This is Atmel/Microchip's official library for interfacing to the Atmel ATECC508 chip. The submodule points to their repository in GitHub. Additionally, this includes the HAL necessary to use this library in esp_open_rtos using the i2c library in extras/i2c. I have also included a tool I wrote to play with the chip as an example under examples/atcatool. The extras module currently overrides atca_iface.h to fix bug in cryptoauthlib (c11-only feature, which breaks c++ builds that want to use cryptoauthlib)
372 lines
9.6 KiB
C
372 lines
9.6 KiB
C
#include <inttypes.h>
|
|
#include <espressif/esp_misc.h> // sdk_os_delay_us
|
|
|
|
#include "i2c/i2c.h"
|
|
|
|
#include "cryptoauthlib.h"
|
|
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
|
|
// Move to config if ever necessary
|
|
#define I2C_BUS (0)
|
|
|
|
#define vTaskDelayMs(ms) vTaskDelay((ms)/portTICK_PERIOD_MS)
|
|
|
|
#if ATEC_HAL_DEBUG || ATEC_HAL_VERBOSE_DEBUG
|
|
#define DBG(...) printf("%s:%d ",__FILE__,__LINE__); printf(__VA_ARGS__); printf("\r\n");
|
|
#define DBGX(...) printf(__VA_ARGS__);
|
|
#if ATEC_HAL_VERBOSE_DEBUG
|
|
#define DEBUG_HAL
|
|
#define DBGV(...) printf("%s:%d ",__FILE__,__LINE__); printf(__VA_ARGS__); printf("\r\n");
|
|
#define DBGVX(...) printf(__VA_ARGS__);
|
|
#else
|
|
#define DBGV(...) {};
|
|
#define DBGVX(...) {};
|
|
#endif
|
|
|
|
#ifdef DEBUG_HAL
|
|
static void print_array(uint8_t *data, uint32_t data_size)
|
|
{
|
|
uint32_t n;
|
|
|
|
for (n = 0; n < data_size; n++)
|
|
{
|
|
printf("%.2x ", data[n]);
|
|
if (((n + 1) % 16) == 0)
|
|
{
|
|
printf("\r\n");
|
|
if ((n + 1) != data_size)
|
|
printf(" ");
|
|
}
|
|
}
|
|
if (data_size % 16 != 0)
|
|
printf("\r\n");
|
|
}
|
|
#endif
|
|
#else
|
|
#define DBG(...) {};
|
|
#define DBGX(...) {};
|
|
#define DBGV(...) {};
|
|
#define DBGVX(...) {};
|
|
#endif
|
|
|
|
#if ATEC_I2C_HAL_DEBUG
|
|
#define I2C_DBG(...) printf(__VA_ARGS__); printf("\r\n");
|
|
#else
|
|
#define I2C_DBG(...) {};
|
|
#endif
|
|
|
|
ATCA_STATUS hal_i2c_init(void *hal, ATCAIfaceCfg *cfg)
|
|
{
|
|
(void)hal;
|
|
(void)cfg;
|
|
return ATCA_SUCCESS;
|
|
}
|
|
|
|
ATCA_STATUS hal_i2c_post_init(ATCAIface iface)
|
|
{
|
|
(void)iface;
|
|
return ATCA_SUCCESS;
|
|
}
|
|
|
|
static bool hal_internal_i2c_write(ATCAIface iface, uint8_t *txdata, int len)
|
|
{
|
|
const ATCAIfaceCfg *cfg = atgetifacecfg(iface);
|
|
uint8_t slave_addr = (cfg->atcai2c.slave_address >> 1);
|
|
|
|
int result = i2c_slave_write(I2C_BUS, slave_addr, NULL, txdata, len);
|
|
if (result != 0)
|
|
{
|
|
I2C_DBG("I2C write Error: %d len data: %d first byte: %x", result, len, len > 0 ? txdata[0] : 0);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool hal_internal_i2c_read(ATCAIface iface, uint8_t *rxdata, int len)
|
|
{
|
|
const ATCAIfaceCfg *cfg = atgetifacecfg(iface);
