " " : ""); i->second.dump(o, pretty_print, indent_step, new_indent); } // decrease indentation if (pretty_print) { new_indent -= indent_step; o << "\n"; } o << string_t(new_indent, ' ') + "}"; return; } case value_t::array: { if (m_value.array->empty()) { o << "[]"; return; } o << "["; // increase indentation if (pretty_print) { new_indent += indent_step; o << "\n"; } for (auto i = m_value.array->cbegin(); i != m_value.array->cend(); ++i) { if (i != m_value.array->cbegin()) { o << (pretty_print ? ",\n" : ","); } o << string_t(new_indent, ' '); i->dump(o, pretty_print, indent_step, new_indent); } // decrease indentation if (pretty_print) { new_indent -= indent_step; o << "\n"; } o << string_t(new_indent, ' ') << "]"; return; } case value_t::string: { o << string_t("\"") << escape_string(*m_value.string) << "\""; return; } case value_t::boolean: { o << (m_value.boolean ? "true" : "false"); return; } case value_t::number_integer: { o << m_value.number_integer; return; } case value_t::number_unsigned: { o << m_value.number_unsigned; return; } case value_t::number_float: { if (m_value.number_float == 0) { // special case for zero to get "0.0"/"-0.0" o << (std::signbit(m_value.number_float) ? "-0.0" : "0.0"); } else { o << m_value.number_float; } return; } case value_t::discarded: { o << "<discarded>"; return; } case value_t::null: { o << "null"; return; } } } private: ////////////////////// // member variables // ////////////////////// /// the type of the current element value_t m_type = value_t::null; /// the value of the current element json_value m_value = {}; private: /////////////// // iterators // /////////////// /*! @brief an iterator for primitive JSON types This class models an iterator for primitive JSON types (boolean, number, string). It's only purpose is to allow the iterator/const_iterator classes to "iterate" over primitive values. Internally, the iterator is modeled by a `difference_type` variable. Value begin_value (`0`) models the begin, end_value (`1`) models past the end. */ class primitive_iterator_t { public: difference_type get_value() const noexcept { return m_it; } /// set iterator to a defined beginning void set_begin() noexcept { m_it = begin_value; } /// set iterator to a defined past the end void set_end() noexcept { m_it = end_value; } /// return whether the iterator can be dereferenced constexpr bool is_begin() const noexcept { return (m_it == begin_value); } /// return whether the iterator is at end constexpr bool is_end() const noexcept { return (m_it == end_value); } friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return lhs.m_it == rhs.m_it; } friend constexpr bool operator!=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return !(lhs == rhs); } friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return lhs.m_it < rhs.m_it; } friend constexpr bool operator<=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return lhs.m_it <= rhs.m_it; } friend constexpr bool operator>(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return lhs.m_it > rhs.m_it; } friend constexpr bool operator>=(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return lhs.m_it >= rhs.m_it; } primitive_iterator_t operator+(difference_type i) { auto result = *this; result += i; return result; } friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return lhs.m_it - rhs.m_it; } friend std::ostream& operator<<(std::ostream& os, primitive_iterator_t it) { return os << it.m_it; } primitive_iterator_t& operator++() { ++m_it; return *this; } primitive_iterator_t operator++(int) { auto result = *this; m_it++; return result; } primitive_iterator_t& operator--() { --m_it; return *this; } primitive_iterator_t operator--(int) { auto result = *this; m_it--; return result; } primitive_iterator_t& operator+=(difference_type n) { m_it += n; return *this; } primitive_iterator_t& operator-=(difference_type n) { m_it -= n; return *this; } private: static constexpr difference_type begin_value = 0; static constexpr difference_type end_value = begin_value + 1; /// iterator as signed integer type difference_type m_it = std::numeric_limits<std::ptrdiff_t>::denorm_min(); }; /*! @brief an iterator value @note This structure could easily be a union, but MSVC currently does not allow unions members with complex constructors, see https://github.com/nlohmann/json/pull/105. */ struct internal_iterator { /// iterator for JSON objects typename object_t::iterator object_iterator; /// iterator for JSON arrays typename array_t::iterator array_iterator; /// generic iterator for all other types primitive_iterator_t primitive_iterator; /// create an uninitialized internal_iterator internal_iterator() noexcept : object_iterator(), array_iterator(), primitive_iterator() {} }; /// proxy class for the iterator_wrapper functions template<typename IteratorType> class iteration_proxy { private: /// helper class for iteration class iteration_proxy_internal { private: /// the iterator IteratorType anchor; /// an index for arrays (used to create key names) size_t array_index = 0; public: explicit iteration_proxy_internal(IteratorType it) noexcept : anchor(it) {} /// dereference operator (needed for range-based for) iteration_proxy_internal& operator*() { return *this; } /// increment operator (needed for range-based for) iteration_proxy_internal& operator++() { ++anchor; ++array_index; return *this; } /// inequality operator (needed for range-based for) bool operator!= (const iteration_proxy_internal& o) const { return anchor != o.anchor; } /// return key of the iterator typename basic_json::string_t key() const { assert(anchor.m_object != nullptr); switch (anchor.m_object->type()) { // use integer array index as key case value_t::array: { return std::to_string(array_index); } // use key from the object case value_t::object: { return anchor.key(); } // use an empty key for all primitive types default: { return ""; } } } /// return value of the iterator typename IteratorType::reference value() const { return anchor.value(); } }; /// the container to iterate typename IteratorType::reference container; public: /// construct iteration proxy from a container explicit iteration_proxy(typename IteratorType::reference cont) : container(cont) {} /// return iterator begin (needed for range-based for) iteration_proxy_internal begin() noexcept { return iteration_proxy_internal(container.begin()); } /// return iterator end (needed for range-based for) iteration_proxy_internal end() noexcept { return iteration_proxy_internal(container.end()); } }; public: /*! @brief a template for a random access iterator for the @ref basic_json class This class implements a both iterators (iterator and const_iterator) for the @ref basic_json class. @note An iterator is called *initialized* when a pointer to a JSON value has been set (e.g., by a constructor or a copy assignment). If the iterator is default-constructed, it is *uninitialized* and most methods are undefined. **The library uses assertions to detect calls on uninitialized iterators.** @requirement The class satisfies the following concept requirements: - [RandomAccessIterator](http://en.cppreference.com/w/cpp/concept/RandomAccessIterator): The iterator that can be moved to point (forward and backward) to any element in constant time. @since version 1.0.0, simplified in version 2.0.9 */ template<typename U> class iter_impl : public std::iterator<std::random_access_iterator_tag, U> { /// allow basic_json to access private members friend class basic_json; // make sure U is basic_json or const basic_json static_assert(std::is_same<U, basic_json>::value or std::is_same<U, const basic_json>::value, "iter_impl only accepts (const) basic_json"); public: /// the type of the values when the iterator is dereferenced using value_type = typename basic_json::value_type; /// a type to represent differences between iterators using difference_type = typename basic_json::difference_type; /// defines a pointer to the type iterated over (value_type) using pointer = typename std::conditional<std::is_const<U>::value, typename basic_json::const_pointer, typename basic_json::pointer>::type; /// defines a reference to the type iterated over (value_type) using reference = typename std::conditional<std::is_const<U>::value, typename basic_json::const_reference, typename basic_json::reference>::type; /// the category of the iterator using iterator_category = std::bidirectional_iterator_tag; /// default constructor iter_impl() = default; /*! @brief constructor for a given JSON instance @param[in] object pointer to a JSON object for this iterator @pre object != nullptr @post The iterator is initialized; i.e. `m_object != nullptr`. */ explicit iter_impl(pointer object) noexcept : m_object(object) { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { m_it.object_iterator = typename object_t::iterator(); break; } case basic_json::value_t::array: { m_it.array_iterator = typename array_t::iterator(); break; } default: { m_it.primitive_iterator = primitive_iterator_t(); break; } } } /* Use operator `const_iterator` instead of `const_iterator(const iterator& other) noexcept` to avoid two class definitions for @ref iterator and @ref const_iterator. This function is only called if this class is an @ref iterator. If this class is a @ref const_iterator this function is not called. */ operator const_iterator() const { const_iterator ret; if (m_object) { ret.m_object = m_object; ret.m_it = m_it; } return ret; } /*! @brief copy constructor @param[in] other iterator to copy from @note It is not checked whether @a other is initialized. */ iter_impl(const iter_impl& other) noexcept : m_object(other.m_object), m_it(other.m_it) {} /*! @brief copy assignment @param[in,out] other iterator to copy from @note It is not checked whether @a other is initialized. */ iter_impl& operator=(iter_impl