esp-open-rtos/extras/cryptoauthlib/hal/atca_hal_espfreertos_i2c.c
Peter Dunshee e66e87aa8e Add Atmel CryptoAuthLib to extras
This is Atmel/Microchip's official library for interfacing
to the Atmel ATECC508 chip.  The submodule points to their
repository in GitHub.

Additionally, this includes the HAL necessary to use this library
in esp_open_rtos using the i2c library in extras/i2c.  I have also
included a tool I wrote to play with the chip as an example under
examples/atcatool.

The extras module currently overrides atca_iface.h to fix bug in
cryptoauthlib (c11-only feature, which breaks c++ builds that want
to use cryptoauthlib)
2019-05-06 13:59:15 -05:00

372 lines
9.6 KiB
C

#include <inttypes.h>
#include <espressif/esp_misc.h> // sdk_os_delay_us
#include "i2c/i2c.h"
#include "cryptoauthlib.h"
#include "FreeRTOS.h"
#include "task.h"
// Move to config if ever necessary
#define I2C_BUS (0)
#define vTaskDelayMs(ms) vTaskDelay((ms)/portTICK_PERIOD_MS)
#if ATEC_HAL_DEBUG || ATEC_HAL_VERBOSE_DEBUG
#define DBG(...) printf("%s:%d ",__FILE__,__LINE__); printf(__VA_ARGS__); printf("\r\n");
#define DBGX(...) printf(__VA_ARGS__);
#if ATEC_HAL_VERBOSE_DEBUG
#define DEBUG_HAL
#define DBGV(...) printf("%s:%d ",__FILE__,__LINE__); printf(__VA_ARGS__); printf("\r\n");
#define DBGVX(...) printf(__VA_ARGS__);
#else
#define DBGV(...) {};
#define DBGVX(...) {};
#endif
#ifdef DEBUG_HAL
static void print_array(uint8_t *data, uint32_t data_size)
{
uint32_t n;
for (n = 0; n < data_size; n++)
{
printf("%.2x ", data[n]);
if (((n + 1) % 16) == 0)
{
printf("\r\n");
if ((n + 1) != data_size)
printf(" ");
}
}
if (data_size % 16 != 0)
printf("\r\n");
}
#endif
#else
#define DBG(...) {};
#define DBGX(...) {};
#define DBGV(...) {};
#define DBGVX(...) {};
#endif
#if ATEC_I2C_HAL_DEBUG
#define I2C_DBG(...) printf(__VA_ARGS__); printf("\r\n");
#else
#define I2C_DBG(...) {};
#endif
ATCA_STATUS hal_i2c_init(void *hal, ATCAIfaceCfg *cfg)
{
(void)hal;
(void)cfg;
return ATCA_SUCCESS;
}
ATCA_STATUS hal_i2c_post_init(ATCAIface iface)
{
(void)iface;
return ATCA_SUCCESS;
}
static bool hal_internal_i2c_write(ATCAIface iface, uint8_t *txdata, int len)
{
const ATCAIfaceCfg *cfg = atgetifacecfg(iface);
uint8_t slave_addr = (cfg->atcai2c.slave_address >> 1);
int result = i2c_slave_write(I2C_BUS, slave_addr, NULL, txdata, len);
if (result != 0)
{
I2C_DBG("I2C write Error: %d len data: %d first byte: %x", result, len, len > 0 ? txdata[0] : 0);
return false;
}
return true;
}
static bool hal_internal_i2c_read(ATCAIface iface, uint8_t *rxdata, int len)
{
const ATCAIfaceCfg *cfg = atgetifacecfg(iface);
uint8_t slave_addr = (cfg->atcai2c.slave_address >> 1);
int result = i2c_slave_read(I2C_BUS, slave_addr, NULL, rxdata, len);
if (result != 0)
{
I2C_DBG("I2C read Error: %d len data: %d", result, len);
return false;
}
return true;
}
ATCA_STATUS hal_i2c_send(ATCAIface iface, uint8_t *txdata, int txlength)
{
ATCA_STATUS status = ATCA_TX_TIMEOUT;
#ifdef DEBUG_HAL
// shamelessly taken from hal_sam4s_i2c_asf.c
printf("hal_i2c_send()\r\n");
printf("\r\nCommand Packet (size:0x%.8x)\r\n", (uint32_t)txlength);
printf("Count : %.2x\r\n", txdata[1]);
printf("Opcode : %.2x\r\n", txdata[2]);
printf("Param1 : %.2x\r\n", txdata[3]);
printf("Param2 : "); print_array(&txdata[4], 2);
if (txdata[1] > 7) {