|
|
uint8_t slave_addr = (cfg->atcai2c.slave_address >> 1);
|
|
|
|
int result = i2c_slave_read(I2C_BUS, slave_addr, NULL, rxdata, len);
|
|
if (result != 0)
|
|
{
|
|
I2C_DBG("I2C read Error: %d len data: %d", result, len);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ATCA_STATUS hal_i2c_send(ATCAIface iface, uint8_t *txdata, int txlength)
|
|
{
|
|
ATCA_STATUS status = ATCA_TX_TIMEOUT;
|
|
#ifdef DEBUG_HAL
|
|
// shamelessly taken from hal_sam4s_i2c_asf.c
|
|
printf("hal_i2c_send()\r\n");
|
|
|
|
printf("\r\nCommand Packet (size:0x%.8x)\r\n", (uint32_t)txlength);
|
|
printf("Count : %.2x\r\n", txdata[1]);
|
|
printf("Opcode : %.2x\r\n", txdata[2]);
|
|
printf("Param1 : %.2x\r\n", txdata[3]);
|
|
printf("Param2 : "); print_array(&txdata[4], 2);
|
|
if (txdata[1] > 7) {
|
|
printf("Data : "); print_array(&txdata[6], txdata[1] - 7);
|
|
}
|
|
printf("CRC : "); print_array(&txdata[txdata[1] - 1], 2);
|
|
printf("\r\n");
|
|
#endif
|
|
|
|
DBG("Send len %d, sending command", txlength);
|
|
txdata[0] = 0x03; /* Word Address Value = Command */
|
|
txlength++; /* Include Word Address value in txlength */
|
|
|
|
if (hal_internal_i2c_write(iface, txdata, txlength))
|
|
{
|
|
DBGV("ATCA_SUCCESS");
|
|
status = ATCA_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
DBGV("ATCA_TX_FAIL");
|
|
status = ATCA_TX_FAIL;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
ATCA_STATUS hal_i2c_receive(ATCAIface iface, uint8_t *rxdata, uint16_t *rxlength)
|
|
{
|
|
DBGV("hal_i2c_receive()");
|
|
const ATCAIfaceCfg *cfg = atgetifacecfg(iface);
|
|
|
|
ATCA_STATUS status = ATCA_RX_TIMEOUT;
|
|
|
|
int retries = cfg->rx_retries;
|
|
|
|
while (retries-- > 0)
|
|
{
|
|
if (!hal_internal_i2c_read(iface, rxdata, *rxlength))
|
|
{
|
|
DBGV("ATCA_RX_FAIL--retry %d", retries);
|
|
continue;
|
|
}
|
|
DBGV("ATCA_SUCCESS");
|
|
status = ATCA_SUCCESS;
|
|
break;
|
|
}
|
|
|
|
#ifdef DEBUG_HAL
|
|
printf("\r\nResponse Packet (size:0x%.4x)\r\n", rxlength);
|
|
printf("Count : %.2x\r\n", rxdata[0]);
|
|
if (rxdata[0] > 3) {
|
|
printf("Data : "); print_array(&rxdata[1], rxdata[0] - 3);
|
|
printf("CRC : "); print_array(&rxdata[rxdata[0] - 2], 2);
|
|
}
|
|
printf("\r\n");
|
|
#endif
|
|
/*
|
|
* rxlength is a pointer, which suggests that the actual number of bytes
|
|
* received should be returned in the value pointed to, but none of the
|
|
* existing HAL implementations do it.
|
|
*/
|
|
return status;
|
|
}
|
|
|
|
ATCA_STATUS hal_i2c_wake(ATCAIface iface)
|
|
{
|
|
const ATCAIfaceCfg *cfg = atgetifacecfg(iface);
|
|
|
|
ATCA_STATUS status = ATCA_WAKE_FAILED;
|
|
|
|
uint8_t response[4] = { 0x00, 0x00, 0x00, 0x00 };
|
|
uint8_t expected_response[4] = { 0x04, 0x11, 0x33, 0x43 };
|
|
|
|
/*
|
|
* ATCA devices define "wake up" token as START, 80 us of SDA low, STOP.
