esp-open-rtos/extras/i2c/i2c.c
Sakari Kapanen d41c0f1d72 I2C optimization (#503)
Fix of #480
2017-12-09 22:27:39 +05:00

427 lines
11 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2015 Johan Kanflo (github.com/kanflo)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "i2c.h"
#include <esp8266.h>
#include <espressif/esp_system.h>
#include <FreeRTOS.h>
#include <task.h>
//#define I2C_DEBUG true
#ifdef I2C_DEBUG
#define debug(fmt, ...) printf("%s: " fmt "\n", "I2C", ## __VA_ARGS__)
#else
#define debug(fmt, ...)
#endif
// The following array contains delay values for different frequencies.
// These were tuned to match the specified SCL frequency on average.
// The tuning was done using GCC 5.2.0 with -O2 optimization.
const static uint8_t i2c_freq_array[][2] = {
#if I2C_USE_GPIO16 == 1
[I2C_FREQ_80K] = {230, 107},
[I2C_FREQ_100K] = {180, 82},
[I2C_FREQ_400K] = {30, 7},
[I2C_FREQ_500K] = {20, 1},
[I2C_FREQ_600K] = {13, 0},
[I2C_FREQ_800K] = {5, 0},
[I2C_FREQ_1000K] = {1, 0}
#else
[I2C_FREQ_80K] = {235, 112},
[I2C_FREQ_100K] = {185, 88},
[I2C_FREQ_400K] = {36, 13},
[I2C_FREQ_500K] = {25, 8},
[I2C_FREQ_600K] = {20, 5},
[I2C_FREQ_800K] = {11, 1},
[I2C_FREQ_1000K] = {5, 0},
[I2C_FREQ_1300K] = {1, 0}
#endif
};
// Bus settings
typedef struct i2c_bus_description
{
#if I2C_USE_GPIO16 == 1
uint8_t g_scl_pin; // SCL pin
uint8_t g_sda_pin; // SDA pin
#else
uint32_t g_scl_mask; // SCL pin mask
uint32_t g_sda_mask; // SDA pin mask
#endif
i2c_freq_t frequency; // Frequency
uint8_t delay;
bool started;
bool flag;
bool force;
uint32_t clk_stretch;
} i2c_bus_description_t;
static i2c_bus_description_t i2c_bus[I2C_MAX_BUS];
inline bool i2c_status(uint8_t bus)
{
return i2c_bus[bus].started;
}
int i2c_init(uint8_t bus, uint8_t scl_pin, uint8_t sda_pin, i2c_freq_t freq)
{
if (bus >= I2C_MAX_BUS) {
debug("Invalid bus");
return -EINVAL;
}
#if I2C_USE_GPIO16 == 1
const int I2C_MAX_PIN = 16;
#else
const int I2C_MAX_PIN = 15;
#endif
if (scl_pin > I2C_MAX_PIN || sda_pin > I2C_MAX_PIN)
{
debug("Invalid GPIO number. All pins must be less than or equal to %d",
I2C_MAX_PIN);
return -EINVAL;
}
i2c_bus[bus].started = false;
i2c_bus[bus].flag = false;
#if I2C_USE_GPIO16 == 1
i2c_bus[bus].g_scl_pin = scl_pin;
i2c_bus[bus].g_sda_pin = sda_pin;
#else
i2c_bus[bus].g_scl_mask = BIT(scl_pin);
i2c_bus[bus].g_sda_mask = BIT(sda_pin);
#endif
i2c_bus[bus].frequency = freq;
i2c_bus[bus].clk_stretch = I2C_DEFAULT_CLK_STRETCH;
// Just to prevent these pins floating too much if not connected.
gpio_set_pullup(scl_pin, 1, 1);
gpio_set_pullup(sda_pin, 1, 1);
gpio_enable(scl_pin, GPIO_OUT_OPEN_DRAIN);
gpio_enable(sda_pin, GPIO_OUT_OPEN_DRAIN);
// I2C bus idle state.
gpio_write(scl_pin, 1);
gpio_write(sda_pin, 1);
// Prevent user, if frequency is high
if (sdk_system_get_cpu_freq() == SYS_CPU_80MHZ)
if (i2c_freq_array[i2c_bus[bus].frequency][1] == 0) {
debug("Frequency not supported");
return -ENOTSUP;
}
return 0;
}
void i2c_set_frequency(uint8_t bus, i2c_freq_t freq)
{
i2c_bus[bus].frequency = freq;
}
void i2c_set_clock_stretch(uint8_t bus, uint32_t clk_stretch)
{
i2c_bus[bus].clk_stretch = clk_stretch;
}
static inline void i2c_delay(uint8_t bus)
{
uint32_t delay = i2c_bus[bus].delay;
__asm volatile (
"1: addi %0, %0, -1" "\n"
"bnez %0, 1b" "\n"
: "=a" (delay) : "0" (delay));
}
static inline bool read_scl(uint8_t bus)
{
#if I2C_USE_GPIO16 == 1
return gpio_read(i2c_bus[bus].g_scl_pin);
#else
return GPIO.IN & i2c_bus[bus].g_scl_mask;
#endif
}
static inline bool read_sda(uint8_t bus)
{
#if I2C_USE_GPIO16 == 1
return gpio_read(i2c_bus[bus].g_sda_pin);
#else
return GPIO.IN & i2c_bus[bus].g_sda_mask;
#endif
}
// Actively drive SCL signal low
static inline void clear_scl(uint8_t bus)
{
#if I2C_USE_GPIO16 == 1
gpio_write(i2c_bus[bus].g_scl_pin, 0);
#else
GPIO.OUT_CLEAR = i2c_bus[bus].g_scl_mask;
#endif
}
// Actively drive SDA signal low
static inline void clear_sda(uint8_t bus)
{
#if I2C_USE_GPIO16 == 1
gpio_write(i2c_bus[bus].g_sda_pin, 0);
#else
GPIO.OUT_CLEAR = i2c_bus[bus].g_sda_mask;
#endif
}
static inline void set_scl(uint8_t bus)
{
#if I2C_USE_GPIO16 == 1
gpio_write(i2c_bus[bus].g_scl_pin, 1);
#else
GPIO.OUT_SET = i2c_bus[bus].g_scl_mask;
#endif
}
static inline void set_sda(uint8_t bus)
{
#if I2C_USE_GPIO16 == 1
gpio_write(i2c_bus[bus].g_sda_pin, 1);
#else
GPIO.OUT_SET = i2c_bus[bus].g_sda_mask;
#endif
}
// Output start condition
void i2c_start(uint8_t bus)
{
if (sdk_system_get_cpu_freq() == SYS_CPU_160MHZ)
i2c_bus[bus].delay = i2c_freq_array[i2c_bus[bus].frequency][0];
else
i2c_bus[bus].delay = i2c_freq_array[i2c_bus[bus].frequency][1];
if (i2c_bus[bus].started) { // if started, do a restart cond
// Set SDA to 1
set_sda(bus);
i2c_delay(bus);
uint32_t clk_stretch = i2c_bus[bus].clk_stretch;
set_scl(bus);
while (read_scl(bus) == 0 && clk_stretch--)
;
// Repeated start setup time, minimum 4.7us
i2c_delay(bus);
}
i2c_bus[bus].started = true;
set_sda(bus);
if (read_sda(bus) == 0) {
debug("arbitration lost in i2c_start from bus %u", bus);
}
// SCL is high, set SDA from 1 to 0.