printf("Data : "); print_array(&txdata[6], txdata[1] - 7);
}
printf("CRC : "); print_array(&txdata[txdata[1] - 1], 2);
printf("\r\n");
#endif
DBG("Send len %d, sending command", txlength);
txdata[0] = 0x03; /* Word Address Value = Command */
txlength++; /* Include Word Address value in txlength */
if (hal_internal_i2c_write(iface, txdata, txlength))
{
DBGV("ATCA_SUCCESS");
status = ATCA_SUCCESS;
}
else
{
DBGV("ATCA_TX_FAIL");
status = ATCA_TX_FAIL;
}
return status;
}
ATCA_STATUS hal_i2c_receive(ATCAIface iface, uint8_t *rxdata, uint16_t *rxlength)
{
DBGV("hal_i2c_receive()");
const ATCAIfaceCfg *cfg = atgetifacecfg(iface);
ATCA_STATUS status = ATCA_RX_TIMEOUT;
int retries = cfg->rx_retries;
while (retries-- > 0)
{
if (!hal_internal_i2c_read(iface, rxdata, *rxlength))
{
DBGV("ATCA_RX_FAIL--retry %d", retries);
continue;
}
DBGV("ATCA_SUCCESS");
status = ATCA_SUCCESS;
break;
}
#ifdef DEBUG_HAL
printf("\r\nResponse Packet (size:0x%.4x)\r\n", rxlength);
printf("Count : %.2x\r\n", rxdata[0]);
if (rxdata[0] > 3) {
printf("Data : "); print_array(&rxdata[1], rxdata[0] - 3);
printf("CRC : "); print_array(&rxdata[rxdata[0] - 2], 2);
}
printf("\r\n");
#endif
/*
* rxlength is a pointer, which suggests that the actual number of bytes
* received should be returned in the value pointed to, but none of the
* existing HAL implementations do it.
*/
return status;
}
ATCA_STATUS hal_i2c_wake(ATCAIface iface)
{
const ATCAIfaceCfg *cfg = atgetifacecfg(iface);
ATCA_STATUS status = ATCA_WAKE_FAILED;
uint8_t response[4] = { 0x00, 0x00, 0x00, 0x00 };
uint8_t expected_response[4] = { 0x04, 0x11, 0x33, 0x43 };
/*
* ATCA devices define "wake up" token as START, 80 us of SDA low, STOP.
*/
DBGV("Sending wake");
i2c_start(I2C_BUS);
atca_delay_us(80);
i2c_stop(I2C_BUS);
/* After wake signal we need to wait some time for device to init. */
atca_delay_us(cfg->wake_delay);
/* Receive the wake response. */
uint16_t len = sizeof(response);
status = hal_i2c_receive(iface, response, &len);
if (status == ATCA_SUCCESS) {
DBGV("Response %x %x %x %x", response[0], response[1], response[2], response[3]);
if (memcmp(response, expected_response, 4) != 0) {
DBGV("Wake failed");
status = ATCA_WAKE_FAILED;
}
}
return status;
}
ATCA_STATUS hal_i2c_idle(ATCAIface iface)
{
uint8_t idle_cmd = 0x02;
DBG("Sending idle");
return hal_internal_i2c_write(iface, &idle_cmd, 1) ? ATCA_SUCCESS : ATCA_TX_FAIL;
}
ATCA_STATUS hal_i2c_sleep(ATCAIface iface)
{
uint8_t sleep_cmd = 0x01;
DBG("Sending sleep");
return hal_internal_i2c_write(iface, &sleep_cmd, 1) ? ATCA_SUCCESS : ATCA_TX_FAIL;
}
ATCA_STATUS hal_i2c_release(void *hal_data)
{
(void)hal_data;
return ATCA_SUCCESS;
}
ATCA_STATUS hal_i2c_discover_buses(int i2c_buses[], int max_buses)
{
i2c_buses[0] = 0; // There is just one bus on our esp8266 i2c implementation
return ATCA_SUCCESS;
}
ATCA_STATUS hal_i2c_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found)
{
ATCAIfaceCfg *head = cfg;
uint8_t slaveAddress = 0x01;
ATCADevice device;
ATCAIface discoverIface;
ATCACommand command;
ATCAPacket packet;
uint16_t rxsize;
uint32_t execution_or_wait_time;
ATCA_STATUS status;
uint8_t revs508[1][4] = { { 0x00, 0x00, 0x50, 0x00 } };
uint8_t revs108[1][4] = { { 0x80, 0x00, 0x10, 0x01 } };
uint8_t revs204[2][4] = { { 0x00, 0x02, 0x00, 0x08 },
{ 0x00, 0x04, 0x05, 0x00 } };
int i;
