/* * Driver for Bosch Sensortec BME680 digital temperature, humidity, pressure * and gas sensor connected to I2C or SPI * * This driver is for the usage with the ESP8266 and FreeRTOS (esp-open-rtos) * [https://github.com/SuperHouse/esp-open-rtos]. It is also working with ESP32 * and ESP-IDF [https://github.com/espressif/esp-idf.git] as well as Linux * based systems using a wrapper library for ESP8266 functions. * * --------------------------------------------------------------------------- * * The BSD License (3-clause license) * * Copyright (c) 2017 Gunar Schorcht (https://github.com/gschorcht) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * The information provided is believed to be accurate and reliable. The * copyright holder assumes no responsibility for the consequences of use * of such information nor for any infringement of patents or other rights * of third parties which may result from its use. No license is granted by * implication or otherwise under any patent or patent rights of the copyright * holder. */ #include #include #include "bme680_platform.h" #include "bme680.h" #if defined(BME680_DEBUG_LEVEL_2) #define debug(s, f, ...) printf("%s %s: " s "\n", "BME680", f, ## __VA_ARGS__) #define debug_dev(s, f, d, ...) printf("%s %s: bus %d, addr %02x - " s "\n", "BME680", f, d->bus, d->addr, ## __VA_ARGS__) #else #define debug(s, f, ...) #define debug_dev(s, f, d, ...) #endif #if defined(BME680_DEBUG_LEVEL_1) || defined(BME680_DEBUG_LEVEL_2) #define error(s, f, ...) printf("%s %s: " s "\n", "BME680", f, ## __VA_ARGS__) #define error_dev(s, f, d, ...) printf("%s %s: bus %d, addr %02x - " s "\n", "BME680", f, d->bus, d->addr, ## __VA_ARGS__) #else #define error(s, f, ...) #define error_dev(s, f, d, ...) #endif // modes: unfortunatly, only SLEEP_MODE and FORCED_MODE are documented #define BME680_SLEEP_MODE 0x00 // low power sleeping #define BME680_FORCED_MODE 0x01 // perform one TPHG cycle (field data 0 filled) #define BME680_PARALLEL_MODE 0x02 // no information what it does :-( #define BME680_SQUENTUAL_MODE 0x02 // no information what it does (field data 0+1+2 filled) // register addresses #define BME680_REG_RES_HEAT_VAL 0x00 #define BME680_REG_RES_HEAT_RANGE 0x02 #define BME680_REG_RANGE_SW_ERROR 0x06 #define BME680_REG_IDAC_HEAT_BASE 0x50 // 10 regsrs idac_heat_0 ... idac_heat_9 #define BME680_REG_RES_HEAT_BASE 0x5a // 10 registers res_heat_0 ... res_heat_9 #define BME680_REG_GAS_WAIT_BASE 0x64 // 10 registers gas_wait_0 ... gas_wait_9 #define BME680_REG_CTRL_GAS_0 0x70 #define BME680_REG_CTRL_GAS_1 0x71 #define BME680_REG_CTRL_HUM 0x72 #define BME680_REG_STATUS 0x73 #define BME680_REG_CTRL_MEAS 0x74 #define BME680_REG_CONFIG 0x75 #define BME680_REG_ID 0xd0 #define BME680_REG_RESET 0xe0 // field data 0 registers #define BME680_REG_MEAS_STATUS_0 0x1d #define BME680_REG_MEAS_INDEX_0 0x1e #define BME680_REG_PRESS_MSB_0 0x1f #define BME680_REG_PRESS_LSB_0 0x20 #define BME680_REG_PRESS_XLSB_0 0x21 #define BME680_REG_TEMP_MSB_0 0x22 #define BME680_REG_TEMP_LSB_0 0x23 #define BME680_REG_TEMP_XLSB_0 0x24 #define BME680_REG_HUM_MSB_0 0x25 #define BME680_REG_HUM_LSB_0 0x26 #define BME680_REG_GAS_R_MSB_0 0x2a #define BME680_REG_GAS_R_LSB_0 0x2b // field data 1 registers (not documented, used in SEQUENTIAL_MODE) #define BME680_REG_MEAS_STATUS_1 0x2e #define BME680_REG_MEAS_INDEX_1 0x2f // field data 2 registers (not documented, used in SEQUENTIAL_MODE) #define BME680_REG_MEAS_STATUS_2 0x3f #define BME680_REG_MEAS_INDEX_2 0x40 // field data addresses #define BME680_REG_RAW_DATA_0 BME680_REG_MEAS_STATUS_0 // 0x1d ... 