/*--------------------------------------------------------------------------------------------------------------------------------------------------- * irmp.c - infrared multi-protocol decoder, supports several remote control protocols * * Copyright (c) 2009-2016 Frank Meyer - frank(at)fli4l.de * * $Id: irmp.c,v 1.192 2017/02/17 09:13:06 fm Exp $ * * Supported AVR mikrocontrollers: * * ATtiny87, ATtiny167 * ATtiny45, ATtiny85 * ATtiny44, ATtiny84 * ATmega8, ATmega16, ATmega32 * ATmega162 * ATmega164, ATmega324, ATmega644, ATmega644P, ATmega1284, ATmega1284P * ATmega88, ATmega88P, ATmega168, ATmega168P, ATmega328P * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. *--------------------------------------------------------------------------------------------------------------------------------------------------- */ #include "irmp.h" #if IRMP_SUPPORT_GRUNDIG_PROTOCOL == 1 || IRMP_SUPPORT_NOKIA_PROTOCOL == 1 || IRMP_SUPPORT_IR60_PROTOCOL == 1 # define IRMP_SUPPORT_GRUNDIG_NOKIA_IR60_PROTOCOL 1 #else # define IRMP_SUPPORT_GRUNDIG_NOKIA_IR60_PROTOCOL 0 #endif #if IRMP_SUPPORT_SIEMENS_PROTOCOL == 1 || IRMP_SUPPORT_RUWIDO_PROTOCOL == 1 # define IRMP_SUPPORT_SIEMENS_OR_RUWIDO_PROTOCOL 1 #else # define IRMP_SUPPORT_SIEMENS_OR_RUWIDO_PROTOCOL 0 #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 || \ IRMP_SUPPORT_S100_PROTOCOL == 1 || \ IRMP_SUPPORT_RC6_PROTOCOL == 1 || \ IRMP_SUPPORT_GRUNDIG_NOKIA_IR60_PROTOCOL == 1 || \ IRMP_SUPPORT_SIEMENS_OR_RUWIDO_PROTOCOL == 1 || \ IRMP_SUPPORT_IR60_PROTOCOL == 1 || \ IRMP_SUPPORT_A1TVBOX_PROTOCOL == 1 || \ IRMP_SUPPORT_MERLIN_PROTOCOL == 1 || \ IRMP_SUPPORT_ORTEK_PROTOCOL == 1 # define IRMP_SUPPORT_MANCHESTER 1 #else # define IRMP_SUPPORT_MANCHESTER 0 #endif #if IRMP_SUPPORT_NETBOX_PROTOCOL == 1 # define IRMP_SUPPORT_SERIAL 1 #else # define IRMP_SUPPORT_SERIAL 0 #endif #define IRMP_KEY_REPETITION_LEN (uint_fast16_t)(F_INTERRUPTS * 150.0e-3 + 0.5) // autodetect key repetition within 150 msec #define MIN_TOLERANCE_00 1.0 // -0% #define MAX_TOLERANCE_00 1.0 // +0% #define MIN_TOLERANCE_02 0.98 // -2% #define MAX_TOLERANCE_02 1.02 // +2% #define MIN_TOLERANCE_03 0.97 // -3% #define MAX_TOLERANCE_03 1.03 // +3% #define MIN_TOLERANCE_05 0.95 // -5% #define MAX_TOLERANCE_05 1.05 // +5% #define MIN_TOLERANCE_10 0.9 // -10% #define MAX_TOLERANCE_10 1.1 // +10% #define MIN_TOLERANCE_15 0.85 // -15% #define MAX_TOLERANCE_15 1.15 // +15% #define MIN_TOLERANCE_20 0.8 // -20% #define MAX_TOLERANCE_20 1.2 // +20% #define MIN_TOLERANCE_30 0.7 // -30% #define MAX_TOLERANCE_30 1.3 // +30% #define MIN_TOLERANCE_40 0.6 // -40% #define MAX_TOLERANCE_40 1.4 // +40% #define MIN_TOLERANCE_50 0.5 // -50% #define MAX_TOLERANCE_50 1.5 // +50% #define MIN_TOLERANCE_60 0.4 // -60% #define MAX_TOLERANCE_60 1.6 // +60% #define MIN_TOLERANCE_70 0.3 // -70% #define MAX_TOLERANCE_70 1.7 // +70% #define SIRCS_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SIRCS_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIRCS_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIRCS_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SIRCS_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SIRCS_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #if IRMP_SUPPORT_NETBOX_PROTOCOL // only 5% to avoid conflict with NETBOX: # define SIRCS_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIRCS_START_BIT_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5)) #else // only 5% + 1 to avoid conflict with RC6: # define SIRCS_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIRCS_START_BIT_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #endif #define SIRCS_1_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SIRCS_1_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIRCS_1_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIRCS_1_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SIRCS_0_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SIRCS_0_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIRCS_0_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIRCS_0_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SIRCS_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SIRCS_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIRCS_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIRCS_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define NEC_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NEC_START_BIT_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define NEC_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NEC_START_BIT_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define NEC_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NEC_START_BIT_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define NEC_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NEC_START_BIT_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define NEC_REPEAT_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NEC_REPEAT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define NEC_REPEAT_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NEC_REPEAT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define NEC_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NEC_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define NEC_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NEC_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define NEC_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NEC_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define NEC_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NEC_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define NEC_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NEC_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define NEC_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NEC_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) // autodetect nec repetition frame within 50 msec: // NEC seems to send the first repetition frame after 40ms, further repetition frames after 100 ms #if 0 #define NEC_FRAME_REPEAT_PAUSE_LEN_MAX (uint_fast16_t)(F_INTERRUPTS * NEC_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) #else #define NEC_FRAME_REPEAT_PAUSE_LEN_MAX (uint_fast16_t)(F_INTERRUPTS * 100.0e-3 * MAX_TOLERANCE_20 + 0.5) #endif #define SAMSUNG_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SAMSUNG_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SAMSUNG_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SAMSUNG_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SAMSUNG_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define SAMSUNG_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define SAMSUNG_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define SAMSUNG_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define SAMSUNG_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define SAMSUNG_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNG_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define SAMSUNGAH_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SAMSUNGAH_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SAMSUNGAH_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SAMSUNGAH_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SAMSUNGAH_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define SAMSUNGAH_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define SAMSUNGAH_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define SAMSUNGAH_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define SAMSUNGAH_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define SAMSUNGAH_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SAMSUNGAH_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define MATSUSHITA_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define MATSUSHITA_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define MATSUSHITA_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define MATSUSHITA_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define MATSUSHITA_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define MATSUSHITA_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define MATSUSHITA_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_1_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define MATSUSHITA_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_1_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define MATSUSHITA_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define MATSUSHITA_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MATSUSHITA_0_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define KASEIKYO_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define KASEIKYO_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define KASEIKYO_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define KASEIKYO_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define KASEIKYO_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define KASEIKYO_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define KASEIKYO_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define KASEIKYO_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define KASEIKYO_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define KASEIKYO_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KASEIKYO_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define MITSU_HEAVY_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define MITSU_HEAVY_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define MITSU_HEAVY_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define MITSU_HEAVY_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define MITSU_HEAVY_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define MITSU_HEAVY_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define MITSU_HEAVY_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define MITSU_HEAVY_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define MITSU_HEAVY_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define MITSU_HEAVY_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MITSU_HEAVY_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define VINCENT_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * VINCENT_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define VINCENT_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * VINCENT_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define VINCENT_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * VINCENT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define VINCENT_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * VINCENT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define VINCENT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * VINCENT_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define VINCENT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * VINCENT_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define VINCENT_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * VINCENT_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define VINCENT_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * VINCENT_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define VINCENT_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * VINCENT_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define VINCENT_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * VINCENT_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define PANASONIC_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define PANASONIC_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define PANASONIC_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define PANASONIC_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define PANASONIC_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define PANASONIC_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define PANASONIC_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define PANASONIC_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define PANASONIC_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define PANASONIC_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PANASONIC_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RECS80_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RECS80_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RECS80_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RECS80_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RECS80_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #if IRMP_SUPPORT_BOSE_PROTOCOL == 1 // BOSE conflicts with RC5, so keep tolerance for RC5 minimal here: #define RC5_START_BIT_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RC5_BIT_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define RC5_START_BIT_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RC5_BIT_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #else #define RC5_START_BIT_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RC5_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC5_START_BIT_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RC5_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #endif #define RC5_BIT_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RC5_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC5_BIT_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RC5_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #if IRMP_SUPPORT_BOSE_PROTOCOL == 1 // BOSE conflicts with S100, so keep tolerance for S100 minimal here: #define S100_START_BIT_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * S100_BIT_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define S100_START_BIT_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * S100_BIT_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #else #define S100_START_BIT_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * S100_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define S100_START_BIT_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * S100_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #endif #define S100_BIT_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * S100_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define S100_BIT_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * S100_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define DENON_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * DENON_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define DENON_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * DENON_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define DENON_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * DENON_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define DENON_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * DENON_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) // RUWIDO (see t-home-mediareceiver-15kHz.txt) conflicts here with DENON #define DENON_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * DENON_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define DENON_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * DENON_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define DENON_AUTO_REPETITION_PAUSE_LEN ((uint_fast16_t)(F_INTERRUPTS * DENON_AUTO_REPETITION_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define THOMSON_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * THOMSON_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define THOMSON_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * THOMSON_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define THOMSON_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * THOMSON_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define THOMSON_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * THOMSON_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define THOMSON_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * THOMSON_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define THOMSON_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * THOMSON_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC6_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RC6_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RC6_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC6_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RC6_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RC6_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC6_TOGGLE_BIT_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RC6_TOGGLE_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_TOGGLE_BIT_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RC6_TOGGLE_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RC6_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RC6_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RC6_BIT_TIME * MAX_TOLERANCE_60 + 0.5) + 1) // pulses: 300 - 800 #define RC6_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RC6_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RC6_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RC6_BIT_TIME * MAX_TOLERANCE_20 + 0.5) + 1) // pauses: 300 - 600 #define RECS80EXT_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RECS80EXT_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RECS80EXT_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80EXT_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80EXT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RECS80EXT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RECS80EXT_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80EXT_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RECS80EXT_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RECS80EXT_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RECS80EXT_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define NUBERT_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NUBERT_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NUBERT_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NUBERT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NUBERT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_1_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NUBERT_1_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_1_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NUBERT_1_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NUBERT_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NUBERT_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_0_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NUBERT_0_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_0_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NUBERT_0_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NUBERT_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NUBERT_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NUBERT_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NUBERT_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define FAN_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FAN_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define FAN_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FAN_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define FAN_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FAN_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define FAN_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FAN_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define FAN_1_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FAN_1_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define FAN_1_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FAN_1_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define FAN_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FAN_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define FAN_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FAN_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define FAN_0_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FAN_0_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define FAN_0_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FAN_0_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define FAN_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FAN_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define FAN_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FAN_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define SPEAKER_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define SPEAKER_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define SPEAKER_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define SPEAKER_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define SPEAKER_1_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_1_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define SPEAKER_1_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_1_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define SPEAKER_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define SPEAKER_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define SPEAKER_0_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_0_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define SPEAKER_0_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_0_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define SPEAKER_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define SPEAKER_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SPEAKER_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT2_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT2_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT2_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT3_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT3_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX ((PAUSE_LEN)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT3_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) // value must be below IRMP_TIMEOUT #define BANG_OLUFSEN_START_BIT4_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT4_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_START_BIT4_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_R_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_R_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_R_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_R_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_TRAILER_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BANG_OLUFSEN_TRAILER_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define IR60_TIMEOUT_LEN ((uint_fast8_t)(F_INTERRUPTS * IR60_TIMEOUT_TIME * 0.5)) #define GRUNDIG_NOKIA_IR60_START_BIT_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * GRUNDIG_NOKIA_IR60_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define GRUNDIG_NOKIA_IR60_START_BIT_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * GRUNDIG_NOKIA_IR60_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define GRUNDIG_NOKIA_IR60_BIT_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * GRUNDIG_NOKIA_IR60_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define GRUNDIG_NOKIA_IR60_BIT_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * GRUNDIG_NOKIA_IR60_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define GRUNDIG_NOKIA_IR60_PRE_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * GRUNDIG_NOKIA_IR60_PRE_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) + 1) #define GRUNDIG_NOKIA_IR60_PRE_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * GRUNDIG_NOKIA_IR60_PRE_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SIEMENS_OR_RUWIDO_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIEMENS_OR_RUWIDO_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SIEMENS_OR_RUWIDO_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIEMENS_OR_RUWIDO_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SIEMENS_OR_RUWIDO_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SIEMENS_OR_RUWIDO_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIEMENS_OR_RUWIDO_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIEMENS_OR_RUWIDO_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define SIEMENS_OR_RUWIDO_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * SIEMENS_OR_RUWIDO_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define SIEMENS_OR_RUWIDO_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * SIEMENS_OR_RUWIDO_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define FDC_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FDC_START_BIT_PULSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) // 5%: avoid conflict with NETBOX #define FDC_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FDC_START_BIT_PULSE_TIME * MAX_TOLERANCE_05 + 0.5)) #define FDC_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FDC_START_BIT_PAUSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define FDC_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FDC_START_BIT_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5)) #define FDC_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FDC_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define FDC_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FDC_PULSE_TIME * MAX_TOLERANCE_50 + 0.5) + 1) #define FDC_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FDC_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define FDC_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FDC_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #if 0 #define FDC_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * FDC_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) // could be negative: 255 #else #define FDC_0_PAUSE_LEN_MIN (1) // simply use 1 #endif #define FDC_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * FDC_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RCCAR_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCCAR_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RCCAR_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCCAR_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RCCAR_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCCAR_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RCCAR_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCCAR_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RCCAR_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCCAR_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RCCAR_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCCAR_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RCCAR_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCCAR_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define