clear_sda(bus);
i2c_delay(bus);
clear_scl(bus);
}
// Output stop condition
bool i2c_stop(uint8_t bus)
{
uint32_t clk_stretch = i2c_bus[bus].clk_stretch;
// Set SDA to 0
clear_sda(bus);
i2c_delay(bus);
// Clock stretching
set_scl(bus);
while (read_scl(bus) == 0 && clk_stretch--)
;
// Stop bit setup time, minimum 4us
i2c_delay(bus);
// SCL is high, set SDA from 0 to 1
set_sda(bus);
// additional delay before testing SDA value to avoid wrong state
i2c_delay(bus);
if (read_sda(bus) == 0) {
debug("arbitration lost in i2c_stop from bus %u", bus);
}
i2c_delay(bus);
if (!i2c_bus[bus].started) {
debug("bus %u link was break!", bus);
return false; // If bus was stop in other way, the current transmission Failed
}
i2c_bus[bus].started = false;
return true;
}
// Write a bit to I2C bus
static void i2c_write_bit(uint8_t bus, bool bit)
{
uint32_t clk_stretch = i2c_bus[bus].clk_stretch;
if (bit) {
set_sda(bus);
} else {
clear_sda(bus);
}
i2c_delay(bus);
// Clock stretching
set_scl(bus);
while (read_scl(bus) == 0 && clk_stretch--)
;
// SCL is high, now data is valid
// If SDA is high, check that nobody else is driving SDA
if (bit && read_sda(bus) == 0) {
debug("arbitration lost in i2c_write_bit from bus %u", bus);
}
i2c_delay(bus);
clear_scl(bus);
}
// Read a bit from I2C bus
static bool i2c_read_bit(uint8_t bus)
{
uint32_t clk_stretch = i2c_bus[bus].clk_stretch;
bool bit;
// Let the slave drive data
set_sda(bus);
i2c_delay(bus);
set_scl(bus);
// Clock stretching
while (read_scl(bus) == 0 && clk_stretch--)
;
// SCL is high, now data is valid
bit = read_sda(bus);
i2c_delay(bus);
clear_scl(bus);
return bit;
}
bool i2c_write(uint8_t bus, uint8_t byte)
{
bool nack;
uint8_t bit;
for (bit = 0; bit < 8; bit++) {
i2c_write_bit(bus, (byte & 0x80) != 0);
byte <<= 1;
}
nack = i2c_read_bit(bus);
return !nack;
}
uint8_t i2c_read(uint8_t bus, bool ack)
{
uint8_t byte = 0;
uint8_t bit;
for (bit = 0; bit < 8; bit++) {
byte = ((byte << 1)) | (i2c_read_bit(bus));
}
i2c_write_bit(bus, ack);
return byte;
}
void i2c_force_bus(uint8_t bus, bool state)
{
i2c_bus[bus].force = state;
}
static int i2c_bus_test(uint8_t bus)
{
taskENTER_CRITICAL(); // To prevent task swaping after checking flag and before set it!
bool status = i2c_bus[bus].flag; // get current status
if (i2c_bus[bus].force) {
i2c_bus[bus].flag = true; // force bus on
taskEXIT_CRITICAL();
if (status)
i2c_stop(bus); //Bus was busy, stop it.
}
else {
if (status) {
taskEXIT_CRITICAL();
debug("busy");
taskYIELD(); // If bus busy, change task to try finish last com.
return -EBUSY; // If bus busy, inform user
}
else {
i2c_bus[bus].flag = true; // Set Bus busy
taskEXIT_CRITICAL();
}
}
return 0;
}
int i2c_slave_write(uint8_t bus, uint8_t slave_addr, const uint8_t *data, const uint8_t *buf, uint32_t len)
{
if (i2c_bus_test(bus))
return -EBUSY;
i2c_start(bus);
if (!i2c_write(bus, slave_addr << 1))
goto error;
if (data != NULL)
if (!i2c_write(bus, *data))
goto error;
while (len--) {
if (!i2c_write(bus, *buf++))
goto error;
}
if (!i2c_stop(bus))
goto error;
i2c_bus[bus].flag = false; // Bus free
return 0;
error:
debug("Bus %u Write Error", bus);
i2c_stop(bus);
i2c_bus[bus].flag = false; // Bus free
return -EIO;
}
int i2c_slave_read(uint8_t bus, uint8_t slave_addr, const uint8_t *data, uint8_t *buf, uint32_t len)
{
if (i2c_bus_test(bus))
return -EBUSY;
if (data != NULL) {
i2c_start(bus);
if (!i2c_write(bus, slave_addr << 1))
goto error;
if (!i2c_write(bus, *data))
goto error;
}
i2c_start(bus);
if (!i2c_write(bus, slave_addr << 1 | 1)) // Slave address + read
goto error;
while(len) {
*buf = i2c_read(bus, len == 1);
buf++;
len--;
}
if (!i2c_stop(bus))
goto error;
i2c_bus[bus].flag = false; // Bus free
return 0;
error:
debug("Read Error");
i2c_stop(bus);
i2c_bus[bus].flag = false; // Bus free
return -EIO;
}