/* * Part of esp-open-rtos * Copyright (C) 2016 Jonathan Hartsuiker (https://github.com/jsuiker) * BSD Licensed as described in the file LICENSE * */ #include "dht.h" #include "FreeRTOS.h" #include "string.h" #include "task.h" #include "esp/gpio.h" #include // sdk_os_delay_us // DHT timer precision in microseconds #define DHT_TIMER_INTERVAL 2 #define DHT_DATA_BITS 40 // #define DEBUG_DHT #ifdef DEBUG_DHT #define debug(fmt, ...) printf("%s" fmt "\n", "dht: ", ## __VA_ARGS__); #else #define debug(fmt, ...) /* (do nothing) */ #endif /* * Note: * A suitable pull-up resistor should be connected to the selected GPIO line * * __ ______ _______ ___________________________ * \ A / \ C / \ DHT duration_data_low / \ * \_______/ B \______/ D \__________________________/ DHT duration_data_high \__ * * * Initializing communications with the DHT requires four 'phases' as follows: * * Phase A - MCU pulls signal low for at least 18000 us * Phase B - MCU allows signal to float back up and waits 20-40us for DHT to pull it low * Phase C - DHT pulls signal low for ~80us * Phase D - DHT lets signal float back up for ~80us * * After this, the DHT transmits its first bit by holding the signal low for 50us * and then letting it float back high for a period of time that depends on the data bit. * duration_data_high is shorter than 50us for a logic '0' and longer than 50us for logic '1'. * * There are a total of 40 data bits transmitted sequentially. These bits are read into a byte array * of length 5. The first and third bytes are humidity (%) and temperature (C), respectively. Bytes 2 and 4 * are zero-filled and the fifth is a checksum such that: * * byte_5 == (byte_1 + byte_2 + byte_3 + btye_4) & 0xFF * */ /** * Wait specified time for pin to go to a specified state. * If timeout is reached and pin doesn't go to a requested state * false is returned. * The elapsed time is returned in pointer 'duration' if it is not NULL. */ static bool dht_await_pin_state(uint8_t pin, uint32_t timeout, bool expected_pin_state, uint32_t *duration) { for (uint32_t i = 0; i < timeout; i += DHT_TIMER_INTERVAL) { if (gpio_read(pin) == expected_pin_state) { if (duration) { *duration = i; } return true; } sdk_os_delay_us(DHT_TIMER_INTERVAL); } return false; } /** * Request data from DHT and read raw bit stream. * The function call should be protected from task switching. * Return false if error occurred. */ static inline bool dht_fetch_data(uint8_t pin, bool bits[DHT_DATA_BITS]) { uint32_t low_duration; uint32_t high_duration; // Phase 'A' pulling signal low to initiate read sequence gpio_write(pin, 0); sdk_os_delay_us(20000); gpio_write(pin, 1); // Step through Phase 'B', 40us if (!dht_await_pin_state(pin, 40, false, NULL)) { debug("Initialization error, problem in phase 'B'\n"); return false; } // Step through Phase 'C', 88us if (!dht_await_pin_state(pin, 88, true, NULL)) { debug("Initialization error, problem in phase 'C'\n"); return false; } // Step through Phase 'D', 88us if (!dht_await_pin_state(pin, 88, false, NULL)) { debug("Initialization error, problem in phase 'D'\n"); return false; } // Read in each of the 40 bits of data... for (int i = 0; i < DHT_DATA_BITS; i++) { if (!dht_await_pin_state(pin, 65, true, &low_duration)) { debug("LOW bit timeout\n"); return false; } if (!dht_await_pin_state(pin, 75, false, &high_duration)){ debug("HIGHT bit timeout\n"); return false; } bits[i] = high_duration > low_duration; } return true; } /** * Pack two data bytes into single value and take into account sign bit. */ static inline int16_t dht_convert_data(uint8_t msb, uint8_t lsb) { int16_t data; #if DHT_TYPE == DHT22 data = msb & 0x7F; data <<= 8; data |= lsb; if (msb & BIT(15)) { data = 0 - data; // convert it to negative } #elif DHT_TYPE == DHT11 data = msb * 10; #else #error "Unsupported DHT type" #endif return data; } bool dht_read_data(uint8_t pin, int16_t *humidity, int16_t *temperature) { bool bits[DHT_DATA_BITS]; uint8_t data[DHT_DATA_BITS/8] = {0}; bool result; gpio_enable(pin, GPIO_OUT_OPEN_DRAIN); taskENTER_CRITICAL(); result = dht_fetch_data(pin, bits); taskEXIT_CRITICAL(); if (!result) { return false; } for (uint8_t i = 0; i < DHT_DATA_BITS; i++) { // Read each bit into 'result' byte array... data[i/8] <<= 1; data[i/8] |= bits[i]; } if (data[4] != (data[0] + data[1] + data[2] + data[3])) { debug("Checksum failed, invalid data received from sensor\n"); return false; } *humidity = dht_convert_data(data[0], data[1]); *temperature = dht_convert_data(data[2], data[3]); debug("Sensor data: humidity=%d, temp=%d\n", *humidity, *temperature); return true; } bool dht_read_float_data(uint8_t pin, float *humidity, float *temperature) { int16_t i_humidity, i_temp; if (dht_read_data(pin, &i_humidity, &i_temp)) { *humidity = (float)i_humidity / 10; *temperature = (float)i_temp / 10; return true; } return false; }