0x2b #define BME680_REG_RAW_DATA_1 BME680_REG_MEAS_STATUS_1 // 0x2e ... 0x3c #define BME680_REG_RAW_DATA_2 BME680_REG_MEAS_STATUS_2 // 0x40 ... 0x4d #define BME680_REG_RAW_DATA_LEN (BME680_REG_GAS_R_LSB_0 - BME680_REG_MEAS_STATUS_0 + 1) // calibration data registers #define BME680_REG_CD1_ADDR 0x89 // 25 byte calibration data #define BME680_REG_CD1_LEN 25 #define BME680_REG_CD2_ADDR 0xe1 // 16 byte calibration data #define BME680_REG_CD2_LEN 16 #define BME680_REG_CD3_ADDR 0x00 // 8 byte device specific calibration data #define BME680_REG_CD3_LEN 8 // register structure definitions #define BME680_NEW_DATA_BITS 0x80 // BME680_REG_MEAS_STATUS<7> #define BME680_NEW_DATA_SHIFT 7 // BME680_REG_MEAS_STATUS<7> #define BME680_GAS_MEASURING_BITS 0x40 // BME680_REG_MEAS_STATUS<6> #define BME680_GAS_MEASURING_SHIFT 6 // BME680_REG_MEAS_STATUS<6> #define BME680_MEASURING_BITS 0x20 // BME680_REG_MEAS_STATUS<5> #define BME680_MEASURING_SHIFT 5 // BME680_REG_MEAS_STATUS<5> #define BME680_GAS_MEAS_INDEX_BITS 0x0f // BME680_REG_MEAS_STATUS<3:0> #define BME680_GAS_MEAS_INDEX_SHIFT 0 // BME680_REG_MEAS_STATUS<3:0> #define BME680_GAS_R_LSB_BITS 0xc0 // BME680_REG_GAS_R_LSB<7:6> #define BME680_GAS_R_LSB_SHIFT 6 // BME680_REG_GAS_R_LSB<7:6> #define BME680_GAS_VALID_BITS 0x20 // BME680_REG_GAS_R_LSB<5> #define BME680_GAS_VALID_SHIFT 5 // BME680_REG_GAS_R_LSB<5> #define BME680_HEAT_STAB_R_BITS 0x10 // BME680_REG_GAS_R_LSB<4> #define BME680_HEAT_STAB_R_SHIFT 4 // BME680_REG_GAS_R_LSB<4> #define BME680_GAS_RANGE_R_BITS 0x0f // BME680_REG_GAS_R_LSB<3:0> #define BME680_GAS_RANGE_R_SHIFT 0 // BME680_REG_GAS_R_LSB<3:0> #define BME680_HEAT_OFF_BITS 0x04 // BME680_REG_CTRL_GAS_0<3> #define BME680_HEAT_OFF_SHIFT 3 // BME680_REG_CTRL_GAS_0<3> #define BME680_RUN_GAS_BITS 0x10 // BME680_REG_CTRL_GAS_1<4> #define BME680_RUN_GAS_SHIFT 4 // BME680_REG_CTRL_GAS_1<4> #define BME680_NB_CONV_BITS 0x0f // BME680_REG_CTRL_GAS_1<3:0> #define BME680_NB_CONV_SHIFT 0 // BME680_REG_CTRL_GAS_1<3:0> #define BME680_SPI_3W_INT_EN_BITS 0x40 // BME680_REG_CTRL_HUM<6> #define BME680_SPI_3W_INT_EN_SHIFT 6 // BME680_REG_CTRL_HUM<6> #define BME680_OSR_H_BITS 0x07 // BME680_REG_CTRL_HUM<2:0> #define BME680_OSR_H_SHIFT 0 // BME680_REG_CTRL_HUM<2:0> #define BME680_OSR_T_BITS 0xe0 // BME680_REG_CTRL_MEAS<7:5> #define BME680_OSR_T_SHIFT 5 // BME680_REG_CTRL_MEAS<7:5> #define BME680_OSR_P_BITS 0x1c // BME680_REG_CTRL_MEAS<4:2> #define BME680_OSR_P_SHIFT 2 // BME680_REG_CTRL_MEAS<4:2> #define BME680_MODE_BITS 0x03 // BME680_REG_CTRL_MEAS<1:0> #define BME680_MODE_SHIFT 0 // BME680_REG_CTRL_MEAS<1:0> #define BME680_FILTER_BITS 0x1c // BME680_REG_CONFIG<4:2> #define BME680_FILTER_SHIFT 2 // BME680_REG_CONFIG<4:2> #define BME680_SPI_3W_EN_BITS 0x01 // BME680_REG_CONFIG<0> #define