esp-open-rtos/extras/rboot-ota/rboot-api.c

214 lines
5.6 KiB
C

//////////////////////////////////////////////////
// rBoot OTA and config API for ESP8266.
// Copyright 2015 Richard A Burton
// richardaburton@gmail.com
// See license.txt for license terms.
// OTA code based on SDK sample from Espressif.
//////////////////////////////////////////////////
#include <rboot.h>
#include <string.h>
//#include <c_types.h>
//#include <spi_flash.h>
// detect rtos sdk (not ideal method!)
#ifdef IRAM_ATTR
#define os_free(s) vPortFree(s)
#define os_malloc(s) pvPortMalloc(s)
#else
#include <mem.h>
#endif
#ifdef RBOOT_INTEGRATION
#include <rboot-integration.h>
#endif
#include "rboot-api.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(BOOT_CONFIG_CHKSUM) || defined(BOOT_RTC_ENABLED)
// calculate checksum for block of data
// from start up to (but excluding) end
static uint8 calc_chksum(uint8 *start, uint8 *end) {
uint8 chksum = CHKSUM_INIT;
while(start < end) {
chksum ^= *start;
start++;
}
return chksum;
}
#endif
// get the rboot config
rboot_config ICACHE_FLASH_ATTR rboot_get_config(void) {
rboot_config conf;
spi_flash_read(BOOT_CONFIG_SECTOR * SECTOR_SIZE, (uint32*)&conf, sizeof(rboot_config));
return conf;
}
// write the rboot config
// preserves the contents of the rest of the sector,
// so the rest of the sector can be used to store user data
// updates checksum automatically (if enabled)
bool ICACHE_FLASH_ATTR rboot_set_config(rboot_config *conf) {
uint8 *buffer;
buffer = (uint8*)os_malloc(SECTOR_SIZE);
if (!buffer) {
//os_printf("No ram!\r\n");
return false;
}
#ifdef BOOT_CONFIG_CHKSUM
conf->chksum = calc_chksum((uint8*)conf, (uint8*)&conf->chksum);
#endif
spi_flash_read(BOOT_CONFIG_SECTOR * SECTOR_SIZE, (uint32*)((void*)buffer), SECTOR_SIZE);
memcpy(buffer, conf, sizeof(rboot_config));
vPortEnterCritical();
spi_flash_erase_sector(BOOT_CONFIG_SECTOR);
vPortExitCritical();
taskYIELD();
vPortEnterCritical();
//spi_flash_write(BOOT_CONFIG_SECTOR * SECTOR_SIZE, (uint32*)((void*)buffer), SECTOR_SIZE);
spi_flash_write(BOOT_CONFIG_SECTOR * SECTOR_SIZE, (uint32*)((void*)buffer), SECTOR_SIZE);
vPortExitCritical();
os_free(buffer);
return true;
}
// get current boot rom
uint8 ICACHE_FLASH_ATTR rboot_get_current_rom(void) {
rboot_config conf;
conf = rboot_get_config();
return conf.current_rom;
}
// set current boot rom
bool ICACHE_FLASH_ATTR rboot_set_current_rom(uint8 rom) {
rboot_config conf;
conf = rboot_get_config();
if (rom >= conf.count) return false;
conf.current_rom = rom;
return rboot_set_config(&conf);
}
// create the write status struct, based on supplied start address
rboot_write_status ICACHE_FLASH_ATTR rboot_write_init(uint32 start_addr) {
rboot_write_status status = {0};
status.start_addr = start_addr;
status.start_sector = start_addr / SECTOR_SIZE;
status.last_sector_erased = status.start_sector - 1;
//status.max_sector_count = 200;
//os_printf("init addr: 0x%08x\r\n", start_addr);
return status;
}
// function to do the actual writing to flash
// call repeatedly with more data (max len per write is the flash sector size (4k))
bool ICACHE_FLASH_ATTR rboot_write_flash(rboot_write_status *status, uint8 *data, uint16 len) {
bool ret = false;
uint8 *buffer;
int32 lastsect;
if (data == NULL || len == 0) {
return true;
}
// get a buffer
buffer = (uint8 *)os_malloc(len + status->extra_count);
if (!buffer) {
//os_printf("No ram!\r\n");
return false;
}
// copy in any remaining bytes from last chunk
memcpy(buffer, status->extra_bytes, status->extra_count);
// copy in new data
memcpy(buffer + status->extra_count, data, len);
// calculate length, must be multiple of 4
// save any remaining bytes for next go
len += status->extra_count;
status->extra_count = len % 4;
len -= status->extra_count;
memcpy(status->extra_bytes, buffer + len, status->extra_count);
// check data will fit
//if (status->start_addr + len < (status->start_sector + status->max_sector_count) * SECTOR_SIZE) {
// erase any additional sectors needed by this chunk
lastsect = ((status->start_addr + len) - 1) / SECTOR_SIZE;
while (lastsect > status->last_sector_erased) {
status->last_sector_erased++;
spi_flash_erase_sector(status->last_sector_erased);
}
// write current chunk
//os_printf("write addr: 0x%08x, len: 0x%04x\r\n", status->start_addr, len);
if (spi_flash_write(status->start_addr, (uint32 *)((void*)buffer), len) == SPI_FLASH_RESULT_OK) {
ret = true;
status->start_addr += len;
}
//}
os_free(buffer);
return ret;
}
#ifdef BOOT_RTC_ENABLED
bool ICACHE_FLASH_ATTR rboot_get_rtc_data(rboot_rtc_data *rtc) {
if (system_rtc_mem_read(RBOOT_RTC_ADDR, rtc, sizeof(rboot_rtc_data))) {
return (rtc->chksum == calc_chksum((uint8*)rtc, (uint8*)&rtc->chksum));
}
return false;
}
bool ICACHE_FLASH_ATTR rboot_set_rtc_data(rboot_rtc_data *rtc) {
// calculate checksum
rtc->chksum = calc_chksum((uint8*)rtc, (uint8*)&rtc->chksum);
return system_rtc_mem_write(RBOOT_RTC_ADDR, rtc, sizeof(rboot_rtc_data));
}
bool ICACHE_FLASH_ATTR rboot_set_temp_rom(uint8 rom) {
rboot_rtc_data rtc;
// invalid data in rtc?
if (!rboot_get_rtc_data(&rtc)) {
// set basics
rtc.magic = RBOOT_RTC_MAGIC;
rtc.last_mode = MODE_STANDARD;
rtc.last_rom = 0;
}
// set next boot to temp mode with specified rom
rtc.next_mode = MODE_TEMP_ROM;
rtc.temp_rom = rom;
return rboot_set_rtc_data(&rtc);
}
bool ICACHE_FLASH_ATTR rboot_get_last_boot_rom(uint8 *rom) {
rboot_rtc_data rtc;
if (rboot_get_rtc_data(&rtc)) {
*rom = rtc.last_rom;
return true;
}
return false;
}
bool ICACHE_FLASH_ATTR rboot_get_last_boot_mode(uint8 *mode) {
rboot_rtc_data rtc;
if (rboot_get_rtc_data(&rtc)) {
*mode = rtc.last_mode;
return true;
}
return false;
}
#endif
#ifdef __cplusplus
}
#endif