esp-open-rtos/extras/i2c/i2c.c
2017-10-12 17:42:34 +05:00

357 lines
9.4 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2015 Johan Kanflo (github.com/kanflo)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "i2c.h"
#include <esp8266.h>
#include <espressif/esp_misc.h> // sdk_os_delay_us
#include <espressif/esp_system.h>
#include <FreeRTOS.h>
#include <task.h>
//#define I2C_DEBUG true
#ifdef I2C_DEBUG
#define debug(fmt, ...) printf("%s: " fmt "\n", "I2C", ## __VA_ARGS__)
#else
#define debug(fmt, ...)
#endif
#define CLK_STRETCH (10)
// Following array contain delay values for different frequencies
// Warning: 1 is minimal, that mean at 80MHz clock, frequency max is 320kHz
const static uint8_t i2c_freq_array[][2] = {
[I2C_FREQ_80K] = {255, 35},
[I2C_FREQ_100K] = {100, 20},
[I2C_FREQ_400K] = {10, 1},
[I2C_FREQ_500K] = {6, 1}
};
static uint8_t freq; // Store CPU frequency for optimisation speed in delay function (Warning: Don't change CPU frequency during a transaction)
// Bus settings
typedef struct i2c_bus_description
{
uint8_t g_scl_pin; // SCL pin
uint8_t g_sda_pin; // SDA pin
i2c_freq_t frequency; // Frequency
bool started;
bool flag;
bool force;
} i2c_bus_description_t;
static i2c_bus_description_t i2c_bus[MAX_I2C_BUS];
inline bool i2c_status(uint8_t bus)
{
return i2c_bus[bus].started;
}
void i2c_init(uint8_t bus, uint8_t scl_pin, uint8_t sda_pin, i2c_freq_t freq)
{
i2c_bus[bus].started = false;
i2c_bus[bus].flag = false;
i2c_bus[bus].g_scl_pin = scl_pin;
i2c_bus[bus].g_sda_pin = sda_pin;
i2c_bus[bus].frequency = freq;
// Just to prevent these pins floating too much if not connected.
gpio_set_pullup(i2c_bus[bus].g_scl_pin, 1, 1);
gpio_set_pullup(i2c_bus[bus].g_sda_pin, 1, 1);
gpio_enable(i2c_bus[bus].g_scl_pin, GPIO_OUT_OPEN_DRAIN);
gpio_enable(i2c_bus[bus].g_sda_pin, GPIO_OUT_OPEN_DRAIN);
// I2C bus idle state.
gpio_write(i2c_bus[bus].g_scl_pin, 1);
gpio_write(i2c_bus[bus].g_sda_pin, 1);
// Prevent user, if frequency is high
if (sdk_system_get_cpu_freq() == SYS_CPU_80MHZ)
if (i2c_freq_array[i2c_bus[bus].frequency][1] == 1)
debug("Max frequency is 320Khz at 80MHz");
}
void i2c_frequency(uint8_t bus, i2c_freq_t freq)
{
i2c_bus[bus].frequency = freq;
}
static inline void i2c_delay(uint8_t bus)
{
uint32_t delay;
if (freq == SYS_CPU_160MHZ)
{
delay = i2c_freq_array[i2c_bus[bus].frequency][0];
__asm volatile (
"1: addi %0, %0, -1" "\n"
"bnez %0, 1b" "\n"
:: "a" (delay));
}
else
{
delay = i2c_freq_array[i2c_bus[bus].frequency][1];
__asm volatile (
"1: addi %0, %0, -1" "\n"
"bnez %0, 1b" "\n"
:: "a" (delay));
}
}
// Set SCL as input, allowing it to float high, and return current
// level of line, 0 or 1
static inline bool read_scl(uint8_t bus)
{
gpio_write(i2c_bus[bus].g_scl_pin, 1);
return gpio_read(i2c_bus[bus].g_scl_pin); // Clock high, valid ACK
}
// Set SDA as input, allowing it to float high, and return current
// level of line, 0 or 1
static inline bool read_sda(uint8_t bus)
{
gpio_write(i2c_bus[bus].g_sda_pin, 1);
// TODO: Without this delay we get arbitration lost in i2c_stop
i2c_delay(bus);
return gpio_read(i2c_bus[bus].g_sda_pin); // Clock high, valid ACK
}
// Actively drive SCL signal low
static inline void clear_scl(uint8_t bus)
{
gpio_write(i2c_bus[bus].g_scl_pin, 0);
}
// Actively drive SDA signal low
static inline void clear_sda(uint8_t bus)
{
gpio_write(i2c_bus[bus].g_sda_pin, 0);
}
// Output start condition
void i2c_start(uint8_t bus)
{
freq = sdk_system_get_cpu_freq();
if (i2c_bus[bus].started) { // if started, do a restart cond
// Set SDA to 1
(void) read_sda(bus);
i2c_delay(bus);
uint32_t clk_stretch = CLK_STRETCH;
while (read_scl(bus) == 0 && clk_stretch--)
;
// Repeated start setup time, minimum 4.7us
i2c_delay(bus);
}
i2c_bus[bus].started = true;
if (read_sda(bus) == 0) {
debug("arbitration lost in i2c_start from bus %u", bus);
}
// SCL is high, set SDA from 1 to 0.
clear_sda(bus);
i2c_delay(bus);
clear_scl(bus);
}
// Output stop condition
bool i2c_stop(uint8_t bus)
{
uint32_t clk_stretch = CLK_STRETCH;
// Set SDA to 0
clear_sda(bus);
i2c_delay(bus);
// Clock stretching
while (read_scl(bus) == 0 && clk_stretch--)
;
// Stop bit setup time, minimum 4us
i2c_delay(bus);
// SCL is high, set SDA from 0 to 1
if (read_sda(bus) == 0) {
debug("arbitration lost in i2c_stop from bus %u", bus);
}
i2c_delay(bus);
if (!i2c_bus[bus].started) {
debug("bus %u link was break!", bus);
return false; // If bus was stop in other way, the current transmission Failed
}
i2c_bus[bus].started = false;
return true;
}
// Write a bit to I2C bus
static void i2c_write_bit(uint8_t bus, bool bit)
{
uint32_t clk_stretch = CLK_STRETCH;
if (bit) {
(void) read_sda(bus);
} else {
clear_sda(bus);
}
i2c_delay(bus);
// Clock stretching
while (read_scl(bus) == 0 && clk_stretch--)
;
// SCL is high, now data is valid
// If SDA is high, check that nobody else is driving SDA
if (bit && read_sda(bus) == 0) {
debug("arbitration lost in i2c_write_bit from bus %u", bus);
}
i2c_delay(bus);
clear_scl(bus);
}
// Read a bit from I2C bus
static bool i2c_read_bit(uint8_t bus)
{
uint32_t clk_stretch = CLK_STRETCH;
bool bit;
// Let the slave drive data
(void) read_sda(bus);
i2c_delay(bus);
// Clock stretching
while (read_scl(bus) == 0 && clk_stretch--)
;
// SCL is high, now data is valid
bit = read_sda(bus);
i2c_delay(bus);
clear_scl(bus);
return bit;
}
bool i2c_write(uint8_t bus, uint8_t byte)
{
bool nack;
uint8_t bit;
for (bit = 0; bit < 8; bit++) {
i2c_write_bit(bus, (byte & 0x80) != 0);
byte <<= 1;
}
nack = i2c_read_bit(bus);
return !nack;
}
uint8_t i2c_read(uint8_t bus, bool ack)
{
uint8_t byte = 0;
uint8_t bit;
for (bit = 0; bit < 8; bit++) {
byte = ((byte << 1)) | (i2c_read_bit(bus));
}
i2c_write_bit(bus, ack);
return byte;
}
void i2c_force_bus(uint8_t bus, bool state)
{
i2c_bus[bus].force = state;
}
static int i2c_bus_test(uint8_t bus)
{
taskENTER_CRITICAL(); // To prevent task swaping after checking flag and before set it!
bool status = i2c_bus[bus].flag; // get current status
if(i2c_bus[bus].force)
{
i2c_bus[bus].flag = true; // force bus on
taskEXIT_CRITICAL();
if(status)
i2c_stop(bus); //Bus was busy, stop it.
}
else
{
if (status)
{
taskEXIT_CRITICAL();
debug("busy");
taskYIELD(); // If bus busy, change task to try finish last com.
return -EBUSY; // If bus busy, inform user
}
else
{
i2c_bus[bus].flag = true; // Set Bus busy
taskEXIT_CRITICAL();
}
}
return 0;
}
int i2c_slave_write(uint8_t bus, uint8_t slave_addr, const uint8_t *data, const uint8_t *buf, uint32_t len)
{
if(i2c_bus_test(bus))
return -EBUSY;
i2c_start(bus);
if (!i2c_write(bus, slave_addr << 1))
goto error;
if(data != NULL)
if (!i2c_write(bus, *data))
goto error;
while (len--) {
if (!i2c_write(bus, *buf++))
goto error;
}
if (!i2c_stop(bus))
goto error;
i2c_bus[bus].flag = false; // Bus free
return 0;
error:
debug("Bus %u Write Error", bus);
i2c_stop(bus);
i2c_bus[bus].flag = false; // Bus free
return -EIO;
}
int i2c_slave_read(uint8_t bus, uint8_t slave_addr, const uint8_t *data, uint8_t *buf, uint32_t len)
{
if(i2c_bus_test(bus))
return -EBUSY;
if(data != NULL) {
i2c_start(bus);
if (!i2c_write(bus, slave_addr << 1))
goto error;
if (!i2c_write(bus, *data))
goto error;
if (!i2c_stop(bus))
goto error;
}
i2c_start(bus);
if (!i2c_write(bus, slave_addr << 1 | 1)) // Slave address + read
goto error;
while(len) {
*buf = i2c_read(bus, len == 1);
buf++;
len--;
}
if (!i2c_stop(bus))
goto error;
i2c_bus[bus].flag = false; // Bus free
return 0;
error:
debug("Read Error");
i2c_stop(bus);
i2c_bus[bus].flag = false; // Bus free
return -EIO;
}