esp-open-rtos/core/exception_vectors.S
2015-09-21 22:13:14 -07:00

505 lines
14 KiB
ArmAsm
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Xtensa Exception (ie interrupt) Vectors & low-level handler code
Core exception handler code is placed in the .vecbase section,
which gets picked up specially in the linker script and placed
at beginning of IRAM.
The actual VecBase symbol should be the first thing in .vecbase
(this is not strictly important as it gets set by symbol lookup not
by hardcoded address, but having it at 0x40100000 means that the
exception vectors have memorable offsets, which match the default
Boot ROM vector offsets. So convenient for human understanding.
Part of esp-open-rtos
Original vector contents Copyright (C) 2014-2015 Espressif Systems
Additions Copyright (C) Superhouse Automation Pty Ltd and Angus Gratton
BSD Licensed as described in the file LICENSE
*/
#include "led_debug.s"
/* Some UserException causes, see table Table 464 in ISA reference */
#define CAUSE_SYSCALL 1
#define CAUSE_LOADSTORE 3
#define CAUSE_LVL1INT 4
.text
.section .vecbase.text, "x"
.global VecBase
.org 0
VecBase:
/* IMPORTANT: exception vector literals will go here, but we
can't have more than 4 otherwise we push DebugExceptionVector past
offset 0x10 relative to VecBase. There should be ways to avoid this,
and also keep the VecBase offsets easy to read, but this works for now.
*/
.literal_position
.org 0x10
.type DebugExceptionVector, @function
DebugExceptionVector:
wsr.excsave2 a0
call0 sdk_user_fatal_exception_handler
rfi 2
.org 0x20
.type NMIExceptionVector, @function
NMIExceptionVector:
wsr.excsave3 a0
call0 CallNMIExceptionHandler
rfi 3 /* CallNMIExceptionHandler should call rfi itself */
.org 0x30
.type KernelExceptionVector, @function
KernelExceptionVector:
break 1, 0
call0 sdk_user_fatal_exception_handler
rfe
.org 0x50
.type UserExceptionVector, @function
UserExceptionVector:
wsr.excsave1 a0
rsr.exccause a0
beqi a0, CAUSE_LOADSTORE, LoadStoreErrorHandler
j UserExceptionHandler
.org 0x70
.type DoubleExceptionVector, @function
DoubleExceptionVector:
break 1, 4
call0 sdk_user_fatal_exception_handler
/* Reset vector would go here at offset 0x80 but should be unused,
as vecbase goes back to mask ROM vectors on reset */
/***** end of exception vectors *****/
/* Xtensa Exception unaligned load handler
Completes l8/l16 load instructions from Instruction address space,
for which the architecture only supports 32-bit reads.
Called from UserExceptionVector if EXCCAUSE is LoadStoreErrorCause
Fast path (no branches) is for l8ui.
*/
.literal_position
.type LoadStoreErrorHandler, @function
LoadStoreErrorHandler:
# Note: we use a0 as our "stack pointer" here because it's already been
# saved in UserExceptionVector, and we never call out to other routines
# so we don't have to worry about it being clobbered. It would be
# preferable to use a1 instead, but this would require changes to other
# parts of UserExceptionHandler code which we haven't gotten around to
# yet.
# TODO: Eventually, switch everything over to saving a1 instead of a0
# in UserExceptionVector so we can use the more mnemonic SP for this.
# Note: registers are saved in the (regnum * 4) address so calculation
# is easier later on. This means we don't use the first two entries
# (since we don't save a0 or a1 here), so we just adjust the pointer in
# a0 to pretend we have two extra slots at the beginning.
movi a0, LoadStoreErrorHandlerStack - 8
s32i a2, a0, 0x08
s32i a3, a0, 0x0c
s32i a4, a0, 0x10
s32i a5, a0, 0x14
rsr.sar a5 # Save SAR in a5 to restore later
# Examine the opcode which generated the exception
# Note: Instructions are in this order to avoid pipeline stalls.
rsr.epc1 a2
movi a3, ~3
ssa8l a2 // sar is now correct shift for aligned read
and a2, a2, a3 // a2 now 4-byte aligned address of instruction
l32i a4, a2, 0
l32i a2, a2, 4
movi a3, 0x00700F // opcode mask for l8ui/l16si/l16ui
src a2, a2, a4 // a2 now instruction that failed
and a3, a2, a3
bnei a3, 0x000002, .LSE_check_l16
# Note: At this point, opcode could technically be one of two things:
# xx0xx2 (L8UI)
# xx8xx2 (Reserved (invalid) opcode)
# It is assumed that we'll never get to this point from an illegal
# opcode, so we don't bother to check for that case and presume this is
# always an L8UI.
/* a2 holds instruction */
movi a4, ~3
rsr.excvaddr a3 // read faulting address
and a4, a3, a4 /* a4 now word aligned read address */
l32i a4, a4, 0 /* perform the actual read */
ssa8l a3 /* sar is now shift to extract a3's byte */
srl a3, a4 /* shift right correct distance */
extui a4, a3, 0, 8 /* mask off bits we need for an l8 */
.LSE_post_fetch:
# We jump back here after either the L8UI or the L16*I routines do the
# necessary work to read the value from memory.
# At this point, a2 holds the faulting instruction and a4 holds the
# correctly read value.
# Restore original SAR value (saved in a5) and update EPC so we'll
# return back to the instruction following the one we just emulated
# Note: Instructions are in this order to avoid pipeline stalls
rsr.epc1 a3
wsr.sar a5
addi a3, a3, 0x3
wsr.epc1 a3
# Stupid opcode tricks: The jumptable we use later on needs 16 bytes
# per entry (so we can avoid a second jump by just doing a RFE inside
# each entry). Unfortunately, however, Xtensa doesn't have an addx16
# operation to make that easy for us. Luckily, all of the faulting
# opcodes we're processing are guaranteed to have bit 3 be zero, which
# means if we just shift the register bits of the opcode down by 3
# instead of 4, we will get the register number multiplied by 2. This
# combined with an addx8 will give us an effective addx16 without
# needing any extra shift operations.
extui a2, a2, 3, 5 /* a2 now destination register 0-15 times 2 */
bgei a2, 12, .LSE_assign_reg # a6..a15 use jumptable
blti a2, 4, .LSE_assign_reg # a0..a1 use jumptable
# We're storing into a2..a5, which are all saved in our "stack" area.
# Calculate the correct address and stick the value in there, then just
# do our normal restore and RFE (no jumps required, which actually
# makes a2..a5 substantially faster).
addx2 a2, a2, a0
s32i a4, a2, 0
# Restore all regs and return
l32i a2, a0, 0x08
l32i a3, a0, 0x0c
l32i a4, a0, 0x10
l32i a5, a0, 0x14
rsr.excsave1 a0 # restore a0 saved by UserExceptionVector
rfe
.LSE_assign_reg:
# At this point, a2 contains the register number times 2, a4 is the
# read value.
movi a3, .LSE_assign_jumptable
addx8 a2, a2, a3 # a2 is now the address to jump to
# Restore everything except a2 and a4
l32i a3, a0, 0x0c
l32i a5, a0, 0x14
jx a2
/* Check the load instruction a2 for an l16si/16ui instruction
a2 is the instruction, a3 is masked instruction */
.balign 4
.LSE_check_l16:
movi a4, 0x001002 /* l16si or l16ui opcode after masking */
bne a3, a4, .LSE_wrong_opcode
# Note: At this point, the opcode could be one of two things:
# xx1xx2 (L16UI)
# xx9xx2 (L16SI)
# Both of these we can handle.
movi a4, ~3
rsr.excvaddr a3 // read faulting address
and a4, a3, a4 /* a4 now word aligned read address */
l32i a4, a4, 0 /* perform the actual read */
ssa8l a3 /* sar is now shift to extract a3's byte */
srl a3, a4 /* shift right correct distance */
extui a4, a3, 0, 16 /* mask off bits we need for an l16 */
bbci a2, 15, .LSE_post_fetch # Not a signed op
bbci a4, 15, .LSE_post_fetch # Value does not require sign-extension
movi a3, 0xFFFF0000
or a4, a3, a4 /* set 32-bit sign bits */
j .LSE_post_fetch
/* If we got here it's not an opcode we can try to fix, so bomb out */
.LSE_wrong_opcode:
# Restore registers so any dump the fatal exception routine produces
# will have correct values
wsr.sar a5 # Restore SAR saved in a5
l32i a2, a0, 0x08
l32i a3, a0, 0x0c
l32i a4, a0, 0x10
l32i a5, a0, 0x14
call0 sdk_user_fatal_exception_handler
.balign 4
.LSE_assign_jumptable:
.org .LSE_assign_jumptable + (16 * 0)
# a0 is saved in excsave1, so just update that with the value
wsr.excsave1 a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 1)
mov a1, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
# NOTE: Opcodes a2 .. a5 are not handled by the jumptable routines
# (they're taken care of directly in .LSE_post_fetch above)
# This leaves 64 bytes of wasted space here. We could fill it with
# other things, but that would just make it harder to understand what's
# going on, and that's bad enough with this routine already. Even on
# the ESP8266, 64 bytes of IRAM wasted aren't the end of the world..
.org .LSE_assign_jumptable + (16 * 6)
mov a6, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 7)
mov a7, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 8)
mov a8, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 9)
mov a9, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 10)
mov a10, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 11)
mov a11, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 12)
mov a12, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 13)
mov a13, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 14)
mov a14, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
.org .LSE_assign_jumptable + (16 * 15)
mov a15, a4
l32i a2, a0, 0x08
l32i a4, a0, 0x10
rsr.excsave1 a0
rfe
/* End of LoadStoreErrorHandler */
.section .bss
NMIHandlerStack: /* stack space for NMI handler */
.skip 4*0x100
.LNMIHandlerStackTop:
NMIRegisterSaved: /* register space for saving NMI registers */
.skip 4*(16 + 6)
LoadStoreErrorHandlerStack:
.word 0 # a2
.word 0 # a3
.word 0 # a4
.word 0 # a5
/* Save register relative to a0 */
.macro SAVE_REG register, regnum
s32i \register, a0, (0x20 + 4 * \regnum)
.endm
/* Load register relative to sp */
.macro LOAD_REG register, regnum
l32i \register, sp, (0x20 + 4 * \regnum)
.endm
.text
.section .vecbase.text
.literal_position
.align 4
.global call_user_start
.type call_user_start, @function