RCCAR_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCCAR_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define RCCAR_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCCAR_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define RCCAR_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCCAR_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define JVC_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * JVC_START_BIT_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define JVC_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * JVC_START_BIT_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define JVC_REPEAT_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * (JVC_FRAME_REPEAT_PAUSE_TIME - IRMP_TIMEOUT_TIME) * MIN_TOLERANCE_40 + 0.5) - 1) // HACK! #define JVC_REPEAT_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * (JVC_FRAME_REPEAT_PAUSE_TIME - IRMP_TIMEOUT_TIME) * MAX_TOLERANCE_70 + 0.5) - 1) // HACK! #define JVC_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * JVC_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define JVC_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * JVC_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define JVC_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * JVC_1_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define JVC_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * JVC_1_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define JVC_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * JVC_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define JVC_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * JVC_0_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) // autodetect JVC repetition frame within 50 msec: #define JVC_FRAME_REPEAT_PAUSE_LEN_MAX (uint_fast16_t)(F_INTERRUPTS * JVC_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) #define NIKON_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NIKON_START_BIT_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NIKON_START_BIT_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_START_BIT_PAUSE_LEN_MIN ((uint_fast16_t)(F_INTERRUPTS * NIKON_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_START_BIT_PAUSE_LEN_MAX ((uint_fast16_t)(F_INTERRUPTS * NIKON_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_REPEAT_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NIKON_REPEAT_START_BIT_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_REPEAT_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NIKON_REPEAT_START_BIT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NIKON_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NIKON_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NIKON_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NIKON_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NIKON_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define NIKON_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NIKON_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define NIKON_FRAME_REPEAT_PAUSE_LEN_MAX (uint_fast16_t)(F_INTERRUPTS * NIKON_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) #define KATHREIN_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define KATHREIN_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define KATHREIN_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define KATHREIN_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define KATHREIN_1_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_1_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define KATHREIN_1_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_1_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define KATHREIN_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_1_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define KATHREIN_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_1_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define KATHREIN_0_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_0_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define KATHREIN_0_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_0_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define KATHREIN_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_0_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define KATHREIN_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_0_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define KATHREIN_SYNC_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_SYNC_BIT_PAUSE_LEN_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define KATHREIN_SYNC_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * KATHREIN_SYNC_BIT_PAUSE_LEN_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define NETBOX_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NETBOX_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define NETBOX_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NETBOX_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define NETBOX_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * NETBOX_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define NETBOX_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * NETBOX_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define NETBOX_PULSE_LEN ((uint_fast8_t)(F_INTERRUPTS * NETBOX_PULSE_TIME)) #define NETBOX_PAUSE_LEN ((uint_fast8_t)(F_INTERRUPTS * NETBOX_PAUSE_TIME)) #define NETBOX_PULSE_REST_LEN ((uint_fast8_t)(F_INTERRUPTS * NETBOX_PULSE_TIME / 4)) #define NETBOX_PAUSE_REST_LEN ((uint_fast8_t)(F_INTERRUPTS * NETBOX_PAUSE_TIME / 4)) #define LEGO_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * LEGO_START_BIT_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define LEGO_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * LEGO_START_BIT_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define LEGO_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * LEGO_START_BIT_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define LEGO_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * LEGO_START_BIT_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define LEGO_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * LEGO_PULSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define LEGO_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * LEGO_PULSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define LEGO_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * LEGO_1_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define LEGO_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * LEGO_1_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define LEGO_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * LEGO_0_PAUSE_TIME * MIN_TOLERANCE_40 + 0.5) - 1) #define LEGO_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * LEGO_0_PAUSE_TIME * MAX_TOLERANCE_40 + 0.5) + 1) #define BOSE_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BOSE_START_BIT_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define BOSE_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BOSE_START_BIT_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define BOSE_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BOSE_START_BIT_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define BOSE_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BOSE_START_BIT_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define BOSE_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BOSE_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define BOSE_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BOSE_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define BOSE_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BOSE_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define BOSE_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BOSE_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define BOSE_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * BOSE_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define BOSE_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * BOSE_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define BOSE_FRAME_REPEAT_PAUSE_LEN_MAX (uint_fast16_t)(F_INTERRUPTS * 100.0e-3 * MAX_TOLERANCE_20 + 0.5) #define A1TVBOX_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * A1TVBOX_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define A1TVBOX_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * A1TVBOX_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define A1TVBOX_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * A1TVBOX_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define A1TVBOX_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * A1TVBOX_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define A1TVBOX_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * A1TVBOX_BIT_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define A1TVBOX_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * A1TVBOX_BIT_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define A1TVBOX_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * A1TVBOX_BIT_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define A1TVBOX_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * A1TVBOX_BIT_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define MERLIN_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MERLIN_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define MERLIN_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MERLIN_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define MERLIN_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MERLIN_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define MERLIN_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MERLIN_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define MERLIN_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MERLIN_BIT_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define MERLIN_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MERLIN_BIT_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define MERLIN_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * MERLIN_BIT_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define MERLIN_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * MERLIN_BIT_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define ORTEK_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ORTEK_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define ORTEK_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ORTEK_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define ORTEK_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ORTEK_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define ORTEK_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ORTEK_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define ORTEK_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ORTEK_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define ORTEK_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ORTEK_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define ORTEK_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ORTEK_BIT_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define ORTEK_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ORTEK_BIT_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define TELEFUNKEN_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * TELEFUNKEN_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define TELEFUNKEN_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * TELEFUNKEN_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define TELEFUNKEN_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * (TELEFUNKEN_START_BIT_PAUSE_TIME) * MIN_TOLERANCE_10 + 0.5) - 1) #define TELEFUNKEN_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * (TELEFUNKEN_START_BIT_PAUSE_TIME) * MAX_TOLERANCE_10 + 0.5) - 1) #define TELEFUNKEN_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * TELEFUNKEN_PULSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define TELEFUNKEN_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * TELEFUNKEN_PULSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define TELEFUNKEN_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * TELEFUNKEN_1_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define TELEFUNKEN_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * TELEFUNKEN_1_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) #define TELEFUNKEN_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * TELEFUNKEN_0_PAUSE_TIME * MIN_TOLERANCE_30 + 0.5) - 1) #define TELEFUNKEN_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * TELEFUNKEN_0_PAUSE_TIME * MAX_TOLERANCE_30 + 0.5) + 1) // autodetect TELEFUNKEN repetition frame within 50 msec: // #define TELEFUNKEN_FRAME_REPEAT_PAUSE_LEN_MAX (uint_fast16_t)(F_INTERRUPTS * TELEFUNKEN_FRAME_REPEAT_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) #define ROOMBA_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define ROOMBA_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define ROOMBA_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define ROOMBA_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define ROOMBA_1_PAUSE_LEN_EXACT ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_1_PAUSE_TIME + 0.5)) #define ROOMBA_1_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_1_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define ROOMBA_1_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_1_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define ROOMBA_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define ROOMBA_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define ROOMBA_0_PAUSE_LEN ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_0_PAUSE_TIME)) #define ROOMBA_0_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_0_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define ROOMBA_0_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_0_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define ROOMBA_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define ROOMBA_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ROOMBA_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RCMM32_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCMM32_START_BIT_PULSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define RCMM32_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCMM32_START_BIT_PULSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #define RCMM32_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCMM32_START_BIT_PAUSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define RCMM32_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCMM32_START_BIT_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #define RCMM32_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCMM32_PULSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define RCMM32_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCMM32_PULSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #define RCMM32_BIT_00_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCMM32_00_PAUSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define RCMM32_BIT_00_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCMM32_00_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #define RCMM32_BIT_01_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCMM32_01_PAUSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define RCMM32_BIT_01_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCMM32_01_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #define RCMM32_BIT_10_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCMM32_10_PAUSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define RCMM32_BIT_10_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCMM32_10_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #define RCMM32_BIT_11_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RCMM32_11_PAUSE_TIME * MIN_TOLERANCE_05 + 0.5) - 1) #define RCMM32_BIT_11_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RCMM32_11_PAUSE_TIME * MAX_TOLERANCE_05 + 0.5) + 1) #define PENTAX_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PENTAX_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define PENTAX_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PENTAX_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define PENTAX_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PENTAX_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define PENTAX_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PENTAX_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define PENTAX_1_PAUSE_LEN_EXACT ((uint_fast8_t)(F_INTERRUPTS * PENTAX_1_PAUSE_TIME + 0.5)) #define PENTAX_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PENTAX_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define PENTAX_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PENTAX_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define PENTAX_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PENTAX_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define PENTAX_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PENTAX_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define PENTAX_0_PAUSE_LEN ((uint_fast8_t)(F_INTERRUPTS * PENTAX_0_PAUSE_TIME)) #define PENTAX_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PENTAX_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define PENTAX_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PENTAX_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define PENTAX_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * PENTAX_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define PENTAX_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * PENTAX_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define ACP24_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ACP24_START_BIT_PULSE_TIME * MIN_TOLERANCE_15 + 0.5) - 1) #define ACP24_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ACP24_START_BIT_PULSE_TIME * MAX_TOLERANCE_15 + 0.5) + 1) #define ACP24_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ACP24_START_BIT_PAUSE_TIME * MIN_TOLERANCE_15 + 0.5) - 1) #define ACP24_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ACP24_START_BIT_PAUSE_TIME * MAX_TOLERANCE_15 + 0.5) + 1) #define ACP24_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ACP24_PULSE_TIME * MIN_TOLERANCE_15 + 0.5) - 1) #define ACP24_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ACP24_PULSE_TIME * MAX_TOLERANCE_15 + 0.5) + 1) #define ACP24_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ACP24_1_PAUSE_TIME * MIN_TOLERANCE_15 + 0.5) - 1) #define ACP24_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ACP24_1_PAUSE_TIME * MAX_TOLERANCE_15 + 0.5) + 1) #define ACP24_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * ACP24_0_PAUSE_TIME * MIN_TOLERANCE_15 + 0.5) - 1) #define ACP24_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * ACP24_0_PAUSE_TIME * MAX_TOLERANCE_15 + 0.5) + 1) #define RADIO1_START_BIT_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RADIO1_START_BIT_PULSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RADIO1_START_BIT_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RADIO1_START_BIT_PULSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RADIO1_START_BIT_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RADIO1_START_BIT_PAUSE_TIME * MIN_TOLERANCE_10 + 0.5) - 1) #define RADIO1_START_BIT_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RADIO1_START_BIT_PAUSE_TIME * MAX_TOLERANCE_10 + 0.5) + 1) #define RADIO1_1_PAUSE_LEN_EXACT ((uint_fast8_t)(F_INTERRUPTS * RADIO1_1_PAUSE_TIME + 0.5)) #define RADIO1_1_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RADIO1_1_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RADIO1_1_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RADIO1_1_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RADIO1_1_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RADIO1_1_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RADIO1_1_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RADIO1_1_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RADIO1_0_PAUSE_LEN ((uint_fast8_t)(F_INTERRUPTS * RADIO1_0_PAUSE_TIME)) #define RADIO1_0_PULSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RADIO1_0_PULSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RADIO1_0_PULSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RADIO1_0_PULSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define RADIO1_0_PAUSE_LEN_MIN ((uint_fast8_t)(F_INTERRUPTS * RADIO1_0_PAUSE_TIME * MIN_TOLERANCE_20 + 0.5) - 1) #define RADIO1_0_PAUSE_LEN_MAX ((uint_fast8_t)(F_INTERRUPTS * RADIO1_0_PAUSE_TIME * MAX_TOLERANCE_20 + 0.5) + 1) #define AUTO_FRAME_REPETITION_LEN (uint_fast16_t)(F_INTERRUPTS * AUTO_FRAME_REPETITION_TIME + 0.5) // use uint_fast16_t! #ifdef ANALYZE # define ANALYZE_PUTCHAR(a) { if (! silent) { putchar (a); } } # define ANALYZE_ONLY_NORMAL_PUTCHAR(a) { if (! silent && !verbose) { putchar (a); } } # define ANALYZE_PRINTF(...) { if (verbose) { printf (__VA_ARGS__); } } # define ANALYZE_ONLY_NORMAL_PRINTF(...) { if (! silent && !verbose) { printf (__VA_ARGS__); } } # define ANALYZE_NEWLINE() { if (verbose) { putchar ('\n'); } } static int silent; static int time_counter; static int verbose; /******************************* not every PIC compiler knows variadic macros :-( #else # define ANALYZE_PUTCHAR(a) # define ANALYZE_ONLY_NORMAL_PUTCHAR(a) # define ANALYZE_PRINTF(...) # define ANALYZE_ONLY_NORMAL_PRINTF(...) # endif # define ANALYZE_NEWLINE() *********************************/ #endif #if IRMP_USE_CALLBACK == 1 static void (*irmp_callback_ptr) (uint_fast8_t); #endif // IRMP_USE_CALLBACK == 1 #define PARITY_CHECK_OK 1 #define PARITY_CHECK_FAILED 0 /*--------------------------------------------------------------------------------------------------------------------------------------------------- * Protocol names *--------------------------------------------------------------------------------------------------------------------------------------------------- */ #if defined(UNIX_OR_WINDOWS) || IRMP_PROTOCOL_NAMES == 1 static const char proto_unknown[] PROGMEM = "UNKNOWN"; static const char proto_sircs[] PROGMEM = "SIRCS"; static const char proto_nec[] PROGMEM = "NEC"; static const char proto_samsung[] PROGMEM = "SAMSUNG"; static const char proto_matsushita[] PROGMEM = "MATSUSH"; static const char proto_kaseikyo[] PROGMEM = "KASEIKYO"; static const char proto_recs80[] PROGMEM = "RECS80"; static const char proto_rc5[] PROGMEM = "RC5"; static const char proto_denon[] PROGMEM = "DENON"; static const char proto_rc6[] PROGMEM = "RC6"; static const char proto_samsung32[] PROGMEM = "SAMSG32"; static const char proto_apple[] PROGMEM = "APPLE"; static const char proto_recs80ext[] PROGMEM = "RECS80EX"; static const char proto_nubert[] PROGMEM = "NUBERT"; static const char proto_bang_olufsen[] PROGMEM = "BANG OLU"; static const char proto_grundig[] PROGMEM = "GRUNDIG"; static const char proto_nokia[] PROGMEM = "NOKIA"; static const char proto_siemens[] PROGMEM = "SIEMENS"; static const char proto_fdc[] PROGMEM = "FDC"; static const char proto_rccar[] PROGMEM = "RCCAR"; static const char proto_jvc[] PROGMEM = "JVC"; static const char proto_rc6a[] PROGMEM = "RC6A"; static const char proto_nikon[] PROGMEM = "NIKON"; static const char proto_ruwido[] PROGMEM = "RUWIDO"; static const char proto_ir60[] PROGMEM = "IR60"; static const char proto_kathrein[] PROGMEM = "KATHREIN"; static const char proto_netbox[] PROGMEM = "NETBOX"; static const char proto_nec16[] PROGMEM = "NEC16"; static const char proto_nec42[] PROGMEM = "NEC42"; static const char proto_lego[] PROGMEM = "LEGO"; static const char proto_thomson[] PROGMEM = "THOMSON"; static const char proto_bose[] PROGMEM = "BOSE"; static const char proto_a1tvbox[] PROGMEM = "A1TVBOX"; static const char proto_ortek[] PROGMEM = "ORTEK"; static const char proto_telefunken[] PROGMEM = "TELEFUNKEN"; static const char proto_roomba[] PROGMEM = "ROOMBA"; static const char proto_rcmm32[] PROGMEM = "RCMM32"; static const char proto_rcmm24[] PROGMEM = "RCMM24"; static const char proto_rcmm12[] PROGMEM = "RCMM12"; static const char proto_speaker[] PROGMEM = "SPEAKER"; static const char proto_lgair[] PROGMEM = "LGAIR"; static const char proto_samsung48[] PROGMEM = "SAMSG48"; static const char proto_merlin[] PROGMEM = "MERLIN"; static const char proto_pentax[] PROGMEM = "PENTAX"; static const char proto_fan[] PROGMEM = "FAN"; static const char proto_s100[] PROGMEM = "S100"; static const char proto_acp24[] PROGMEM = "ACP24"; static const char proto_technics[] PROGMEM = "TECHNICS"; static const char proto_panasonic[] PROGMEM = "PANASONIC"; static const char proto_mitsu_heavy[] PROGMEM = "MITSU_HEAVY"; static const char proto_vincent[] PROGMEM = "VINCENT"; static const char proto_samsungah[] PROGMEM = "SAMSUNGAH"; static const char proto_radio1[] PROGMEM = "RADIO1"; const char * const irmp_protocol_names[IRMP_N_PROTOCOLS + 1] PROGMEM = { proto_unknown, proto_sircs, proto_nec, proto_samsung, proto_matsushita, proto_kaseikyo, proto_recs80, proto_rc5, proto_denon, proto_rc6, proto_samsung32, proto_apple, proto_recs80ext, proto_nubert, proto_bang_olufsen, proto_grundig, proto_nokia, proto_siemens, proto_fdc, proto_rccar, proto_jvc, proto_rc6a, proto_nikon, proto_ruwido, proto_ir60, proto_kathrein, proto_netbox, proto_nec16, proto_nec42, proto_lego, proto_thomson, proto_bose, proto_a1tvbox, proto_ortek, proto_telefunken, proto_roomba, proto_rcmm32, proto_rcmm24, proto_rcmm12, proto_speaker, proto_lgair, proto_samsung48, proto_merlin, proto_pentax, proto_fan, proto_s100, proto_acp24, proto_technics, proto_panasonic, proto_mitsu_heavy, proto_vincent, proto_samsungah, proto_radio1 }; #endif /*--------------------------------------------------------------------------------------------------------------------------------------------------- * Logging *--------------------------------------------------------------------------------------------------------------------------------------------------- */ #if IRMP_LOGGING == 1 // logging via UART #if defined(ARM_STM32F4XX) # define STM32_GPIO_CLOCK RCC_AHB1Periph_GPIOA // UART2 on PA2 # define STM32_UART_CLOCK RCC_APB1Periph_USART2 # define STM32_GPIO_PORT GPIOA # define STM32_GPIO_PIN GPIO_Pin_2 # define STM32_GPIO_SOURCE GPIO_PinSource2 # define STM32_UART_AF GPIO_AF_USART2 # define STM32_UART_COM USART2 # define STM32_UART_BAUD 115200 // 115200 Baud # include "stm32f4xx_usart.h" #elif defined(ARM_STM32F10X) # define STM32_UART_COM USART3 // UART3 on PB10 #elif defined(ARDUINO) // Arduino Serial implementation # if defined(USB_SERIAL) # include "usb_serial.h" # else # error USB_SERIAL not defined in ARDUINO Environment # endif #else # if IRMP_EXT_LOGGING == 1 // use external logging # include "irmpextlog.h" # else // normal UART log (IRMP_EXT_LOGGING == 0) # define BAUD 9600L # ifndef UNIX_OR_WINDOWS # include # endif #ifdef UBRR0H #define UART0_UBRRH UBRR0H #define UART0_UBRRL UBRR0L #define UART0_UCSRA UCSR0A #define UART0_UCSRB UCSR0B #define UART0_UCSRC UCSR0C #define UART0_UDRE_BIT_VALUE (1< ENDBITS) // if high received then look at log-stop condition { // if stop condition is true, output on uart uint_fast8_t i8; uint_fast16_t i; uint_fast16_t j; uint_fast8_t v = '1'; uint_fast16_t d; for (i8 = 0; i8 < STARTCYCLES; i8++) { irmp_uart_putc ('0'); // the ignored starting zeros } for (i = 0; i < buf_idx; i++) { d = buf[i]; if (d == 0xff) { i++; d = buf[i]; i++; d |= ((uint_fast16_t) buf[i] << 8); } for (j = 0; j < d; j++) { irmp_uart_putc (v); } v = (v == '1') ? '0' : '1'; } for (i8 = 0; i8 < 20; i8++) { irmp_uart_putc ('1'); } irmp_uart_putc ('\n'); buf_idx = 0; last_val = 1; cnt = 0; } } else if (buf_idx < DATALEN - 3) { if (cnt >= 0xff) { buf[buf_idx++] = 0xff; buf[buf_idx++] = (cnt & 0xff); buf[buf_idx] = (cnt >> 8); } else { buf[buf_idx] = cnt; } buf_idx++; cnt = 1; last_val = val; } } } } #else #define irmp_log(val) #endif //IRMP_LOGGING typedef struct { uint_fast8_t protocol; // ir protocol uint_fast8_t pulse_1_len_min; // minimum length of pulse with bit value 1 uint_fast8_t pulse_1_len_max; // maximum length of pulse with bit value 1 uint_fast8_t pause_1_len_min; // minimum length of pause with bit value 1 uint_fast8_t pause_1_len_max; // maximum length of pause with bit value 1 uint_fast8_t pulse_0_len_min; // minimum length of pulse with bit value 0 uint_fast8_t pulse_0_len_max; // maximum length of pulse with bit value 0 uint_fast8_t pause_0_len_min; // minimum length of pause with bit value 0 uint_fast8_t pause_0_len_max; // maximum length of pause with bit value 0 uint_fast8_t address_offset; // address offset uint_fast8_t address_end; // end of address uint_fast8_t command_offset; // command offset uint_fast8_t command_end; // end of command uint_fast8_t complete_len; // complete length of frame uint_fast8_t stop_bit; // flag: frame has stop bit uint_fast8_t lsb_first; // flag: LSB first uint_fast8_t flags; // some flags } IRMP_PARAMETER; #if IRMP_SUPPORT_SIRCS_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER sircs_param = { IRMP_SIRCS_PROTOCOL, // protocol: ir protocol SIRCS_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 SIRCS_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 SIRCS_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 SIRCS_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 SIRCS_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 SIRCS_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 SIRCS_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 SIRCS_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 SIRCS_ADDRESS_OFFSET, // address_offset: address offset SIRCS_ADDRESS_OFFSET + SIRCS_ADDRESS_LEN, // address_end: end of address SIRCS_COMMAND_OFFSET, // command_offset: command offset SIRCS_COMMAND_OFFSET + SIRCS_COMMAND_LEN, // command_end: end of command SIRCS_COMPLETE_DATA_LEN, // complete_len: complete length of frame SIRCS_STOP_BIT, // stop_bit: flag: frame has stop bit SIRCS_LSB, // lsb_first: flag: LSB first SIRCS_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_NEC_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER nec_param = { IRMP_NEC_PROTOCOL, // protocol: ir protocol NEC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NEC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NEC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NEC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NEC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NEC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NEC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NEC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 NEC_ADDRESS_OFFSET, // address_offset: address offset NEC_ADDRESS_OFFSET + NEC_ADDRESS_LEN, // address_end: end of address NEC_COMMAND_OFFSET, // command_offset: command offset NEC_COMMAND_OFFSET + NEC_COMMAND_LEN, // command_end: end of command NEC_COMPLETE_DATA_LEN, // complete_len: complete length of frame NEC_STOP_BIT, // stop_bit: flag: frame has stop bit NEC_LSB, // lsb_first: flag: LSB first NEC_FLAGS // flags: some flags }; static const PROGMEM IRMP_PARAMETER nec_rep_param = { IRMP_NEC_PROTOCOL, // protocol: ir protocol NEC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NEC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NEC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NEC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NEC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NEC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NEC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NEC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 0, // address_offset: address offset 0, // address_end: end of address 0, // command_offset: command offset 0, // command_end: end of command 0, // complete_len: complete length of frame NEC_STOP_BIT, // stop_bit: flag: frame has stop bit NEC_LSB, // lsb_first: flag: LSB first NEC_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_NEC42_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER nec42_param = { IRMP_NEC42_PROTOCOL, // protocol: ir protocol NEC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NEC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NEC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NEC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NEC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NEC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NEC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NEC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 NEC42_ADDRESS_OFFSET, // address_offset: address offset NEC42_ADDRESS_OFFSET + NEC42_ADDRESS_LEN, // address_end: end of address NEC42_COMMAND_OFFSET, // command_offset: command offset NEC42_COMMAND_OFFSET + NEC42_COMMAND_LEN, // command_end: end of command NEC42_COMPLETE_DATA_LEN, // complete_len: complete length of frame NEC_STOP_BIT, // stop_bit: flag: frame has stop bit NEC_LSB, // lsb_first: flag: LSB first NEC_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_LGAIR_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER lgair_param = { IRMP_LGAIR_PROTOCOL, // protocol: ir protocol NEC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NEC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NEC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NEC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NEC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NEC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NEC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NEC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 LGAIR_ADDRESS_OFFSET, // address_offset: address offset LGAIR_ADDRESS_OFFSET + LGAIR_ADDRESS_LEN, // address_end: end of address LGAIR_COMMAND_OFFSET, // command_offset: command offset LGAIR_COMMAND_OFFSET + LGAIR_COMMAND_LEN, // command_end: end of command LGAIR_COMPLETE_DATA_LEN, // complete_len: complete length of frame NEC_STOP_BIT, // stop_bit: flag: frame has stop bit NEC_LSB, // lsb_first: flag: LSB first NEC_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER samsung_param = { IRMP_SAMSUNG_PROTOCOL, // protocol: ir protocol SAMSUNG_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 SAMSUNG_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 SAMSUNG_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 SAMSUNG_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 SAMSUNG_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 SAMSUNG_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 SAMSUNG_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 SAMSUNG_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 SAMSUNG_ADDRESS_OFFSET, // address_offset: address offset SAMSUNG_ADDRESS_OFFSET + SAMSUNG_ADDRESS_LEN, // address_end: end of address SAMSUNG_COMMAND_OFFSET, // command_offset: command offset SAMSUNG_COMMAND_OFFSET + SAMSUNG_COMMAND_LEN, // command_end: end of command SAMSUNG_COMPLETE_DATA_LEN, // complete_len: complete length of frame SAMSUNG_STOP_BIT, // stop_bit: flag: frame has stop bit SAMSUNG_LSB, // lsb_first: flag: LSB first SAMSUNG_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_SAMSUNGAH_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER samsungah_param = { IRMP_SAMSUNGAH_PROTOCOL, // protocol: ir protocol SAMSUNGAH_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 SAMSUNGAH_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 SAMSUNGAH_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 SAMSUNGAH_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 SAMSUNGAH_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 SAMSUNGAH_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 SAMSUNGAH_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 SAMSUNGAH_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 SAMSUNGAH_ADDRESS_OFFSET, // address_offset: address offset SAMSUNGAH_ADDRESS_OFFSET + SAMSUNGAH_ADDRESS_LEN, // address_end: end of address SAMSUNGAH_COMMAND_OFFSET, // command_offset: command offset SAMSUNGAH_COMMAND_OFFSET + SAMSUNGAH_COMMAND_LEN, // command_end: end of command SAMSUNGAH_COMPLETE_DATA_LEN, // complete_len: complete length of frame SAMSUNGAH_STOP_BIT, // stop_bit: flag: frame has stop bit SAMSUNGAH_LSB, // lsb_first: flag: LSB first SAMSUNGAH_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_TELEFUNKEN_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER telefunken_param = { IRMP_TELEFUNKEN_PROTOCOL, // protocol: ir protocol TELEFUNKEN_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 TELEFUNKEN_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 TELEFUNKEN_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 TELEFUNKEN_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 TELEFUNKEN_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 TELEFUNKEN_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 TELEFUNKEN_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 TELEFUNKEN_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 TELEFUNKEN_ADDRESS_OFFSET, // address_offset: address offset TELEFUNKEN_ADDRESS_OFFSET + TELEFUNKEN_ADDRESS_LEN, // address_end: end of address TELEFUNKEN_COMMAND_OFFSET, // command_offset: command offset TELEFUNKEN_COMMAND_OFFSET + TELEFUNKEN_COMMAND_LEN, // command_end: end of command TELEFUNKEN_COMPLETE_DATA_LEN, // complete_len: complete length of frame TELEFUNKEN_STOP_BIT, // stop_bit: flag: frame has stop bit TELEFUNKEN_LSB, // lsb_first: flag: LSB first TELEFUNKEN_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_MATSUSHITA_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER matsushita_param = { IRMP_MATSUSHITA_PROTOCOL, // protocol: ir protocol MATSUSHITA_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 MATSUSHITA_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 MATSUSHITA_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 MATSUSHITA_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 MATSUSHITA_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 MATSUSHITA_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 MATSUSHITA_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 MATSUSHITA_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 MATSUSHITA_ADDRESS_OFFSET, // address_offset: address offset MATSUSHITA_ADDRESS_OFFSET + MATSUSHITA_ADDRESS_LEN, // address_end: end of address MATSUSHITA_COMMAND_OFFSET, // command_offset: command offset MATSUSHITA_COMMAND_OFFSET + MATSUSHITA_COMMAND_LEN, // command_end: end of command MATSUSHITA_COMPLETE_DATA_LEN, // complete_len: complete length of frame MATSUSHITA_STOP_BIT, // stop_bit: flag: frame has stop bit MATSUSHITA_LSB, // lsb_first: flag: LSB first MATSUSHITA_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER kaseikyo_param = { IRMP_KASEIKYO_PROTOCOL, // protocol: ir protocol KASEIKYO_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 KASEIKYO_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 KASEIKYO_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 KASEIKYO_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 KASEIKYO_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 KASEIKYO_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 KASEIKYO_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 KASEIKYO_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 KASEIKYO_ADDRESS_OFFSET, // address_offset: address offset KASEIKYO_ADDRESS_OFFSET + KASEIKYO_ADDRESS_LEN, // address_end: end of address KASEIKYO_COMMAND_OFFSET, // command_offset: command offset KASEIKYO_COMMAND_OFFSET + KASEIKYO_COMMAND_LEN, // command_end: end of command KASEIKYO_COMPLETE_DATA_LEN, // complete_len: complete length of frame KASEIKYO_STOP_BIT, // stop_bit: flag: frame has stop bit KASEIKYO_LSB, // lsb_first: flag: LSB first KASEIKYO_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_PANASONIC_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER panasonic_param = { IRMP_PANASONIC_PROTOCOL, // protocol: ir protocol PANASONIC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 PANASONIC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 PANASONIC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 PANASONIC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 PANASONIC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 PANASONIC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 PANASONIC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 PANASONIC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 PANASONIC_ADDRESS_OFFSET, // address_offset: address offset PANASONIC_ADDRESS_OFFSET + PANASONIC_ADDRESS_LEN, // address_end: end of address PANASONIC_COMMAND_OFFSET, // command_offset: command offset PANASONIC_COMMAND_OFFSET + PANASONIC_COMMAND_LEN, // command_end: end of command PANASONIC_COMPLETE_DATA_LEN, // complete_len: complete length of frame PANASONIC_STOP_BIT, // stop_bit: flag: frame has stop bit PANASONIC_LSB, // lsb_first: flag: LSB first PANASONIC_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_MITSU_HEAVY_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER mitsu_heavy_param = { IRMP_MITSU_HEAVY_PROTOCOL, // protocol: ir protocol MITSU_HEAVY_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 MITSU_HEAVY_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 MITSU_HEAVY_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 MITSU_HEAVY_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 MITSU_HEAVY_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 MITSU_HEAVY_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 MITSU_HEAVY_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 MITSU_HEAVY_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 MITSU_HEAVY_ADDRESS_OFFSET, // address_offset: address offset MITSU_HEAVY_ADDRESS_OFFSET + MITSU_HEAVY_ADDRESS_LEN, // address_end: end of address MITSU_HEAVY_COMMAND_OFFSET, // command_offset: command offset MITSU_HEAVY_COMMAND_OFFSET + MITSU_HEAVY_COMMAND_LEN, // command_end: end of command MITSU_HEAVY_COMPLETE_DATA_LEN, // complete_len: complete length of frame MITSU_HEAVY_STOP_BIT, // stop_bit: flag: frame has stop bit MITSU_HEAVY_LSB, // lsb_first: flag: LSB first MITSU_HEAVY_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_VINCENT_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER vincent_param = { IRMP_VINCENT_PROTOCOL, // protocol: ir protocol VINCENT_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 VINCENT_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 VINCENT_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 VINCENT_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 VINCENT_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 VINCENT_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 VINCENT_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 VINCENT_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 VINCENT_ADDRESS_OFFSET, // address_offset: address offset VINCENT_ADDRESS_OFFSET + VINCENT_ADDRESS_LEN, // address_end: end of address VINCENT_COMMAND_OFFSET, // command_offset: command offset VINCENT_COMMAND_OFFSET + VINCENT_COMMAND_LEN, // command_end: end of command VINCENT_COMPLETE_DATA_LEN, // complete_len: complete length of frame VINCENT_STOP_BIT, // stop_bit: flag: frame has stop bit VINCENT_LSB, // lsb_first: flag: LSB first VINCENT_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RECS80_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER recs80_param = { IRMP_RECS80_PROTOCOL, // protocol: ir protocol RECS80_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 RECS80_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 RECS80_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 RECS80_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 RECS80_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 RECS80_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 RECS80_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 RECS80_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 RECS80_ADDRESS_OFFSET, // address_offset: address offset RECS80_ADDRESS_OFFSET + RECS80_ADDRESS_LEN, // address_end: end of address RECS80_COMMAND_OFFSET, // command_offset: command offset RECS80_COMMAND_OFFSET + RECS80_COMMAND_LEN, // command_end: end of command RECS80_COMPLETE_DATA_LEN, // complete_len: complete length of frame RECS80_STOP_BIT, // stop_bit: flag: frame has stop bit RECS80_LSB, // lsb_first: flag: LSB first RECS80_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER rc5_param = { IRMP_RC5_PROTOCOL, // protocol: ir protocol RC5_BIT_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse RC5_BIT_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse RC5_BIT_LEN_MIN, // pause_1_len_min: here: minimum length of short pause RC5_BIT_LEN_MAX, // pause_1_len_max: here: maximum length of short pause 0, // pulse_0_len_min: here: not used 0, // pulse_0_len_max: here: not used 0, // pause_0_len_min: here: not used 0, // pause_0_len_max: here: not used RC5_ADDRESS_OFFSET, // address_offset: address offset RC5_ADDRESS_OFFSET + RC5_ADDRESS_LEN, // address_end: end of address RC5_COMMAND_OFFSET, // command_offset: command offset RC5_COMMAND_OFFSET + RC5_COMMAND_LEN, // command_end: end of command RC5_COMPLETE_DATA_LEN, // complete_len: complete length of frame RC5_STOP_BIT, // stop_bit: flag: frame has stop bit RC5_LSB, // lsb_first: flag: LSB first RC5_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_S100_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER s100_param = { IRMP_S100_PROTOCOL, // protocol: ir protocol S100_BIT_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse S100_BIT_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse S100_BIT_LEN_MIN, // pause_1_len_min: here: minimum length of short pause S100_BIT_LEN_MAX, // pause_1_len_max: here: maximum length of short pause 0, // pulse_0_len_min: here: not used 0, // pulse_0_len_max: here: not used 0, // pause_0_len_min: here: not used 0, // pause_0_len_max: here: not used S100_ADDRESS_OFFSET, // address_offset: address offset S100_ADDRESS_OFFSET + S100_ADDRESS_LEN, // address_end: end of address S100_COMMAND_OFFSET, // command_offset: command offset S100_COMMAND_OFFSET + S100_COMMAND_LEN, // command_end: end of command S100_COMPLETE_DATA_LEN, // complete_len: complete length of frame S100_STOP_BIT, // stop_bit: flag: frame has stop bit S100_LSB, // lsb_first: flag: LSB first S100_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_DENON_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER denon_param = { IRMP_DENON_PROTOCOL, // protocol: ir protocol DENON_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 DENON_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 DENON_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 DENON_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 DENON_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 DENON_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 DENON_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 DENON_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 DENON_ADDRESS_OFFSET, // address_offset: address offset DENON_ADDRESS_OFFSET + DENON_ADDRESS_LEN, // address_end: end of address DENON_COMMAND_OFFSET, // command_offset: command offset DENON_COMMAND_OFFSET + DENON_COMMAND_LEN, // command_end: end of command DENON_COMPLETE_DATA_LEN, // complete_len: complete length of frame DENON_STOP_BIT, // stop_bit: flag: frame has stop bit DENON_LSB, // lsb_first: flag: LSB first DENON_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RC6_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER rc6_param = { IRMP_RC6_PROTOCOL, // protocol: ir protocol RC6_BIT_PULSE_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse RC6_BIT_PULSE_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse RC6_BIT_PAUSE_LEN_MIN, // pause_1_len_min: here: minimum length of short pause RC6_BIT_PAUSE_LEN_MAX, // pause_1_len_max: here: maximum length of short pause 0, // pulse_0_len_min: here: not used 0, // pulse_0_len_max: here: not used 0, // pause_0_len_min: here: not used 0, // pause_0_len_max: here: not used RC6_ADDRESS_OFFSET, // address_offset: address offset RC6_ADDRESS_OFFSET + RC6_ADDRESS_LEN, // address_end: end of address RC6_COMMAND_OFFSET, // command_offset: command offset RC6_COMMAND_OFFSET + RC6_COMMAND_LEN, // command_end: end of command RC6_COMPLETE_DATA_LEN_SHORT, // complete_len: complete length of frame RC6_STOP_BIT, // stop_bit: flag: frame has stop bit RC6_LSB, // lsb_first: flag: LSB first RC6_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RECS80EXT_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER recs80ext_param = { IRMP_RECS80EXT_PROTOCOL, // protocol: ir protocol RECS80EXT_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 RECS80EXT_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 RECS80EXT_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 RECS80EXT_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 RECS80EXT_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 RECS80EXT_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 RECS80EXT_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 RECS80EXT_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 RECS80EXT_ADDRESS_OFFSET, // address_offset: address offset RECS80EXT_ADDRESS_OFFSET + RECS80EXT_ADDRESS_LEN, // address_end: end of address RECS80EXT_COMMAND_OFFSET, // command_offset: command offset RECS80EXT_COMMAND_OFFSET + RECS80EXT_COMMAND_LEN, // command_end: end of command RECS80EXT_COMPLETE_DATA_LEN, // complete_len: complete length of frame RECS80EXT_STOP_BIT, // stop_bit: flag: frame has stop bit RECS80EXT_LSB, // lsb_first: flag: LSB first RECS80EXT_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_NUBERT_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER nubert_param = { IRMP_NUBERT_PROTOCOL, // protocol: ir protocol NUBERT_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NUBERT_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NUBERT_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NUBERT_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NUBERT_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NUBERT_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NUBERT_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NUBERT_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 NUBERT_ADDRESS_OFFSET, // address_offset: address offset NUBERT_ADDRESS_OFFSET + NUBERT_ADDRESS_LEN, // address_end: end of address NUBERT_COMMAND_OFFSET, // command_offset: command offset NUBERT_COMMAND_OFFSET + NUBERT_COMMAND_LEN, // command_end: end of command NUBERT_COMPLETE_DATA_LEN, // complete_len: complete length of frame NUBERT_STOP_BIT, // stop_bit: flag: frame has stop bit NUBERT_LSB, // lsb_first: flag: LSB first NUBERT_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_FAN_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER fan_param = { IRMP_FAN_PROTOCOL, // protocol: ir protocol FAN_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 FAN_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 FAN_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 FAN_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 FAN_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 FAN_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 FAN_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 FAN_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 FAN_ADDRESS_OFFSET, // address_offset: address offset FAN_ADDRESS_OFFSET + FAN_ADDRESS_LEN, // address_end: end of address FAN_COMMAND_OFFSET, // command_offset: command offset FAN_COMMAND_OFFSET + FAN_COMMAND_LEN, // command_end: end of command FAN_COMPLETE_DATA_LEN, // complete_len: complete length of frame FAN_STOP_BIT, // stop_bit: flag: frame has NO stop bit FAN_LSB, // lsb_first: flag: LSB first FAN_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_SPEAKER_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER speaker_param = { IRMP_SPEAKER_PROTOCOL, // protocol: ir protocol SPEAKER_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 SPEAKER_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 SPEAKER_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 SPEAKER_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 SPEAKER_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 SPEAKER_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 SPEAKER_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 SPEAKER_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 SPEAKER_ADDRESS_OFFSET, // address_offset: address offset SPEAKER_ADDRESS_OFFSET + SPEAKER_ADDRESS_LEN, // address_end: end of address SPEAKER_COMMAND_OFFSET, // command_offset: command offset SPEAKER_COMMAND_OFFSET + SPEAKER_COMMAND_LEN, // command_end: end of command SPEAKER_COMPLETE_DATA_LEN, // complete_len: complete length of frame SPEAKER_STOP_BIT, // stop_bit: flag: frame has stop bit SPEAKER_LSB, // lsb_first: flag: LSB first SPEAKER_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER bang_olufsen_param = { IRMP_BANG_OLUFSEN_PROTOCOL, // protocol: ir protocol BANG_OLUFSEN_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 BANG_OLUFSEN_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 BANG_OLUFSEN_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 BANG_OLUFSEN_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 BANG_OLUFSEN_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 BANG_OLUFSEN_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 BANG_OLUFSEN_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 BANG_OLUFSEN_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 BANG_OLUFSEN_ADDRESS_OFFSET, // address_offset: address offset BANG_OLUFSEN_ADDRESS_OFFSET + BANG_OLUFSEN_ADDRESS_LEN, // address_end: end of address BANG_OLUFSEN_COMMAND_OFFSET, // command_offset: command offset BANG_OLUFSEN_COMMAND_OFFSET + BANG_OLUFSEN_COMMAND_LEN, // command_end: end of command BANG_OLUFSEN_COMPLETE_DATA_LEN, // complete_len: complete length of frame BANG_OLUFSEN_STOP_BIT, // stop_bit: flag: frame has stop bit BANG_OLUFSEN_LSB, // lsb_first: flag: LSB first BANG_OLUFSEN_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_GRUNDIG_NOKIA_IR60_PROTOCOL == 1 static uint_fast8_t first_bit; static const PROGMEM IRMP_PARAMETER grundig_param = { IRMP_GRUNDIG_PROTOCOL, // protocol: ir protocol GRUNDIG_NOKIA_IR60_BIT_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse GRUNDIG_NOKIA_IR60_BIT_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse GRUNDIG_NOKIA_IR60_BIT_LEN_MIN, // pause_1_len_min: here: minimum length of short pause GRUNDIG_NOKIA_IR60_BIT_LEN_MAX, // pause_1_len_max: here: maximum length of short pause 0, // pulse_0_len_min: here: not used 0, // pulse_0_len_max: here: not used 0, // pause_0_len_min: here: not used 0, // pause_0_len_max: here: not used GRUNDIG_ADDRESS_OFFSET, // address_offset: address offset GRUNDIG_ADDRESS_OFFSET + GRUNDIG_ADDRESS_LEN, // address_end: end of address GRUNDIG_COMMAND_OFFSET, // command_offset: command offset GRUNDIG_COMMAND_OFFSET + GRUNDIG_COMMAND_LEN + 1, // command_end: end of command (USE 1 bit MORE to STORE NOKIA DATA!) NOKIA_COMPLETE_DATA_LEN, // complete_len: complete length of frame, here: NOKIA instead of GRUNDIG! GRUNDIG_NOKIA_IR60_STOP_BIT, // stop_bit: flag: frame has stop bit GRUNDIG_NOKIA_IR60_LSB, // lsb_first: flag: LSB first GRUNDIG_NOKIA_IR60_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_SIEMENS_OR_RUWIDO_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER ruwido_param = { IRMP_RUWIDO_PROTOCOL, // protocol: ir protocol SIEMENS_OR_RUWIDO_BIT_PULSE_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse SIEMENS_OR_RUWIDO_BIT_PULSE_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse SIEMENS_OR_RUWIDO_BIT_PAUSE_LEN_MIN, // pause_1_len_min: here: minimum length of short pause SIEMENS_OR_RUWIDO_BIT_PAUSE_LEN_MAX, // pause_1_len_max: here: maximum length of short pause 0, // pulse_0_len_min: here: not used 0, // pulse_0_len_max: here: not used 0, // pause_0_len_min: here: not used 0, // pause_0_len_max: here: not used RUWIDO_ADDRESS_OFFSET, // address_offset: address offset RUWIDO_ADDRESS_OFFSET + RUWIDO_ADDRESS_LEN, // address_end: end of address RUWIDO_COMMAND_OFFSET, // command_offset: command offset RUWIDO_COMMAND_OFFSET + RUWIDO_COMMAND_LEN, // command_end: end of command SIEMENS_COMPLETE_DATA_LEN, // complete_len: complete length of frame, here: SIEMENS instead of RUWIDO! SIEMENS_OR_RUWIDO_STOP_BIT, // stop_bit: flag: frame has stop bit SIEMENS_OR_RUWIDO_LSB, // lsb_first: flag: LSB first SIEMENS_OR_RUWIDO_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_FDC_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER fdc_param = { IRMP_FDC_PROTOCOL, // protocol: ir protocol FDC_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 FDC_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 FDC_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 FDC_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 FDC_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 FDC_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 FDC_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 FDC_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 FDC_ADDRESS_OFFSET, // address_offset: address offset FDC_ADDRESS_OFFSET + FDC_ADDRESS_LEN, // address_end: end of address FDC_COMMAND_OFFSET, // command_offset: command offset FDC_COMMAND_OFFSET + FDC_COMMAND_LEN, // command_end: end of command FDC_COMPLETE_DATA_LEN, // complete_len: complete length of frame FDC_STOP_BIT, // stop_bit: flag: frame has stop bit FDC_LSB, // lsb_first: flag: LSB first FDC_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RCCAR_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER rccar_param = { IRMP_RCCAR_PROTOCOL, // protocol: ir protocol RCCAR_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 RCCAR_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 RCCAR_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 RCCAR_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 RCCAR_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 RCCAR_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 RCCAR_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 RCCAR_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 RCCAR_ADDRESS_OFFSET, // address_offset: address offset RCCAR_ADDRESS_OFFSET + RCCAR_ADDRESS_LEN, // address_end: end of address RCCAR_COMMAND_OFFSET, // command_offset: command offset RCCAR_COMMAND_OFFSET + RCCAR_COMMAND_LEN, // command_end: end of command RCCAR_COMPLETE_DATA_LEN, // complete_len: complete length of frame RCCAR_STOP_BIT, // stop_bit: flag: frame has stop bit RCCAR_LSB, // lsb_first: flag: LSB first RCCAR_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_NIKON_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER nikon_param = { IRMP_NIKON_PROTOCOL, // protocol: ir protocol NIKON_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 NIKON_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 NIKON_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 NIKON_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 NIKON_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 NIKON_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 NIKON_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 NIKON_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 NIKON_ADDRESS_OFFSET, // address_offset: address offset NIKON_ADDRESS_OFFSET + NIKON_ADDRESS_LEN, // address_end: end of address NIKON_COMMAND_OFFSET, // command_offset: command offset NIKON_COMMAND_OFFSET + NIKON_COMMAND_LEN, // command_end: end of command NIKON_COMPLETE_DATA_LEN, // complete_len: complete length of frame NIKON_STOP_BIT, // stop_bit: flag: frame has stop bit NIKON_LSB, // lsb_first: flag: LSB first NIKON_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_KATHREIN_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER kathrein_param = { IRMP_KATHREIN_PROTOCOL, // protocol: ir protocol KATHREIN_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 KATHREIN_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 KATHREIN_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 KATHREIN_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 KATHREIN_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 KATHREIN_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 KATHREIN_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 KATHREIN_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 KATHREIN_ADDRESS_OFFSET, // address_offset: address offset KATHREIN_ADDRESS_OFFSET + KATHREIN_ADDRESS_LEN, // address_end: end of address KATHREIN_COMMAND_OFFSET, // command_offset: command offset KATHREIN_COMMAND_OFFSET + KATHREIN_COMMAND_LEN, // command_end: end of command KATHREIN_COMPLETE_DATA_LEN, // complete_len: complete length of frame KATHREIN_STOP_BIT, // stop_bit: flag: frame has stop bit KATHREIN_LSB, // lsb_first: flag: LSB first KATHREIN_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_NETBOX_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER netbox_param = { IRMP_NETBOX_PROTOCOL, // protocol: ir protocol NETBOX_PULSE_LEN, // pulse_1_len_min: minimum length of pulse with bit value 1, here: exact value NETBOX_PULSE_REST_LEN, // pulse_1_len_max: maximum length of pulse with bit value 1, here: rest value NETBOX_PAUSE_LEN, // pause_1_len_min: minimum length of pause with bit value 1, here: exact value NETBOX_PAUSE_REST_LEN, // pause_1_len_max: maximum length of pause with bit value 1, here: rest value NETBOX_PULSE_LEN, // pulse_0_len_min: minimum length of pulse with bit value 0, here: exact value NETBOX_PULSE_REST_LEN, // pulse_0_len_max: maximum length of pulse with bit value 0, here: rest value NETBOX_PAUSE_LEN, // pause_0_len_min: minimum length of pause with bit value 0, here: exact value NETBOX_PAUSE_REST_LEN, // pause_0_len_max: maximum length of pause with bit value 0, here: rest value NETBOX_ADDRESS_OFFSET, // address_offset: address offset NETBOX_ADDRESS_OFFSET + NETBOX_ADDRESS_LEN, // address_end: end of address NETBOX_COMMAND_OFFSET, // command_offset: command offset NETBOX_COMMAND_OFFSET + NETBOX_COMMAND_LEN, // command_end: end of command NETBOX_COMPLETE_DATA_LEN, // complete_len: complete length of frame NETBOX_STOP_BIT, // stop_bit: flag: frame has stop bit NETBOX_LSB, // lsb_first: flag: LSB first NETBOX_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_LEGO_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER lego_param = { IRMP_LEGO_PROTOCOL, // protocol: ir protocol LEGO_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 LEGO_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 LEGO_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 LEGO_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 LEGO_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 LEGO_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 LEGO_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 LEGO_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 LEGO_ADDRESS_OFFSET, // address_offset: address offset LEGO_ADDRESS_OFFSET + LEGO_ADDRESS_LEN, // address_end: end of address LEGO_COMMAND_OFFSET, // command_offset: command offset LEGO_COMMAND_OFFSET + LEGO_COMMAND_LEN, // command_end: end of command LEGO_COMPLETE_DATA_LEN, // complete_len: complete length of frame LEGO_STOP_BIT, // stop_bit: flag: frame has stop bit LEGO_LSB, // lsb_first: flag: LSB first LEGO_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_THOMSON_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER thomson_param = { IRMP_THOMSON_PROTOCOL, // protocol: ir protocol THOMSON_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 THOMSON_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 THOMSON_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 THOMSON_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 THOMSON_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 THOMSON_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 THOMSON_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 THOMSON_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 THOMSON_ADDRESS_OFFSET, // address_offset: address offset THOMSON_ADDRESS_OFFSET + THOMSON_ADDRESS_LEN, // address_end: end of address THOMSON_COMMAND_OFFSET, // command_offset: command offset THOMSON_COMMAND_OFFSET + THOMSON_COMMAND_LEN, // command_end: end of command THOMSON_COMPLETE_DATA_LEN, // complete_len: complete length of frame THOMSON_STOP_BIT, // stop_bit: flag: frame has stop bit THOMSON_LSB, // lsb_first: flag: LSB first THOMSON_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_BOSE_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER bose_param = { IRMP_BOSE_PROTOCOL, // protocol: ir protocol BOSE_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 BOSE_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 BOSE_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 BOSE_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 BOSE_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 BOSE_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 BOSE_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 BOSE_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 BOSE_ADDRESS_OFFSET, // address_offset: address offset BOSE_ADDRESS_OFFSET + BOSE_ADDRESS_LEN, // address_end: end of address BOSE_COMMAND_OFFSET, // command_offset: command offset BOSE_COMMAND_OFFSET + BOSE_COMMAND_LEN, // command_end: end of command BOSE_COMPLETE_DATA_LEN, // complete_len: complete length of frame BOSE_STOP_BIT, // stop_bit: flag: frame has stop bit BOSE_LSB, // lsb_first: flag: LSB first BOSE_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_A1TVBOX_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER a1tvbox_param = { IRMP_A1TVBOX_PROTOCOL, // protocol: ir protocol A1TVBOX_BIT_PULSE_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse A1TVBOX_BIT_PULSE_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse A1TVBOX_BIT_PAUSE_LEN_MIN, // pause_1_len_min: here: minimum length of short pause A1TVBOX_BIT_PAUSE_LEN_MAX, // pause_1_len_max: here: maximum length of short pause 0, // pulse_0_len_min: here: not used 0, // pulse_0_len_max: here: not used 0, // pause_0_len_min: here: not used 0, // pause_0_len_max: here: not used A1TVBOX_ADDRESS_OFFSET, // address_offset: address offset A1TVBOX_ADDRESS_OFFSET + A1TVBOX_ADDRESS_LEN, // address_end: end of address A1TVBOX_COMMAND_OFFSET, // command_offset: command offset A1TVBOX_COMMAND_OFFSET + A1TVBOX_COMMAND_LEN, // command_end: end of command A1TVBOX_COMPLETE_DATA_LEN, // complete_len: complete length of frame A1TVBOX_STOP_BIT, // stop_bit: flag: frame has stop bit A1TVBOX_LSB, // lsb_first: flag: LSB first A1TVBOX_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_MERLIN_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER merlin_param = { IRMP_MERLIN_PROTOCOL, // protocol: ir protocol MERLIN_BIT_PULSE_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse MERLIN_BIT_PULSE_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse MERLIN_BIT_PAUSE_LEN_MIN, // pause_1_len_min: here: minimum length of short pause MERLIN_BIT_PAUSE_LEN_MAX, // pause_1_len_max: here: maximum length of short pause 0, // pulse_0_len_min: here: not used 0, // pulse_0_len_max: here: not used 0, // pause_0_len_min: here: not used 0, // pause_0_len_max: here: not used MERLIN_ADDRESS_OFFSET, // address_offset: address offset MERLIN_ADDRESS_OFFSET + MERLIN_ADDRESS_LEN, // address_end: end of address MERLIN_COMMAND_OFFSET, // command_offset: command offset MERLIN_COMMAND_OFFSET + MERLIN_COMMAND_LEN, // command_end: end of command MERLIN_COMPLETE_DATA_LEN, // complete_len: complete length of frame MERLIN_STOP_BIT, // stop_bit: flag: frame has stop bit MERLIN_LSB, // lsb_first: flag: LSB first MERLIN_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_ORTEK_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER ortek_param = { IRMP_ORTEK_PROTOCOL, // protocol: ir protocol ORTEK_BIT_PULSE_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse ORTEK_BIT_PULSE_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse ORTEK_BIT_PAUSE_LEN_MIN, // pause_1_len_min: here: minimum length of short pause ORTEK_BIT_PAUSE_LEN_MAX, // pause_1_len_max: here: maximum length of short pause 0, // pulse_0_len_min: here: not used 0, // pulse_0_len_max: here: not used 0, // pause_0_len_min: here: not used 0, // pause_0_len_max: here: not used ORTEK_ADDRESS_OFFSET, // address_offset: address offset ORTEK_ADDRESS_OFFSET + ORTEK_ADDRESS_LEN, // address_end: end of address ORTEK_COMMAND_OFFSET, // command_offset: command offset ORTEK_COMMAND_OFFSET + ORTEK_COMMAND_LEN, // command_end: end of command ORTEK_COMPLETE_DATA_LEN, // complete_len: complete length of frame ORTEK_STOP_BIT, // stop_bit: flag: frame has stop bit ORTEK_LSB, // lsb_first: flag: LSB first ORTEK_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_ROOMBA_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER roomba_param = { IRMP_ROOMBA_PROTOCOL, // protocol: ir protocol ROOMBA_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 ROOMBA_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 ROOMBA_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 ROOMBA_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 ROOMBA_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 ROOMBA_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 ROOMBA_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 ROOMBA_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 ROOMBA_ADDRESS_OFFSET, // address_offset: address offset ROOMBA_ADDRESS_OFFSET + ROOMBA_ADDRESS_LEN, // address_end: end of address ROOMBA_COMMAND_OFFSET, // command_offset: command offset ROOMBA_COMMAND_OFFSET + ROOMBA_COMMAND_LEN, // command_end: end of command ROOMBA_COMPLETE_DATA_LEN, // complete_len: complete length of frame ROOMBA_STOP_BIT, // stop_bit: flag: frame has stop bit ROOMBA_LSB, // lsb_first: flag: LSB first ROOMBA_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RCMM_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER rcmm_param = { IRMP_RCMM32_PROTOCOL, // protocol: ir protocol RCMM32_BIT_PULSE_LEN_MIN, // pulse_1_len_min: here: minimum length of short pulse RCMM32_BIT_PULSE_LEN_MAX, // pulse_1_len_max: here: maximum length of short pulse 0, // pause_1_len_min: here: minimum length of short pause 0, // pause_1_len_max: here: maximum length of short pause RCMM32_BIT_PULSE_LEN_MIN, // pulse_0_len_min: here: not used RCMM32_BIT_PULSE_LEN_MAX, // pulse_0_len_max: here: not used 0, // pause_0_len_min: here: not used 0, // pause_0_len_max: here: not used RCMM32_ADDRESS_OFFSET, // address_offset: address offset RCMM32_ADDRESS_OFFSET + RCMM32_ADDRESS_LEN, // address_end: end of address RCMM32_COMMAND_OFFSET, // command_offset: command offset RCMM32_COMMAND_OFFSET + RCMM32_COMMAND_LEN, // command_end: end of command RCMM32_COMPLETE_DATA_LEN, // complete_len: complete length of frame RCMM32_STOP_BIT, // stop_bit: flag: frame has stop bit RCMM32_LSB, // lsb_first: flag: LSB first RCMM32_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_PENTAX_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER pentax_param = { IRMP_PENTAX_PROTOCOL, // protocol: ir protocol PENTAX_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 PENTAX_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 PENTAX_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 PENTAX_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 PENTAX_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 PENTAX_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 PENTAX_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 PENTAX_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 PENTAX_ADDRESS_OFFSET, // address_offset: address offset PENTAX_ADDRESS_OFFSET + PENTAX_ADDRESS_LEN, // address_end: end of address PENTAX_COMMAND_OFFSET, // command_offset: command offset PENTAX_COMMAND_OFFSET + PENTAX_COMMAND_LEN, // command_end: end of command PENTAX_COMPLETE_DATA_LEN, // complete_len: complete length of frame PENTAX_STOP_BIT, // stop_bit: flag: frame has stop bit PENTAX_LSB, // lsb_first: flag: LSB first PENTAX_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_ACP24_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER acp24_param = { IRMP_ACP24_PROTOCOL, // protocol: ir protocol ACP24_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 ACP24_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 ACP24_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 ACP24_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 ACP24_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 ACP24_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 ACP24_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 ACP24_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 ACP24_ADDRESS_OFFSET, // address_offset: address offset ACP24_ADDRESS_OFFSET + ACP24_ADDRESS_LEN, // address_end: end of address ACP24_COMMAND_OFFSET, // command_offset: command offset ACP24_COMMAND_OFFSET + ACP24_COMMAND_LEN, // command_end: end of command ACP24_COMPLETE_DATA_LEN, // complete_len: complete length of frame ACP24_STOP_BIT, // stop_bit: flag: frame has stop bit ACP24_LSB, // lsb_first: flag: LSB first ACP24_FLAGS // flags: some flags }; #endif #if IRMP_SUPPORT_RADIO1_PROTOCOL == 1 static const PROGMEM IRMP_PARAMETER radio1_param = { IRMP_RADIO1_PROTOCOL, // protocol: ir protocol RADIO1_1_PULSE_LEN_MIN, // pulse_1_len_min: minimum length of pulse with bit value 1 RADIO1_1_PULSE_LEN_MAX, // pulse_1_len_max: maximum length of pulse with bit value 1 RADIO1_1_PAUSE_LEN_MIN, // pause_1_len_min: minimum length of pause with bit value 1 RADIO1_1_PAUSE_LEN_MAX, // pause_1_len_max: maximum length of pause with bit value 1 RADIO1_0_PULSE_LEN_MIN, // pulse_0_len_min: minimum length of pulse with bit value 0 RADIO1_0_PULSE_LEN_MAX, // pulse_0_len_max: maximum length of pulse with bit value 0 RADIO1_0_PAUSE_LEN_MIN, // pause_0_len_min: minimum length of pause with bit value 0 RADIO1_0_PAUSE_LEN_MAX, // pause_0_len_max: maximum length of pause with bit value 0 RADIO1_ADDRESS_OFFSET, // address_offset: address offset RADIO1_ADDRESS_OFFSET + RADIO1_ADDRESS_LEN, // address_end: end of address RADIO1_COMMAND_OFFSET, // command_offset: command offset RADIO1_COMMAND_OFFSET + RADIO1_COMMAND_LEN, // command_end: end of command RADIO1_COMPLETE_DATA_LEN, // complete_len: complete length of frame RADIO1_STOP_BIT, // stop_bit: flag: frame has stop bit RADIO1_LSB, // lsb_first: flag: LSB first RADIO1_FLAGS // flags: some flags }; #endif static uint_fast8_t irmp_bit; // current bit position static IRMP_PARAMETER irmp_param; #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) static IRMP_PARAMETER irmp_param2; #endif static volatile uint_fast8_t irmp_ir_detected = FALSE; static volatile uint_fast8_t irmp_protocol; static volatile uint_fast16_t irmp_address; static volatile uint_fast16_t irmp_command; static volatile uint_fast16_t irmp_id; // only used for SAMSUNG protocol static volatile uint_fast8_t irmp_flags; // static volatile uint_fast8_t irmp_busy_flag; #if defined(__MBED__) // DigitalIn inputPin(IRMP_PIN, PullUp); // this requires mbed.h and source to be compiled as cpp gpio_t gpioIRin; // use low level c function instead #endif #ifdef ANALYZE #define input(x) (x) static uint_fast8_t IRMP_PIN; static uint_fast8_t radio; #endif /*--------------------------------------------------------------------------------------------------------------------------------------------------- * Initialize IRMP decoder * @details Configures IRMP input pin *--------------------------------------------------------------------------------------------------------------------------------------------------- */ #ifndef ANALYZE void irmp_init (void) { #if defined(PIC_CCS) || defined(PIC_C18) // PIC: do nothing #elif defined (ARM_STM32) // STM32 GPIO_InitTypeDef GPIO_InitStructure; /* GPIOx clock enable */ # if defined (ARM_STM32L1XX) RCC_AHBPeriphClockCmd(IRMP_PORT_RCC, ENABLE); # elif defined (ARM_STM32F10X) RCC_APB2PeriphClockCmd(IRMP_PORT_RCC, ENABLE); # elif defined (ARM_STM32F4XX) RCC_AHB1PeriphClockCmd(IRMP_PORT_RCC, ENABLE); # endif /* GPIO Configuration */ GPIO_InitStructure.GPIO_Pin = IRMP_BIT; # if defined (ARM_STM32L1XX) || defined (ARM_STM32F4XX) GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; # elif defined (ARM_STM32F10X) GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; # endif GPIO_Init(IRMP_PORT, &GPIO_InitStructure); #elif defined(STELLARIS_ARM_CORTEX_M4) // Enable the GPIO port ROM_SysCtlPeripheralEnable(IRMP_PORT_PERIPH); // Set as an input ROM_GPIODirModeSet(IRMP_PORT_BASE, IRMP_PORT_PIN, GPIO_DIR_MODE_IN); ROM_GPIOPadConfigSet(IRMP_PORT_BASE, IRMP_PORT_PIN, GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU); #elif defined(__SDCC_stm8) // STM8 IRMP_GPIO_STRUCT->DDR &= ~(1<CR1 |= (1<> 8) == (~irmp_command & 0x00FF)) { irmp_command &= 0xff; irmp_command |= irmp_id << 8; rtc = TRUE; } break; #if IRMP_SUPPORT_SAMSUNG48_PROTOCOL == 1 case IRMP_SAMSUNG48_PROTOCOL: irmp_command = (irmp_command & 0x00FF) | ((irmp_id & 0x00FF) << 8); rtc = TRUE; break; #endif #endif #if IRMP_SUPPORT_NEC_PROTOCOL == 1 case IRMP_NEC_PROTOCOL: if ((irmp_command >> 8) == (~irmp_command & 0x00FF)) { irmp_command &= 0xff; rtc = TRUE; } else if (irmp_address == 0x87EE) { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to APPLE protocol\n"); #endif // ANALYZE irmp_protocol = IRMP_APPLE_PROTOCOL; irmp_address = (irmp_command & 0xFF00) >> 8; irmp_command &= 0x00FF; rtc = TRUE; } break; #endif #if IRMP_SUPPORT_NEC_PROTOCOL == 1 case IRMP_VINCENT_PROTOCOL: if ((irmp_command >> 8) == (irmp_command & 0x00FF)) { irmp_command &= 0xff; rtc = TRUE; } break; #endif #if IRMP_SUPPORT_BOSE_PROTOCOL == 1 case IRMP_BOSE_PROTOCOL: if ((irmp_command >> 8) == (~irmp_command & 0x00FF)) { irmp_command &= 0xff; rtc = TRUE; } break; #endif #if IRMP_SUPPORT_SIEMENS_OR_RUWIDO_PROTOCOL == 1 case IRMP_SIEMENS_PROTOCOL: case IRMP_RUWIDO_PROTOCOL: if (((irmp_command >> 1) & 0x0001) == (~irmp_command & 0x0001)) { irmp_command >>= 1; rtc = TRUE; } break; #endif #if IRMP_SUPPORT_KATHREIN_PROTOCOL == 1 case IRMP_KATHREIN_PROTOCOL: if (irmp_command != 0x0000) { rtc = TRUE; } break; #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 case IRMP_RC5_PROTOCOL: irmp_address &= ~0x20; // clear toggle bit rtc = TRUE; break; #endif #if IRMP_SUPPORT_S100_PROTOCOL == 1 case IRMP_S100_PROTOCOL: irmp_address &= ~0x20; // clear toggle bit rtc = TRUE; break; #endif #if IRMP_SUPPORT_IR60_PROTOCOL == 1 case IRMP_IR60_PROTOCOL: if (irmp_command != 0x007d) // 0x007d (== 62<<1 + 1) is start instruction frame { rtc = TRUE; } else { #ifdef ANALYZE ANALYZE_PRINTF("Info IR60: got start instruction frame\n"); #endif // ANALYZE } break; #endif #if IRMP_SUPPORT_RCCAR_PROTOCOL == 1 case IRMP_RCCAR_PROTOCOL: // frame in irmp_data: // Bit 12 11 10 9 8 7 6 5 4 3 2 1 0 // V D7 D6 D5 D4 D3 D2 D1 D0 A1 A0 C1 C0 // 10 9 8 7 6 5 4 3 2 1 0 irmp_address = (irmp_command & 0x000C) >> 2; // addr: 0 0 0 0 0 0 0 0 0 A1 A0 irmp_command = ((irmp_command & 0x1000) >> 2) | // V-Bit: V 0 0 0 0 0 0 0 0 0 0 ((irmp_command & 0x0003) << 8) | // C-Bits: 0 C1 C0 0 0 0 0 0 0 0 0 ((irmp_command & 0x0FF0) >> 4); // D-Bits: D7 D6 D5 D4 D3 D2 D1 D0 rtc = TRUE; // Summe: V C1 C0 D7 D6 D5 D4 D3 D2 D1 D0 break; #endif #if IRMP_SUPPORT_NETBOX_PROTOCOL == 1 // squeeze code to 8 bit, upper bit indicates release-key case IRMP_NETBOX_PROTOCOL: if (irmp_command & 0x1000) // last bit set? { if ((irmp_command & 0x1f) == 0x15) // key pressed: 101 01 (LSB) { irmp_command >>= 5; irmp_command &= 0x7F; rtc = TRUE; } else if ((irmp_command & 0x1f) == 0x10) // key released: 000 01 (LSB) { irmp_command >>= 5; irmp_command |= 0x80; rtc = TRUE; } else { #ifdef ANALYZE ANALYZE_PRINTF("error NETBOX: bit6/7 must be 0/1\n"); #endif // ANALYZE } } else { #ifdef ANALYZE ANALYZE_PRINTF("error NETBOX: last bit not set\n"); #endif // ANALYZE } break; #endif #if IRMP_SUPPORT_LEGO_PROTOCOL == 1 case IRMP_LEGO_PROTOCOL: { uint_fast8_t crc = 0x0F ^ ((irmp_command & 0xF000) >> 12) ^ ((irmp_command & 0x0F00) >> 8) ^ ((irmp_command & 0x00F0) >> 4); if ((irmp_command & 0x000F) == crc) { irmp_command >>= 4; rtc = TRUE; } else { #ifdef ANALYZE ANALYZE_PRINTF ("CRC error in LEGO protocol\n"); #endif // ANALYZE // rtc = TRUE; // don't accept codes with CRC errors } break; } #endif default: { rtc = TRUE; break; } } if (rtc) { irmp_data_p->protocol = irmp_protocol; irmp_data_p->address = irmp_address; irmp_data_p->command = irmp_command; irmp_data_p->flags = irmp_flags; irmp_command = 0; irmp_address = 0; irmp_flags = 0; } irmp_ir_detected = FALSE; } return rtc; } #if IRMP_USE_CALLBACK == 1 void irmp_set_callback_ptr (void (*cb)(uint_fast8_t)) { irmp_callback_ptr = cb; } #endif // IRMP_USE_CALLBACK == 1 // these statics must not be volatile, because they are only used by irmp_store_bit(), which is called by irmp_ISR() static uint_fast16_t irmp_tmp_address; // ir address static uint_fast16_t irmp_tmp_command; // ir command #if (IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1)) || IRMP_SUPPORT_NEC42_PROTOCOL == 1 static uint_fast16_t irmp_tmp_address2; // ir address static uint_fast16_t irmp_tmp_command2; // ir command #endif #if IRMP_SUPPORT_LGAIR_PROTOCOL == 1 static uint_fast16_t irmp_lgair_address; // ir address static uint_fast16_t irmp_lgair_command; // ir command #endif #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 static uint_fast16_t irmp_tmp_id; // ir id (only SAMSUNG) #endif #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 static uint8_t xor_check[6]; // check kaseikyo "parity" bits static uint_fast8_t genre2; // save genre2 bits here, later copied to MSB in flags #endif #if IRMP_SUPPORT_ORTEK_PROTOCOL == 1 static uint_fast8_t parity; // number of '1' of the first 14 bits, check if even. #endif #if IRMP_SUPPORT_MITSU_HEAVY_PROTOCOL == 1 static uint_fast8_t check; // number of '1' of the first 14 bits, check if even. static uint_fast8_t mitsu_parity; // number of '1' of the first 14 bits, check if even. #endif /*--------------------------------------------------------------------------------------------------------------------------------------------------- * store bit * @details store bit in temp address or temp command * @param value to store: 0 or 1 *--------------------------------------------------------------------------------------------------------------------------------------------------- */ // verhindert, dass irmp_store_bit() inline compiliert wird: // static void irmp_store_bit (uint_fast8_t) __attribute__ ((noinline)); static void irmp_store_bit (uint_fast8_t value) { #if IRMP_SUPPORT_ACP24_PROTOCOL == 1 if (irmp_param.protocol == IRMP_ACP24_PROTOCOL) // squeeze 64 bits into 16 bits: { if (value) { // ACP24-Frame: // 1 2 3 4 5 6 // 0123456789012345678901234567890123456789012345678901234567890123456789 // N VVMMM ? ??? t vmA x y TTTT // // irmp_data_p->command: // // 5432109876543210 // NAVVvMMMmtxyTTTT switch (irmp_bit) { case 0: irmp_tmp_command |= (1<<15); break; // N case 2: irmp_tmp_command |= (1<<13); break; // V case 3: irmp_tmp_command |= (1<<12); break; // V case 4: irmp_tmp_command |= (1<<10); break; // M case 5: irmp_tmp_command |= (1<< 9); break; // M case 6: irmp_tmp_command |= (1<< 8); break; // M case 20: irmp_tmp_command |= (1<< 6); break; // t case 22: irmp_tmp_command |= (1<<11); break; // v case 23: irmp_tmp_command |= (1<< 7); break; // m case 24: irmp_tmp_command |= (1<<14); break; // A case 26: irmp_tmp_command |= (1<< 5); break; // x case 44: irmp_tmp_command |= (1<< 4); break; // y case 66: irmp_tmp_command |= (1<< 3); break; // T case 67: irmp_tmp_command |= (1<< 2); break; // T case 68: irmp_tmp_command |= (1<< 1); break; // T case 69: irmp_tmp_command |= (1<< 0); break; // T } } } else #endif // IRMP_SUPPORT_ACP24_PROTOCOL #if IRMP_SUPPORT_ORTEK_PROTOCOL == 1 if (irmp_param.protocol == IRMP_ORTEK_PROTOCOL) { if (irmp_bit < 14) { if (value) { parity++; } } else if (irmp_bit == 14) { if (value) // value == 1: even parity { if (parity & 0x01) { parity = PARITY_CHECK_FAILED; } else { parity = PARITY_CHECK_OK; } } else { if (parity & 0x01) // value == 0: odd parity { parity = PARITY_CHECK_OK; } else { parity = PARITY_CHECK_FAILED; } } } } else #endif { ; } #if IRMP_SUPPORT_GRUNDIG_NOKIA_IR60_PROTOCOL == 1 if (irmp_bit == 0 && irmp_param.protocol == IRMP_GRUNDIG_PROTOCOL) { first_bit = value; } else #endif if (irmp_bit >= irmp_param.address_offset && irmp_bit < irmp_param.address_end) { if (irmp_param.lsb_first) { irmp_tmp_address |= (((uint_fast16_t) (value)) << (irmp_bit - irmp_param.address_offset)); // CV wants cast } else { irmp_tmp_address <<= 1; irmp_tmp_address |= value; } } else if (irmp_bit >= irmp_param.command_offset && irmp_bit < irmp_param.command_end) { if (irmp_param.lsb_first) { #if IRMP_SUPPORT_SAMSUNG48_PROTOCOL == 1 if (irmp_param.protocol == IRMP_SAMSUNG48_PROTOCOL && irmp_bit >= 32) { irmp_tmp_id |= (((uint_fast16_t) (value)) << (irmp_bit - 32)); // CV wants cast } else #endif { irmp_tmp_command |= (((uint_fast16_t) (value)) << (irmp_bit - irmp_param.command_offset)); // CV wants cast } } else { irmp_tmp_command <<= 1; irmp_tmp_command |= value; } } #if IRMP_SUPPORT_LGAIR_PROTOCOL == 1 if (irmp_param.protocol == IRMP_NEC_PROTOCOL || irmp_param.protocol == IRMP_NEC42_PROTOCOL) { if (irmp_bit < 8) { irmp_lgair_address <<= 1; // LGAIR uses MSB irmp_lgair_address |= value; } else if (irmp_bit < 24) { irmp_lgair_command <<= 1; // LGAIR uses MSB irmp_lgair_command |= value; } } // NO else! #endif #if IRMP_SUPPORT_NEC42_PROTOCOL == 1 if (irmp_param.protocol == IRMP_NEC42_PROTOCOL && irmp_bit >= 13 && irmp_bit < 26) { irmp_tmp_address2 |= (((uint_fast16_t) (value)) << (irmp_bit - 13)); // CV wants cast } else #endif #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 if (irmp_param.protocol == IRMP_SAMSUNG_PROTOCOL && irmp_bit >= SAMSUNG_ID_OFFSET && irmp_bit < SAMSUNG_ID_OFFSET + SAMSUNG_ID_LEN) { irmp_tmp_id |= (((uint_fast16_t) (value)) << (irmp_bit - SAMSUNG_ID_OFFSET)); // store with LSB first } else #endif #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL) { if (irmp_bit >= 20 && irmp_bit < 24) { irmp_tmp_command |= (((uint_fast16_t) (value)) << (irmp_bit - 8)); // store 4 system bits (genre 1) in upper nibble with LSB first } else if (irmp_bit >= 24 && irmp_bit < 28) { genre2 |= (((uint_fast8_t) (value)) << (irmp_bit - 20)); // store 4 system bits (genre 2) in upper nibble with LSB first } if (irmp_bit < KASEIKYO_COMPLETE_DATA_LEN) { if (value) { xor_check[irmp_bit / 8] |= 1 << (irmp_bit % 8); } else { xor_check[irmp_bit / 8] &= ~(1 << (irmp_bit % 8)); } } } else #endif #if IRMP_SUPPORT_MITSU_HEAVY_PROTOCOL == 1 if (irmp_param.protocol == IRMP_MITSU_HEAVY_PROTOCOL) // squeeze 64 bits into 16 bits: { if (irmp_bit == 72 ) { // irmp_tmp_address, irmp_tmp_command received: check parity & compress mitsu_parity = PARITY_CHECK_OK; check = irmp_tmp_address >> 8; // inverted upper byte == lower byte? check = ~ check; if (check == (irmp_tmp_address & 0xFF)) { // ok: irmp_tmp_address <<= 8; // throw away upper byte } else { mitsu_parity = PARITY_CHECK_FAILED; } check = irmp_tmp_command >> 8; // inverted upper byte == lower byte? check = ~ check; if (check == (irmp_tmp_command & 0xFF)) { // ok: pack together irmp_tmp_address |= irmp_tmp_command & 0xFF; // byte 1, byte2 in irmp_tmp_address, irmp_tmp_command can be used for byte 3 } else { mitsu_parity = PARITY_CHECK_FAILED; } irmp_tmp_command = 0; } if (irmp_bit >= 72 ) { // receive 3. word in irmp_tmp_command irmp_tmp_command <<= 1; irmp_tmp_command |= value; } } else #endif // IRMP_SUPPORT_MITSU_HEAVY_PROTOCOL { ; } irmp_bit++; } /*--------------------------------------------------------------------------------------------------------------------------------------------------- * store bit * @details store bit in temp address or temp command * @param value to store: 0 or 1 *--------------------------------------------------------------------------------------------------------------------------------------------------- */ #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) static void irmp_store_bit2 (uint_fast8_t value) { uint_fast8_t irmp_bit2; if (irmp_param.protocol) { irmp_bit2 = irmp_bit - 2; } else { irmp_bit2 = irmp_bit - 1; } if (irmp_bit2 >= irmp_param2.address_offset && irmp_bit2 < irmp_param2.address_end) { irmp_tmp_address2 |= (((uint_fast16_t) (value)) << (irmp_bit2 - irmp_param2.address_offset)); // CV wants cast } else if (irmp_bit2 >= irmp_param2.command_offset && irmp_bit2 < irmp_param2.command_end) { irmp_tmp_command2 |= (((uint_fast16_t) (value)) << (irmp_bit2 - irmp_param2.command_offset)); // CV wants cast } } #endif // IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) /*--------------------------------------------------------------------------------------------------------------------------------------------------- * ISR routine * @details ISR routine, called 10000 times per second *--------------------------------------------------------------------------------------------------------------------------------------------------- */ uint_fast8_t irmp_ISR (void) { static uint_fast8_t irmp_start_bit_detected; // flag: start bit detected static uint_fast8_t wait_for_space; // flag: wait for data bit space static uint_fast8_t wait_for_start_space; // flag: wait for start bit space static uint_fast8_t irmp_pulse_time; // count bit time for pulse static PAUSE_LEN irmp_pause_time; // count bit time for pause static uint_fast16_t last_irmp_address = 0xFFFF; // save last irmp address to recognize key repetition static uint_fast16_t last_irmp_command = 0xFFFF; // save last irmp command to recognize key repetition static uint_fast16_t key_repetition_len; // SIRCS repeats frame 2-5 times with 45 ms pause static uint_fast8_t repetition_frame_number; #if IRMP_SUPPORT_DENON_PROTOCOL == 1 static uint_fast16_t last_irmp_denon_command; // save last irmp command to recognize DENON frame repetition static uint_fast16_t denon_repetition_len = 0xFFFF; // denon repetition len of 2nd auto generated frame #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 || IRMP_SUPPORT_S100_PROTOCOL == 1 static uint_fast8_t rc5_cmd_bit6; // bit 6 of RC5 command is the inverted 2nd start bit #endif #if IRMP_SUPPORT_MANCHESTER == 1 static PAUSE_LEN last_pause; // last pause value #endif #if IRMP_SUPPORT_MANCHESTER == 1 || IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 static uint_fast8_t last_value; // last bit value #endif uint_fast8_t irmp_input; // input value #ifdef ANALYZE time_counter++; #endif // ANALYZE #if defined(__SDCC_stm8) irmp_input = input(IRMP_GPIO_STRUCT->IDR) #elif defined(__MBED__) //irmp_input = inputPin; irmp_input = gpio_read (&gpioIRin); #else irmp_input = gpio_read(IRMP_BIT_NUMBER); #endif #if IRMP_USE_CALLBACK == 1 if (irmp_callback_ptr) { static uint_fast8_t last_inverted_input; if (last_inverted_input != !irmp_input) { (*irmp_callback_ptr) (! irmp_input); last_inverted_input = !irmp_input; } } #endif // IRMP_USE_CALLBACK == 1 irmp_log(irmp_input); // log ir signal, if IRMP_LOGGING defined if (! irmp_ir_detected) // ir code already detected? { // no... if (! irmp_start_bit_detected) // start bit detected? { // no... if (! irmp_input) // receiving burst? { // yes... // irmp_busy_flag = TRUE; #ifdef ANALYZE if (! irmp_pulse_time) { ANALYZE_PRINTF("%8.3fms [starting pulse]\n", (double) (time_counter * 1000) / F_INTERRUPTS); } #endif // ANALYZE irmp_pulse_time++; // increment counter } else { // no... if (irmp_pulse_time) // it's dark.... { // set flags for counting the time of darkness... irmp_start_bit_detected = 1; wait_for_start_space = 1; wait_for_space = 0; irmp_tmp_command = 0; irmp_tmp_address = 0; #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 genre2 = 0; #endif #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 irmp_tmp_id = 0; #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) || IRMP_SUPPORT_NEC42_PROTOCOL == 1 irmp_tmp_command2 = 0; irmp_tmp_address2 = 0; #endif #if IRMP_SUPPORT_LGAIR_PROTOCOL == 1 irmp_lgair_command = 0; irmp_lgair_address = 0; #endif irmp_bit = 0xff; irmp_pause_time = 1; // 1st pause: set to 1, not to 0! #if IRMP_SUPPORT_RC5_PROTOCOL == 1 || IRMP_SUPPORT_S100_PROTOCOL == 1 rc5_cmd_bit6 = 0; // fm 2010-03-07: bugfix: reset it after incomplete RC5 frame! #endif } else { if (key_repetition_len < 0xFFFF) // avoid overflow of counter { key_repetition_len++; #if IRMP_SUPPORT_DENON_PROTOCOL == 1 if (denon_repetition_len < 0xFFFF) // avoid overflow of counter { denon_repetition_len++; if (denon_repetition_len >= DENON_AUTO_REPETITION_PAUSE_LEN && last_irmp_denon_command != 0) { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms warning: did not receive inverted command repetition\n", (double) (time_counter * 1000) / F_INTERRUPTS); #endif // ANALYZE last_irmp_denon_command = 0; denon_repetition_len = 0xFFFF; } } #endif // IRMP_SUPPORT_DENON_PROTOCOL == 1 } } } } else { if (wait_for_start_space) // we have received start bit... { // ...and are counting the time of darkness if (irmp_input) // still dark? { // yes irmp_pause_time++; // increment counter #if IRMP_SUPPORT_NIKON_PROTOCOL == 1 if (((irmp_pulse_time < NIKON_START_BIT_PULSE_LEN_MIN || irmp_pulse_time > NIKON_START_BIT_PULSE_LEN_MAX) && irmp_pause_time > IRMP_TIMEOUT_LEN) || irmp_pause_time > IRMP_TIMEOUT_NIKON_LEN) #else if (irmp_pause_time > IRMP_TIMEOUT_LEN) // timeout? #endif { // yes... #if IRMP_SUPPORT_JVC_PROTOCOL == 1 if (irmp_protocol == IRMP_JVC_PROTOCOL) // don't show eror if JVC protocol, irmp_pulse_time has been set below! { ; } else #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms error 1: pause after start bit pulse %d too long: %d\n", (double) (time_counter * 1000) / F_INTERRUPTS, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE } irmp_start_bit_detected = 0; // reset flags, let's wait for another start bit irmp_pulse_time = 0; irmp_pause_time = 0; } } else { // receiving first data pulse! IRMP_PARAMETER * irmp_param_p; irmp_param_p = (IRMP_PARAMETER *) 0; #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) irmp_param2.protocol = 0; #endif #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms [start-bit: pulse = %2d, pause = %2d]\n", (double) (time_counter * 1000) / F_INTERRUPTS, irmp_pulse_time, irmp_pause_time); #endif // ANALYZE #if IRMP_SUPPORT_SIRCS_PROTOCOL == 1 if (irmp_pulse_time >= SIRCS_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= SIRCS_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= SIRCS_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SIRCS_START_BIT_PAUSE_LEN_MAX) { // it's SIRCS #ifdef ANALYZE ANALYZE_PRINTF ("protocol = SIRCS, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", SIRCS_START_BIT_PULSE_LEN_MIN, SIRCS_START_BIT_PULSE_LEN_MAX, SIRCS_START_BIT_PAUSE_LEN_MIN, SIRCS_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &sircs_param; } else #endif // IRMP_SUPPORT_SIRCS_PROTOCOL == 1 #if IRMP_SUPPORT_JVC_PROTOCOL == 1 if (irmp_protocol == IRMP_JVC_PROTOCOL && // last protocol was JVC, awaiting repeat frame irmp_pulse_time >= JVC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= JVC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= JVC_REPEAT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= JVC_REPEAT_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = NEC or JVC (type 1) repeat frame, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", JVC_START_BIT_PULSE_LEN_MIN, JVC_START_BIT_PULSE_LEN_MAX, JVC_REPEAT_START_BIT_PAUSE_LEN_MIN, JVC_REPEAT_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &nec_param; } else #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 #if IRMP_SUPPORT_NEC_PROTOCOL == 1 if (irmp_pulse_time >= NEC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NEC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NEC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NEC_START_BIT_PAUSE_LEN_MAX) { #if IRMP_SUPPORT_NEC42_PROTOCOL == 1 #ifdef ANALYZE ANALYZE_PRINTF ("protocol = NEC42, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_START_BIT_PAUSE_LEN_MIN, NEC_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &nec42_param; #else #ifdef ANALYZE ANALYZE_PRINTF ("protocol = NEC, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_START_BIT_PAUSE_LEN_MIN, NEC_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &nec_param; #endif } else if (irmp_pulse_time >= NEC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NEC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NEC_REPEAT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NEC_REPEAT_START_BIT_PAUSE_LEN_MAX) { // it's NEC #if IRMP_SUPPORT_JVC_PROTOCOL == 1 if (irmp_protocol == IRMP_JVC_PROTOCOL) // last protocol was JVC, awaiting repeat frame { // some jvc remote controls use nec repetition frame for jvc repetition frame #ifdef ANALYZE ANALYZE_PRINTF ("protocol = JVC repeat frame type 2, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_REPEAT_START_BIT_PAUSE_LEN_MIN, NEC_REPEAT_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &nec_param; } else #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = NEC (repetition frame), start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_REPEAT_START_BIT_PAUSE_LEN_MIN, NEC_REPEAT_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &nec_rep_param; } } else #if IRMP_SUPPORT_JVC_PROTOCOL == 1 if (irmp_protocol == IRMP_JVC_PROTOCOL && // last protocol was JVC, awaiting repeat frame irmp_pulse_time >= NEC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NEC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NEC_0_PAUSE_LEN_MIN && irmp_pause_time <= NEC_0_PAUSE_LEN_MAX) { // it's JVC repetition type 3 #ifdef ANALYZE ANALYZE_PRINTF ("protocol = JVC repeat frame type 3, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NEC_START_BIT_PULSE_LEN_MIN, NEC_START_BIT_PULSE_LEN_MAX, NEC_0_PAUSE_LEN_MIN, NEC_0_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &nec_param; } else #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 #endif // IRMP_SUPPORT_NEC_PROTOCOL == 1 #if IRMP_SUPPORT_TELEFUNKEN_PROTOCOL == 1 if (irmp_pulse_time >= TELEFUNKEN_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= TELEFUNKEN_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= TELEFUNKEN_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= TELEFUNKEN_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = TELEFUNKEN, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", TELEFUNKEN_START_BIT_PULSE_LEN_MIN, TELEFUNKEN_START_BIT_PULSE_LEN_MAX, TELEFUNKEN_START_BIT_PAUSE_LEN_MIN, TELEFUNKEN_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &telefunken_param; } else #endif // IRMP_SUPPORT_TELEFUNKEN_PROTOCOL == 1 #if IRMP_SUPPORT_ROOMBA_PROTOCOL == 1 if (irmp_pulse_time >= ROOMBA_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= ROOMBA_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= ROOMBA_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= ROOMBA_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = ROOMBA, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", ROOMBA_START_BIT_PULSE_LEN_MIN, ROOMBA_START_BIT_PULSE_LEN_MAX, ROOMBA_START_BIT_PAUSE_LEN_MIN, ROOMBA_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &roomba_param; } else #endif // IRMP_SUPPORT_ROOMBA_PROTOCOL == 1 #if IRMP_SUPPORT_ACP24_PROTOCOL == 1 if (irmp_pulse_time >= ACP24_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= ACP24_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= ACP24_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= ACP24_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = ACP24, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", ACP24_START_BIT_PULSE_LEN_MIN, ACP24_START_BIT_PULSE_LEN_MAX, ACP24_START_BIT_PAUSE_LEN_MIN, ACP24_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &acp24_param; } else #endif // IRMP_SUPPORT_ROOMBA_PROTOCOL == 1 #if IRMP_SUPPORT_PENTAX_PROTOCOL == 1 if (irmp_pulse_time >= PENTAX_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= PENTAX_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= PENTAX_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= PENTAX_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = PENTAX, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", PENTAX_START_BIT_PULSE_LEN_MIN, PENTAX_START_BIT_PULSE_LEN_MAX, PENTAX_START_BIT_PAUSE_LEN_MIN, PENTAX_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &pentax_param; } else #endif // IRMP_SUPPORT_PENTAX_PROTOCOL == 1 #if IRMP_SUPPORT_NIKON_PROTOCOL == 1 if (irmp_pulse_time >= NIKON_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NIKON_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NIKON_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NIKON_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = NIKON, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NIKON_START_BIT_PULSE_LEN_MIN, NIKON_START_BIT_PULSE_LEN_MAX, NIKON_START_BIT_PAUSE_LEN_MIN, NIKON_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &nikon_param; } else #endif // IRMP_SUPPORT_NIKON_PROTOCOL == 1 #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 if (irmp_pulse_time >= SAMSUNG_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNG_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= SAMSUNG_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNG_START_BIT_PAUSE_LEN_MAX) { // it's SAMSUNG #ifdef ANALYZE ANALYZE_PRINTF ("protocol = SAMSUNG, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", SAMSUNG_START_BIT_PULSE_LEN_MIN, SAMSUNG_START_BIT_PULSE_LEN_MAX, SAMSUNG_START_BIT_PAUSE_LEN_MIN, SAMSUNG_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &samsung_param; } else #endif // IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 #if IRMP_SUPPORT_SAMSUNGAH_PROTOCOL == 1 if (irmp_pulse_time >= SAMSUNGAH_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNGAH_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= SAMSUNGAH_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNGAH_START_BIT_PAUSE_LEN_MAX) { // it's SAMSUNGAH #ifdef ANALYZE ANALYZE_PRINTF ("protocol = SAMSUNGAH, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", SAMSUNGAH_START_BIT_PULSE_LEN_MIN, SAMSUNGAH_START_BIT_PULSE_LEN_MAX, SAMSUNGAH_START_BIT_PAUSE_LEN_MIN, SAMSUNGAH_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &samsungah_param; } else #endif // IRMP_SUPPORT_SAMSUNGAH_PROTOCOL == 1 #if IRMP_SUPPORT_MATSUSHITA_PROTOCOL == 1 if (irmp_pulse_time >= MATSUSHITA_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= MATSUSHITA_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= MATSUSHITA_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= MATSUSHITA_START_BIT_PAUSE_LEN_MAX) { // it's MATSUSHITA #ifdef ANALYZE ANALYZE_PRINTF ("protocol = MATSUSHITA, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", MATSUSHITA_START_BIT_PULSE_LEN_MIN, MATSUSHITA_START_BIT_PULSE_LEN_MAX, MATSUSHITA_START_BIT_PAUSE_LEN_MIN, MATSUSHITA_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &matsushita_param; } else #endif // IRMP_SUPPORT_MATSUSHITA_PROTOCOL == 1 #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 if (irmp_pulse_time >= KASEIKYO_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= KASEIKYO_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= KASEIKYO_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= KASEIKYO_START_BIT_PAUSE_LEN_MAX) { // it's KASEIKYO #ifdef ANALYZE ANALYZE_PRINTF ("protocol = KASEIKYO, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", KASEIKYO_START_BIT_PULSE_LEN_MIN, KASEIKYO_START_BIT_PULSE_LEN_MAX, KASEIKYO_START_BIT_PAUSE_LEN_MIN, KASEIKYO_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &kaseikyo_param; } else #endif // IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 #if IRMP_SUPPORT_PANASONIC_PROTOCOL == 1 if (irmp_pulse_time >= PANASONIC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= PANASONIC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= PANASONIC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= PANASONIC_START_BIT_PAUSE_LEN_MAX) { // it's PANASONIC #ifdef ANALYZE ANALYZE_PRINTF ("protocol = PANASONIC, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", PANASONIC_START_BIT_PULSE_LEN_MIN, PANASONIC_START_BIT_PULSE_LEN_MAX, PANASONIC_START_BIT_PAUSE_LEN_MIN, PANASONIC_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &panasonic_param; } else #endif // IRMP_SUPPORT_PANASONIC_PROTOCOL == 1 #if IRMP_SUPPORT_MITSU_HEAVY_PROTOCOL == 1 if (irmp_pulse_time >= MITSU_HEAVY_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= MITSU_HEAVY_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= MITSU_HEAVY_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= MITSU_HEAVY_START_BIT_PAUSE_LEN_MAX) { // it's MITSU_HEAVY #ifdef ANALYZE ANALYZE_PRINTF ("protocol = MITSU_HEAVY, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", MITSU_HEAVY_START_BIT_PULSE_LEN_MIN, MITSU_HEAVY_START_BIT_PULSE_LEN_MAX, MITSU_HEAVY_START_BIT_PAUSE_LEN_MIN, MITSU_HEAVY_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &mitsu_heavy_param; } else #endif // IRMP_SUPPORT_MITSU_HEAVY_PROTOCOL == 1 #if IRMP_SUPPORT_VINCENT_PROTOCOL == 1 if (irmp_pulse_time >= VINCENT_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= VINCENT_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= VINCENT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= VINCENT_START_BIT_PAUSE_LEN_MAX) { // it's VINCENT #ifdef ANALYZE ANALYZE_PRINTF ("protocol = VINCENT, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", VINCENT_START_BIT_PULSE_LEN_MIN, VINCENT_START_BIT_PULSE_LEN_MAX, VINCENT_START_BIT_PAUSE_LEN_MIN, VINCENT_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &vincent_param; } else #endif // IRMP_SUPPORT_VINCENT_PROTOCOL == 1 #if IRMP_SUPPORT_RADIO1_PROTOCOL == 1 if (irmp_pulse_time >= RADIO1_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RADIO1_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RADIO1_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RADIO1_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RADIO1, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RADIO1_START_BIT_PULSE_LEN_MIN, RADIO1_START_BIT_PULSE_LEN_MAX, RADIO1_START_BIT_PAUSE_LEN_MIN, RADIO1_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &radio1_param; } else #endif // IRMP_SUPPORT_RRADIO1_PROTOCOL == 1 #if IRMP_SUPPORT_RECS80_PROTOCOL == 1 if (irmp_pulse_time >= RECS80_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RECS80_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RECS80_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RECS80_START_BIT_PAUSE_LEN_MAX) { // it's RECS80 #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RECS80, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RECS80_START_BIT_PULSE_LEN_MIN, RECS80_START_BIT_PULSE_LEN_MAX, RECS80_START_BIT_PAUSE_LEN_MIN, RECS80_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &recs80_param; } else #endif // IRMP_SUPPORT_RECS80_PROTOCOL == 1 #if IRMP_SUPPORT_S100_PROTOCOL == 1 if (((irmp_pulse_time >= S100_START_BIT_LEN_MIN && irmp_pulse_time <= S100_START_BIT_LEN_MAX) || (irmp_pulse_time >= 2 * S100_START_BIT_LEN_MIN && irmp_pulse_time <= 2 * S100_START_BIT_LEN_MAX)) && ((irmp_pause_time >= S100_START_BIT_LEN_MIN && irmp_pause_time <= S100_START_BIT_LEN_MAX) || (irmp_pause_time >= 2 * S100_START_BIT_LEN_MIN && irmp_pause_time <= 2 * S100_START_BIT_LEN_MAX))) { // it's S100 #ifdef ANALYZE ANALYZE_PRINTF ("protocol = S100, start bit timings: pulse: %3d - %3d, pause: %3d - %3d or pulse: %3d - %3d, pause: %3d - %3d\n", S100_START_BIT_LEN_MIN, S100_START_BIT_LEN_MAX, 2 * S100_START_BIT_LEN_MIN, 2 * S100_START_BIT_LEN_MAX, S100_START_BIT_LEN_MIN, S100_START_BIT_LEN_MAX, 2 * S100_START_BIT_LEN_MIN, 2 * S100_START_BIT_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &s100_param; last_pause = irmp_pause_time; if ((irmp_pulse_time > S100_START_BIT_LEN_MAX && irmp_pulse_time <= 2 * S100_START_BIT_LEN_MAX) || (irmp_pause_time > S100_START_BIT_LEN_MAX && irmp_pause_time <= 2 * S100_START_BIT_LEN_MAX)) { last_value = 0; rc5_cmd_bit6 = 1<<6; } else { last_value = 1; } } else #endif // IRMP_SUPPORT_S100_PROTOCOL == 1 #if IRMP_SUPPORT_RC5_PROTOCOL == 1 if (((irmp_pulse_time >= RC5_START_BIT_LEN_MIN && irmp_pulse_time <= RC5_START_BIT_LEN_MAX) || (irmp_pulse_time >= 2 * RC5_START_BIT_LEN_MIN && irmp_pulse_time <= 2 * RC5_START_BIT_LEN_MAX)) && ((irmp_pause_time >= RC5_START_BIT_LEN_MIN && irmp_pause_time <= RC5_START_BIT_LEN_MAX) || (irmp_pause_time >= 2 * RC5_START_BIT_LEN_MIN && irmp_pause_time <= 2 * RC5_START_BIT_LEN_MAX))) { // it's RC5 #if IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_pulse_time >= FDC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= FDC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= FDC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= FDC_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RC5 or FDC\n"); ANALYZE_PRINTF ("FDC start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", FDC_START_BIT_PULSE_LEN_MIN, FDC_START_BIT_PULSE_LEN_MAX, FDC_START_BIT_PAUSE_LEN_MIN, FDC_START_BIT_PAUSE_LEN_MAX); ANALYZE_PRINTF ("RC5 start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX); #endif // ANALYZE memcpy_P (&irmp_param2, &fdc_param, sizeof (IRMP_PARAMETER)); } else #endif // IRMP_SUPPORT_FDC_PROTOCOL == 1 #if IRMP_SUPPORT_RCCAR_PROTOCOL == 1 if (irmp_pulse_time >= RCCAR_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RCCAR_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RC5 or RCCAR\n"); ANALYZE_PRINTF ("RCCAR start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RCCAR_START_BIT_PULSE_LEN_MIN, RCCAR_START_BIT_PULSE_LEN_MAX, RCCAR_START_BIT_PAUSE_LEN_MIN, RCCAR_START_BIT_PAUSE_LEN_MAX); ANALYZE_PRINTF ("RC5 start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX); #endif // ANALYZE memcpy_P (&irmp_param2, &rccar_param, sizeof (IRMP_PARAMETER)); } else #endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1 { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RC5, start bit timings: pulse: %3d - %3d, pause: %3d - %3d or pulse: %3d - %3d, pause: %3d - %3d\n", RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, 2 * RC5_START_BIT_LEN_MIN, 2 * RC5_START_BIT_LEN_MAX, RC5_START_BIT_LEN_MIN, RC5_START_BIT_LEN_MAX, 2 * RC5_START_BIT_LEN_MIN, 2 * RC5_START_BIT_LEN_MAX); #endif // ANALYZE } irmp_param_p = (IRMP_PARAMETER *) &rc5_param; last_pause = irmp_pause_time; if ((irmp_pulse_time > RC5_START_BIT_LEN_MAX && irmp_pulse_time <= 2 * RC5_START_BIT_LEN_MAX) || (irmp_pause_time > RC5_START_BIT_LEN_MAX && irmp_pause_time <= 2 * RC5_START_BIT_LEN_MAX)) { last_value = 0; rc5_cmd_bit6 = 1<<6; } else { last_value = 1; } } else #endif // IRMP_SUPPORT_RC5_PROTOCOL == 1 #if IRMP_SUPPORT_DENON_PROTOCOL == 1 if ( (irmp_pulse_time >= DENON_PULSE_LEN_MIN && irmp_pulse_time <= DENON_PULSE_LEN_MAX) && ((irmp_pause_time >= DENON_1_PAUSE_LEN_MIN && irmp_pause_time <= DENON_1_PAUSE_LEN_MAX) || (irmp_pause_time >= DENON_0_PAUSE_LEN_MIN && irmp_pause_time <= DENON_0_PAUSE_LEN_MAX))) { // it's DENON #ifdef ANALYZE ANALYZE_PRINTF ("protocol = DENON, start bit timings: pulse: %3d - %3d, pause: %3d - %3d or %3d - %3d\n", DENON_PULSE_LEN_MIN, DENON_PULSE_LEN_MAX, DENON_1_PAUSE_LEN_MIN, DENON_1_PAUSE_LEN_MAX, DENON_0_PAUSE_LEN_MIN, DENON_0_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &denon_param; } else #endif // IRMP_SUPPORT_DENON_PROTOCOL == 1 #if IRMP_SUPPORT_THOMSON_PROTOCOL == 1 if ( (irmp_pulse_time >= THOMSON_PULSE_LEN_MIN && irmp_pulse_time <= THOMSON_PULSE_LEN_MAX) && ((irmp_pause_time >= THOMSON_1_PAUSE_LEN_MIN && irmp_pause_time <= THOMSON_1_PAUSE_LEN_MAX) || (irmp_pause_time >= THOMSON_0_PAUSE_LEN_MIN && irmp_pause_time <= THOMSON_0_PAUSE_LEN_MAX))) { // it's THOMSON #ifdef ANALYZE ANALYZE_PRINTF ("protocol = THOMSON, start bit timings: pulse: %3d - %3d, pause: %3d - %3d or %3d - %3d\n", THOMSON_PULSE_LEN_MIN, THOMSON_PULSE_LEN_MAX, THOMSON_1_PAUSE_LEN_MIN, THOMSON_1_PAUSE_LEN_MAX, THOMSON_0_PAUSE_LEN_MIN, THOMSON_0_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &thomson_param; } else #endif // IRMP_SUPPORT_THOMSON_PROTOCOL == 1 #if IRMP_SUPPORT_BOSE_PROTOCOL == 1 if (irmp_pulse_time >= BOSE_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= BOSE_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= BOSE_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= BOSE_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = BOSE, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", BOSE_START_BIT_PULSE_LEN_MIN, BOSE_START_BIT_PULSE_LEN_MAX, BOSE_START_BIT_PAUSE_LEN_MIN, BOSE_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &bose_param; } else #endif // IRMP_SUPPORT_BOSE_PROTOCOL == 1 #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_pulse_time >= RC6_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RC6_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RC6_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RC6_START_BIT_PAUSE_LEN_MAX) { // it's RC6 #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RC6, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RC6_START_BIT_PULSE_LEN_MIN, RC6_START_BIT_PULSE_LEN_MAX, RC6_START_BIT_PAUSE_LEN_MIN, RC6_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &rc6_param; last_pause = 0; last_value = 1; } else #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 #if IRMP_SUPPORT_RECS80EXT_PROTOCOL == 1 if (irmp_pulse_time >= RECS80EXT_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RECS80EXT_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RECS80EXT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RECS80EXT_START_BIT_PAUSE_LEN_MAX) { // it's RECS80EXT #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RECS80EXT, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RECS80EXT_START_BIT_PULSE_LEN_MIN, RECS80EXT_START_BIT_PULSE_LEN_MAX, RECS80EXT_START_BIT_PAUSE_LEN_MIN, RECS80EXT_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &recs80ext_param; } else #endif // IRMP_SUPPORT_RECS80EXT_PROTOCOL == 1 #if IRMP_SUPPORT_NUBERT_PROTOCOL == 1 if (irmp_pulse_time >= NUBERT_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NUBERT_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NUBERT_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NUBERT_START_BIT_PAUSE_LEN_MAX) { // it's NUBERT #ifdef ANALYZE ANALYZE_PRINTF ("protocol = NUBERT, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NUBERT_START_BIT_PULSE_LEN_MIN, NUBERT_START_BIT_PULSE_LEN_MAX, NUBERT_START_BIT_PAUSE_LEN_MIN, NUBERT_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &nubert_param; } else #endif // IRMP_SUPPORT_NUBERT_PROTOCOL == 1 #if IRMP_SUPPORT_FAN_PROTOCOL == 1 if (irmp_pulse_time >= FAN_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= FAN_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= FAN_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= FAN_START_BIT_PAUSE_LEN_MAX) { // it's FAN #ifdef ANALYZE ANALYZE_PRINTF ("protocol = FAN, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", FAN_START_BIT_PULSE_LEN_MIN, FAN_START_BIT_PULSE_LEN_MAX, FAN_START_BIT_PAUSE_LEN_MIN, FAN_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &fan_param; } else #endif // IRMP_SUPPORT_FAN_PROTOCOL == 1 #if IRMP_SUPPORT_SPEAKER_PROTOCOL == 1 if (irmp_pulse_time >= SPEAKER_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= SPEAKER_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= SPEAKER_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SPEAKER_START_BIT_PAUSE_LEN_MAX) { // it's SPEAKER #ifdef ANALYZE ANALYZE_PRINTF ("protocol = SPEAKER, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", SPEAKER_START_BIT_PULSE_LEN_MIN, SPEAKER_START_BIT_PULSE_LEN_MAX, SPEAKER_START_BIT_PAUSE_LEN_MIN, SPEAKER_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &speaker_param; } else #endif // IRMP_SUPPORT_SPEAKER_PROTOCOL == 1 #if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 if (irmp_pulse_time >= BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN && irmp_pulse_time <= BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX && irmp_pause_time >= BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX) { // it's BANG_OLUFSEN #ifdef ANALYZE ANALYZE_PRINTF ("protocol = BANG_OLUFSEN\n"); ANALYZE_PRINTF ("start bit 1 timings: pulse: %3d - %3d, pause: %3d - %3d\n", BANG_OLUFSEN_START_BIT1_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT1_PAUSE_LEN_MAX); ANALYZE_PRINTF ("start bit 2 timings: pulse: %3d - %3d, pause: %3d - %3d\n", BANG_OLUFSEN_START_BIT2_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT2_PAUSE_LEN_MAX); ANALYZE_PRINTF ("start bit 3 timings: pulse: %3d - %3d, pause: %3d - %3d\n", BANG_OLUFSEN_START_BIT3_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX); ANALYZE_PRINTF ("start bit 4 timings: pulse: %3d - %3d, pause: %3d - %3d\n", BANG_OLUFSEN_START_BIT4_PULSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PULSE_LEN_MAX, BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MIN, BANG_OLUFSEN_START_BIT4_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &bang_olufsen_param; last_value = 0; } else #endif // IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 #if IRMP_SUPPORT_GRUNDIG_NOKIA_IR60_PROTOCOL == 1 if (irmp_pulse_time >= GRUNDIG_NOKIA_IR60_START_BIT_LEN_MIN && irmp_pulse_time <= GRUNDIG_NOKIA_IR60_START_BIT_LEN_MAX && irmp_pause_time >= GRUNDIG_NOKIA_IR60_PRE_PAUSE_LEN_MIN && irmp_pause_time <= GRUNDIG_NOKIA_IR60_PRE_PAUSE_LEN_MAX) { // it's GRUNDIG #ifdef ANALYZE ANALYZE_PRINTF ("protocol = GRUNDIG, pre bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", GRUNDIG_NOKIA_IR60_START_BIT_LEN_MIN, GRUNDIG_NOKIA_IR60_START_BIT_LEN_MAX, GRUNDIG_NOKIA_IR60_PRE_PAUSE_LEN_MIN, GRUNDIG_NOKIA_IR60_PRE_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &grundig_param; last_pause = irmp_pause_time; last_value = 1; } else #endif // IRMP_SUPPORT_GRUNDIG_NOKIA_IR60_PROTOCOL == 1 #if IRMP_SUPPORT_MERLIN_PROTOCOL == 1 // check MERLIN before RUWIDO! if (irmp_pulse_time >= MERLIN_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= MERLIN_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= MERLIN_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= MERLIN_START_BIT_PAUSE_LEN_MAX) { // it's MERLIN #ifdef ANALYZE ANALYZE_PRINTF ("protocol = MERLIN, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", MERLIN_START_BIT_PULSE_LEN_MIN, MERLIN_START_BIT_PULSE_LEN_MAX, MERLIN_START_BIT_PAUSE_LEN_MIN, MERLIN_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &merlin_param; last_pause = 0; last_value = 1; } else #endif // IRMP_SUPPORT_MERLIN_PROTOCOL == 1 #if IRMP_SUPPORT_SIEMENS_OR_RUWIDO_PROTOCOL == 1 if (((irmp_pulse_time >= SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MAX) || (irmp_pulse_time >= 2 * SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= 2 * SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MAX)) && ((irmp_pause_time >= SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MAX) || (irmp_pause_time >= 2 * SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= 2 * SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MAX))) { // it's RUWIDO or SIEMENS #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RUWIDO, start bit timings: pulse: %3d - %3d or %3d - %3d, pause: %3d - %3d or %3d - %3d\n", SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MIN, SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MAX, 2 * SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MIN, 2 * SIEMENS_OR_RUWIDO_START_BIT_PULSE_LEN_MAX, SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MIN, SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MAX, 2 * SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MIN, 2 * SIEMENS_OR_RUWIDO_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &ruwido_param; last_pause = irmp_pause_time; last_value = 1; } else #endif // IRMP_SUPPORT_SIEMENS_OR_RUWIDO_PROTOCOL == 1 #if IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_pulse_time >= FDC_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= FDC_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= FDC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= FDC_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = FDC, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", FDC_START_BIT_PULSE_LEN_MIN, FDC_START_BIT_PULSE_LEN_MAX, FDC_START_BIT_PAUSE_LEN_MIN, FDC_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &fdc_param; } else #endif // IRMP_SUPPORT_FDC_PROTOCOL == 1 #if IRMP_SUPPORT_RCCAR_PROTOCOL == 1 if (irmp_pulse_time >= RCCAR_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RCCAR_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RCCAR, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RCCAR_START_BIT_PULSE_LEN_MIN, RCCAR_START_BIT_PULSE_LEN_MAX, RCCAR_START_BIT_PAUSE_LEN_MIN, RCCAR_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &rccar_param; } else #endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1 #if IRMP_SUPPORT_KATHREIN_PROTOCOL == 1 if (irmp_pulse_time >= KATHREIN_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= KATHREIN_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= KATHREIN_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= KATHREIN_START_BIT_PAUSE_LEN_MAX) { // it's KATHREIN #ifdef ANALYZE ANALYZE_PRINTF ("protocol = KATHREIN, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", KATHREIN_START_BIT_PULSE_LEN_MIN, KATHREIN_START_BIT_PULSE_LEN_MAX, KATHREIN_START_BIT_PAUSE_LEN_MIN, KATHREIN_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &kathrein_param; } else #endif // IRMP_SUPPORT_KATHREIN_PROTOCOL == 1 #if IRMP_SUPPORT_NETBOX_PROTOCOL == 1 if (irmp_pulse_time >= NETBOX_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= NETBOX_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= NETBOX_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NETBOX_START_BIT_PAUSE_LEN_MAX) { // it's NETBOX #ifdef ANALYZE ANALYZE_PRINTF ("protocol = NETBOX, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", NETBOX_START_BIT_PULSE_LEN_MIN, NETBOX_START_BIT_PULSE_LEN_MAX, NETBOX_START_BIT_PAUSE_LEN_MIN, NETBOX_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &netbox_param; } else #endif // IRMP_SUPPORT_NETBOX_PROTOCOL == 1 #if IRMP_SUPPORT_LEGO_PROTOCOL == 1 if (irmp_pulse_time >= LEGO_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= LEGO_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= LEGO_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= LEGO_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = LEGO, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", LEGO_START_BIT_PULSE_LEN_MIN, LEGO_START_BIT_PULSE_LEN_MAX, LEGO_START_BIT_PAUSE_LEN_MIN, LEGO_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &lego_param; } else #endif // IRMP_SUPPORT_LEGO_PROTOCOL == 1 #if IRMP_SUPPORT_A1TVBOX_PROTOCOL == 1 if (irmp_pulse_time >= A1TVBOX_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= A1TVBOX_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= A1TVBOX_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= A1TVBOX_START_BIT_PAUSE_LEN_MAX) { // it's A1TVBOX #ifdef ANALYZE ANALYZE_PRINTF ("protocol = A1TVBOX, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", A1TVBOX_START_BIT_PULSE_LEN_MIN, A1TVBOX_START_BIT_PULSE_LEN_MAX, A1TVBOX_START_BIT_PAUSE_LEN_MIN, A1TVBOX_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &a1tvbox_param; last_pause = 0; last_value = 1; } else #endif // IRMP_SUPPORT_A1TVBOX_PROTOCOL == 1 #if IRMP_SUPPORT_ORTEK_PROTOCOL == 1 if (irmp_pulse_time >= ORTEK_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= ORTEK_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= ORTEK_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= ORTEK_START_BIT_PAUSE_LEN_MAX) { // it's ORTEK (Hama) #ifdef ANALYZE ANALYZE_PRINTF ("protocol = ORTEK, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", ORTEK_START_BIT_PULSE_LEN_MIN, ORTEK_START_BIT_PULSE_LEN_MAX, ORTEK_START_BIT_PAUSE_LEN_MIN, ORTEK_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &ortek_param; last_pause = 0; last_value = 1; parity = 0; } else #endif // IRMP_SUPPORT_ORTEK_PROTOCOL == 1 #if IRMP_SUPPORT_RCMM_PROTOCOL == 1 if (irmp_pulse_time >= RCMM32_START_BIT_PULSE_LEN_MIN && irmp_pulse_time <= RCMM32_START_BIT_PULSE_LEN_MAX && irmp_pause_time >= RCMM32_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= RCMM32_START_BIT_PAUSE_LEN_MAX) { // it's RCMM #ifdef ANALYZE ANALYZE_PRINTF ("protocol = RCMM, start bit timings: pulse: %3d - %3d, pause: %3d - %3d\n", RCMM32_START_BIT_PULSE_LEN_MIN, RCMM32_START_BIT_PULSE_LEN_MAX, RCMM32_START_BIT_PAUSE_LEN_MIN, RCMM32_START_BIT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_param_p = (IRMP_PARAMETER *) &rcmm_param; } else #endif // IRMP_SUPPORT_RCMM_PROTOCOL == 1 { #ifdef ANALYZE ANALYZE_PRINTF ("protocol = UNKNOWN\n"); #endif // ANALYZE irmp_start_bit_detected = 0; // wait for another start bit... } if (irmp_start_bit_detected) { memcpy_P (&irmp_param, irmp_param_p, sizeof (IRMP_PARAMETER)); if (! (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER)) { #ifdef ANALYZE ANALYZE_PRINTF ("pulse_1: %3d - %3d\n", irmp_param.pulse_1_len_min, irmp_param.pulse_1_len_max); ANALYZE_PRINTF ("pause_1: %3d - %3d\n", irmp_param.pause_1_len_min, irmp_param.pause_1_len_max); #endif // ANALYZE } else { #ifdef ANALYZE ANALYZE_PRINTF ("pulse: %3d - %3d or %3d - %3d\n", irmp_param.pulse_1_len_min, irmp_param.pulse_1_len_max, 2 * irmp_param.pulse_1_len_min, 2 * irmp_param.pulse_1_len_max); ANALYZE_PRINTF ("pause: %3d - %3d or %3d - %3d\n", irmp_param.pause_1_len_min, irmp_param.pause_1_len_max, 2 * irmp_param.pause_1_len_min, 2 * irmp_param.pause_1_len_max); #endif // ANALYZE } #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) if (irmp_param2.protocol) { #ifdef ANALYZE ANALYZE_PRINTF ("pulse_0: %3d - %3d\n", irmp_param2.pulse_0_len_min, irmp_param2.pulse_0_len_max); ANALYZE_PRINTF ("pause_0: %3d - %3d\n", irmp_param2.pause_0_len_min, irmp_param2.pause_0_len_max); ANALYZE_PRINTF ("pulse_1: %3d - %3d\n", irmp_param2.pulse_1_len_min, irmp_param2.pulse_1_len_max); ANALYZE_PRINTF ("pause_1: %3d - %3d\n", irmp_param2.pause_1_len_min, irmp_param2.pause_1_len_max); #endif // ANALYZE } #endif #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL) { #ifdef ANALYZE ANALYZE_PRINTF ("pulse_toggle: %3d - %3d\n", RC6_TOGGLE_BIT_LEN_MIN, RC6_TOGGLE_BIT_LEN_MAX); #endif // ANALYZE } #endif if (! (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER)) { #ifdef ANALYZE ANALYZE_PRINTF ("pulse_0: %3d - %3d\n", irmp_param.pulse_0_len_min, irmp_param.pulse_0_len_max); ANALYZE_PRINTF ("pause_0: %3d - %3d\n", irmp_param.pause_0_len_min, irmp_param.pause_0_len_max); #endif // ANALYZE } else { #ifdef ANALYZE ANALYZE_PRINTF ("pulse: %3d - %3d or %3d - %3d\n", irmp_param.pulse_0_len_min, irmp_param.pulse_0_len_max, 2 * irmp_param.pulse_0_len_min, 2 * irmp_param.pulse_0_len_max); ANALYZE_PRINTF ("pause: %3d - %3d or %3d - %3d\n", irmp_param.pause_0_len_min, irmp_param.pause_0_len_max, 2 * irmp_param.pause_0_len_min, 2 * irmp_param.pause_0_len_max); #endif // ANALYZE } #ifdef ANALYZE #if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 if (irmp_param.protocol == IRMP_BANG_OLUFSEN_PROTOCOL) { ANALYZE_PRINTF ("pulse_r: %3d - %3d\n", irmp_param.pulse_0_len_min, irmp_param.pulse_0_len_max); ANALYZE_PRINTF ("pause_r: %3d - %3d\n", BANG_OLUFSEN_R_PAUSE_LEN_MIN, BANG_OLUFSEN_R_PAUSE_LEN_MAX); } #endif ANALYZE_PRINTF ("command_offset: %2d\n", irmp_param.command_offset); ANALYZE_PRINTF ("command_len: %3d\n", irmp_param.command_end - irmp_param.command_offset); ANALYZE_PRINTF ("complete_len: %3d\n", irmp_param.complete_len); ANALYZE_PRINTF ("stop_bit: %3d\n", irmp_param.stop_bit); #endif // ANALYZE } irmp_bit = 0; #if IRMP_SUPPORT_MANCHESTER == 1 if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER) && irmp_param.protocol != IRMP_RUWIDO_PROTOCOL && // Manchester, but not RUWIDO irmp_param.protocol != IRMP_RC6_PROTOCOL) // Manchester, but not RC6 { if (irmp_pause_time > irmp_param.pulse_1_len_max && irmp_pause_time <= 2 * irmp_param.pulse_1_len_max) { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms [bit %2d: pulse = %3d, pause = %3d] ", (double) (time_counter * 1000) / F_INTERRUPTS, irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '0' : '1'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 0 : 1); } else if (! last_value) // && irmp_pause_time >= irmp_param.pause_1_len_min && irmp_pause_time <= irmp_param.pause_1_len_max) { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms [bit %2d: pulse = %3d, pause = %3d] ", (double) (time_counter * 1000) / F_INTERRUPTS, irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '1' : '0'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 1 : 0); } } else #endif // IRMP_SUPPORT_MANCHESTER == 1 #if IRMP_SUPPORT_SERIAL == 1 if (irmp_param.flags & IRMP_PARAM_FLAG_IS_SERIAL) { ; // do nothing } else #endif // IRMP_SUPPORT_SERIAL == 1 #if IRMP_SUPPORT_DENON_PROTOCOL == 1 if (irmp_param.protocol == IRMP_DENON_PROTOCOL) { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms [bit %2d: pulse = %3d, pause = %3d] ", (double) (time_counter * 1000) / F_INTERRUPTS, irmp_bit, irmp_pulse_time, irmp_pause_time); #endif // ANALYZE if (irmp_pause_time >= DENON_1_PAUSE_LEN_MIN && irmp_pause_time <= DENON_1_PAUSE_LEN_MAX) { // pause timings correct for "1"? #ifdef ANALYZE ANALYZE_PUTCHAR ('1'); // yes, store 1 ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (1); } else // if (irmp_pause_time >= DENON_0_PAUSE_LEN_MIN && irmp_pause_time <= DENON_0_PAUSE_LEN_MAX) { // pause timings correct for "0"? #ifdef ANALYZE ANALYZE_PUTCHAR ('0'); // yes, store 0 ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (0); } } else #endif // IRMP_SUPPORT_DENON_PROTOCOL == 1 #if IRMP_SUPPORT_THOMSON_PROTOCOL == 1 if (irmp_param.protocol == IRMP_THOMSON_PROTOCOL) { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms [bit %2d: pulse = %3d, pause = %3d] ", (double) (time_counter * 1000) / F_INTERRUPTS, irmp_bit, irmp_pulse_time, irmp_pause_time); #endif // ANALYZE if (irmp_pause_time >= THOMSON_1_PAUSE_LEN_MIN && irmp_pause_time <= THOMSON_1_PAUSE_LEN_MAX) { // pause timings correct for "1"? #ifdef ANALYZE ANALYZE_PUTCHAR ('1'); // yes, store 1 ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (1); } else // if (irmp_pause_time >= THOMSON_0_PAUSE_LEN_MIN && irmp_pause_time <= THOMSON_0_PAUSE_LEN_MAX) { // pause timings correct for "0"? #ifdef ANALYZE ANALYZE_PUTCHAR ('0'); // yes, store 0 ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (0); } } else #endif // IRMP_SUPPORT_THOMSON_PROTOCOL == 1 { ; // else do nothing } irmp_pulse_time = 1; // set counter to 1, not 0 irmp_pause_time = 0; wait_for_start_space = 0; } } else if (wait_for_space) // the data section.... { // counting the time of darkness.... uint_fast8_t got_light = FALSE; if (irmp_input) // still dark? { // yes... if (irmp_bit == irmp_param.complete_len && irmp_param.stop_bit == 1) { if ( #if IRMP_SUPPORT_MANCHESTER == 1 (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER) || #endif #if IRMP_SUPPORT_SERIAL == 1 (irmp_param.flags & IRMP_PARAM_FLAG_IS_SERIAL) || #endif (irmp_pulse_time >= irmp_param.pulse_0_len_min && irmp_pulse_time <= irmp_param.pulse_0_len_max)) { #ifdef ANALYZE if (! (irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER)) { ANALYZE_PRINTF ("stop bit detected\n"); } #endif // ANALYZE irmp_param.stop_bit = 0; } else { #ifdef ANALYZE ANALYZE_PRINTF ("error: stop bit timing wrong, irmp_bit = %d, irmp_pulse_time = %d, pulse_0_len_min = %d, pulse_0_len_max = %d\n", irmp_bit, irmp_pulse_time, irmp_param.pulse_0_len_min, irmp_param.pulse_0_len_max); #endif // ANALYZE irmp_start_bit_detected = 0; // wait for another start bit... irmp_pulse_time = 0; irmp_pause_time = 0; } } else { irmp_pause_time++; // increment counter #if IRMP_SUPPORT_SIRCS_PROTOCOL == 1 if (irmp_param.protocol == IRMP_SIRCS_PROTOCOL && // Sony has a variable number of bits: irmp_pause_time > SIRCS_PAUSE_LEN_MAX && // minimum is 12 irmp_bit >= 12 - 1) // pause too long? { // yes, break and close this frame irmp_param.complete_len = irmp_bit + 1; // set new complete length got_light = TRUE; // this is a lie, but helps (generates stop bit) irmp_tmp_address |= (irmp_bit - SIRCS_MINIMUM_DATA_LEN + 1) << 8; // new: store number of additional bits in upper byte of address! irmp_param.command_end = irmp_param.command_offset + irmp_bit + 1; // correct command length irmp_pause_time = SIRCS_PAUSE_LEN_MAX - 1; // correct pause length } else #endif #if IRMP_SUPPORT_FAN_PROTOCOL == 1 if (irmp_param.protocol == IRMP_FAN_PROTOCOL && // FAN has no stop bit. irmp_bit >= FAN_COMPLETE_DATA_LEN - 1) // last bit in frame { // yes, break and close this frame if (irmp_pulse_time <= FAN_0_PULSE_LEN_MAX && irmp_pause_time >= FAN_0_PAUSE_LEN_MIN) { #ifdef ANALYZE ANALYZE_PRINTF ("Generating virtual stop bit\n"); #endif // ANALYZE got_light = TRUE; // this is a lie, but helps (generates stop bit) } else if (irmp_pulse_time >= FAN_1_PULSE_LEN_MIN && irmp_pause_time >= FAN_1_PAUSE_LEN_MIN) { #ifdef ANALYZE ANALYZE_PRINTF ("Generating virtual stop bit\n"); #endif // ANALYZE got_light = TRUE; // this is a lie, but helps (generates stop bit) } } else #endif #if IRMP_SUPPORT_SERIAL == 1 // NETBOX generates no stop bit, here is the timeout condition: if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_SERIAL) && irmp_param.protocol == IRMP_NETBOX_PROTOCOL && irmp_pause_time >= NETBOX_PULSE_LEN * (NETBOX_COMPLETE_DATA_LEN - irmp_bit)) { got_light = TRUE; // this is a lie, but helps (generates stop bit) } else #endif #if IRMP_SUPPORT_GRUNDIG_NOKIA_IR60_PROTOCOL == 1 if (irmp_param.protocol == IRMP_GRUNDIG_PROTOCOL && !irmp_param.stop_bit) { if (irmp_pause_time > IR60_TIMEOUT_LEN && (irmp_bit == 5 || irmp_bit == 6)) { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to IR60 protocol\n"); #endif // ANALYZE got_light = TRUE; // this is a lie, but generates a stop bit ;-) irmp_param.stop_bit = TRUE; // set flag irmp_param.protocol = IRMP_IR60_PROTOCOL; // change protocol irmp_param.complete_len = IR60_COMPLETE_DATA_LEN; // correct complete len irmp_param.address_offset = IR60_ADDRESS_OFFSET; irmp_param.address_end = IR60_ADDRESS_OFFSET + IR60_ADDRESS_LEN; irmp_param.command_offset = IR60_COMMAND_OFFSET; irmp_param.command_end = IR60_COMMAND_OFFSET + IR60_COMMAND_LEN; irmp_tmp_command <<= 1; irmp_tmp_command |= first_bit; } else if (irmp_pause_time >= 2 * irmp_param.pause_1_len_max && irmp_bit >= GRUNDIG_COMPLETE_DATA_LEN - 2) { // special manchester decoder irmp_param.complete_len = GRUNDIG_COMPLETE_DATA_LEN; // correct complete len got_light = TRUE; // this is a lie, but generates a stop bit ;-) irmp_param.stop_bit = TRUE; // set flag } else if (irmp_bit >= GRUNDIG_COMPLETE_DATA_LEN) { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to NOKIA protocol, irmp_bit = %d\n", irmp_bit); #endif // ANALYZE irmp_param.protocol = IRMP_NOKIA_PROTOCOL; // change protocol irmp_param.address_offset = NOKIA_ADDRESS_OFFSET; irmp_param.address_end = NOKIA_ADDRESS_OFFSET + NOKIA_ADDRESS_LEN; irmp_param.command_offset = NOKIA_COMMAND_OFFSET; irmp_param.command_end = NOKIA_COMMAND_OFFSET + NOKIA_COMMAND_LEN; if (irmp_tmp_command & 0x300) { irmp_tmp_address = (irmp_tmp_command >> 8); irmp_tmp_command &= 0xFF; } } } else #endif #if IRMP_SUPPORT_SIEMENS_OR_RUWIDO_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RUWIDO_PROTOCOL && !irmp_param.stop_bit) { if (irmp_pause_time >= 2 * irmp_param.pause_1_len_max && irmp_bit >= RUWIDO_COMPLETE_DATA_LEN - 2) { // special manchester decoder irmp_param.complete_len = RUWIDO_COMPLETE_DATA_LEN; // correct complete len got_light = TRUE; // this is a lie, but generates a stop bit ;-) irmp_param.stop_bit = TRUE; // set flag } else if (irmp_bit >= RUWIDO_COMPLETE_DATA_LEN) { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to SIEMENS protocol\n"); #endif // ANALYZE irmp_param.protocol = IRMP_SIEMENS_PROTOCOL; // change protocol irmp_param.address_offset = SIEMENS_ADDRESS_OFFSET; irmp_param.address_end = SIEMENS_ADDRESS_OFFSET + SIEMENS_ADDRESS_LEN; irmp_param.command_offset = SIEMENS_COMMAND_OFFSET; irmp_param.command_end = SIEMENS_COMMAND_OFFSET + SIEMENS_COMMAND_LEN; // 76543210 // RUWIDO: AAAAAAAAACCCCCCCp // SIEMENS: AAAAAAAAAAACCCCCCCCCCp irmp_tmp_address <<= 2; irmp_tmp_address |= (irmp_tmp_command >> 6); irmp_tmp_command &= 0x003F; // irmp_tmp_command <<= 4; irmp_tmp_command |= last_value; } } else #endif #if IRMP_SUPPORT_ROOMBA_PROTOCOL == 1 if (irmp_param.protocol == IRMP_ROOMBA_PROTOCOL && // Roomba has no stop bit irmp_bit >= ROOMBA_COMPLETE_DATA_LEN - 1) // it's the last data bit... { // break and close this frame if (irmp_pulse_time >= ROOMBA_1_PULSE_LEN_MIN && irmp_pulse_time <= ROOMBA_1_PULSE_LEN_MAX) { irmp_pause_time = ROOMBA_1_PAUSE_LEN_EXACT; } else if (irmp_pulse_time >= ROOMBA_0_PULSE_LEN_MIN && irmp_pulse_time <= ROOMBA_0_PULSE_LEN_MAX) { irmp_pause_time = ROOMBA_0_PAUSE_LEN; } got_light = TRUE; // this is a lie, but helps (generates stop bit) } else #endif #if IRMP_SUPPORT_MANCHESTER == 1 if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER) && irmp_pause_time >= 2 * irmp_param.pause_1_len_max && irmp_bit >= irmp_param.complete_len - 2 && !irmp_param.stop_bit) { // special manchester decoder got_light = TRUE; // this is a lie, but generates a stop bit ;-) irmp_param.stop_bit = TRUE; // set flag } else #endif // IRMP_SUPPORT_MANCHESTER == 1 if (irmp_pause_time > IRMP_TIMEOUT_LEN) // timeout? { // yes... if (irmp_bit == irmp_param.complete_len - 1 && irmp_param.stop_bit == 0) { irmp_bit++; } #if IRMP_SUPPORT_NEC_PROTOCOL == 1 else if ((irmp_param.protocol == IRMP_NEC_PROTOCOL || irmp_param.protocol == IRMP_NEC42_PROTOCOL) && irmp_bit == 0) { // it was a non-standard repetition frame #ifdef ANALYZE // with 4500µs pause instead of 2250µs ANALYZE_PRINTF ("Detected non-standard repetition frame, switching to NEC repetition\n"); #endif // ANALYZE if (key_repetition_len < NEC_FRAME_REPEAT_PAUSE_LEN_MAX) { irmp_param.stop_bit = TRUE; // set flag irmp_param.protocol = IRMP_NEC_PROTOCOL; // switch protocol irmp_param.complete_len = irmp_bit; // patch length: 16 or 17 irmp_tmp_address = last_irmp_address; // address is last address irmp_tmp_command = last_irmp_command; // command is last command irmp_flags |= IRMP_FLAG_REPETITION; key_repetition_len = 0; } else { #ifdef ANALYZE ANALYZE_PRINTF ("ignoring NEC repetition frame: timeout occured, key_repetition_len = %d > %d\n", key_repetition_len, NEC_FRAME_REPEAT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_ir_detected = FALSE; } } #endif // IRMP_SUPPORT_NEC_PROTOCOL == 1 #if IRMP_SUPPORT_JVC_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_NEC_PROTOCOL && (irmp_bit == 16 || irmp_bit == 17)) // it was a JVC stop bit { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to JVC protocol, irmp_bit = %d\n", irmp_bit); #endif // ANALYZE irmp_param.stop_bit = TRUE; // set flag irmp_param.protocol = IRMP_JVC_PROTOCOL; // switch protocol irmp_param.complete_len = irmp_bit; // patch length: 16 or 17 irmp_tmp_command = (irmp_tmp_address >> 4); // set command: upper 12 bits are command bits irmp_tmp_address = irmp_tmp_address & 0x000F; // lower 4 bits are address bits irmp_start_bit_detected = 1; // tricky: don't wait for another start bit... } #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 #if IRMP_SUPPORT_LGAIR_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_NEC_PROTOCOL && (irmp_bit == 28 || irmp_bit == 29)) // it was a LGAIR stop bit { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to LGAIR protocol, irmp_bit = %d\n", irmp_bit); #endif // ANALYZE irmp_param.stop_bit = TRUE; // set flag irmp_param.protocol = IRMP_LGAIR_PROTOCOL; // switch protocol irmp_param.complete_len = irmp_bit; // patch length: 16 or 17 irmp_tmp_command = irmp_lgair_command; // set command: upper 8 bits are command bits irmp_tmp_address = irmp_lgair_address; // lower 4 bits are address bits irmp_start_bit_detected = 1; // tricky: don't wait for another start bit... } #endif // IRMP_SUPPORT_LGAIR_PROTOCOL == 1 #if IRMP_SUPPORT_NEC42_PROTOCOL == 1 #if IRMP_SUPPORT_NEC_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_NEC42_PROTOCOL && irmp_bit == 32) // it was a NEC stop bit { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to NEC protocol\n"); #endif // ANALYZE irmp_param.stop_bit = TRUE; // set flag irmp_param.protocol = IRMP_NEC_PROTOCOL; // switch protocol irmp_param.complete_len = irmp_bit; // patch length: 16 or 17 // 0123456789ABC0123456789ABC0123456701234567 // NEC42: AAAAAAAAAAAAAaaaaaaaaaaaaaCCCCCCCCcccccccc // NEC: AAAAAAAAaaaaaaaaCCCCCCCCcccccccc irmp_tmp_address |= (irmp_tmp_address2 & 0x0007) << 13; // fm 2012-02-13: 12 -> 13 irmp_tmp_command = (irmp_tmp_address2 >> 3) | (irmp_tmp_command << 10); } #endif // IRMP_SUPPORT_NEC_PROTOCOL == 1 #if IRMP_SUPPORT_LGAIR_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_NEC42_PROTOCOL && irmp_bit == 28) // it was a NEC stop bit { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to LGAIR protocol\n"); #endif // ANALYZE irmp_param.stop_bit = TRUE; // set flag irmp_param.protocol = IRMP_LGAIR_PROTOCOL; // switch protocol irmp_param.complete_len = irmp_bit; // patch length: 16 or 17 irmp_tmp_address = irmp_lgair_address; irmp_tmp_command = irmp_lgair_command; } #endif // IRMP_SUPPORT_LGAIR_PROTOCOL == 1 #if IRMP_SUPPORT_JVC_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_NEC42_PROTOCOL && (irmp_bit == 16 || irmp_bit == 17)) // it was a JVC stop bit { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to JVC protocol, irmp_bit = %d\n", irmp_bit); #endif // ANALYZE irmp_param.stop_bit = TRUE; // set flag irmp_param.protocol = IRMP_JVC_PROTOCOL; // switch protocol irmp_param.complete_len = irmp_bit; // patch length: 16 or 17 // 0123456789ABC0123456789ABC0123456701234567 // NEC42: AAAAAAAAAAAAAaaaaaaaaaaaaaCCCCCCCCcccccccc // JVC: AAAACCCCCCCCCCCC irmp_tmp_command = (irmp_tmp_address >> 4) | (irmp_tmp_address2 << 9); // set command: upper 12 bits are command bits irmp_tmp_address = irmp_tmp_address & 0x000F; // lower 4 bits are address bits } #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 #endif // IRMP_SUPPORT_NEC42_PROTOCOL == 1 #if IRMP_SUPPORT_SAMSUNG48_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_SAMSUNG48_PROTOCOL && irmp_bit == 32) // it was a SAMSUNG32 stop bit { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to SAMSUNG32 protocol\n"); #endif // ANALYZE irmp_param.protocol = IRMP_SAMSUNG32_PROTOCOL; irmp_param.command_offset = SAMSUNG32_COMMAND_OFFSET; irmp_param.command_end = SAMSUNG32_COMMAND_OFFSET + SAMSUNG32_COMMAND_LEN; irmp_param.complete_len = SAMSUNG32_COMPLETE_DATA_LEN; } #endif // IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 #if IRMP_SUPPORT_RCMM_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_RCMM32_PROTOCOL && (irmp_bit == 12 || irmp_bit == 24)) // it was a RCMM stop bit { if (irmp_bit == 12) { irmp_tmp_command = (irmp_tmp_address & 0xFF); // set command: lower 8 bits are command bits irmp_tmp_address >>= 8; // upper 4 bits are address bits #ifdef ANALYZE ANALYZE_PRINTF ("Switching to RCMM12 protocol, irmp_bit = %d\n", irmp_bit); #endif // ANALYZE irmp_param.protocol = IRMP_RCMM12_PROTOCOL; // switch protocol } else // if ((irmp_bit == 24) { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to RCMM24 protocol, irmp_bit = %d\n", irmp_bit); #endif // ANALYZE irmp_param.protocol = IRMP_RCMM24_PROTOCOL; // switch protocol } irmp_param.stop_bit = TRUE; // set flag irmp_param.complete_len = irmp_bit; // patch length } #endif // IRMP_SUPPORT_RCMM_PROTOCOL == 1 #if IRMP_SUPPORT_TECHNICS_PROTOCOL == 1 else if (irmp_param.protocol == IRMP_MATSUSHITA_PROTOCOL && irmp_bit == 22) // it was a TECHNICS stop bit { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to TECHNICS protocol, irmp_bit = %d\n", irmp_bit); #endif // ANALYZE // Situation: // The first 12 bits have been stored in irmp_tmp_command (LSB first) // The following 10 bits have been stored in irmp_tmp_address (LSB first) // The code of TECHNICS is: // cccccccccccCCCCCCCCCCC (11 times c and 11 times C) // ccccccccccccaaaaaaaaaa // where C is inverted value of c irmp_tmp_address <<= 1; if (irmp_tmp_command & (1<<11)) { irmp_tmp_address |= 1; irmp_tmp_command &= ~(1<<11); } if (irmp_tmp_command == ((~irmp_tmp_address) & 0x07FF)) { irmp_tmp_address = 0; irmp_param.protocol = IRMP_TECHNICS_PROTOCOL; // switch protocol irmp_param.complete_len = irmp_bit; // patch length } else { #ifdef ANALYZE ANALYZE_PRINTF ("error 8: TECHNICS frame error\n"); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE irmp_start_bit_detected = 0; // wait for another start bit... irmp_pulse_time = 0; irmp_pause_time = 0; } } #endif // IRMP_SUPPORT_TECHNICS_PROTOCOL == 1 else { #ifdef ANALYZE ANALYZE_PRINTF ("error 2: pause %d after data bit %d too long\n", irmp_pause_time, irmp_bit); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE irmp_start_bit_detected = 0; // wait for another start bit... irmp_pulse_time = 0; irmp_pause_time = 0; } } } } else { // got light now! got_light = TRUE; } if (got_light) { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms [bit %2d: pulse = %3d, pause = %3d] ", (double) (time_counter * 1000) / F_INTERRUPTS, irmp_bit, irmp_pulse_time, irmp_pause_time); #endif // ANALYZE #if IRMP_SUPPORT_MANCHESTER == 1 if ((irmp_param.flags & IRMP_PARAM_FLAG_IS_MANCHESTER)) // Manchester { #if 1 if (irmp_pulse_time > irmp_param.pulse_1_len_max /* && irmp_pulse_time <= 2 * irmp_param.pulse_1_len_max */) #else // better, but some IR-RCs use asymmetric timings :-/ if (irmp_pulse_time > irmp_param.pulse_1_len_max && irmp_pulse_time <= 2 * irmp_param.pulse_1_len_max && irmp_pause_time <= 2 * irmp_param.pause_1_len_max) #endif { #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_bit == 4 && irmp_pulse_time > RC6_TOGGLE_BIT_LEN_MIN) // RC6 toggle bit { #ifdef ANALYZE ANALYZE_PUTCHAR ('T'); #endif // ANALYZE if (irmp_param.complete_len == RC6_COMPLETE_DATA_LEN_LONG) // RC6 mode 6A { irmp_store_bit (1); last_value = 1; } else // RC6 mode 0 { irmp_store_bit (0); last_value = 0; } #ifdef ANALYZE ANALYZE_NEWLINE (); #endif // ANALYZE } else #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 { #ifdef ANALYZE ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '0' : '1'); #endif // ANALYZE irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 0 : 1 ); #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_bit == 4 && irmp_pulse_time > RC6_TOGGLE_BIT_LEN_MIN) // RC6 toggle bit { #ifdef ANALYZE ANALYZE_PUTCHAR ('T'); #endif // ANALYZE irmp_store_bit (1); if (irmp_pause_time > 2 * irmp_param.pause_1_len_max) { last_value = 0; } else { last_value = 1; } #ifdef ANALYZE ANALYZE_NEWLINE (); #endif // ANALYZE } else #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 { #ifdef ANALYZE ANALYZE_PUTCHAR ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? '1' : '0'); #endif // ANALYZE irmp_store_bit ((irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 1 : 0 ); #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) if (! irmp_param2.protocol) #endif { #ifdef ANALYZE ANALYZE_NEWLINE (); #endif // ANALYZE } last_value = (irmp_param.flags & IRMP_PARAM_FLAG_1ST_PULSE_IS_1) ? 1 : 0; } } } else if (irmp_pulse_time >= irmp_param.pulse_1_len_min && irmp_pulse_time <= irmp_param.pulse_1_len_max /* && irmp_pause_time <= 2 * irmp_param.pause_1_len_max */) { uint_fast8_t manchester_value; if (last_pause > irmp_param.pause_1_len_max && last_pause <= 2 * irmp_param.pause_1_len_max) { manchester_value = last_value ? 0 : 1; last_value = manchester_value; } else { manchester_value = last_value; } #ifdef ANALYZE ANALYZE_PUTCHAR (manchester_value + '0'); #endif // ANALYZE #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && (IRMP_SUPPORT_FDC_PROTOCOL == 1 || IRMP_SUPPORT_RCCAR_PROTOCOL == 1) if (! irmp_param2.protocol) #endif { #ifdef ANALYZE ANALYZE_NEWLINE (); #endif // ANALYZE } #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_bit == 1 && manchester_value == 1) // RC6 mode != 0 ??? { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to RC6A protocol\n"); #endif // ANALYZE irmp_param.complete_len = RC6_COMPLETE_DATA_LEN_LONG; irmp_param.address_offset = 5; irmp_param.address_end = irmp_param.address_offset + 15; irmp_param.command_offset = irmp_param.address_end + 1; // skip 1 system bit, changes like a toggle bit irmp_param.command_end = irmp_param.command_offset + 16 - 1; irmp_tmp_address = 0; } #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 irmp_store_bit (manchester_value); } else { #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_param2.protocol == IRMP_FDC_PROTOCOL && irmp_pulse_time >= FDC_PULSE_LEN_MIN && irmp_pulse_time <= FDC_PULSE_LEN_MAX && ((irmp_pause_time >= FDC_1_PAUSE_LEN_MIN && irmp_pause_time <= FDC_1_PAUSE_LEN_MAX) || (irmp_pause_time >= FDC_0_PAUSE_LEN_MIN && irmp_pause_time <= FDC_0_PAUSE_LEN_MAX))) { #ifdef ANALYZE ANALYZE_PUTCHAR ('?'); #endif // ANALYZE irmp_param.protocol = 0; // switch to FDC, see below } else #endif // IRMP_SUPPORT_FDC_PROTOCOL == 1 #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_RCCAR_PROTOCOL == 1 if (irmp_param2.protocol == IRMP_RCCAR_PROTOCOL && irmp_pulse_time >= RCCAR_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_PULSE_LEN_MAX && ((irmp_pause_time >= RCCAR_1_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_1_PAUSE_LEN_MAX) || (irmp_pause_time >= RCCAR_0_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_0_PAUSE_LEN_MAX))) { #ifdef ANALYZE ANALYZE_PUTCHAR ('?'); #endif // ANALYZE irmp_param.protocol = 0; // switch to RCCAR, see below } else #endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1 { #ifdef ANALYZE ANALYZE_PUTCHAR ('?'); ANALYZE_NEWLINE (); ANALYZE_PRINTF ("error 3 manchester: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_param2.protocol == IRMP_FDC_PROTOCOL && irmp_pulse_time >= FDC_PULSE_LEN_MIN && irmp_pulse_time <= FDC_PULSE_LEN_MAX) { if (irmp_pause_time >= FDC_1_PAUSE_LEN_MIN && irmp_pause_time <= FDC_1_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF (" 1 (FDC)\n"); #endif // ANALYZE irmp_store_bit2 (1); } else if (irmp_pause_time >= FDC_0_PAUSE_LEN_MIN && irmp_pause_time <= FDC_0_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF (" 0 (FDC)\n"); #endif // ANALYZE irmp_store_bit2 (0); } if (! irmp_param.protocol) { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to FDC protocol\n"); #endif // ANALYZE memcpy (&irmp_param, &irmp_param2, sizeof (IRMP_PARAMETER)); irmp_param2.protocol = 0; irmp_tmp_address = irmp_tmp_address2; irmp_tmp_command = irmp_tmp_command2; } } #endif // IRMP_SUPPORT_FDC_PROTOCOL == 1 #if IRMP_SUPPORT_RC5_PROTOCOL == 1 && IRMP_SUPPORT_RCCAR_PROTOCOL == 1 if (irmp_param2.protocol == IRMP_RCCAR_PROTOCOL && irmp_pulse_time >= RCCAR_PULSE_LEN_MIN && irmp_pulse_time <= RCCAR_PULSE_LEN_MAX) { if (irmp_pause_time >= RCCAR_1_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_1_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF (" 1 (RCCAR)\n"); #endif // ANALYZE irmp_store_bit2 (1); } else if (irmp_pause_time >= RCCAR_0_PAUSE_LEN_MIN && irmp_pause_time <= RCCAR_0_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF (" 0 (RCCAR)\n"); #endif // ANALYZE irmp_store_bit2 (0); } if (! irmp_param.protocol) { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to RCCAR protocol\n"); #endif // ANALYZE memcpy (&irmp_param, &irmp_param2, sizeof (IRMP_PARAMETER)); irmp_param2.protocol = 0; irmp_tmp_address = irmp_tmp_address2; irmp_tmp_command = irmp_tmp_command2; } } #endif // IRMP_SUPPORT_RCCAR_PROTOCOL == 1 last_pause = irmp_pause_time; wait_for_space = 0; } else #endif // IRMP_SUPPORT_MANCHESTER == 1 #if IRMP_SUPPORT_SERIAL == 1 if (irmp_param.flags & IRMP_PARAM_FLAG_IS_SERIAL) { while (irmp_bit < irmp_param.complete_len && irmp_pulse_time > irmp_param.pulse_1_len_max) { #ifdef ANALYZE ANALYZE_PUTCHAR ('1'); #endif // ANALYZE irmp_store_bit (1); if (irmp_pulse_time >= irmp_param.pulse_1_len_min) { irmp_pulse_time -= irmp_param.pulse_1_len_min; } else { irmp_pulse_time = 0; } } while (irmp_bit < irmp_param.complete_len && irmp_pause_time > irmp_param.pause_1_len_max) { #ifdef ANALYZE ANALYZE_PUTCHAR ('0'); #endif // ANALYZE irmp_store_bit (0); if (irmp_pause_time >= irmp_param.pause_1_len_min) { irmp_pause_time -= irmp_param.pause_1_len_min; } else { irmp_pause_time = 0; } } #ifdef ANALYZE ANALYZE_NEWLINE (); #endif // ANALYZE wait_for_space = 0; } else #endif // IRMP_SUPPORT_SERIAL == 1 #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 if (irmp_param.protocol == IRMP_SAMSUNG_PROTOCOL && irmp_bit == 16) // Samsung: 16th bit { if (irmp_pulse_time >= SAMSUNG_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNG_PULSE_LEN_MAX && irmp_pause_time >= SAMSUNG_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNG_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("SYNC\n"); #endif // ANALYZE wait_for_space = 0; irmp_bit++; } else if (irmp_pulse_time >= SAMSUNG_PULSE_LEN_MIN && irmp_pulse_time <= SAMSUNG_PULSE_LEN_MAX) { #if IRMP_SUPPORT_SAMSUNG48_PROTOCOL == 1 #ifdef ANALYZE ANALYZE_PRINTF ("Switching to SAMSUNG48 protocol "); #endif // ANALYZE irmp_param.protocol = IRMP_SAMSUNG48_PROTOCOL; irmp_param.command_offset = SAMSUNG48_COMMAND_OFFSET; irmp_param.command_end = SAMSUNG48_COMMAND_OFFSET + SAMSUNG48_COMMAND_LEN; irmp_param.complete_len = SAMSUNG48_COMPLETE_DATA_LEN; #else #ifdef ANALYZE ANALYZE_PRINTF ("Switching to SAMSUNG32 protocol "); #endif // ANALYZE irmp_param.protocol = IRMP_SAMSUNG32_PROTOCOL; irmp_param.command_offset = SAMSUNG32_COMMAND_OFFSET; irmp_param.command_end = SAMSUNG32_COMMAND_OFFSET + SAMSUNG32_COMMAND_LEN; irmp_param.complete_len = SAMSUNG32_COMPLETE_DATA_LEN; #endif if (irmp_pause_time >= SAMSUNG_1_PAUSE_LEN_MIN && irmp_pause_time <= SAMSUNG_1_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PUTCHAR ('1'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (1); wait_for_space = 0; } else { #ifdef ANALYZE ANALYZE_PUTCHAR ('0'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (0); wait_for_space = 0; } } else { // timing incorrect! #ifdef ANALYZE ANALYZE_PRINTF ("error 3 Samsung: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } else #endif // IRMP_SUPPORT_SAMSUNG_PROTOCOL #if IRMP_SUPPORT_NEC16_PROTOCOL #if IRMP_SUPPORT_NEC42_PROTOCOL == 1 if (irmp_param.protocol == IRMP_NEC42_PROTOCOL && #else // IRMP_SUPPORT_NEC_PROTOCOL instead if (irmp_param.protocol == IRMP_NEC_PROTOCOL && #endif // IRMP_SUPPORT_NEC42_PROTOCOL == 1 irmp_bit == 8 && irmp_pause_time >= NEC_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= NEC_START_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("Switching to NEC16 protocol\n"); #endif // ANALYZE irmp_param.protocol = IRMP_NEC16_PROTOCOL; irmp_param.address_offset = NEC16_ADDRESS_OFFSET; irmp_param.address_end = NEC16_ADDRESS_OFFSET + NEC16_ADDRESS_LEN; irmp_param.command_offset = NEC16_COMMAND_OFFSET; irmp_param.command_end = NEC16_COMMAND_OFFSET + NEC16_COMMAND_LEN; irmp_param.complete_len = NEC16_COMPLETE_DATA_LEN; wait_for_space = 0; } else #endif // IRMP_SUPPORT_NEC16_PROTOCOL #if IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL == 1 if (irmp_param.protocol == IRMP_BANG_OLUFSEN_PROTOCOL) { if (irmp_pulse_time >= BANG_OLUFSEN_PULSE_LEN_MIN && irmp_pulse_time <= BANG_OLUFSEN_PULSE_LEN_MAX) { if (irmp_bit == 1) // Bang & Olufsen: 3rd bit { if (irmp_pause_time >= BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_START_BIT3_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("3rd start bit\n"); #endif // ANALYZE wait_for_space = 0; irmp_bit++; } else { // timing incorrect! #ifdef ANALYZE ANALYZE_PRINTF ("error 3a B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } else if (irmp_bit == 19) // Bang & Olufsen: trailer bit { if (irmp_pause_time >= BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_TRAILER_BIT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("trailer bit\n"); #endif // ANALYZE wait_for_space = 0; irmp_bit++; } else { // timing incorrect! #ifdef ANALYZE ANALYZE_PRINTF ("error 3b B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } else { if (irmp_pause_time >= BANG_OLUFSEN_1_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_1_PAUSE_LEN_MAX) { // pulse & pause timings correct for "1"? #ifdef ANALYZE ANALYZE_PUTCHAR ('1'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (1); last_value = 1; wait_for_space = 0; } else if (irmp_pause_time >= BANG_OLUFSEN_0_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_0_PAUSE_LEN_MAX) { // pulse & pause timings correct for "0"? #ifdef ANALYZE ANALYZE_PUTCHAR ('0'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (0); last_value = 0; wait_for_space = 0; } else if (irmp_pause_time >= BANG_OLUFSEN_R_PAUSE_LEN_MIN && irmp_pause_time <= BANG_OLUFSEN_R_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PUTCHAR (last_value + '0'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (last_value); wait_for_space = 0; } else { // timing incorrect! #ifdef ANALYZE ANALYZE_PRINTF ("error 3c B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } } else { // timing incorrect! #ifdef ANALYZE ANALYZE_PRINTF ("error 3d B&O: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } } else #endif // IRMP_SUPPORT_BANG_OLUFSEN_PROTOCOL #if IRMP_SUPPORT_RCMM_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RCMM32_PROTOCOL) { if (irmp_pause_time >= RCMM32_BIT_00_PAUSE_LEN_MIN && irmp_pause_time <= RCMM32_BIT_00_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PUTCHAR ('0'); ANALYZE_PUTCHAR ('0'); #endif // ANALYZE irmp_store_bit (0); irmp_store_bit (0); } else if (irmp_pause_time >= RCMM32_BIT_01_PAUSE_LEN_MIN && irmp_pause_time <= RCMM32_BIT_01_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PUTCHAR ('0'); ANALYZE_PUTCHAR ('1'); #endif // ANALYZE irmp_store_bit (0); irmp_store_bit (1); } else if (irmp_pause_time >= RCMM32_BIT_10_PAUSE_LEN_MIN && irmp_pause_time <= RCMM32_BIT_10_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PUTCHAR ('1'); ANALYZE_PUTCHAR ('0'); #endif // ANALYZE irmp_store_bit (1); irmp_store_bit (0); } else if (irmp_pause_time >= RCMM32_BIT_11_PAUSE_LEN_MIN && irmp_pause_time <= RCMM32_BIT_11_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PUTCHAR ('1'); ANALYZE_PUTCHAR ('1'); #endif // ANALYZE irmp_store_bit (1); irmp_store_bit (1); } #ifdef ANALYZE ANALYZE_PRINTF ("\n"); #endif // ANALYZE wait_for_space = 0; } else #endif if (irmp_pulse_time >= irmp_param.pulse_1_len_min && irmp_pulse_time <= irmp_param.pulse_1_len_max && irmp_pause_time >= irmp_param.pause_1_len_min && irmp_pause_time <= irmp_param.pause_1_len_max) { // pulse & pause timings correct for "1"? #ifdef ANALYZE ANALYZE_PUTCHAR ('1'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (1); wait_for_space = 0; } else if (irmp_pulse_time >= irmp_param.pulse_0_len_min && irmp_pulse_time <= irmp_param.pulse_0_len_max && irmp_pause_time >= irmp_param.pause_0_len_min && irmp_pause_time <= irmp_param.pause_0_len_max) { // pulse & pause timings correct for "0"? #ifdef ANALYZE ANALYZE_PUTCHAR ('0'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (0); wait_for_space = 0; } else #if IRMP_SUPPORT_KATHREIN_PROTOCOL if (irmp_param.protocol == IRMP_KATHREIN_PROTOCOL && irmp_pulse_time >= KATHREIN_1_PULSE_LEN_MIN && irmp_pulse_time <= KATHREIN_1_PULSE_LEN_MAX && (((irmp_bit == 8 || irmp_bit == 6) && irmp_pause_time >= KATHREIN_SYNC_BIT_PAUSE_LEN_MIN && irmp_pause_time <= KATHREIN_SYNC_BIT_PAUSE_LEN_MAX) || (irmp_bit == 12 && irmp_pause_time >= KATHREIN_START_BIT_PAUSE_LEN_MIN && irmp_pause_time <= KATHREIN_START_BIT_PAUSE_LEN_MAX))) { if (irmp_bit == 8) { irmp_bit++; #ifdef ANALYZE ANALYZE_PUTCHAR ('S'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_tmp_command <<= 1; } else { #ifdef ANALYZE ANALYZE_PUTCHAR ('S'); ANALYZE_NEWLINE (); #endif // ANALYZE irmp_store_bit (1); } wait_for_space = 0; } else #endif // IRMP_SUPPORT_KATHREIN_PROTOCOL { // timing incorrect! #ifdef ANALYZE ANALYZE_PRINTF ("error 3: timing not correct: data bit %d, pulse: %d, pause: %d\n", irmp_bit, irmp_pulse_time, irmp_pause_time); ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE irmp_start_bit_detected = 0; // reset flags and wait for next start bit irmp_pause_time = 0; } irmp_pulse_time = 1; // set counter to 1, not 0 } } else { // counting the pulse length ... if (! irmp_input) // still light? { // yes... irmp_pulse_time++; // increment counter } else { // now it's dark! wait_for_space = 1; // let's count the time (see above) irmp_pause_time = 1; // set pause counter to 1, not 0 } } if (irmp_start_bit_detected && irmp_bit == irmp_param.complete_len && irmp_param.stop_bit == 0) // enough bits received? { if (last_irmp_command == irmp_tmp_command && key_repetition_len < AUTO_FRAME_REPETITION_LEN) { repetition_frame_number++; } else { repetition_frame_number = 0; } #if IRMP_SUPPORT_SIRCS_PROTOCOL == 1 // if SIRCS protocol and the code will be repeated within 50 ms, we will ignore 2nd and 3rd repetition frame if (irmp_param.protocol == IRMP_SIRCS_PROTOCOL && (repetition_frame_number == 1 || repetition_frame_number == 2)) { #ifdef ANALYZE ANALYZE_PRINTF ("code skipped: SIRCS auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, key_repetition_len, AUTO_FRAME_REPETITION_LEN); #endif // ANALYZE key_repetition_len = 0; } else #endif #if IRMP_SUPPORT_ORTEK_PROTOCOL == 1 // if ORTEK protocol and the code will be repeated within 50 ms, we will ignore 2nd repetition frame if (irmp_param.protocol == IRMP_ORTEK_PROTOCOL && repetition_frame_number == 1) { #ifdef ANALYZE ANALYZE_PRINTF ("code skipped: ORTEK auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, key_repetition_len, AUTO_FRAME_REPETITION_LEN); #endif // ANALYZE key_repetition_len = 0; } else #endif #if 0 && IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 // fm 2015-12-02: don't ignore every 2nd frame // if KASEIKYO protocol and the code will be repeated within 50 ms, we will ignore 2nd repetition frame if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL && repetition_frame_number == 1) { #ifdef ANALYZE ANALYZE_PRINTF ("code skipped: KASEIKYO auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, key_repetition_len, AUTO_FRAME_REPETITION_LEN); #endif // ANALYZE key_repetition_len = 0; } else #endif #if 0 && IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 // fm 2015-12-02: don't ignore every 2nd frame // if SAMSUNG32 or SAMSUNG48 protocol and the code will be repeated within 50 ms, we will ignore every 2nd frame if ((irmp_param.protocol == IRMP_SAMSUNG32_PROTOCOL || irmp_param.protocol == IRMP_SAMSUNG48_PROTOCOL) && (repetition_frame_number & 0x01)) { #ifdef ANALYZE ANALYZE_PRINTF ("code skipped: SAMSUNG32/SAMSUNG48 auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, key_repetition_len, AUTO_FRAME_REPETITION_LEN); #endif // ANALYZE key_repetition_len = 0; } else #endif #if IRMP_SUPPORT_NUBERT_PROTOCOL == 1 // if NUBERT protocol and the code will be repeated within 50 ms, we will ignore every 2nd frame if (irmp_param.protocol == IRMP_NUBERT_PROTOCOL && (repetition_frame_number & 0x01)) { #ifdef ANALYZE ANALYZE_PRINTF ("code skipped: NUBERT auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, key_repetition_len, AUTO_FRAME_REPETITION_LEN); #endif // ANALYZE key_repetition_len = 0; } else #endif #if IRMP_SUPPORT_SPEAKER_PROTOCOL == 1 // if SPEAKER protocol and the code will be repeated within 50 ms, we will ignore every 2nd frame if (irmp_param.protocol == IRMP_SPEAKER_PROTOCOL && (repetition_frame_number & 0x01)) { #ifdef ANALYZE ANALYZE_PRINTF ("code skipped: SPEAKER auto repetition frame #%d, counter = %d, auto repetition len = %d\n", repetition_frame_number + 1, key_repetition_len, AUTO_FRAME_REPETITION_LEN); #endif // ANALYZE key_repetition_len = 0; } else #endif { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms code detected, length = %d\n", (double) (time_counter * 1000) / F_INTERRUPTS, irmp_bit); #endif // ANALYZE irmp_ir_detected = TRUE; #if IRMP_SUPPORT_DENON_PROTOCOL == 1 if (irmp_param.protocol == IRMP_DENON_PROTOCOL) { // check for repetition frame if ((~irmp_tmp_command & 0x3FF) == last_irmp_denon_command) // command bits must be inverted { irmp_tmp_command = last_irmp_denon_command; // use command received before! last_irmp_denon_command = 0; irmp_protocol = irmp_param.protocol; // store protocol irmp_address = irmp_tmp_address; // store address irmp_command = irmp_tmp_command; // store command } else { if ((irmp_tmp_command & 0x01) == 0x00) { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms info Denon: waiting for inverted command repetition\n", (double) (time_counter * 1000) / F_INTERRUPTS); #endif // ANALYZE last_irmp_denon_command = irmp_tmp_command; denon_repetition_len = 0; irmp_ir_detected = FALSE; } else { #ifdef ANALYZE ANALYZE_PRINTF ("%8.3fms warning Denon: got unexpected inverted command, ignoring it\n", (double) (time_counter * 1000) / F_INTERRUPTS); #endif // ANALYZE last_irmp_denon_command = 0; irmp_ir_detected = FALSE; } } } else #endif // IRMP_SUPPORT_DENON_PROTOCOL #if IRMP_SUPPORT_GRUNDIG_PROTOCOL == 1 if (irmp_param.protocol == IRMP_GRUNDIG_PROTOCOL && irmp_tmp_command == 0x01ff) { // Grundig start frame? #ifdef ANALYZE ANALYZE_PRINTF ("Detected GRUNDIG start frame, ignoring it\n"); #endif // ANALYZE irmp_ir_detected = FALSE; } else #endif // IRMP_SUPPORT_GRUNDIG_PROTOCOL #if IRMP_SUPPORT_NOKIA_PROTOCOL == 1 if (irmp_param.protocol == IRMP_NOKIA_PROTOCOL && irmp_tmp_address == 0x00ff && irmp_tmp_command == 0x00fe) { // Nokia start frame? #ifdef ANALYZE ANALYZE_PRINTF ("Detected NOKIA start frame, ignoring it\n"); #endif // ANALYZE irmp_ir_detected = FALSE; } else #endif // IRMP_SUPPORT_NOKIA_PROTOCOL { #if IRMP_SUPPORT_NEC_PROTOCOL == 1 if (irmp_param.protocol == IRMP_NEC_PROTOCOL && irmp_bit == 0) // repetition frame { if (key_repetition_len < NEC_FRAME_REPEAT_PAUSE_LEN_MAX) { #ifdef ANALYZE ANALYZE_PRINTF ("Detected NEC repetition frame, key_repetition_len = %d\n", key_repetition_len); ANALYZE_ONLY_NORMAL_PRINTF("REPETETION FRAME "); #endif // ANALYZE irmp_tmp_address = last_irmp_address; // address is last address irmp_tmp_command = last_irmp_command; // command is last command irmp_flags |= IRMP_FLAG_REPETITION; key_repetition_len = 0; } else { #ifdef ANALYZE ANALYZE_PRINTF ("Detected NEC repetition frame, ignoring it: timeout occured, key_repetition_len = %d > %d\n", key_repetition_len, NEC_FRAME_REPEAT_PAUSE_LEN_MAX); #endif // ANALYZE irmp_ir_detected = FALSE; } } #endif // IRMP_SUPPORT_NEC_PROTOCOL #if IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 if (irmp_param.protocol == IRMP_KASEIKYO_PROTOCOL) { uint_fast8_t xor_value; xor_value = (xor_check[0] & 0x0F) ^ ((xor_check[0] & 0xF0) >> 4) ^ (xor_check[1] & 0x0F) ^ ((xor_check[1] & 0xF0) >> 4); if (xor_value != (xor_check[2] & 0x0F)) { #ifdef ANALYZE ANALYZE_PRINTF ("error 4: wrong XOR check for customer id: 0x%1x 0x%1x\n", xor_value, xor_check[2] & 0x0F); #endif // ANALYZE irmp_ir_detected = FALSE; } xor_value = xor_check[2] ^ xor_check[3] ^ xor_check[4]; if (xor_value != xor_check[5]) { #ifdef ANALYZE ANALYZE_PRINTF ("error 5: wrong XOR check for data bits: 0x%02x 0x%02x\n", xor_value, xor_check[5]); #endif // ANALYZE irmp_ir_detected = FALSE; } irmp_flags |= genre2; // write the genre2 bits into MSB of the flag byte } #endif // IRMP_SUPPORT_KASEIKYO_PROTOCOL == 1 #if IRMP_SUPPORT_ORTEK_PROTOCOL == 1 if (irmp_param.protocol == IRMP_ORTEK_PROTOCOL) { if (parity == PARITY_CHECK_FAILED) { #ifdef ANALYZE ANALYZE_PRINTF ("error 6: parity check failed\n"); #endif // ANALYZE irmp_ir_detected = FALSE; } if ((irmp_tmp_address & 0x03) == 0x02) { #ifdef ANALYZE ANALYZE_PRINTF ("code skipped: ORTEK end of transmission frame (key release)\n"); #endif // ANALYZE irmp_ir_detected = FALSE; } irmp_tmp_address >>= 2; } #endif // IRMP_SUPPORT_ORTEK_PROTOCOL == 1 #if IRMP_SUPPORT_MITSU_HEAVY_PROTOCOL == 1 if (irmp_param.protocol == IRMP_MITSU_HEAVY_PROTOCOL) { check = irmp_tmp_command >> 8; // inverted upper byte == lower byte? check = ~ check; if (check == (irmp_tmp_command & 0xFF)) { //ok: irmp_tmp_command &= 0xFF; } else mitsu_parity = PARITY_CHECK_FAILED; if (mitsu_parity == PARITY_CHECK_FAILED) { #ifdef ANALYZE ANALYZE_PRINTF ("error 7: parity check failed\n"); #endif // ANALYZE irmp_ir_detected = FALSE; } } #endif // IRMP_SUPPORT_MITSU_HEAVY_PROTOCOL #if IRMP_SUPPORT_RC6_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC6_PROTOCOL && irmp_param.complete_len == RC6_COMPLETE_DATA_LEN_LONG) // RC6 mode = 6? { irmp_protocol = IRMP_RC6A_PROTOCOL; } else #endif // IRMP_SUPPORT_RC6_PROTOCOL == 1 { irmp_protocol = irmp_param.protocol; } #if IRMP_SUPPORT_FDC_PROTOCOL == 1 if (irmp_param.protocol == IRMP_FDC_PROTOCOL) { if (irmp_tmp_command & 0x000F) // released key? { irmp_tmp_command = (irmp_tmp_command >> 4) | 0x80; // yes, set bit 7 } else { irmp_tmp_command >>= 4; // no, it's a pressed key } irmp_tmp_command |= (irmp_tmp_address << 2) & 0x0F00; // 000000CCCCAAAAAA -> 0000CCCC00000000 irmp_tmp_address &= 0x003F; } #endif irmp_address = irmp_tmp_address; // store address #if IRMP_SUPPORT_NEC_PROTOCOL == 1 if (irmp_param.protocol == IRMP_NEC_PROTOCOL) { last_irmp_address = irmp_tmp_address; // store as last address, too } #endif #if IRMP_SUPPORT_RC5_PROTOCOL == 1 if (irmp_param.protocol == IRMP_RC5_PROTOCOL) { irmp_tmp_command |= rc5_cmd_bit6; // store bit 6 } #endif #if IRMP_SUPPORT_S100_PROTOCOL == 1 if (irmp_param.protocol == IRMP_S100_PROTOCOL) { irmp_tmp_command |= rc5_cmd_bit6; // store bit 6 } #endif irmp_command = irmp_tmp_command; // store command #if IRMP_SUPPORT_SAMSUNG_PROTOCOL == 1 irmp_id = irmp_tmp_id; #endif } } if (irmp_ir_detected) { if (last_irmp_command == irmp_tmp_command && last_irmp_address == irmp_tmp_address && key_repetition_len < IRMP_KEY_REPETITION_LEN) { irmp_flags |= IRMP_FLAG_REPETITION; } last_irmp_address = irmp_tmp_address; // store as last address, too last_irmp_command = irmp_tmp_command; // store as last command, too key_repetition_len = 0; } else { #ifdef ANALYZE ANALYZE_ONLY_NORMAL_PUTCHAR ('\n'); #endif // ANALYZE } irmp_start_bit_detected = 0; // and wait for next start bit irmp_tmp_command = 0; irmp_pulse_time = 0; irmp_pause_time = 0; #if IRMP_SUPPORT_JVC_PROTOCOL == 1 if (irmp_protocol == IRMP_JVC_PROTOCOL) // the stop bit of JVC frame is also start bit of next frame { // set pulse time here! irmp_pulse_time = ((uint_fast8_t)(F_INTERRUPTS * JVC_START_BIT_PULSE_TIME)); } #endif // IRMP_SUPPORT_JVC_PROTOCOL == 1 } } } #if defined(STELLARIS_ARM_CORTEX_M4) // Clear the timer interrupt TimerIntClear(TIMER1_BASE, TIMER_TIMA_TIMEOUT); #endif return (irmp_ir_detected); } #ifdef ANALYZE /*--------------------------------------------------------------------------------------------------------------------------------------------------- * main functions - for Unix/Linux + Windows only! * * AVR: see main.c! * * Compile it under linux with: * cc irmp.c -o irmp * * usage: ./irmp [-v|-s|-a|-l] < file * * options: * -v verbose * -s silent * -a analyze * -l list pulse/pauses *--------------------------------------------------------------------------------------------------------------------------------------------------- */ void print_spectrum (char * text, int * buf, int is_pulse) { int i; int j; int min; int max; int max_value = 0; int value; int sum = 0; int counter = 0; double average = 0; double tolerance; puts ("-----------------------------------------------------------------------------"); printf ("%s:\n", text); for (i = 0; i < 256; i++) { if (buf[i] > max_value) { max_value = buf[i]; } } for (i = 1; i < 200; i++) { if (buf[i] > 0) { printf ("%3d ", i); value = (buf[i] * 60) / max_value; for (j = 0; j < value; j++) { putchar ('o'); } printf (" %d\n", buf[i]); sum += i * buf[i]; counter += buf[i]; } else { max = i - 1; if (counter > 0) { average = (float) sum / (float) counter; if (is_pulse) { printf ("pulse "); } else { printf ("pause "); } printf ("avg: %4.1f=%6.1f us, ", average, (1000000. * average) / (float) F_INTERRUPTS); printf ("min: %2d=%6.1f us, ", min, (1000000. * min) / (float) F_INTERRUPTS); printf ("max: %2d=%6.1f us, ", max, (1000000. * max) / (float) F_INTERRUPTS); tolerance = (max - average); if (average - min > tolerance) { tolerance = average - min; } tolerance = tolerance * 100 / average; printf ("tol: %4.1f%%\n", tolerance); } counter = 0; sum = 0; min = i + 1; } } } #define STATE_LEFT_SHIFT 0x01 #define STATE_RIGHT_SHIFT 0x02 #define STATE_LEFT_CTRL 0x04 #define STATE_LEFT_ALT 0x08 #define STATE_RIGHT_ALT 0x10 #define KEY_ESCAPE 0x1B // keycode = 0x006e #define KEY_MENUE 0x80 // keycode = 0x0070 #define KEY_BACK 0x81 // keycode = 0x0071 #define KEY_FORWARD 0x82 // keycode = 0x0072 #define KEY_ADDRESS 0x83 // keycode = 0x0073 #define KEY_WINDOW 0x84 // keycode = 0x0074 #define KEY_1ST_PAGE 0x85 // keycode = 0x0075 #define KEY_STOP 0x86 // keycode = 0x0076 #define KEY_MAIL 0x87 // keycode = 0x0077 #define KEY_FAVORITES 0x88 // keycode = 0x0078 #define KEY_NEW_PAGE 0x89 // keycode = 0x0079 #define KEY_SETUP 0x8A // keycode = 0x007a #define KEY_FONT 0x8B // keycode = 0x007b #define KEY_PRINT 0x8C // keycode = 0x007c #define KEY_ON_OFF 0x8E // keycode = 0x007c #define KEY_INSERT 0x90 // keycode = 0x004b #define KEY_DELETE 0x91 // keycode = 0x004c #define KEY_LEFT 0x92 // keycode = 0x004f #define KEY_HOME 0x93 // keycode = 0x0050 #define KEY_END 0x94 // keycode = 0x0051 #define KEY_UP 0x95 // keycode = 0x0053 #define KEY_DOWN 0x96 // keycode = 0x0054 #define KEY_PAGE_UP 0x97 // keycode = 0x0055 #define KEY_PAGE_DOWN 0x98 // keycode = 0x0056 #define KEY_RIGHT 0x99 // keycode = 0x0059 #define KEY_MOUSE_1 0x9E // keycode = 0x0400 #define KEY_MOUSE_2 0x9F // keycode = 0x0800 static uint_fast8_t get_fdc_key (uint_fast16_t cmd) { static uint8_t key_table[128] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F 0, '^', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 0xDF, '´', 0, '\b', '\t', 'q', 'w', 'e', 'r', 't', 'z', 'u', 'i', 'o', 'p', 0xFC, '+', 0, 0, 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 0xF6, 0xE4, '#', '\r', 0, '<', 'y', 'x', 'c', 'v', 'b', 'n', 'm', ',', '.', '-', 0, 0, 0, 0, 0, ' ', 0, 0, 0, '°', '!', '"', '§', '$', '%', '&', '/', '(', ')', '=', '?', '`', 0, '\b', '\t', 'Q', 'W', 'E', 'R', 'T', 'Z', 'U', 'I', 'O', 'P', 0xDC, '*', 0, 0, 'A', 'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 0xD6, 0xC4, '\'', '\r', 0, '>', 'Y', 'X', 'C', 'V', 'B', 'N', 'M', ';', ':', '_', 0, 0, 0, 0, 0, ' ', 0, 0 }; static uint_fast8_t state; uint_fast8_t key = 0; switch (cmd) { case 0x002C: state |= STATE_LEFT_SHIFT; break; // pressed left shift case 0x00AC: state &= ~STATE_LEFT_SHIFT; break; // released left shift case 0x0039: state |= STATE_RIGHT_SHIFT; break; // pressed right shift case 0x00B9: state &= ~STATE_RIGHT_SHIFT; break; // released right shift case 0x003A: state |= STATE_LEFT_CTRL; break; // pressed left ctrl case 0x00BA: state &= ~STATE_LEFT_CTRL; break; // released left ctrl case 0x003C: state |= STATE_LEFT_ALT; break; // pressed left alt case 0x00BC: state &= ~STATE_LEFT_ALT; break; // released left alt case 0x003E: state |= STATE_RIGHT_ALT; break; // pressed left alt case 0x00BE: state &= ~STATE_RIGHT_ALT; break; // released left alt case 0x006e: key = KEY_ESCAPE; break; case 0x004b: key = KEY_INSERT; break; case 0x004c: key = KEY_DELETE; break; case 0x004f: key = KEY_LEFT; break; case 0x0050: key = KEY_HOME; break; case 0x0051: key = KEY_END; break; case 0x0053: key = KEY_UP; break; case 0x0054: key = KEY_DOWN; break; case 0x0055: key = KEY_PAGE_UP; break; case 0x0056: key = KEY_PAGE_DOWN; break; case 0x0059: key = KEY_RIGHT; break; case 0x0400: key = KEY_MOUSE_1; break; case 0x0800: key = KEY_MOUSE_2; break; default: { if (!(cmd & 0x80)) // pressed key { if (cmd >= 0x70 && cmd <= 0x7F) // function keys { key = cmd + 0x10; // 7x -> 8x } else if (cmd < 64) // key listed in key_table { if (state & (STATE_LEFT_ALT | STATE_RIGHT_ALT)) { switch (cmd) { case 0x0003: key = 0xB2; break; // upper 2 case 0x0008: key = '{'; break; case 0x0009: key = '['; break; case 0x000A: key = ']'; break; case 0x000B: key = '}'; break; case 0x000C: key = '\\'; break; case 0x001C: key = '~'; break; case 0x002D: key = '|'; break; case 0x0034: key = 0xB5; break; // Mu } } else if (state & (STATE_LEFT_CTRL)) { if (key_table[cmd] >= 'a' && key_table[cmd] <= 'z') { key = key_table[cmd] - 'a' + 1; } else { key = key_table[cmd]; } } else { int idx = cmd + ((state & (STATE_LEFT_SHIFT | STATE_RIGHT_SHIFT)) ? 64 : 0); if (key_table[idx]) { key = key_table[idx]; } } } } break; } } return (key); } static int analyze = FALSE; static int list = FALSE; static IRMP_DATA irmp_data; static int expected_protocol; static int expected_address; static int expected_command; static int do_check_expected_values; static void next_tick (void) { if (! analyze && ! list) { (void) irmp_ISR (); if (irmp_get_data (&irmp_data)) { uint_fast8_t key; ANALYZE_ONLY_NORMAL_PUTCHAR (' '); if (verbose) { printf ("%8.3fms ", (double) (time_counter * 1000) / F_INTERRUPTS); } if (irmp_data.protocol == IRMP_ACP24_PROTOCOL) { uint16_t temp = (irmp_data.command & 0x000F) + 15; printf ("p=%2d (%s), a=0x%04x, c=0x%04x, f=0x%02x, temp=%d", irmp_data.protocol, irmp_protocol_names[irmp_data.protocol], irmp_data.address, irmp_data.command, irmp_data.flags, temp); } else if (irmp_data.protocol == IRMP_FDC_PROTOCOL && (key = get_fdc_key (irmp_data.command)) != 0) { if ((key >= 0x20 && key < 0x7F) || key >= 0xA0) { printf ("p=%2d (%s), a=0x%04x, c=0x%04x, f=0x%02x, asc=0x%02x, key='%c'", irmp_data.protocol, irmp_protocol_names[irmp_data.protocol], irmp_data.address, irmp_data.command, irmp_data.flags, key, key); } else if (key == '\r' || key == '\t' || key == KEY_ESCAPE || (key >= 0x80 && key <= 0x9F)) // function keys { char * p = (char *) NULL; switch (key) { case '\t' : p = "TAB"; break; case '\r' : p = "CR"; break; case KEY_ESCAPE : p = "ESCAPE"; break; case KEY_MENUE : p = "MENUE"; break; case KEY_BACK : p = "BACK"; break; case KEY_FORWARD : p = "FORWARD"; break; case KEY_ADDRESS : p = "ADDRESS"; break; case KEY_WINDOW : p = "WINDOW"; break; case KEY_1ST_PAGE : p = "1ST_PAGE"; break; case KEY_STOP : p = "STOP"; break; case KEY_MAIL : p = "MAIL"; break; case KEY_FAVORITES : p = "FAVORITES"; break; case KEY_NEW_PAGE : p = "NEW_PAGE"; break; case KEY_SETUP : p = "SETUP"; break; case KEY_FONT : p = "FONT"; break; case KEY_PRINT : p = "PRINT"; break; case KEY_ON_OFF : p = "ON_OFF"; break; case KEY_INSERT : p = "INSERT"; break; case KEY_DELETE : p = "DELETE"; break; case KEY_LEFT : p = "LEFT"; break; case KEY_HOME : p = "HOME"; break; case KEY_END : p = "END"; break; case KEY_UP : p = "UP"; break; case KEY_DOWN : p = "DOWN"; break; case KEY_PAGE_UP : p = "PAGE_UP"; break; case KEY_PAGE_DOWN : p = "PAGE_DOWN"; break; case KEY_RIGHT : p = "RIGHT"; break; case KEY_MOUSE_1 : p = "KEY_MOUSE_1"; break; case KEY_MOUSE_2 : p = "KEY_MOUSE_2"; break; default : p = ""; break; } printf ("p=%2d (%s), a=0x%04x, c=0x%04x, f=0x%02x, asc=0x%02x, key=%s", irmp_data.protocol, irmp_protocol_names[irmp_data.protocol], irmp_data.address, irmp_data.command, irmp_data.flags, key, p); } else { printf ("p=%2d (%s), a=0x%04x, c=0x%04x, f=0x%02x, asc=0x%02x", irmp_data.protocol, irmp_protocol_names[irmp_data.protocol], irmp_data.address, irmp_data.command, irmp_data.flags, key); } } else { printf ("p=%2d (%s), a=0x%04x, c=0x%04x, f=0x%02x", irmp_data.protocol, irmp_protocol_names[irmp_data.protocol], irmp_data.address, irmp_data.command, irmp_data.flags); } if (do_check_expected_values) { if (irmp_data.protocol != expected_protocol || irmp_data.address != expected_address || irmp_data.command != expected_command) { printf ("\nerror 7: expected values differ: p=%2d (%s), a=0x%04x, c=0x%04x\n", expected_protocol, irmp_protocol_names[expected_protocol], expected_address, expected_command); } else { printf (" checked!\n"); } do_check_expected_values = FALSE; // only check 1st frame in a line! } else { putchar ('\n'); } } } } int main (int argc, char ** argv) { int i; int ch; int last_ch = 0; int pulse = 0; int pause = 0; int start_pulses[256]; int start_pauses[256]; int pulses[256]; int pauses[256]; int first_pulse = TRUE; int first_pause = TRUE; if (argc == 2) { if (! strcmp (argv[1], "-v")) { verbose = TRUE; } else if (! strcmp (argv[1], "-l")) { list = TRUE; } else if (! strcmp (argv[1], "-a")) { analyze = TRUE; } else if (! strcmp (argv[1], "-s")) { silent = TRUE; } else if (! strcmp (argv[1], "-r")) { radio = TRUE; } } for (i = 0; i < 256; i++) { start_pulses[i] = 0; start_pauses[i] = 0; pulses[i] = 0; pauses[i] = 0; } IRMP_PIN = 0xFF; while ((ch = getchar ()) != EOF) { if (ch == '_' || ch == '0') { if (last_ch != ch) { if (pause > 0) { if (list) { printf ("pause: %d\n", pause); } if (analyze) { if (first_pause) { if (pause < 256) { start_pauses[pause]++; } first_pause = FALSE; } else { if (pause < 256) { pauses[pause]++; } } } } pause = 0; } pulse++; IRMP_PIN = 0x00; } else if (ch == 0xaf || ch == '-' || ch == '1') { if (last_ch != ch) { if (list) { printf ("pulse: %d ", pulse); } if (analyze) { if (first_pulse) { if (pulse < 256) { start_pulses[pulse]++; } first_pulse = FALSE; } else { if (pulse < 256) { pulses[pulse]++; } } } pulse = 0; } pause++; IRMP_PIN = 0xff; } else if (ch == '\n') { IRMP_PIN = 0xff; time_counter = 0; if (list && pause > 0) { printf ("pause: %d\n", pause); } pause = 0; if (! analyze) { for (i = 0; i < (int) ((10000.0 * F_INTERRUPTS) / 10000); i++) // newline: long pause of 10000 msec { next_tick (); } } first_pulse = TRUE; first_pause = TRUE; } else if (ch == '#') { time_counter = 0; if (analyze) { while ((ch = getchar()) != '\n' && ch != EOF) { ; } } else { char buf[1024]; char * p; int idx = -1; puts ("----------------------------------------------------------------------"); putchar (ch); while ((ch = getchar()) != '\n' && ch != EOF) { if (ch != '\r') // ignore CR in DOS/Windows files { if (ch == '[' && idx == -1) { idx = 0; } else if (idx >= 0) { if (ch == ']') { do_check_expected_values = FALSE; buf[idx] = '\0'; idx = -1; expected_protocol = atoi (buf); if (expected_protocol > 0) { p = buf; while (*p) { if (*p == 'x') { p++; if (sscanf (p, "%x", &expected_address) == 1) { do_check_expected_values = TRUE; } break; } p++; } if (do_check_expected_values) { do_check_expected_values = FALSE; while (*p) { if (*p == 'x') { p++; if (sscanf (p, "%x", &expected_command) == 1) { do_check_expected_values = TRUE; } break; } p++; } if (do_check_expected_values) { // printf ("!%2d %04x %04x!\n", expected_protocol, expected_address, expected_command); } } } } else if (idx < 1024 - 2) { buf[idx++] = ch; } } putchar (ch); } } putchar ('\n'); } } last_ch = ch; next_tick (); } if (analyze) { print_spectrum ("START PULSES", start_pulses, TRUE); print_spectrum ("START PAUSES", start_pauses, FALSE); print_spectrum ("PULSES", pulses, TRUE); print_spectrum ("PAUSES", pauses, FALSE); puts ("-----------------------------------------------------------------------------"); } return 0; } #endif // ANALYZE