other) noexcept( std::is_nothrow_move_constructible<pointer>::value and std::is_nothrow_move_assignable<pointer>::value and std::is_nothrow_move_constructible<internal_iterator>::value and std::is_nothrow_move_assignable<internal_iterator>::value ) { std::swap(m_object, other.m_object); std::swap(m_it, other.m_it); return *this; } private: /*! @brief set the iterator to the first value @pre The iterator is initialized; i.e. `m_object != nullptr`. */ void set_begin() noexcept { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { m_it.object_iterator = m_object->m_value.object->begin(); break; } case basic_json::value_t::array: { m_it.array_iterator = m_object->m_value.array->begin(); break; } case basic_json::value_t::null: { // set to end so begin()==end() is true: null is empty m_it.primitive_iterator.set_end(); break; } default: { m_it.primitive_iterator.set_begin(); break; } } } /*! @brief set the iterator past the last value @pre The iterator is initialized; i.e. `m_object != nullptr`. */ void set_end() noexcept { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { m_it.object_iterator = m_object->m_value.object->end(); break; } case basic_json::value_t::array: { m_it.array_iterator = m_object->m_value.array->end(); break; } default: { m_it.primitive_iterator.set_end(); break; } } } public: /*! @brief return a reference to the value pointed to by the iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ reference operator*() const { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { assert(m_it.object_iterator != m_object->m_value.object->end()); return m_it.object_iterator->second; } case basic_json::value_t::array: { assert(m_it.array_iterator != m_object->m_value.array->end()); return *m_it.array_iterator; } case basic_json::value_t::null: { JSON_THROW(std::out_of_range("cannot get value")); } default: { if (m_it.primitive_iterator.is_begin()) { return *m_object; } JSON_THROW(std::out_of_range("cannot get value")); } } } /*! @brief dereference the iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ pointer operator->() const { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { assert(m_it.object_iterator != m_object->m_value.object->end()); return &(m_it.object_iterator->second); } case basic_json::value_t::array: { assert(m_it.array_iterator != m_object->m_value.array->end()); return &*m_it.array_iterator; } default: { if (m_it.primitive_iterator.is_begin()) { return m_object; } JSON_THROW(std::out_of_range("cannot get value")); } } } /*! @brief post-increment (it++) @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl operator++(int) { auto result = *this; ++(*this); return result; } /*! @brief pre-increment (++it) @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl& operator++() { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { std::advance(m_it.object_iterator, 1); break; } case basic_json::value_t::array: { std::advance(m_it.array_iterator, 1); break; } default: { ++m_it.primitive_iterator; break; } } return *this; } /*! @brief post-decrement (it--) @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl operator--(int) { auto result = *this; --(*this); return result; } /*! @brief pre-decrement (--it) @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl& operator--() { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { std::advance(m_it.object_iterator, -1); break; } case basic_json::value_t::array: { std::advance(m_it.array_iterator, -1); break; } default: { --m_it.primitive_iterator; break; } } return *this; } /*! @brief comparison: equal @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator==(const iter_impl& other) const { // if objects are not the same, the comparison is undefined if (m_object != other.m_object) { JSON_THROW(std::domain_error("cannot compare iterators of different containers")); } assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { return (m_it.object_iterator == other.m_it.object_iterator); } case basic_json::value_t::array: { return (m_it.array_iterator == other.m_it.array_iterator); } default: { return (m_it.primitive_iterator == other.m_it.primitive_iterator); } } } /*! @brief comparison: not equal @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator!=(const iter_impl& other) const { return not operator==(other); } /*! @brief comparison: smaller @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator<(const iter_impl& other) const { // if objects are not the same, the comparison is undefined if (m_object != other.m_object) { JSON_THROW(std::domain_error("cannot compare iterators of different containers")); } assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { JSON_THROW(std::domain_error("cannot compare order of object iterators")); } case basic_json::value_t::array: { return (m_it.array_iterator < other.m_it.array_iterator); } default: { return (m_it.primitive_iterator < other.m_it.primitive_iterator); } } } /*! @brief comparison: less than or equal @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator<=(const iter_impl& other) const { return not other.operator < (*this); } /*! @brief comparison: greater than @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator>(const iter_impl& other) const { return not operator<=(other); } /*! @brief comparison: greater than or equal @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator>=(const iter_impl& other) const { return not operator<(other); } /*! @brief add to iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl& operator+=(difference_type i) { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { JSON_THROW(std::domain_error("cannot use offsets with object iterators")); } case basic_json::value_t::array: { std::advance(m_it.array_iterator, i); break; } default: { m_it.primitive_iterator += i; break; } } return *this; } /*! @brief subtract from iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl& operator-=(difference_type i) { return operator+=(-i); } /*! @brief add to iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl operator+(difference_type i) { auto result = *this; result += i; return result; } /*! @brief subtract from iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl operator-(difference_type i) { auto result = *this; result -= i; return result; } /*! @brief return difference @pre The iterator is initialized; i.e. `m_object != nullptr`. */ difference_type operator-(const iter_impl& other) const { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { JSON_THROW(std::domain_error("cannot use offsets with object iterators")); } case basic_json::value_t::array: { return m_it.array_iterator - other.m_it.array_iterator; } default: { return m_it.primitive_iterator - other.m_it.primitive_iterator; } } } /*! @brief access to successor @pre The iterator is initialized; i.e. `m_object != nullptr`. */ reference operator[](difference_type n) const { assert(m_object != nullptr); switch (m_object->m_type) { case basic_json::value_t::object: { JSON_THROW(std::domain_error("cannot use operator[] for object iterators")); } case basic_json::value_t::array: { return *std::next(m_it.array_iterator, n); } case basic_json::value_t::null: { JSON_THROW(std::out_of_range("cannot get value")); } default: { if (m_it.primitive_iterator.get_value() == -n) { return *m_object; } JSON_THROW(std::out_of_range("cannot get value")); } } } /*! @brief return the key of an object iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ typename object_t::key_type key() const { assert(m_object != nullptr); if (m_object->is_object()) { return m_it.object_iterator->first; } JSON_THROW(std::domain_error("cannot use key() for non-object iterators")); } /*! @brief return the value of an iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ reference value() const { return operator*(); } private: /// associated JSON instance pointer m_object = nullptr; /// the actual iterator of the associated instance internal_iterator m_it = internal_iterator(); }; /*! @brief a template for a reverse iterator class @tparam Base the base iterator type to reverse. Valid types are @ref iterator (to create @ref reverse_iterator) and @ref const_iterator (to create @ref const_reverse_iterator). @requirement The class satisfies the following concept requirements: - [RandomAccessIterator](http://en.cppreference.com/w/cpp/concept/RandomAccessIterator): The iterator that can be moved to point (forward and backward) to any element in constant time. - [OutputIterator](http://en.cppreference.com/w/cpp/concept/OutputIterator): It is possible to write to the pointed-to element (only if @a Base is @ref iterator). @since version 1.0.0 */ template<typename Base> class json_reverse_iterator : public std::reverse_iterator<Base> { public: /// shortcut to the reverse iterator adaptor using base_iterator = std::reverse_iterator<Base>; /// the reference type for the pointed-to element using reference = typename Base::reference; /// create reverse iterator from iterator json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept : base_iterator(it) {} /// create reverse iterator from base class json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {} /// post-increment (it++) json_reverse_iterator operator++(int) { return base_iterator::operator++(1); } /// pre-increment (++it) json_reverse_iterator& operator++() { base_iterator::operator++(); return *this; } /// post-decrement (it--) json_reverse_iterator operator--(int) { return base_iterator::operator--(1); } /// pre-decrement (--it) json_reverse_iterator& operator--() { base_iterator::operator--(); return *this; } /// add to iterator json_reverse_iterator& operator+=(difference_type i) { base_iterator::operator+=(i); return *this; } /// add to iterator json_reverse_iterator operator+(difference_type i) const { auto result = *this; result += i; return result; } /// subtract from iterator json_reverse_iterator operator-(difference_type