/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "crc.h" #include "dma.h" #include "tim.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include "spi.h" #include "stm32f0xx_ll_spi.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ const uint16_t version = 42; bool toggle = false; uint16_t counter = 0; bool dirty = true; //uint16_t mem[12] = {0xFFF, 0xFF, 0xFFF, 0xFF, 0xFFF, 0xFF, 0xFFF, 0xFF, 0xFFF, 0xFF, 0xFFF, 0xFF}; //uint16_t mem[12] = {0x300, 0x40, 0x300, 0x40, 0x300, 0x40, 0x300, 0x40, 0x300, 0x40, 0x300, 0x40}; uint16_t mem[12] = {0xFFF, 0xFF, 0xFFF, 0xFF, 0xFFF, 0xFF, 0xFFF, 0xFF, 0xFFF, 0xFF, 0xFFF, 0xFF}; uint16_t conf[8] = {version, 0, 0, 0, 0, 0, 0, 0}; #define BUFFER_SIZE 64 uint16_t RX_Buffer[BUFFER_SIZE] = {0}; uint16_t TX_Buffer[BUFFER_SIZE] = {0}; void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if(GPIO_Pin == SPI_INT_Pin) { hspi2.Instance->CR1 |= SPI_CR1_SSI; HAL_GPIO_WritePin(INIT_OUT_GPIO_Port, INIT_OUT_Pin, GPIO_PIN_SET); for (volatile int i = 0; i < 3; i++); hspi2.Instance->CR1 &= ~SPI_CR1_SSI; HAL_GPIO_WritePin(INIT_OUT_GPIO_Port, INIT_OUT_Pin, GPIO_PIN_RESET); } } void HAL_SPI_CpltCallback(SPI_HandleTypeDef *hspi) { if(RX_Buffer[0]) { union { struct { unsigned data: 12; unsigned chan: 4; } __attribute__((packed)); uint16_t raw; } frame = {.raw=RX_Buffer[0]}; toggle = !toggle; counter++; if(toggle) { HAL_GPIO_WritePin(SIGNAL_LED_GPIO_Port, SIGNAL_LED_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(SIGNAL_LED_GPIO_Port, SIGNAL_LED_Pin, GPIO_PIN_RESET); } if(frame.chan <= 6 && frame.chan >= 1) { frame.chan--; if(frame.data > 0x300) { mem[frame.chan * 2 + 1] = 0xFF; mem[frame.chan * 2] = frame.data; } else { mem[frame.chan * 2 + 1] = (frame.data * 0xFF) / 0x300; mem[frame.chan * 2] = 0x300; } dirty = true; TX_Buffer[0] = RX_Buffer[0]; } else if(frame.chan == 15 && frame.data < 8) { TX_Buffer[0] = conf[frame.data]; } else { TX_Buffer[0] = 0; } } HAL_SPI_TransmitReceive_DMA(&hspi2, TX_Buffer, RX_Buffer, 1); HAL_GPIO_WritePin(INIT_OUT_GPIO_Port, INIT_OUT_Pin, GPIO_PIN_SET); for (volatile int i = 0; i < 3; i++); HAL_GPIO_WritePin(INIT_OUT_GPIO_Port, INIT_OUT_Pin, GPIO_PIN_RESET); } void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) { HAL_SPI_CpltCallback(hspi); } void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) { HAL_SPI_CpltCallback(hspi); } void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) { HAL_SPI_Transmit_DMA(&hspi2, (uint8_t *) TX_Buffer, 2); } void setDAC(uint8_t channel, uint16_t val) { uint16_t frame = (val & 0x0FFF) | (0x7000 & (channel << 12)); HAL_SPI_Transmit(&hspi1, (uint8_t * ) & frame, 1, 100); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_CRC_Init(); MX_TIM1_Init(); MX_DMA_Init(); MX_TIM3_Init(); /* USER CODE BEGIN 2 */ MX_SPI1_Init(); MX_SPI2_Init(); TIM1->ARR = 254; TIM1->CCR1 = 10; TIM1->CCR2 = 10; TIM1->CCR3 = 10; TIM1->CCR4 = 10; TIM1->CCMR1 = 0x6868; TIM1->CCMR2 = 0x6868; TIM1->CCER = 0x1111; TIM1->EGR |= TIM_EGR_UG; TIM1->BDTR |= TIM_BDTR_MOE; TIM1->CR1 |= TIM_CR1_CEN; TIM3->ARR = 254; TIM3->CCR1 = 10; TIM3->CCR2 = 10; TIM3->CCMR1 = 0x6868; TIM3->CCER = 0x1111; TIM3->EGR |= TIM_EGR_UG; TIM3->BDTR |= TIM_BDTR_MOE; TIM3->CR1 |= TIM_CR1_CEN; HAL_GPIO_WritePin(SIGNAL_LED_GPIO_Port, SIGNAL_LED_Pin, GPIO_PIN_RESET); uint16_t frame = 0b1001000000000000; HAL_SPI_Transmit(&hspi1, (uint8_t * ) & frame, 1, 100); for (int i = 0; i < 6; ++i) { setDAC(i, mem[i * 2]); } TIM1->CCR1 = 0xFF & mem[1]; TIM1->CCR2 = 0xFF & mem[3]; TIM1->CCR3 = 0xFF & mem[5]; TIM1->CCR4 = 0xFF & mem[7]; TIM3->CCR1 = 0xFF & mem[9]; TIM3->CCR2 = 0xFF & mem[11]; HAL_GPIO_WritePin(SIGNAL_LED_GPIO_Port, SIGNAL_LED_Pin, GPIO_PIN_SET); HAL_SPI_Receive_DMA(&hspi2, (uint8_t *) RX_Buffer, 1); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ #if 1 //if(dirty) { for (int i = 0; i < 6; ++i) { setDAC(i, mem[i * 2]); } TIM1->CCR1 = 0xFF & mem[1]; TIM1->CCR2 = 0xFF & mem[3]; TIM1->CCR3 = 0xFF & mem[5]; TIM1->CCR4 = 0xFF & mem[7]; TIM3->CCR1 = 0xFF & mem[9]; TIM3->CCR2 = 0xFF & mem[11]; dirty = false; //} #else setDAC(0, 50 << 4); setDAC(1, 50 << 4); setDAC(2, 50 << 4); setDAC(3, 50 << 4); setDAC(4, 50 << 4); setDAC(5, 50 << 4); HAL_GPIO_WritePin(SIGNAL_LED_GPIO_Port, SIGNAL_LED_Pin, GPIO_PIN_SET); for (int i = 0; i < sizeof(pwm_lookup); i++) { uint8_t j = pwm_lookup[i]; TIM1->CCR1 = j; TIM1->CCR2 = j; TIM1->CCR3 = j; TIM1->CCR4 = j; TIM3->CCR1 = j; TIM3->CCR2 = j; HAL_Delay(5); } TIM1->CCR1 = 256; TIM1->CCR2 = 256; TIM1->CCR3 = 256; TIM1->CCR4 = 256; TIM3->CCR1 = 256; TIM3->CCR2 = 256; for (int i = 50; i < 256; i++) { setDAC(0, i << 4); setDAC(1, i << 4); setDAC(2, i << 4); setDAC(3, i << 4); setDAC(4, i << 4); setDAC(5, i << 4); HAL_Delay(5); } HAL_GPIO_WritePin(SIGNAL_LED_GPIO_Port, SIGNAL_LED_Pin, GPIO_PIN_RESET); HAL_Delay(200); #endif } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12; RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV1; if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */