/* * The MIT License (MIT) * * Copyright (c) 2015 Johan Kanflo (github.com/kanflo) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "i2c.h" #include #include #include #include //#define I2C_DEBUG true #ifdef I2C_DEBUG #define debug(fmt, ...) printf("%s: " fmt "\n", "I2C", ## __VA_ARGS__) #else #define debug(fmt, ...) #endif // The following array contains delay values for different frequencies. // These were tuned to match the specified SCL frequency on average. // The tuning was done using GCC 5.2.0 with -O2 optimization. const static uint8_t i2c_freq_array[][2] = { #if I2C_USE_GPIO16 == 1 [I2C_FREQ_80K] = {230, 107}, [I2C_FREQ_100K] = {180, 82}, [I2C_FREQ_400K] = {30, 7}, [I2C_FREQ_500K] = {20, 1}, [I2C_FREQ_600K] = {13, 0}, [I2C_FREQ_800K] = {5, 0}, [I2C_FREQ_1000K] = {1, 0} #else [I2C_FREQ_80K] = {235, 112}, [I2C_FREQ_100K] = {185, 88}, [I2C_FREQ_400K] = {36, 13}, [I2C_FREQ_500K] = {25, 8}, [I2C_FREQ_600K] = {20, 5}, [I2C_FREQ_800K] = {11, 1}, [I2C_FREQ_1000K] = {5, 0}, [I2C_FREQ_1300K] = {1, 0} #endif }; // Bus settings typedef struct i2c_bus_description { #if I2C_USE_GPIO16 == 1 uint8_t g_scl_pin; // SCL pin uint8_t g_sda_pin; // SDA pin #else uint32_t g_scl_mask; // SCL pin mask uint32_t g_sda_mask; // SDA pin mask #endif i2c_freq_t frequency; // Frequency uint8_t delay; bool started; bool flag; bool force; uint32_t clk_stretch; } i2c_bus_description_t; static i2c_bus_description_t i2c_bus[I2C_MAX_BUS]; inline bool i2c_status(uint8_t bus) { return i2c_bus[bus].started; } int i2c_init(uint8_t bus, uint8_t scl_pin, uint8_t sda_pin, i2c_freq_t freq) { if (bus >= I2C_MAX_BUS) { debug("Invalid bus"); return -EINVAL; } #if I2C_USE_GPIO16 == 1 const int I2C_MAX_PIN = 16; #else const int I2C_MAX_PIN = 15; #endif if (scl_pin > I2C_MAX_PIN || sda_pin > I2C_MAX_PIN) { debug("Invalid GPIO number. All pins must be less than or equal to %d", I2C_MAX_PIN); return -EINVAL; } i2c_bus[bus].started = false; i2c_bus[bus].flag = false; #if I2C_USE_GPIO16 == 1 i2c_bus[bus].g_scl_pin = scl_pin; i2c_bus[bus].g_sda_pin = sda_pin; #else i2c_bus[bus].g_scl_mask = BIT(scl_pin); i2c_bus[bus].g_sda_mask = BIT(sda_pin); #endif i2c_bus[bus].frequency = freq; i2c_bus[bus].clk_stretch = I2C_DEFAULT_CLK_STRETCH; // Just to prevent these pins floating too much if not connected. gpio_set_pullup(scl_pin, 1, 1); gpio_set_pullup(sda_pin, 1, 1); gpio_enable(scl_pin, GPIO_OUT_OPEN_DRAIN); gpio_enable(sda_pin, GPIO_OUT_OPEN_DRAIN); // I2C bus idle state. gpio_write(scl_pin, 1); gpio_write(sda_pin, 1); // Prevent user, if frequency is high if (sdk_system_get_cpu_freq() == SYS_CPU_80MHZ) if (i2c_freq_array[i2c_bus[bus].frequency][1] == 0) { debug("Frequency not supported"); return -ENOTSUP; } return 0; } void i2c_set_frequency(uint8_t bus, i2c_freq_t freq) { i2c_bus[bus].frequency = freq; } void i2c_set_clock_stretch(uint8_t bus, uint32_t clk_stretch) { i2c_bus[bus].clk_stretch = clk_stretch; } static inline void i2c_delay(uint8_t bus) { uint32_t delay = i2c_bus[bus].delay; __asm volatile ( "1: addi %0, %0, -1" "\n" "bnez %0, 1b" "\n" : "=a" (delay) : "0" (delay)); } static inline bool read_scl(uint8_t bus) { #if I2C_USE_GPIO16 == 1 return gpio_read(i2c_bus[bus].g_scl_pin); #else return GPIO.IN & i2c_bus[bus].g_scl_mask; #endif } static inline bool read_sda(uint8_t bus) { #if I2C_USE_GPIO16 == 1 return gpio_read(i2c_bus[bus].g_sda_pin); #else return GPIO.IN & i2c_bus[bus].g_sda_mask; #endif } // Actively drive SCL signal low static inline void clear_scl(uint8_t bus) { #if I2C_USE_GPIO16 == 1 gpio_write(i2c_bus[bus].g_scl_pin, 0); #else GPIO.OUT_CLEAR = i2c_bus[bus].g_scl_mask; #endif } // Actively drive SDA signal low static inline void clear_sda(uint8_t bus) { #if I2C_USE_GPIO16 == 1 gpio_write(i2c_bus[bus].g_sda_pin, 0); #else GPIO.OUT_CLEAR = i2c_bus[bus].g_sda_mask; #endif } static inline void set_scl(uint8_t bus) { #if I2C_USE_GPIO16 == 1 gpio_write(i2c_bus[bus].g_scl_pin, 1); #else GPIO.OUT_SET = i2c_bus[bus].g_scl_mask; #endif } static inline void set_sda(uint8_t bus) { #if I2C_USE_GPIO16 == 1 gpio_write(i2c_bus[bus].g_sda_pin, 1); #else GPIO.OUT_SET = i2c_bus[bus].g_sda_mask; #endif } // Output start condition void i2c_start(uint8_t bus) { if (sdk_system_get_cpu_freq() == SYS_CPU_160MHZ) i2c_bus[bus].delay = i2c_freq_array[i2c_bus[bus].frequency][0]; else i2c_bus[bus].delay = i2c_freq_array[i2c_bus[bus].frequency][1]; if (i2c_bus[bus].started) { // if started, do a restart cond // Set SDA to 1 set_sda(bus); i2c_delay(bus); uint32_t clk_stretch = i2c_bus[bus].clk_stretch; set_scl(bus); while (read_scl(bus) == 0 && clk_stretch--) ; // Repeated start setup time, minimum 4.7us i2c_delay(bus); } i2c_bus[bus].started = true; set_sda(bus); if (read_sda(bus) == 0) { debug("arbitration lost in i2c_start from bus %u", bus); } // SCL is high, set SDA from 1 to 0. clear_sda(bus); i2c_delay(bus); clear_scl(bus); } // Output stop condition bool i2c_stop(uint8_t bus) { uint32_t clk_stretch = i2c_bus[bus].clk_stretch; // Set SDA to 0 clear_sda(bus); i2c_delay(bus); // Clock stretching set_scl(bus); while (read_scl(bus) == 0 && clk_stretch--) ; // Stop bit setup time, minimum 4us i2c_delay(bus); // SCL is high, set SDA from 0 to 1 set_sda(bus); // additional delay before testing SDA value to avoid wrong state i2c_delay(bus); if (read_sda(bus) == 0) { debug("arbitration lost in i2c_stop from bus %u", bus); } i2c_delay(bus); if (!i2c_bus[bus].started) { debug("bus %u link was break!", bus); return false; // If bus was stop in other way, the current transmission Failed } i2c_bus[bus].started = false; return true; } // Write a bit to I2C bus static void i2c_write_bit(uint8_t bus, bool bit) { uint32_t clk_stretch = i2c_bus[bus].clk_stretch; if (bit) { set_sda(bus); } else { clear_sda(bus); } i2c_delay(bus); // Clock stretching set_scl(bus); while (read_scl(bus) == 0 && clk_stretch--) ; // SCL is high, now data is valid // If SDA is high, check that nobody else is driving SDA if (bit && read_sda(bus) == 0) { debug("arbitration lost in i2c_write_bit from bus %u", bus); } i2c_delay(bus); clear_scl(bus); } // Read a bit from I2C bus static bool i2c_read_bit(uint8_t bus) { uint32_t clk_stretch = i2c_bus[bus].clk_stretch; bool bit; // Let the slave drive data set_sda(bus); i2c_delay(bus); set_scl(bus); // Clock stretching while (read_scl(bus) == 0 && clk_stretch--) ; // SCL is high, now data is valid bit = read_sda(bus); i2c_delay(bus); clear_scl(bus); return bit; } bool i2c_write(uint8_t bus, uint8_t byte) { bool nack; uint8_t bit; for (bit = 0; bit < 8; bit++) { i2c_write_bit(bus, (byte & 0x80) != 0); byte <<= 1; } nack = i2c_read_bit(bus); return !nack; } uint8_t i2c_read(uint8_t bus, bool ack) { uint8_t byte = 0; uint8_t bit; for (bit = 0; bit < 8; bit++) { byte = ((byte << 1)) | (i2c_read_bit(bus)); } i2c_write_bit(bus, ack); return byte; } void i2c_force_bus(uint8_t bus, bool state) { i2c_bus[bus].force = state; } static int i2c_bus_test(uint8_t bus) { taskENTER_CRITICAL(); // To prevent task swaping after checking flag and before set it! bool status = i2c_bus[bus].flag; // get current status if (i2c_bus[bus].force) { i2c_bus[bus].flag = true; // force bus on taskEXIT_CRITICAL(); if (status) i2c_stop(bus); //Bus was busy, stop it. } else { if (status) { taskEXIT_CRITICAL(); debug("busy"); taskYIELD(); // If bus busy, change task to try finish last com. return -EBUSY; // If bus busy, inform user } else { i2c_bus[bus].flag = true; // Set Bus busy taskEXIT_CRITICAL(); } } return 0; } int i2c_slave_write(uint8_t bus, uint8_t slave_addr, const uint8_t *data, const uint8_t *buf, uint32_t len) { if (i2c_bus_test(bus)) return -EBUSY; i2c_start(bus); if (!i2c_write(bus, slave_addr << 1)) goto error; if (data != NULL) if (!i2c_write(bus, *data)) goto error; while (len--) { if (!i2c_write(bus, *buf++)) goto error; } if (!i2c_stop(bus)) goto error; i2c_bus[bus].flag = false; // Bus free return 0; error: debug("Bus %u Write Error", bus); i2c_stop(bus); i2c_bus[bus].flag = false; // Bus free return -EIO; } int i2c_slave_read(uint8_t bus, uint8_t slave_addr, const uint8_t *data, uint8_t *buf, uint32_t len) { if (i2c_bus_test(bus)) return -EBUSY; if (data != NULL) { i2c_start(bus); if (!i2c_write(bus, slave_addr << 1)) goto error; if (!i2c_write(bus, *data)) goto error; } i2c_start(bus); if (!i2c_write(bus, slave_addr << 1 | 1)) // Slave address + read goto error; while(len) { *buf = i2c_read(bus, len == 1); buf++; len--; } if (!i2c_stop(bus)) goto error; i2c_bus[bus].flag = false; // Bus free return 0; error: debug("Read Error"); i2c_stop(bus); i2c_bus[bus].flag = false; // Bus free return -EIO; }