i) const { auto result = *this; result -= i; return result; } /// return difference difference_type operator-(const json_reverse_iterator& other) const { return this->base() - other.base(); } /// access to successor reference operator[](difference_type n) const { return *(this->operator+(n)); } /// return the key of an object iterator typename object_t::key_type key() const { auto it = --this->base(); return it.key(); } /// return the value of an iterator reference value() const { auto it = --this->base(); return it.operator * (); } }; private: ////////////////////// // lexer and parser // ////////////////////// /*! @brief lexical analysis This class organizes the lexical analysis during JSON deserialization. The core of it is a scanner generated by [re2c](http://re2c.org) that processes a buffer and recognizes tokens according to RFC 7159. */ class lexer { public: /// token types for the parser enum class token_type { uninitialized, ///< indicating the scanner is uninitialized literal_true, ///< the `true` literal literal_false, ///< the `false` literal literal_null, ///< the `null` literal value_string, ///< a string -- use get_string() for actual value value_number, ///< a number -- use get_number() for actual value begin_array, ///< the character for array begin `[` begin_object, ///< the character for object begin `{` end_array, ///< the character for array end `]` end_object, ///< the character for object end `}` name_separator, ///< the name separator `:` value_separator, ///< the value separator `,` parse_error, ///< indicating a parse error end_of_input ///< indicating the end of the input buffer }; /// the char type to use in the lexer using lexer_char_t = unsigned char; /// a lexer from a buffer with given length lexer(const lexer_char_t* buff, const size_t len) noexcept : m_content(buff) { assert(m_content != nullptr); m_start = m_cursor = m_content; m_limit = m_content + len; } /// a lexer from an input stream explicit lexer(std::istream& s) : m_stream(&s), m_line_buffer() { // immediately abort if stream is erroneous if (s.fail()) { JSON_THROW(std::invalid_argument("stream error")); } // fill buffer fill_line_buffer(); // skip UTF-8 byte-order mark if (m_line_buffer.size() >= 3 and m_line_buffer.substr(0, 3) == "\xEF\xBB\xBF") { m_line_buffer[0] = ' '; m_line_buffer[1] = ' '; m_line_buffer[2] = ' '; } } // switch off unwanted functions (due to pointer members) lexer() = delete; lexer(const lexer&) = delete; lexer operator=(const lexer&) = delete; /*! @brief create a string from one or two Unicode code points There are two cases: (1) @a codepoint1 is in the Basic Multilingual Plane (U+0000 through U+FFFF) and @a codepoint2 is 0, or (2) @a codepoint1 and @a codepoint2 are a UTF-16 surrogate pair to represent a code point above U+FFFF. @param[in] codepoint1 the code point (can be high surrogate) @param[in] codepoint2 the code point (can be low surrogate or 0) @return string representation of the code point; the length of the result string is between 1 and 4 characters. @throw std::out_of_range if code point is > 0x10ffff; example: `"code points above 0x10FFFF are invalid"` @throw std::invalid_argument if the low surrogate is invalid; example: `""missing or wrong low surrogate""` @complexity Constant. @see <http://en.wikipedia.org/wiki/UTF-8#Sample_code> */ static string_t to_unicode(const std::size_t codepoint1, const std::size_t codepoint2 = 0) { // calculate the code point from the given code points std::size_t codepoint = codepoint1; // check if codepoint1 is a high surrogate if (codepoint1 >= 0xD800 and codepoint1 <= 0xDBFF) { // check if codepoint2 is a low surrogate if (codepoint2 >= 0xDC00 and codepoint2 <= 0xDFFF) { codepoint = // high surrogate occupies the most significant 22 bits (codepoint1 << 10) // low surrogate occupies the least significant 15 bits + codepoint2 // there is still the 0xD800, 0xDC00 and 0x10000 noise // in the result so we have to subtract with: // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00 - 0x35FDC00; } else { JSON_THROW(std::invalid_argument("missing or wrong low surrogate")); } } string_t result; if (codepoint < 0x80) { // 1-byte characters: 0xxxxxxx (ASCII) result.append(1, static_cast<typename string_t::value_type>(codepoint)); } else if (codepoint <= 0x7ff) { // 2-byte characters: 110xxxxx 10xxxxxx result.append(1, static_cast<typename string_t::value_type>(0xC0 | ((codepoint >> 6) & 0x1F))); result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F))); } else if (codepoint <= 0xffff) { // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx result.append(1, static_cast<typename string_t::value_type>(0xE0 | ((codepoint >> 12) & 0x0F))); result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 6) & 0x3F))); result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F))); } else if (codepoint <= 0x10ffff) { // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx result.append(1, static_cast<typename string_t::value_type>(0xF0 | ((codepoint >> 18) & 0x07))); result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 12) & 0x3F))); result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 6) & 0x3F))); result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F))); } else { JSON_THROW(std::out_of_range("code points above 0x10FFFF are invalid")); } return result; } /// return name of values of type token_type (only used for errors) static std::string token_type_name(const token_type t) { switch (t) { case token_type::uninitialized: return "<uninitialized>"; case token_type::literal_true: return "true literal"; case token_type::literal_false: return "false literal"; case token_type::literal_null: return "null literal"; case token_type::value_string: return "string literal"; case token_type::value_number: return "number literal"; case token_type::begin_array: return "'['"; case token_type::begin_object: return "'{'"; case token_type::end_array: return "']'"; case token_type::end_object: return "'}'"; case token_type::name_separator: return "':'"; case token_type::value_separator: return "','"; case token_type::parse_error: return "<parse error>"; case token_type::end_of_input: return "end of input"; default: { // catch non-enum values return "unknown token"; // LCOV_EXCL_LINE } } } /*! This function implements a scanner for JSON. It is specified using regular expressions that try to follow RFC 7159 as close as possible. These regular expressions are then translated into a minimized deterministic finite automaton (DFA) by the tool [re2c](http://re2c.org). As a result, the translated code for this function consists of a large block of code with `goto` jumps. @return the class of the next token read from the buffer @complexity Linear in the length of the input.\n Proposition: The loop below will always terminate for finite input.\n Proof (by contradiction): Assume a finite input. To loop forever, the loop must never hit code with a `break` statement. The only code snippets without a `break` statement are the continue statements for whitespace and byte-order-marks. To loop forever, the input must be an infinite sequence of whitespace or byte-order-marks. This contradicts the assumption of finite input, q.e.d. */ token_type scan() { while (true) { // pointer for backtracking information m_marker = nullptr; // remember the begin of the token m_start = m_cursor; assert(m_start != nullptr); /*!re2c re2c:define:YYCTYPE = lexer_char_t; re2c:define:YYCURSOR = m_cursor; re2c:define:YYLIMIT = m_limit; re2c:define:YYMARKER = m_marker; re2c:define:YYFILL = "fill_line_buffer(@@); // LCOV_EXCL_LINE"; re2c:define:YYFILL:naked = 1; re2c:yyfill:enable = 1; re2c:indent:string = " "; re2c:indent:top = 1; re2c:labelprefix = "basic_json_parser_"; // ignore whitespace ws = [ \t\n\r]+; ws { continue; } // structural characters "[" { last_token_type = token_type::begin_array; break; } "]" { last_token_type = token_type::end_array; break; } "{" { last_token_type = token_type::begin_object; break; } "}" { last_token_type = token_type::end_object; break; } "," { last_token_type = token_type::value_separator; break; } ":" { last_token_type = token_type::name_separator; break; } // literal names "null" { last_token_type = token_type::literal_null; break; } "true" { last_token_type = token_type::literal_true; break; } "false" { last_token_type = token_type::literal_false; break; } // number decimal_point = "."; digit = [0-9]; digit_1_9 = [1-9]; e = "e" | "E"; minus = "-"; plus = "+"; zero = "0"; exp = e (minus | plus)? digit+; frac = decimal_point digit+; int = (zero | digit_1_9 digit*); number = minus? int frac? exp?; number { last_token_type = token_type::value_number; break; } // string quotation_mark = "\""; escape = "\\"; unescaped = [^"\\\x00-\x1f]; single_escaped = "\"" | "\\" | "/" | "b" | "f" | "n" | "r" | "t"; unicode_escaped = "u" [0-9a-fA-F]{4}; escaped = escape (single_escaped | unicode_escaped); char = unescaped | escaped; string = quotation_mark char* quotation_mark; string { last_token_type = token_type::value_string; break; } // end of file "\x00" { last_token_type = token_type::end_of_input; break; } // anything else is an error * { last_token_type = token_type::parse_error; break; } */ } return last_token_type; } /*! @brief append data from the stream to the line buffer This function is called by the scan() function when the end of the buffer (`m_limit`) is reached and the `m_cursor` pointer cannot be incremented without leaving the limits of the line buffer. Note re2c decides when to call this function. If the lexer reads from contiguous storage, there is no trailing null byte. Therefore, this function must make sure to add these padding null bytes. If the lexer reads from an input stream, this function reads the next line of the input. @pre p p p p p p u u u u u x . . . . . . ^ ^ ^ ^ m_content m_start | m_limit m_cursor @post u u u u u x x x x x x x . . . . . . ^ ^ ^ | m_cursor m_limit m_start m_content */ void fill_line_buffer(size_t n = 0) { // if line buffer is used, m_content points to its data assert(m_line_buffer.empty() or m_content == reinterpret_cast<const lexer_char_t*>(m_line_buffer.data())); // if line buffer is used, m_limit is set past the end of its data assert(m_line_buffer.empty() or m_limit == m_content + m_line_buffer.size()); // pointer relationships assert(m_content <= m_start); assert(m_start <= m_cursor); assert(m_cursor <= m_limit); assert(m_marker == nullptr or m_marker <= m_limit); // number of processed characters (p) const auto num_processed_chars = static_cast<size_t>(m_start - m_content); // offset for m_marker wrt. to m_start const auto offset_marker = (m_marker == nullptr) ? 0 : m_marker - m_start; // number of unprocessed characters (u) const auto offset_cursor = m_cursor - m_start; // no stream is used or end of file is reached if (m_stream == nullptr or m_stream->eof()) { // m_start may or may not be pointing into m_line_buffer at // this point. We trust the standand library to do the right // thing. See http://stackoverflow.com/q/28142011/266378 m_line_buffer.assign(m_start, m_limit); // append n characters to make sure that there is sufficient // space between m_cursor and m_limit m_line_buffer.append(1, '\x00'); if (n > 0) { m_line_buffer.append(n - 1, '\x01'); } } else { // delete processed characters from line buffer m_line_buffer.erase(0, num_processed_chars); // read next line from input stream m_line_buffer_tmp.clear(); std::getline(*m_stream, m_line_buffer_tmp, '\n'); // add line with newline symbol to the line buffer m_line_buffer += m_line_buffer_tmp; m_line_buffer.push_back('\n'); } // set pointers m_content = reinterpret_cast<const lexer_char_t*>(m_line_buffer.data()); assert(m_content != nullptr); m_start = m_content; m_marker = m_start + offset_marker; m_cursor = m_start + offset_cursor; m_limit = m_start + m_line_buffer.size(); } /// return string representation of last read token string_t get_token_string() const { assert(m_start != nullptr); return string_t(reinterpret_cast<typename string_t::const_pointer>(m_start), static_cast<size_t>(m_cursor - m_start)); } /*! @brief return string value for string tokens The function iterates the characters between the opening and closing quotes of the string value. The complete string is the range [m_start,m_cursor). Consequently, we iterate from m_start+1 to m_cursor-1. We differentiate two cases: 1. Escaped characters. In this case, a new character is constructed according to the nature of the escape. Some escapes create new characters (e.g., `"\\n"` is replaced by `"\n"`), some are copied as is (e.g., `"\\\\"`). Furthermore, Unicode escapes of the shape `"\\uxxxx"` need special care. In this case, to_unicode takes care of the construction of the values. 2. Unescaped characters are copied as is. @pre `m_cursor - m_start >= 2`, meaning the length of the last token is at least 2 bytes which is trivially true for any string (which consists of at least two quotes). " c1 c2 c3 ... " ^ ^ m_start m_cursor @complexity Linear in the length of the string.\n Lemma: The loop body will always terminate.\n Proof (by contradiction): Assume the loop body does not terminate. As the loop body does not contain another loop, one of the called functions must never return. The called functions are `std::strtoul` and to_unicode. Neither function can loop forever, so the loop body will never loop forever which contradicts the assumption that the loop body does not terminate, q.e.d.\n Lemma: The loop condition for the for loop is eventually false.\n Proof (by contradiction): Assume the loop does not terminate. Due to the above lemma, this can only be due to a tautological loop condition; that is, the loop condition i < m_cursor - 1 must always be true. Let x be the change of i for any loop iteration. Then m_start + 1 + x < m_cursor - 1 must hold to loop indefinitely. This can be rephrased to m_cursor - m_start - 2 > x. With the precondition, we x <= 0, meaning that the loop condition holds indefinitly if i is always decreased. However, observe that the value of i is strictly increasing with each iteration, as it is incremented by 1 in the iteration expression and never decremented inside the loop body. Hence, the loop condition will eventually be false which contradicts the assumption that the loop condition is a tautology, q.e.d. @return string value of current token without opening and closing quotes @throw std::out_of_range if to_unicode fails */ string_t get_string() const { assert(m_cursor - m_start >= 2); string_t result; result.reserve(static_cast<size_t>(m_cursor - m_start - 2)); // iterate the result between the quotes for (const lexer_char_t* i = m_start + 1; i < m_cursor - 1; ++i) { // find next escape character auto e = std::find(i, m_cursor - 1, '\\'); if (e != i) { // see https://github.com/nlohmann/json/issues/365#issuecomment-262874705 for (auto k = i; k < e; k++) { result.push_back(static_cast<typename string_t::value_type>(*k)); } i = e - 1; // -1 because of ++i } else { // processing escaped character // read next character ++i; switch (*i) { // the default escapes case 't': { result += "\t"; break; } case 'b': { result += "\b"; break; } case 'f': { result += "\f"; break; } case 'n': { result += "\n"; break; } case 'r': { result += "\r"; break; } case '\\': { result += "\\"; break; } case '/': { result += "/"; break; } case '"': { result += "\""; break; } // unicode case 'u': { // get code xxxx from uxxxx auto codepoint = std::strtoul(std::string(reinterpret_cast<typename string_t::const_pointer>(i + 1), 4).c_str(), nullptr, 16); // check if codepoint is a high surrogate if (codepoint >= 0xD800 and codepoint <= 0xDBFF) { // make sure there is a subsequent unicode if ((i + 6 >= m_limit) or * (i + 5) != '\\' or * (i + 6) != 'u') { JSON_THROW(std::invalid_argument("missing low surrogate")); } // get code yyyy from uxxxx\uyyyy auto codepoint2 = std::strtoul(std::string(reinterpret_cast<typename string_t::const_pointer> (i + 7), 4).c_str(), nullptr, 16); result += to_unicode(codepoint, codepoint2); // skip the next 10 characters (xxxx\uyyyy) i += 10; } else if (codepoint >= 0xDC00 and codepoint <= 0xDFFF) { // we found a lone low surrogate JSON_THROW(std::invalid_argument("missing high surrogate")); } else { // add unicode character(s) result += to_unicode(codepoint); // skip the next four characters (xxxx) i += 4; } break; } } } } return result; } /*! @brief parse floating point number This function (and its overloads) serves to select the most approprate standard floating point number parsing function based on the type supplied via the first parameter. Set this to @a static_cast<number_float_t*>(nullptr). @param[in,out] endptr recieves a pointer to the first character after the number @return the floating point number */ long double str_to_float_t(long double* /* type */, char** endptr) const { return std::strtold(reinterpret_cast<typename string_t::const_pointer>(m_start), endptr); } /*! @brief parse floating point number This function (and its overloads) serves to select the most approprate standard floating point number parsing function based on the type supplied via the first parameter. Set this to @a static_cast<number_float_t*>(nullptr). @param[in,out] endptr recieves a pointer to the first character after the number @return the floating point number */ double str_to_float_t(double* /* type */, char** endptr) const { return std::strtod(reinterpret_cast<typename string_t::const_pointer>(m_start), endptr); } /*! @brief parse floating point number This function (and its overloads) serves to select the most approprate standard floating point number parsing function based on the type supplied via the first parameter. Set this to @a static_cast<number_float_t*>(nullptr). @param[in,out] endptr recieves a pointer to the first character after the number @return the floating point number */ float str_to_float_t(float* /* type */, char** endptr) const { return std::strtof(reinterpret_cast<typename string_t::const_pointer>(m_start), endptr); } /*! @brief return number value for number tokens This function translates the last token into the most appropriate number type (either integer, unsigned integer or floating point), which is passed back to the caller via the result parameter. This function parses the integer component up to the radix point or exponent while collecting information about the 'floating point representation', which it stores in the result parameter. If there is no radix point or exponent, and the number can fit into a @ref number_integer_t or @ref number_unsigned_t then it sets the result parameter accordingly. If the number is a floating point number the number is then parsed using @a std:strtod (or @a std:strtof or @a std::strtold). @param[out] result @ref basic_json object to receive the number, or NAN if the conversion read past the current token. The latter case needs to be treated by the caller function. */ void get_number(basic_json& result) const { assert(m_start != nullptr); const lexer::lexer_char_t* curptr = m_start; // accumulate the integer conversion result (unsigned for now) number_unsigned_t value = 0; // maximum absolute value of the relevant integer type number_unsigned_t max; // temporarily store the type to avoid unecessary bitfield access value_t type; // look for sign if (*curptr == '-') { type = value_t::number_integer; max = static_cast<uint64_t>((std::numeric_limits<number_integer_t>::max)()) + 1; curptr++; } else { type = value_t::number_unsigned; max = static_cast<uint64_t>((std::numeric_limits<number_unsigned_t>::max)()); } // count the significant figures for (; curptr < m_cursor; curptr++) { // quickly skip tests if a digit if (*curptr < '0' or* curptr > '9') { if (*curptr == '.') { // don't count '.' but change to float type = value_t::number_float; continue; } // assume exponent (if not then will fail parse): change to // float, stop counting and record exponent details type = value_t::number_float; break; } // skip if definitely not an integer if (type != value_t::number_float) { auto digit = static_cast<number_unsigned_t>(*curptr - '0'); // overflow if value * 10 + digit > max, move terms around // to avoid overflow in intermediate values if (value > (max - digit) / 10) { // overflow type = value_t::number_float; } else { // no overflow value = value * 10 + digit; } } } // save the value (if not a float) if (type == value_t::number_unsigned) { result.m_value.number_unsigned = value; } else if (type == value_t::number_integer) { // invariant: if we parsed a '-', the absolute value is between // 0 (we allow -0) and max == -INT64_MIN assert(value >= 0); assert(value <= max); if (value == max) { // we cannot simply negate value (== max == -INT64_MIN), // see https://github.com/nlohmann/json/issues/389 result.m_value.number_integer = static_cast<number_integer_t>(INT64_MIN); } else { // all other values can be negated safely result.m_value.number_integer = -static_cast<number_integer_t>(value); } } else { // parse with strtod result.m_value.number_float = str_to_float_t(static_cast<number_float_t*>(nullptr), nullptr); // replace infinity and NAN by null if (not std::isfinite(result.m_value.number_float)) { type = value_t::null; result.m_value = basic_json::json_value(); } } // save the type result.m_type = type; } private: /// optional input stream std::istream* m_stream = nullptr; /// line buffer buffer for m_stream string_t m_line_buffer {}; /// used for filling m_line_buffer string_t m_line_buffer_tmp {}; /// the buffer pointer const lexer_char_t* m_content = nullptr; /// pointer to the beginning of the current symbol const lexer_char_t* m_start = nullptr; /// pointer for backtracking information const lexer_char_t* m_marker = nullptr; /// pointer to the current symbol const lexer_char_t* m_cursor = nullptr; /// pointer to the end of the buffer const lexer_char_t* m_limit = nullptr; /// the last token type token_type last_token_type = token_type::end_of_input; }; /*! @brief syntax analysis This class implements a recursive decent parser. */ class parser { public: /// a parser reading from a string literal parser(const char* buff, const parser_callback_t cb = nullptr) : callback(cb), m_lexer(reinterpret_cast<const typename lexer::lexer_char_t*>(buff), std::strlen(buff)) {} /// a parser reading from an input stream parser(std::istream& is, const parser_callback_t cb = nullptr) : callback(cb), m_lexer(is) {} /// a parser reading from an iterator range with contiguous storage template<class IteratorType, typename std::enable_if< std::is_same<typename std::iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value , int>::type = 0> parser(IteratorType first, IteratorType last, const parser_callback_t cb = nullptr) : callback(cb), m_lexer(reinterpret_cast<const typename lexer::lexer_char_t*>(&(*first)), static_cast<size_t>(std::distance(first, last))) {} /// public parser interface basic_json parse() { // read first token get_token(); basic_json result = parse_internal(true); result.assert_invariant(); expect(lexer::token_type::end_of_input); // return parser result and replace it with null in case the // top-level value was discarded by the callback function return result.is_discarded() ? basic_json() : std::move(result); } private: /// the actual parser basic_json parse_internal(bool keep) { auto result = basic_json(value_t::discarded); switch (last_token) { case lexer::token_type::begin_object: { if (keep and (not callback or ((keep = callback(depth++, parse_event_t::object_start, result)) != 0))) { // explicitly set result to object to cope with {} result.m_type = value_t::object; result.m_value = value_t::object; } // read next token get_token(); // closing } -> we are done if (last_token == lexer::token_type::end_object) { get_token(); if (keep and callback and not callback(--depth, parse_event_t::object_end, result)) { result = basic_json(value_t::discarded); } return result; } // no comma is expected here unexpect(lexer::token_type::value_separator); // otherwise: parse key-value pairs do { // ugly, but could be fixed with loop reorganization if (last_token == lexer::token_type::value_separator) { get_token(); } // store key expect(lexer::token_type::value_string); const auto key = m_lexer.get_string(); bool keep_tag = false; if (keep) { if (callback) { basic_json k(key); keep_tag = callback(depth, parse_event_t::key, k); } else { keep_tag = true; } } // parse separator (:) get_token(); expect(lexer::token_type::name_separator); // parse and add value get_token(); auto value = parse_internal(keep); if (keep and keep_tag and not value.is_discarded()) { result[key] = std::move(value); } } while (last_token == lexer::token_type::value_separator); // closing } expect(lexer::token_type::end_object); get_token(); if (keep and callback and not callback(--depth, parse_event_t::object_end, result)) { result = basic_json(value_t::discarded); } return result; } case lexer::token_type::begin_array: { if (keep and (not callback or ((keep = callback(depth++, parse_event_t::array_start, result)) != 0))) { // explicitly set result to object to cope with [] result.m_type = value_t::array; result.m_value = value_t::array; } // read next token get_token(); // closing ] -> we are done if (last_token == lexer::token_type::end_array) { get_token(); if (callback and not callback(--depth, parse_event_t::array_end, result)) { result = basic_json(value_t::discarded); } return result; } // no comma is expected here unexpect(lexer::token_type::value_separator); // otherwise: parse values do { // ugly, but could be fixed with loop reorganization if (last_token == lexer::token_type::value_separator) { get_token(); } // parse value auto value = parse_internal(keep); if (keep and not value.is_discarded()) { result.push_back(std::move(value)); } } while (last_token == lexer::token_type::value_separator); // closing ] expect(lexer::token_type::end_array); get_token(); if (keep and callback and not callback(--depth, parse_event_t::array_end, result)) { result = basic_json(value_t::discarded); } return result; } case lexer::token_type::literal_null: { get_token(); result.m_type = value_t::null; break; } case lexer::token_type::value_string: { const auto s = m_lexer.get_string(); get_token(); result = basic_json(s); break; } case lexer::token_type::literal_true: { get_token(); result.m_type = value_t::boolean; result.m_value = true; break; } case lexer::token_type::literal_false: { get_token(); result.m_type = value_t::boolean; result.m_value = false; break; } case lexer::token_type::value_number: { m_lexer.get_number(result); get_token(); break; } default: { // the last token was unexpected unexpect(last_token); } } if (keep and callback and not callback(depth, parse_event_t::value, result)) { result = basic_json(value_t::discarded); } return result; } /// get next token from lexer typename lexer::token_type get_token() { last_token = m_lexer.scan(); return last_token; } void expect(typename lexer::token_type t) const { if (t != last_token) { std::string error_msg = "parse error - unexpected "; error_msg += (last_token == lexer::token_type::parse_error ? ("'" + m_lexer.get_token_string() + "'") : lexer::token_type_name(last_token)); error_msg += "; expected " + lexer::token_type_name(t); JSON_THROW(std::invalid_argument(error_msg)); } } void unexpect(typename lexer::token_type t) const { if (t == last_token) { std::string error_msg = "parse error - unexpected "; error_msg += (last_token == lexer::token_type::parse_error ? ("'" + m_lexer.get_token_string() + "'") : lexer::token_type_name(last_token)); JSON_THROW(std::invalid_argument(error_msg)); } } private: /// current level of recursion int depth = 0; /// callback function const parser_callback_t callback = nullptr; /// the type of the last read token typename lexer::token_type last_token = lexer::token_type::uninitialized; /// the lexer lexer m_lexer; }; public: /*! @brief JSON Pointer A JSON pointer defines a string syntax for identifying a specific value within a JSON document. It can be used with functions `at` and `operator[]`. Furthermore, JSON pointers are the base for JSON patches. @sa [RFC 6901](https://tools.ietf.org/html/rfc6901) @since version 2.0.0 */ class json_pointer { /// allow basic_json to access private members friend class basic_json; public: /*! @brief create JSON pointer Create a JSON pointer according to the syntax described in [Section 3 of RFC6901](https://tools.ietf.org/html/rfc6901#section-3). @param[in] s string representing the JSON pointer; if omitted, the empty string is assumed which references the whole JSON value @throw std::domain_error if reference token is nonempty and does not begin with a slash (`/`); example: `"JSON pointer must be empty or begin with /"` @throw std::domain_error if a tilde (`~`) is not followed by `0` (representing `~`) or `1` (representing `/`); example: `"escape error: ~ must be followed with 0 or 1"` @liveexample{The example shows the construction several valid JSON pointers as well as the exceptional behavior.,json_pointer} @since version 2.0.0 */ explicit json_pointer(const std::string& s = "") : reference_tokens(split(s)) {} /*! @brief return a string representation of the JSON pointer @invariant For each JSON pointer `ptr`, it holds: @code {.cpp} ptr == json_pointer(ptr.to_string()); @endcode @return a string representation of the JSON pointer @liveexample{The example shows the result of `to_string`., json_pointer__to_string} @since version 2.0.0 */ std::string to_string() const noexcept { return