call_user_start:
movi a2, VecBase
wsr.vecbase a2
call0 sdk_user_start
.literal_position
.align 16
.type CallNMIExceptionHandler, @function
CallNMIExceptionHandler:
movi a0, NMIRegisterSaved
SAVE_REG a2, 2
SAVE_REG sp, 1
SAVE_REG a3, 3
rsr.excsave3 a2 /* a2 is now former a0 */
SAVE_REG a4, 4
SAVE_REG a2, 0
rsr.epc1 a3
rsr.exccause a4
SAVE_REG a3, -5
SAVE_REG a4, -4
rsr.excvaddr a3
SAVE_REG a3, -3
rsr.excsave1 a3
SAVE_REG a3, -2
SAVE_REG a5, 5
SAVE_REG a6, 6
SAVE_REG a7, 7
SAVE_REG a8, 8
SAVE_REG a9, 9
SAVE_REG a10, 10
SAVE_REG a11, 11
SAVE_REG a12, 12
SAVE_REG a13, 13
SAVE_REG a14, 14
SAVE_REG a15, 15
movi sp, .LNMIHandlerStackTop
movi a0, 0
movi a2, 0x23 /* argument for handler */
wsr.ps a2
rsync
rsr.sar a14
s32i a14, sp, 0 /* this is also NMIRegisterSaved+0 */
call0 sdk_wDev_ProcessFiq
l32i a15, sp, 0
wsr.sar a15
movi a2, 0x33
wsr.ps a2
rsync
LOAD_REG a4, 4
LOAD_REG a5, 5
LOAD_REG a6, 6
LOAD_REG a7, 7
LOAD_REG a8, 8
LOAD_REG a9, 9
LOAD_REG a10, 10
LOAD_REG a11, 11
LOAD_REG a12, 12
LOAD_REG a13, 13
LOAD_REG a14, 14
LOAD_REG a15, 15
LOAD_REG a2, -5
LOAD_REG a3, -4
wsr.epc1 a2
wsr.exccause a3
LOAD_REG a2, -3
LOAD_REG a3, -2
wsr.excvaddr a2
wsr.excsave1 a3
LOAD_REG a0, 0
/* set dport nmi status bit 0 (wDev_ProcessFiq clears & verifies this bit stays cleared,
see http://esp8266-re.foogod.com/wiki/WDev_ProcessFiq_%28IoT_RTOS_SDK_0.9.9%29) */
movi a2, 0x3ff00000
movi a3, 0x1
s32i a3, a2, 0
LOAD_REG a2, 2
LOAD_REG a3, 3
LOAD_REG a1, 1
rfi 0x3
.type UserExceptionHandler, @function
UserExceptionHandler:
mov a0, sp /* a0 was saved by UserExceptionVector */
addi sp, sp, -0x50
s32i a0, sp, 0x10
rsr.ps a0
s32i a0, sp, 0x08
rsr.epc1 a0
s32i a0, sp, 0x04
rsr.excsave1 a0
s32i a0, sp, 0x0c
movi a0, _xt_user_exit
s32i a0, sp, 0x0
call0 sdk__xt_int_enter
movi a0, 0x23
wsr.ps a0
rsync
rsr.exccause a2
beqi a2, CAUSE_LVL1INT, UserHandleInterrupt
/* Any UserException cause other than level 1 interrupt triggers a panic */
UserFailOtherExceptionCause:
break 1, 1
call0 sdk_user_fatal_exception_handler
UserHandleInterrupt:
rsil a0, 1
rsr.intenable a2
rsr.interrupt a3
movi a4, 0x3fff
and a2, a2, a3
and a2, a2, a4 /* a2 = 0x3FFF & INTENABLE & INTERRUPT */
UserHandleTimer:
movi a3, 0xffbf
and a3, a2, a3 /* a3 = a2 & 0xFFBF, ie remove 0x40 from a2 if set */
bnez a3, UserTimerDone /* bits other than 0x40 are set */
movi a3, 0x40
sub a12, a2, a3 /* a12 = a2 - 0x40 -- Will be zero if bit 6 set */
call0 sdk__xt_timer_int /* tick timer interrupt */
mov a2, a12 /* restore a2 from a12, ie zero */
beqz a2, UserIntDone
UserTimerDone:
call0 _xt_isr_handler
bnez a2, UserHandleTimer
UserIntDone:
beqz a2, UserIntExit
break 1, 1 /* non-zero remnant in a2 means fail */
call0 sdk_user_fatal_exception_handler
UserIntExit:
call0 sdk__xt_int_exit /* jumps to _xt_user_exit. Never returns here */
/* _xt_user_exit is used to exit interrupt context.
TODO: Find a better place for this to live.
*/
.text
.section .text
.global _xt_user_exit
.type _xt_user_exit, @function
_xt_user_exit:
l32i a0, sp, 0x8
wsr.ps a0
l32i a0, sp, 0x4
wsr.epc1 a0
l32i a0, sp, 0xc
l32i sp, sp, 0x10
rsync
rfe