BME680_SPI_3W_EN_SHIFT 0 // BME680_REG_CONFIG<0> #define BME680_SPI_MEM_PAGE_BITS 0x10 // BME680_REG_STATUS<4> #define BME680_SPI_MEM_PAGE_SHIFT 4 // BME680_REG_STATUS<4> #define BME680_GAS_WAIT_BITS 0x3f // BME680_REG_GAS_WAIT+x<5:0> #define BME680_GAS_WAIT_SHIFT 0 // BME680_REG_GAS_WAIT+x<5:0> #define BME680_GAS_WAIT_MULT_BITS 0xc0 // BME680_REG_GAS_WAIT+x<7:6> #define BME680_GAS_WAIT_MULT_SHIFT 6 // BME680_REG_GAS_WAIT+x<7:6> // commands #define BME680_RESET_CMD 0xb6 // BME680_REG_RESET<7:0> #define BME680_RESET_PERIOD 5 // reset time in ms #define BME680_RHR_BITS 0x30 // BME680_REG_RES_HEAT_RANGE<5:4> #define BME680_RHR_SHIFT 4 // BME680_REG_RES_HEAT_RANGE<5:4> #define BME680_RSWE_BITS 0xf0 // BME680_REG_RANGE_SW_ERROR<7:4> #define BME680_RSWE_SHIFT 4 // BME680_REG_RANGE_SW_ERROR<7:4> // calibration data are stored in a calibration data map #define BME680_CDM_SIZE (BME680_REG_CD1_LEN + BME680_REG_CD2_LEN + BME680_REG_CD3_LEN) #define BME680_CDM_OFF1 0 #define BME680_CDM_OFF2 BME680_REG_CD1_LEN #define BME680_CDM_OFF3 BME680_CDM_OFF2 + BME680_REG_CD2_LEN // calibration parameter offsets in calibration data map // calibration data from 0x89 #define BME680_CDM_T2 1 #define BME680_CDM_T3 3 #define BME680_CDM_P1 5 #define BME680_CDM_P2 7 #define BME680_CDM_P3 9 #define BME680_CDM_P4 11 #define BME680_CDM_P5 13 #define BME680_CDM_P7 15 #define BME680_CDM_P6 16 #define BME680_CDM_P8 19 #define BME680_CDM_P9 21 #define BME680_CDM_P10 23 // calibration data from 0e1 #define BME680_CDM_H2 25 #define BME680_CDM_H1 26 #define BME680_CDM_H3 28 #define BME680_CDM_H4 29 #define BME680_CDM_H5 30 #define BME680_CDM_H6 31 #define BME680_CDM_H7 32 #define BME680_CDM_T1 33 #define BME680_CDM_GH2 35 #define BME680_CDM_GH1 37 #define BME680_CDM_GH3 38 // device specific calibration data from 0x00 #define BME680_CDM_RHV 41 // 0x00 - res_heat_val #define BME680_CDM_RHR 43 // 0x02 - res_heat_range #define BME680_CDM_RSWE 45 // 0x04 - range_sw_error /** * @brief Raw data (integer values) read from sensor */ typedef struct { bool gas_valid; // indicate that gas measurement results are valid bool heater_stable; // indicate that heater temperature was stable uint32_t temperature; // degree celsius x100 uint32_t pressure; // pressure in Pascal uint16_t humidity; // relative humidity x1000 in % uint16_t gas_resistance; // gas resistance data uint8_t gas_range; // gas resistance range uint8_t gas_index; // heater profile used (0 ... 9) uint8_t meas_index; } bme680_raw_data_t; /** Forward declaration of functions for internal use */ static bool bme680_set_mode (bme680_sensor_t* dev, uint8_t mode); static bool bme680_get_raw_data (bme680_sensor_t* dev, bme680_raw_data_t* raw); static int16_t bme680_convert_temperature (bme680_sensor_t *dev, uint32_t raw_temperature); static uint32_t bme680_convert_pressure (bme680_sensor_t *dev, uint32_t raw_pressure); static uint32_t bme680_convert_humidity (bme680_sensor_t *dev, uint16_t raw_humidity); static uint32_t bme680_convert_gas (bme680_sensor_t *dev, uint16_t raw_gas, uint8_t gas_range); static uint8_t bme680_heater_resistance (const bme680_sensor_t* dev, uint16_t temperature); static uint8_t bme680_heater_duration (uint16_t duration); static bool bme680_reset (bme680_sensor_t* dev); static bool bme680_is_available (bme680_sensor_t* dev); static void bme680_delay_ms(uint32_t delay); static bool bme680_read_reg (bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len); static bool bme680_write_reg (bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len); static bool bme680_i2c_read (bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len); static bool bme680_i2c_write (bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len); static bool bme680_spi_read (bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len); static bool bme680_spi_write (bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len); #define lsb_msb_to_type(t,b,o) (t)(((t)b[o+1] << 8) | b[o]) #define lsb_to_type(t,b,o) (t)(b[o]) bme680_sensor_t* bme680_init_sensor(uint8_t bus, uint8_t addr, uint8_t cs) { bme680_sensor_t* dev; if ((dev = malloc (sizeof(bme680_sensor_t))) == NULL) return NULL; // init sensor data structure dev->bus = bus; dev->addr = addr; dev->cs = cs; dev->meas_started = false; dev->meas_status = 0; dev->settings.ambient_temperature = 0; dev->settings.osr_temperature = osr_none; dev->settings.osr_pressure = osr_none; dev->settings.osr_humidity = osr_none; dev->settings.filter_size = iir_size_0; dev->settings.heater_profile = BME680_HEATER_NOT_USED; memset(dev->settings.heater_temperature, 0, sizeof(uint16_t)*10); memset(dev->settings.heater_duration, 0, sizeof(uint16_t)*10); // if addr==0 then SPI is used and has to be initialized if (!addr && !spi_device_init (bus, cs)) { error_dev ("Could not initialize SPI interface.", __FUNCTION__, dev); free (dev); return NULL; } if (!addr) spi_semaphore_init(); // reset the sensor if (!bme680_reset(dev)) { error_dev ("Could not reset the sensor device.", __FUNCTION__, dev); free (dev); return NULL; } // check availability of the sensor if (!bme680_is_available (dev)) { error_dev ("Sensor is not available.", __FUNCTION__, dev); free (dev); return NULL; } uint8_t buf[BME680_CDM_SIZE]; // read all calibration parameters from sensor if (bme680_read_reg(dev, BME680_REG_CD1_ADDR, buf+BME680_CDM_OFF1, BME680_REG_CD1_LEN) && bme680_read_reg(dev, BME680_REG_CD2_ADDR, buf+BME680_CDM_OFF2, BME680_REG_CD2_LEN) && bme680_read_reg(dev, BME680_REG_CD3_ADDR, buf+BME680_CDM_OFF3, BME680_REG_CD3_LEN)) { dev->calib_data.par_t1 = lsb_msb_to_type (uint16_t, buf, BME680_CDM_T1); dev->calib_data.par_t2 = lsb_msb_to_type ( int16_t, buf, BME680_CDM_T2); dev->calib_data.par_t3 = lsb_to_type ( int8_t, buf, BME680_CDM_T3); // pressure compensation parameters dev->calib_data.par_p1 = lsb_msb_to_type (uint16_t, buf, BME680_CDM_P1); dev->calib_data.par_p2 = lsb_msb_to_type ( int16_t, buf, BME680_CDM_P2); dev->calib_data.par_p3 = lsb_to_type ( int8_t, buf, BME680_CDM_P3); dev->calib_data.par_p4 = lsb_msb_to_type ( int16_t, buf, BME680_CDM_P4); dev->calib_data.par_p5 = lsb_msb_to_type ( int16_t, buf, BME680_CDM_P5); dev->calib_data.par_p6 = lsb_to_type ( int8_t, buf, BME680_CDM_P6); dev->calib_data.par_p7 = lsb_to_type ( int8_t, buf, BME680_CDM_P7); dev->calib_data.par_p8 = lsb_msb_to_type ( int16_t, buf, BME680_CDM_P8); dev->calib_data.par_p9 = lsb_msb_to_type ( int16_t, buf, BME680_CDM_P9); dev->calib_data.par_p10 = lsb_to_type ( uint8_t, buf, BME680_CDM_P10); // humidity compensation parameters dev->calib_data.par_h1 = (uint16_t)(((uint16_t)buf[BME680_CDM_H1+1] << 4) | (buf[BME680_CDM_H1] & 0x0F)); dev->calib_data.par_h2 = (uint16_t)(((uint16_t)buf[BME680_CDM_H2] << 4) | (buf[BME680_CDM_H2+1] >> 4)); dev->calib_data.par_h3 = lsb_to_type ( int8_t, buf, BME680_CDM_H3); dev->calib_data.par_h4 = lsb_to_type ( int8_t, buf, BME680_CDM_H4); dev->calib_data.par_h5 = lsb_to_type ( int8_t, buf, BME680_CDM_H5); dev->calib_data.par_h6 = lsb_to_type ( uint8_t, buf, BME680_CDM_H6); dev->calib_data.par_h7 = lsb_to_type ( int8_t, buf, BME680_CDM_H7); // gas sensor compensation parameters dev->calib_data.par_gh1 = lsb_to_type ( int8_t, buf, BME680_CDM_GH1); dev->calib_data.par_gh2 = lsb_msb_to_type ( int16_t, buf, BME680_CDM_GH2); dev->calib_data.par_gh3 = lsb_to_type ( int8_t, buf, BME680_CDM_GH3); dev->calib_data.res_heat_range = (lsb_to_type (uint8_t, buf ,BME680_CDM_RHR) & BME680_RHR_BITS) >> BME680_RHR_SHIFT; dev->calib_data.res_heat_val = (lsb_to_type ( int8_t, buf, BME680_CDM_RHV)); dev->calib_data.range_sw_err = (lsb_to_type ( int8_t, buf, BME680_CDM_RSWE) & BME680_RSWE_BITS) >> BME680_RSWE_SHIFT; } else { error_dev ("Could not read in calibration parameters.", __FUNCTION__, dev); dev->error_code |= BME680_READ_CALIB_DATA_FAILED; free (dev); return NULL; } // Set the default temperature, pressure and humidity settings if (!bme680_set_oversampling_rates (dev, osr_1x, osr_1x, osr_1x) || !bme680_set_filter_size (dev, iir_size_3)) { error_dev ("Could not configure default sensor settings for TPH.", __FUNCTION__, dev); free (dev); return NULL; } // Set ambient temperature of sensor to default value (25 degree C) dev->settings.ambient_temperature = 25; // Set heater default profile 0 to 320 degree Celcius for 150 ms if (!bme680_set_heater_profile (dev, 0, 320, 150)) { error_dev ("Could not configure default heater profile settings.", __FUNCTION__, dev); free (dev); return NULL; } if (!bme680_use_heater_profile (dev, 0)) { error_dev ("Could not configure default heater profile.", __FUNCTION__, dev); free (dev); return NULL; } return dev; } bool bme680_force_measurement (bme680_sensor_t* dev) { if (!dev) return false; dev->error_code = BME680_OK; // return remaining time when measurement is already running if (dev->meas_started) { debug_dev ("Measurement is already running.", __FUNCTION__, dev); dev->error_code |= BME680_MEAS_ALREADY_RUNNING; return false; } // Set the power mode to forced mode to trigger one TPHG measurement cycle if (!bme680_set_mode(dev, BME680_FORCED_MODE)) { error_dev ("Could not set forced mode to start TPHG measurement cycle.", __FUNCTION__, dev); dev->error_code |= BME680_FORCE_MODE_FAILED; return false; } dev->meas_started = true; dev->meas_status = 0; debug_dev ("Started measurement at %.3f.", __FUNCTION__, dev, (double)sdk_system_get_time()*1e-3); return true; } /** * @brief Estimate the measuerment duration in ms * * Timing formulas extracted from BME280 datasheet and test in some * experiments. They represent the maximum