std::accumulate(reference_tokens.begin(), reference_tokens.end(), std::string{}, [](const std::string & a, const std::string & b) { return a + "/" + escape(b); }); } /// @copydoc to_string() operator std::string() const { return to_string(); } private: /// remove and return last reference pointer std::string pop_back() { if (is_root()) { JSON_THROW(std::domain_error("JSON pointer has no parent")); } auto last = reference_tokens.back(); reference_tokens.pop_back(); return last; } /// return whether pointer points to the root document bool is_root() const { return reference_tokens.empty(); } json_pointer top() const { if (is_root()) { JSON_THROW(std::domain_error("JSON pointer has no parent")); } json_pointer result = *this; result.reference_tokens = {reference_tokens[0]}; return result; } /*! @brief create and return a reference to the pointed to value @complexity Linear in the number of reference tokens. */ reference get_and_create(reference j) const { pointer result = &j; // in case no reference tokens exist, return a reference to the // JSON value j which will be overwritten by a primitive value for (const auto& reference_token : reference_tokens) { switch (result->m_type) { case value_t::null: { if (reference_token == "0") { // start a new array if reference token is 0 result = &result->operator[](0); } else { // start a new object otherwise result = &result->operator[](reference_token); } break; } case value_t::object: { // create an entry in the object result = &result->operator[](reference_token); break; } case value_t::array: { // create an entry in the array result = &result->operator[](static_cast<size_type>(std::stoi(reference_token))); break; } /* The following code is only reached if there exists a reference token _and_ the current value is primitive. In this case, we have an error situation, because primitive values may only occur as single value; that is, with an empty list of reference tokens. */ default: { JSON_THROW(std::domain_error("invalid value to unflatten")); } } } return *result; } /*! @brief return a reference to the pointed to value @note This version does not throw if a value is not present, but tries to create nested values instead. For instance, calling this function with pointer `"/this/that"` on a null value is equivalent to calling `operator[]("this").operator[]("that")` on that value, effectively changing the null value to an object. @param[in] ptr a JSON value @return reference to the JSON value pointed to by the JSON pointer @complexity Linear in the length of the JSON pointer. @throw std::out_of_range if the JSON pointer can not be resolved @throw std::domain_error if an array index begins with '0' @throw std::invalid_argument if an array index was not a number */ reference get_unchecked(pointer ptr) const { for (const auto& reference_token : reference_tokens) { // convert null values to arrays or objects before continuing if (ptr->m_type == value_t::null) { // check if reference token is a number const bool nums = std::all_of(reference_token.begin(), reference_token.end(), [](const char x) { return std::isdigit(x); }); // change value to array for numbers or "-" or to object // otherwise if (nums or reference_token == "-") { *ptr = value_t::array; } else { *ptr = value_t::object; } } switch (ptr->m_type) { case value_t::object: { // use unchecked object access ptr = &ptr->operator[](reference_token); break; } case value_t::array: { // error condition (cf. RFC 6901, Sect. 4) if (reference_token.size() > 1 and reference_token[0] == '0') { JSON_THROW(std::domain_error("array index must not begin with '0'")); } if (reference_token == "-") { // explicityly treat "-" as index beyond the end ptr = &ptr->operator[](ptr->m_value.array->size()); } else { // convert array index to number; unchecked access ptr = &ptr->operator[](static_cast<size_type>(std::stoi(reference_token))); } break; } default: { JSON_THROW(std::out_of_range("unresolved reference token '" + reference_token + "'")); } } } return *ptr; } reference get_checked(pointer ptr) const { for (const auto& reference_token : reference_tokens) { switch (ptr->m_type) { case value_t::object: { // note: at performs range check ptr = &ptr->at(reference_token); break; } case value_t::array: { if (reference_token == "-") { // "-" always fails the range check throw std::out_of_range("array index '-' (" + std::to_string(ptr->m_value.array->size()) + ") is out of range"); } // error condition (cf. RFC 6901, Sect. 4) if (reference_token.size() > 1 and reference_token[0] == '0') { JSON_THROW(std::domain_error("array index must not begin with '0'")); } // note: at performs range check ptr = &ptr->at(static_cast<size_type>(std::stoi(reference_token))); break; } default: { JSON_THROW(std::out_of_range("unresolved reference token '" + reference_token + "'")); } } } return *ptr; } /*! @brief return a const reference to the pointed to value @param[in] ptr a JSON value @return const reference to the JSON value pointed to by the JSON pointer */ const_reference get_unchecked(const_pointer ptr) const { for (const auto& reference_token : reference_tokens) { switch (ptr->m_type) { case value_t::object: { // use unchecked object access ptr = &ptr->operator[](reference_token); break; } case value_t::array: { if (reference_token == "-") { // "-" cannot be used for const access throw std::out_of_range("array index '-' (" + std::to_string(ptr->m_value.array->size()) + ") is out of range"); } // error condition (cf. RFC 6901, Sect. 4) if (reference_token.size() > 1 and reference_token[0] == '0') { JSON_THROW(std::domain_error("array index must not begin with '0'")); } // use unchecked array access ptr = &ptr->operator[](static_cast<size_type>(std::stoi(reference_token))); break; } default: { JSON_THROW(std::out_of_range("unresolved reference token '" + reference_token + "'")); } } } return *ptr; } const_reference get_checked(const_pointer ptr) const { for (const auto& reference_token : reference_tokens) { switch (ptr->m_type) { case value_t::object: { // note: at performs range check ptr = &ptr->at(reference_token); break; } case value_t::array: { if (reference_token == "-") { // "-" always fails the range check throw std::out_of_range("array index '-' (" + std::to_string(ptr->m_value.array->size()) + ") is out of range"); } // error condition (cf. RFC 6901, Sect. 4) if (reference_token.size() > 1 and reference_token[0] == '0') { JSON_THROW(std::domain_error("array index must not begin with '0'")); } // note: at performs range check ptr = &ptr->at(static_cast<size_type>(std::stoi(reference_token))); break; } default: { JSON_THROW(std::out_of_range("unresolved reference token '" + reference_token + "'")); } } } return *ptr; } /// split the string input to reference tokens static std::vector<std::string> split(const std::string& reference_string) { std::vector<std::string> result; // special case: empty reference string -> no reference tokens if (reference_string.empty()) { return result; } // check if nonempty reference string begins with slash if (reference_string[0] != '/') { JSON_THROW(std::domain_error("JSON pointer must be empty or begin with '/'")); } // extract the reference tokens: // - slash: position of the last read slash (or end of string) // - start: position after the previous slash for ( // search for the first slash after the first character size_t slash = reference_string.find_first_of('/', 1), // set the beginning of the first reference token start = 1; // we can stop if start == string::npos+1 = 0 start != 0; // set the beginning of the next reference token // (will eventually be 0 if slash == std::string::npos) start = slash + 1, // find next slash slash = reference_string.find_first_of('/', start)) { // use the text between the beginning of the reference token // (start) and the last slash (slash). auto reference_token = reference_string.substr(start, slash - start); // check reference tokens are properly escaped for (size_t pos = reference_token.find_first_of('~'); pos != std::string::npos; pos = reference_token.find_first_of('~', pos + 1)) { assert(reference_token[pos] == '~'); // ~ must be followed by 0 or 1 if (pos == reference_token.size() - 1 or (reference_token[pos + 1] != '0' and reference_token[pos + 1] != '1')) { JSON_THROW(std::domain_error("escape error: '~' must be followed with '0' or '1'")); } } // finally, store the reference token unescape(reference_token); result.push_back(reference_token); } return result; } private: /*! @brief replace all occurrences of a substring by another string @param[in,out] s the string to manipulate; changed so that all occurrences of @a f are replaced with @a t @param[in] f the substring to replace with @a t @param[in] t the string to replace @a f @pre The search string @a f must not be empty. @since version 2.0.0 */ static void replace_substring(std::string& s, const std::string& f, const std::string& t) { assert(not f.empty()); for ( size_t pos = s.find(f); // find first occurrence of f pos != std::string::npos; // make sure f was found s.replace(pos, f.size(), t), // replace with t pos = s.find(f, pos + t.size()) // find next occurrence of f ); } /// escape tilde and slash static std::string escape(std::string s) { // escape "~"" to "~0" and "/" to "~1" replace_substring(s, "~", "~0"); replace_substring(s, "/", "~1"); return s; } /// unescape tilde and slash static void unescape(std::string& s) { // first transform any occurrence of the sequence '~1' to '/' replace_substring(s, "~1", "/"); // then transform any occurrence of the sequence '~0' to '~' replace_substring(s, "~0", "~"); } /*! @param[in] reference_string the reference string to the current value @param[in] value the value to consider @param[in,out] result the result object to insert values to @note Empty objects or arrays are flattened to `null`. */ static void flatten(const std::string& reference_string, const