/** \brief default configuration, to be reused during discovery process */
ATCAIfaceCfg discoverCfg;
discoverCfg.iface_type = ATCA_I2C_IFACE;
discoverCfg.devtype = ATECC508A;
discoverCfg.atcai2c.slave_address = 0x07;
discoverCfg.atcai2c.bus = busNum;
discoverCfg.atcai2c.baud = 400000;
//discoverCfg.atcai2c.baud = 100000;
discoverCfg.wake_delay = 800;
discoverCfg.rx_retries = 3;
ATCAHAL_t hal;
hal_i2c_init( &hal, &discoverCfg );
device = newATCADevice( &discoverCfg );
discoverIface = atGetIFace( device );
command = atGetCommands( device );
// iterate through all addresses on given i2c bus
// all valid 7-bit addresses go from 0x07 to 0x78
for ( slaveAddress = 0x07; slaveAddress <= 0x78; slaveAddress++ ) {
discoverCfg.atcai2c.slave_address = slaveAddress << 1; // turn it into an 8-bit address which is what the rest of the i2c HAL is expecting when a packet is sent
// wake up device
// If it wakes, send it a dev rev command. Based on that response, determine the device type
// BTW - this will wake every cryptoauth device living on the same bus (ecc508a, sha204a)
if ( hal_i2c_wake( discoverIface ) == ATCA_SUCCESS ) {
(*found)++;
memcpy( (uint8_t*)head, (uint8_t*)&discoverCfg, sizeof(ATCAIfaceCfg));
memset( packet.data, 0x00, sizeof(packet.data));
// get devrev info and set device type accordingly
atInfo( command, &packet );
#ifdef ATCA_NO_POLL
if ((status = atGetExecTime(packet->opcode, device->mCommands)) != ATCA_SUCCESS)
{
return status;
}
execution_or_wait_time = device->mCommands->execution_time_msec;
#else
execution_or_wait_time = 1;//ATCA_POLLING_INIT_TIME_MSEC;
#endif
// send the command
if ( (status = atsend( discoverIface, (uint8_t*)&packet, packet.txsize )) != ATCA_SUCCESS ) {
printf("packet send error\r\n");
continue;
}
// delay the appropriate amount of time for command to execute
atca_delay_ms(execution_or_wait_time);
// receive the response
if ( (status = atreceive( discoverIface, &(packet.data[0]), &rxsize )) != ATCA_SUCCESS )
continue;
if ( (status = isATCAError(packet.data)) != ATCA_SUCCESS ) {
printf("command response error\r\n");
continue;
}
// determine device type from common info and dev rev response byte strings
for ( i = 0; i < (int)sizeof(revs508) / 4; i++ ) {
if ( memcmp( &packet.data[1], &revs508[i], 4) == 0 ) {
discoverCfg.devtype = ATECC508A;
break;
}
}
for ( i = 0; i < (int)sizeof(revs204) / 4; i++ ) {
if ( memcmp( &packet.data[1], &revs204[i], 4) == 0 ) {
discoverCfg.devtype = ATSHA204A;
break;
}
}
for ( i = 0; i < (int)sizeof(revs108) / 4; i++ ) {
if ( memcmp( &packet.data[1], &revs108[i], 4) == 0 ) {
discoverCfg.devtype = ATECC108A;
break;
}
}
atca_delay_ms(15);
// now the device type is known, so update the caller's cfg array element with it
head->devtype = discoverCfg.devtype;
head++;
}
hal_i2c_idle(discoverIface);
}
hal_i2c_release(&hal);
return ATCA_SUCCESS;
}
void atca_delay_us(uint32_t us)
{
DBG("atca_delay_us: %d", us);
/*
* configTICK_RATE_HZ is 100, implying 10 ms ticks.
* But we run CPU at 160 and tick timer is not updated, hence / 2 below.
* https://github.com/espressif/ESP8266_RTOS_SDK/issues/90
*/
#define USECS_PER_TICK (1000000 / configTICK_RATE_HZ / 2)
uint32_t ticks = us / USECS_PER_TICK;
us = us % USECS_PER_TICK;
if (ticks > 0) vTaskDelay(ticks);
sdk_os_delay_us(us);
}
void atca_delay_ms(uint32_t ms)
{
atca_delay_us(ms * 1000);
}