|
|
*/
|
|
DBGV("Sending wake");
|
|
i2c_start(I2C_BUS);
|
|
atca_delay_us(80);
|
|
i2c_stop(I2C_BUS);
|
|
|
|
/* After wake signal we need to wait some time for device to init. */
|
|
atca_delay_us(cfg->wake_delay);
|
|
|
|
/* Receive the wake response. */
|
|
uint16_t len = sizeof(response);
|
|
status = hal_i2c_receive(iface, response, &len);
|
|
if (status == ATCA_SUCCESS) {
|
|
DBGV("Response %x %x %x %x", response[0], response[1], response[2], response[3]);
|
|
if (memcmp(response, expected_response, 4) != 0) {
|
|
DBGV("Wake failed");
|
|
status = ATCA_WAKE_FAILED;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
ATCA_STATUS hal_i2c_idle(ATCAIface iface)
|
|
{
|
|
uint8_t idle_cmd = 0x02;
|
|
DBG("Sending idle");
|
|
return hal_internal_i2c_write(iface, &idle_cmd, 1) ? ATCA_SUCCESS : ATCA_TX_FAIL;
|
|
}
|
|
|
|
ATCA_STATUS hal_i2c_sleep(ATCAIface iface)
|
|
{
|
|
uint8_t sleep_cmd = 0x01;
|
|
DBG("Sending sleep");
|
|
return hal_internal_i2c_write(iface, &sleep_cmd, 1) ? ATCA_SUCCESS : ATCA_TX_FAIL;
|
|
}
|
|
|
|
ATCA_STATUS hal_i2c_release(void *hal_data)
|
|
{
|
|
(void)hal_data;
|
|
return ATCA_SUCCESS;
|
|
}
|
|
|
|
ATCA_STATUS hal_i2c_discover_buses(int i2c_buses[], int max_buses)
|
|
{
|
|
i2c_buses[0] = 0; // There is just one bus on our esp8266 i2c implementation
|
|
return ATCA_SUCCESS;
|
|
}
|
|
|
|
ATCA_STATUS hal_i2c_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found)
|
|
{
|
|
ATCAIfaceCfg *head = cfg;
|
|
uint8_t slaveAddress = 0x01;
|
|
ATCADevice device;
|
|
ATCAIface discoverIface;
|
|
ATCACommand command;
|
|
ATCAPacket packet;
|
|
uint16_t rxsize;
|
|
uint32_t execution_or_wait_time;
|
|
ATCA_STATUS status;
|
|
uint8_t revs508[1][4] = { { 0x00, 0x00, 0x50, 0x00 } };
|
|
uint8_t revs108[1][4] = { { 0x80, 0x00, 0x10, 0x01 } };
|
|
uint8_t revs204[2][4] = { { 0x00, 0x02, 0x00, 0x08 },
|
|
{ 0x00, 0x04, 0x05, 0x00 } };
|
|
int i;
|
|
|
|
/** \brief default configuration, to be reused during discovery process */
|
|
ATCAIfaceCfg discoverCfg;
|
|
discoverCfg.iface_type = ATCA_I2C_IFACE;
|
|
discoverCfg.devtype = ATECC508A;
|
|
discoverCfg.atcai2c.slave_address = 0x07;
|
|
discoverCfg.atcai2c.bus = busNum;
|
|
discoverCfg.atcai2c.baud = 400000;
|
|
//discoverCfg.atcai2c.baud = 100000;
|
|
discoverCfg.wake_delay = 800;
|
|
discoverCfg.rx_retries = 3;
|
|
|
|
ATCAHAL_t hal;
|
|
|
|
hal_i2c_init( &hal, &discoverCfg );
|
|
device = newATCADevice( &discoverCfg );
|
|
discoverIface = atGetIFace( device );
|
|
command = atGetCommands( device );
|
|
|
|
// iterate through all addresses on given i2c bus
|
|
// all valid 7-bit addresses go from 0x07 to 0x78
|
|
for ( slaveAddress = 0x07; slaveAddress <= 0x78; slaveAddress++ ) {
|
|
discoverCfg.atcai2c.slave_address = slaveAddress << 1; // turn it into an 8-bit address which is what the rest of the i2c HAL is expecting when a packet is sent
|
|
|
|
// wake up device
|
|
// If it wakes, send it a dev rev command. Based on that response, determine the device type
|
|
// BTW - this will wake every cryptoauth device living on the same bus (ecc508a, sha204a)
|
|
|
|
if ( hal_i2c_wake( discoverIface ) == ATCA_SUCCESS ) {
|
|
(*found)++;
|
|
memcpy( (uint8_t*)head, (uint8_t*)&discoverCfg, sizeof(ATCAIfaceCfg));
|
|
|
|
memset( packet.data, 0x00, sizeof(packet.data));
|
|
|
|
// get devrev info and set device type accordingly
|
|
atInfo( command, &packet );
|
|
#ifdef ATCA_NO_POLL
|
|
if ((status = atGetExecTime(packet->opcode, device->mCommands)) != ATCA_SUCCESS)
|
|
{
|
|
return status;
|
|
}
|
|
execution_or_wait_time = device->mCommands->execution_time_msec;
|
|
#else
|
|
execution_or_wait_time = 1;//ATCA_POLLING_INIT_TIME_MSEC;
|
|
#endif
|
|
|
|
// send the command
|
|
if ( (status = atsend( discoverIface, (uint8_t*)&packet, packet.txsize )) != ATCA_SUCCESS ) {
|
|
printf("packet send error\r\n");
|
|
continue;
|
|
}
|
|
|
|
// delay the appropriate amount of time for command to execute
|
|
atca_delay_ms(execution_or_wait_time);
|
|
|
|
// receive the response
|
|
if ( (status = atreceive( discoverIface, &(packet.data[0]), &rxsize )) != ATCA_SUCCESS )
|
|
continue;
|
|
|
|
if ( (status = isATCAError(packet.data)) != ATCA_SUCCESS ) {
|
|
printf("command response error\r\n");
|
|
continue;
|
|
}
|
|
|
|
// determine device type from common info and dev rev response byte strings
|
|
for ( i = 0; i < (int)sizeof(revs508) / 4; i++ ) {
|
|
if ( memcmp( &packet.data[1], &revs508[i], 4) == 0 ) {
|
|
discoverCfg.devtype = ATECC508A;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for ( i = 0; i < (int)sizeof(revs204) / 4; i++ ) {
|
|
if ( memcmp( &packet.data[1], &revs204[i], 4) == 0 ) {
|
|
discoverCfg.devtype = ATSHA204A;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for ( i = 0; i < (int)sizeof(revs108) / 4; i++ ) {
|
|
if ( memcmp( &packet.data[1], &revs108[i], 4) == 0 ) {
|
|
discoverCfg.devtype = ATECC108A;
|
|
break;
|
|
}
|
|
}
|
|
|
|
atca_delay_ms(15);
|
|
// now the device type is known, so update the caller's cfg array element with it
|
|
head->devtype = discoverCfg.devtype;
|
|
head++;
|
|
}
|
|
|
|
hal_i2c_idle(discoverIface);
|
|
}
|
|
|
|
hal_i2c_release(&hal);
|
|
|
|
return ATCA_SUCCESS;
|
|
}
|
|
|
|
void atca_delay_us(uint32_t us)
|
|
{
|
|
DBG("atca_delay_us: %d", us);
|
|
|
|
/*
|
|
* configTICK_RATE_HZ is 100, implying 10 ms ticks.
|
|
* But we run CPU at 160 and tick timer is not updated, hence / 2 below.
|
|
* https://github.com/espressif/ESP8266_RTOS_SDK/issues/90
|
|
*/
|
|
#define USECS_PER_TICK (1000000 / configTICK_RATE_HZ / 2)
|
|
uint32_t ticks = us / USECS_PER_TICK;
|
|
us = us % USECS_PER_TICK;
|
|
if (ticks > 0) vTaskDelay(ticks);
|
|
sdk_os_delay_us(us);
|
|
}
|
|
|
|
void atca_delay_ms(uint32_t ms)
|
|
{
|
|
atca_delay_us(ms * 1000);
|
|
}
|