basic_json& value, basic_json& result) { switch (value.m_type) { case value_t::array: { if (value.m_value.array->empty()) { // flatten empty array as null result[reference_string] = nullptr; } else { // iterate array and use index as reference string for (size_t i = 0; i < value.m_value.array->size(); ++i) { flatten(reference_string + "/" + std::to_string(i), value.m_value.array->operator[](i), result); } } break; } case value_t::object: { if (value.m_value.object->empty()) { // flatten empty object as null result[reference_string] = nullptr; } else { // iterate object and use keys as reference string for (const auto& element : *value.m_value.object) { flatten(reference_string + "/" + escape(element.first), element.second, result); } } break; } default: { // add primitive value with its reference string result[reference_string] = value; break; } } } /*! @param[in] value flattened JSON @return unflattened JSON */ static basic_json unflatten(const basic_json& value) { if (not value.is_object()) { JSON_THROW(std::domain_error("only objects can be unflattened")); } basic_json result; // iterate the JSON object values for (const auto& element : *value.m_value.object) { if (not element.second.is_primitive()) { JSON_THROW(std::domain_error("values in object must be primitive")); } // assign value to reference pointed to by JSON pointer; Note // that if the JSON pointer is "" (i.e., points to the whole // value), function get_and_create returns a reference to // result itself. An assignment will then create a primitive // value. json_pointer(element.first).get_and_create(result) = element.second; } return result; } private: friend bool operator==(json_pointer const& lhs, json_pointer const& rhs) noexcept { return lhs.reference_tokens == rhs.reference_tokens; } friend bool operator!=(json_pointer const& lhs, json_pointer const& rhs) noexcept { return !(lhs == rhs); } /// the reference tokens std::vector<std::string> reference_tokens {}; }; ////////////////////////// // JSON Pointer support // ////////////////////////// /// @name JSON Pointer functions /// @{ /*! @brief access specified element via JSON Pointer Uses a JSON pointer to retrieve a reference to the respective JSON value. No bound checking is performed. Similar to @ref operator[](const typename object_t::key_type&), `null` values are created in arrays and objects if necessary. In particular: - If the JSON pointer points to an object key that does not exist, it is created an filled with a `null` value before a reference to it is returned. - If the JSON pointer points to an array index that does not exist, it is created an filled with a `null` value before a reference to it is returned. All indices between the current maximum and the given index are also filled with `null`. - The special value `-` is treated as a synonym for the index past the end. @param[in] ptr a JSON pointer @return reference to the element pointed to by @a ptr @complexity Constant. @throw std::out_of_range if the JSON pointer can not be resolved @throw std::domain_error if an array index begins with '0' @throw std::invalid_argument if an array index was not a number @liveexample{The behavior is shown in the example.,operatorjson_pointer} @since version 2.0.0 */ reference operator[](const json_pointer& ptr) { return ptr.get_unchecked(this); } /*! @brief access specified element via JSON Pointer Uses a JSON pointer to retrieve a reference to the respective JSON value. No bound checking is performed. The function does not change the JSON value; no `null` values are created. In particular, the the special value `-` yields an exception. @param[in] ptr JSON pointer to the desired element @return const reference to the element pointed to by @a ptr @complexity Constant. @throw std::out_of_range if the JSON pointer can not be resolved @throw std::domain_error if an array index begins with '0' @throw std::invalid_argument if an array index was not a number @liveexample{The behavior is shown in the example.,operatorjson_pointer_const} @since version 2.0.0 */ const_reference operator[](const json_pointer& ptr) const { return ptr.get_unchecked(this); } /*! @brief access specified element via JSON Pointer Returns a reference to the element at with specified JSON pointer @a ptr, with bounds checking. @param[in] ptr JSON pointer to the desired element @return reference to the element pointed to by @a ptr @complexity Constant. @throw std::out_of_range if the JSON pointer can not be resolved @throw std::domain_error if an array index begins with '0' @throw std::invalid_argument if an array index was not a number @liveexample{The behavior is shown in the example.,at_json_pointer} @since version 2.0.0 */ reference at(const json_pointer& ptr) { return ptr.get_checked(this); } /*! @brief access specified element via JSON Pointer Returns a const reference to the element at with specified JSON pointer @a ptr, with bounds checking. @param[in] ptr JSON pointer to the desired element @return reference to the element pointed to by @a ptr @complexity Constant. @throw std::out_of_range if the JSON pointer can not be resolved @throw std::domain_error if an array index begins with '0' @throw std::invalid_argument if an array index was not a number @liveexample{The behavior is shown in the example.,at_json_pointer_const} @since version 2.0.0 */ const_reference at(const json_pointer& ptr) const { return ptr.get_checked(this); } /*! @brief return flattened JSON value The function creates a JSON object whose keys are JSON pointers (see [RFC 6901](https://tools.ietf.org/html/rfc6901)) and whose values are all primitive. The original JSON value can be restored using the @ref unflatten() function. @return an object that maps JSON pointers to primitve values @note Empty objects and arrays are flattened to `null` and will not be reconstructed correctly by the @ref unflatten() function. @complexity Linear in the size the JSON value. @liveexample{The following code shows how a JSON object is flattened to an object whose keys consist of JSON pointers.,flatten} @sa @ref unflatten() for the reverse function @since version 2.0.0 */ basic_json flatten() const { basic_json result(value_t::object); json_pointer::flatten("", *this, result); return result; } /*! @brief unflatten a previously flattened JSON value The function restores the arbitrary nesting of a JSON value that has been flattened before using the @ref flatten() function. The JSON value must meet certain constraints: 1. The value must be an object. 2. The keys must be JSON pointers (see [RFC 6901](https://tools.ietf.org/html/rfc6901)) 3. The mapped values must be primitive JSON types. @return the original JSON from a flattened version @note Empty objects and arrays are flattened by @ref flatten() to `null` values and can not unflattened to their original type. Apart from this example, for a JSON value `j`, the following is always true: `j == j.flatten().unflatten()`. @complexity Linear in the size the JSON value. @liveexample{The following code shows how a flattened JSON object is unflattened into the original nested JSON object.,unflatten} @sa @ref flatten() for the reverse function @since version 2.0.0 */ basic_json unflatten() const { return json_pointer::unflatten(*this); } /// @} ////////////////////////// // JSON Patch functions // ////////////////////////// /// @name JSON Patch functions /// @{ /*! @brief applies a JSON patch [JSON Patch](http://jsonpatch.com) defines a JSON document structure for expressing a sequence of operations to apply to a JSON) document. With this funcion, a JSON Patch is applied to the current JSON value by executing all operations from the patch. @param[in] json_patch JSON patch document @return patched document @note The application of a patch is atomic: Either all operations succeed and the patched document is returned or an exception is thrown. In any case, the original value is not changed: the patch is applied to a copy of the value. @throw std::out_of_range if a JSON pointer inside the patch could not be resolved successfully in the current JSON value; example: `"key baz not found"` @throw invalid_argument if the JSON patch is malformed (e.g., mandatory attributes are missing); example: `"operation add must have member path"` @complexity Linear in the size of the JSON value and the length of the JSON patch. As usually only a fraction of the JSON value is affected by the patch, the complexity can usually be neglected. @liveexample{The following code shows how a JSON patch is applied to a value.,patch} @sa @ref diff -- create a JSON patch by comparing two JSON values @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902) @sa [RFC 6901 (JSON Pointer)](https://tools.ietf.org/html/rfc6901) @since version 2.0.0 */ basic_json patch(const basic_json& json_patch) const { // make a working copy to apply the patch to basic_json result = *this; // the valid JSON Patch operations enum class patch_operations {add, remove, replace, move, copy, test, invalid}; const auto get_op = [](const std::string op) { if (op == "add") { return patch_operations::add; } if (op == "remove") { return patch_operations::remove; } if (op == "replace") { return patch_operations::replace; } if (op == "move") { return patch_operations::move; } if (op == "copy") { return patch_operations::copy; } if (op == "test") { return patch_operations::test; } return patch_operations::invalid; }; // wrapper for "add" operation; add value at ptr const auto operation_add = [&result](json_pointer & ptr, basic_json val) { // adding to the root of the target document means replacing it if (ptr.is_root()) { result = val; } else { // make sure the top element of the pointer exists json_pointer top_pointer = ptr.top(); if (top_pointer != ptr) { result.at(top_pointer); } // get reference to parent of JSON pointer ptr const auto last_path = ptr.pop_back(); basic_json& parent = result[ptr]; switch (parent.m_type) { case value_t::null: case value_t::object: { // use operator[] to add value parent[last_path] = val; break; } case value_t::array: { if (last_path == "-") { // special case: append to back parent.push_back(val); } else { const auto idx = std::stoi(last_path); if (static_cast<size_type>(idx) > parent.size()) { // avoid undefined behavior JSON_THROW(std::out_of_range("array index " + std::to_string(idx) + " is out of range")); } else { // default case: insert add offset parent.insert(parent.begin() + static_cast<difference_type>(idx), val); } } break; } default: { // if there exists a parent it cannot be primitive assert(false); // LCOV_EXCL_LINE } } } }; // wrapper for "remove" operation; remove value at ptr const auto operation_remove = [&result](json_pointer & ptr) { // get reference to parent of JSON pointer ptr const auto last_path = ptr.pop_back(); basic_json& parent = result.at(ptr); // remove child if (parent.is_object()) { // perform range check auto it = parent.find(last_path); if (it != parent.end()) { parent.erase(it); } else { JSON_THROW(std::out_of_range("key '" + last_path + "' not found")); } } else if (parent.is_array()) { // note erase performs range check parent.erase(static_cast<size_type>(std::stoi(last_path))); } }; // type check if (not json_patch.is_array()) { // a JSON patch must be an array of objects JSON_THROW(std::invalid_argument("JSON patch must be an array of objects")); } // iterate and apply th eoperations for (const auto& val : json_patch) { // wrapper to get a value for an operation const auto get_value = [&val](const std::string & op, const std::string & member, bool string_type) -> basic_json& { // find value auto it = val.m_value.object->find(member); // context-sensitive error message const auto error_msg = (op == "op") ? "operation" : "operation '" + op + "'"; // check if desired value is present if (it == val.m_value.object->end()) { JSON_THROW(std::invalid_argument(error_msg + " must have member '" + member + "'")); } // check if result is of type string if (string_type and not it->second.is_string()) { JSON_THROW(std::invalid_argument(error_msg + " must have string member '" + member + "'")); } // no error: return value return it->second; }; // type check if (not val.is_object()) { JSON_THROW(std::invalid_argument("JSON patch must be an array of objects")); } // collect mandatory members const std::string op = get_value("op", "op", true); const std::string path = get_value(op, "path", true); json_pointer ptr(path); switch (get_op(op)) { case patch_operations::add: { operation_add(ptr, get_value("add", "value", false)); break; } case patch_operations::remove: { operation_remove(ptr); break; } case patch_operations::replace: { // the "path" location must exist - use at() result.at(ptr) = get_value("replace", "value", false); break; } case patch_operations::move: { const std::string from_path = get_value("move", "from", true); json_pointer from_ptr(from_path); // the "from" location must exist - use at() basic_json v = result.at(from_ptr); // The move operation is functionally identical to a // "remove" operation on the "from" location, followed // immediately by an "add" operation at the target // location with the value that was just removed. operation_remove(from_ptr); operation_add(ptr, v); break; } case patch_operations::copy: { const std::string from_path = get_value("copy", "from", true);; const json_pointer from_ptr(from_path); // the "from" location must exist - use at() result[ptr] = result.at(from_ptr); break; } case patch_operations::test: { bool success = false; JSON_TRY { // check if "value" matches the one at "path" // the "path" location must exist - use at() success = (result.at(ptr) == get_value("test", "value", false)); } JSON_CATCH (std::out_of_range&) { // ignore out of range errors: success remains false } // throw an exception if test fails if (not success) { JSON_THROW(std::domain_error("unsuccessful: " + val.dump())); } break; } case patch_operations::invalid: { // op must be "add", "remove", "replace", "move", "copy", or // "test" JSON_THROW(std::invalid_argument("operation value '" + op + "' is invalid")); } } } return result; } /*! @brief creates a diff as a JSON patch Creates a [JSON Patch](http://jsonpatch.com) so that value @a source can be changed into the value @a target by calling @ref patch function. @invariant For two JSON values @a source and @a target, the following code yields always `true`: @code {.cpp} source.patch(diff(source, target)) == target; @endcode @note Currently, only `remove`, `add`, and `replace` operations are generated. @param[in] source JSON value to copare from @param[in] target JSON value to copare against @param[in] path helper value to create JSON pointers @return a JSON patch to convert the @a source to @a target @complexity Linear in the lengths of @a source and @a target. @liveexample{The following code shows how a JSON patch is created as a diff for two JSON values.,diff} @sa @ref patch -- apply a JSON patch @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902) @since version 2.0.0 */ static basic_json diff(const basic_json& source, const basic_json& target, const std::string& path = "") { // the patch basic_json result(value_t::array); // if the values are the same, return empty patch if (source == target) { return result; } if (source.type() != target.type()) { // different types: replace value result.push_back( { {"op", "replace"}, {"path", path}, {"value", target} }); } else { switch (source.type()) { case value_t::array: { // first pass: traverse common elements size_t i = 0; while (i < source.size() and i < target.size()) { // recursive call to compare array values at index i auto temp_diff = diff(source[i], target[i], path + "/" + std::to_string(i)); result.insert(result.end(), temp_diff.begin(), temp_diff.end()); ++i; } // i now reached the end of at least one array // in a second pass, traverse the remaining elements // remove my remaining elements const auto end_index = static_cast<difference_type>(result.size()); while (i < source.size()) { // add operations in reverse order to avoid invalid // indices result.insert(result.begin() + end_index, object( { {"op", "remove"}, {"path", path + "/" + std::to_string(i)} })); ++i; } // add other remaining elements while (i < target.size()) { result.push_back( { {"op", "add"}, {"path", path + "/" + std::to_string(i)}, {"value", target[i]} }); ++i; } break; } case value_t::object: { // first pass: traverse this object's elements for (auto it = source.begin(); it != source.end(); ++it) { // escape the key name to be used in a JSON patch const auto key = json_pointer::escape(it.key()); if (target.find(it.key()) != target.end()) { // recursive call to compare object values at key it auto temp_diff = diff(it.value(), target[it.key()], path + "/" + key); result.insert(result.end(), temp_diff.begin(), temp_diff.end()); } else { // found a key that is not in o -> remove it result.push_back(object( { {"op", "remove"}, {"path", path + "/" + key} })); } } // second pass: traverse other object's elements for (auto it = target.begin(); it != target.end(); ++it) { if (source.find(it.key()) == source.end()) { // found a key that is not in this -> add it const auto key = json_pointer::escape(it.key()); result.push_back( { {"op", "add"}, {"path", path + "/" + key}, {"value", it.value()} }); } } break; } default: { // both primitive type: replace value result.push_back( { {"op", "replace"}, {"path", path}, {"value", target} }); break; } } } return result; } /// @} }; ///////////// // presets // ///////////// /*! @brief default JSON class This type is the default specialization of the @ref basic_json class which uses the standard template types. @since version 1.0.0 */ using json = basic_json<>; } // namespace nlohmann /////////////////////// // nonmember support // /////////////////////// // specialization of std::swap, and std::hash namespace std { /*! @brief exchanges the values of two JSON objects @since version 1.0.0 */ template<> inline void swap(nlohmann::json& j1, nlohmann::json& j2) noexcept( is_nothrow_move_constructible<nlohmann::json>::value and is_nothrow_move_assignable<nlohmann::json>::value ) { j1.swap(j2); } /// hash value for JSON objects template<> struct hash<nlohmann::json> { /*! @brief return a hash value for a JSON object @since version 1.0.0 */ std::size_t operator()(const nlohmann::json& j) const { // a naive hashing via the string representation const auto& h = hash<nlohmann::json::string_t>(); return h(j.dump()); } }; } // namespace std /*! @brief user-defined string literal for JSON values This operator implements a user-defined string literal for JSON objects. It can be used by adding `"_json"` to a string literal and returns a JSON object if no parse error occurred. @param[in] s a string representation of a JSON object @param[in] n the length of string @a s @return a JSON object @since version 1.0.0 */ inline nlohmann::json operator "" _json(const char* s, std::size_t n) { return nlohmann::json::parse(s, s + n); } /*! @brief user-defined string literal for JSON pointer This operator implements a user-defined string literal for JSON Pointers. It can be used by adding `"_json_pointer"` to a string literal and returns a JSON pointer object if no parse error occurred. @param[in] s a string representation of a JSON Pointer @param[in] n the length of string @a s @return a JSON pointer object @since version 2.0.0 */ inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n) { return nlohmann::json::json_pointer(std::string(s, n)); } // restore GCC/clang diagnostic settings #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__) #pragma GCC diagnostic pop #endif // clean up #undef JSON_THROW #undef JSON_TRY #undef JSON_CATCH #undef JSON_DEPRECATED #endif