measurement duration. * * @return estimated measurument duration in RTOS ticks or -1 on error */ uint32_t bme680_get_measurement_duration (const bme680_sensor_t *dev) { if (!dev) return 0; int32_t duration = 0; /* Calculate in us */ // wake up duration from sleep into forced mode duration += 1250; // THP cycle duration which consumes 1963 µs for each measurement at maximum if (dev->settings.osr_temperature) duration += (1 << (dev->settings.osr_temperature-1)) * 2300; if (dev->settings.osr_pressure ) duration += (1 << (dev->settings.osr_pressure-1)) * 2300 + 575; if (dev->settings.osr_humidity ) duration += (1 << (dev->settings.osr_humidity-1)) * 2300 + 575; // if gas measurement is used if (dev->settings.heater_profile != BME680_HEATER_NOT_USED && dev->settings.heater_duration[dev->settings.heater_profile] && dev->settings.heater_temperature[dev->settings.heater_profile]) { // gas heating time duration += dev->settings.heater_duration[dev->settings.heater_profile]*1000; // gas measurement duration; duration += 2300 + 575; } // round up to next ms (1 us ... 1000 us => 1 ms) duration += 999; duration /= 1000; // some ms tolerance duration += 5; // ceil to next integer value that is divisible by portTICK_PERIOD_MS and // compute RTOS ticks (1 ... portTICK_PERIOD_MS = 1 tick) duration = (duration + portTICK_PERIOD_MS-1) / portTICK_PERIOD_MS; // Since first RTOS tick can be shorter than the half of defined tick period, // the delay caused by vTaskDelay(duration) might be 1 or 2 ms shorter than // computed duration in rare cases. Since the duration is computed for maximum // and not for the typical durations and therefore tends to be too long, this // should not be a problem. Therefore, only one additional tick used. return duration + 1; } bool bme680_is_measuring (bme680_sensor_t* dev) { if (!dev) return false; dev->error_code = BME680_OK; // if measurement wasn't started, it is of course not measuring if (!dev->meas_started) { dev->error_code |= BME680_MEAS_NOT_RUNNING; return false; } uint8_t raw[2]; // read maesurment status from sensor if (!bme680_read_reg(dev, BME680_REG_MEAS_STATUS_0, raw, 2)) { error_dev ("Could not read measurement status from sensor.", __FUNCTION__, dev); return false; } dev->meas_status = raw[0]; // test whether measuring bit is set return (dev->meas_status & BME680_MEASURING_BITS); } bool bme680_get_results_fixed (bme680_sensor_t* dev, bme680_values_fixed_t* results) { if (!dev || !results) return false; dev->error_code = BME680_OK; // fill data structure with invalid values results->temperature = INT16_MIN; results->pressure = 0; results->humidity = 0; results->gas_resistance = 0; bme680_raw_data_t raw; if (!bme680_get_raw_data(dev, &raw)) // return invalid values return false; // use compensation algorithms to compute sensor values in fixed point format if (dev->settings.osr_temperature) results->temperature = bme680_convert_temperature (dev, raw.temperature); if (dev->settings.osr_pressure) results->pressure = bme680_convert_pressure (dev, raw.pressure); if (dev->settings.osr_humidity) results->humidity = bme680_convert_humidity (dev, raw.humidity); if (dev->settings.heater_profile != BME680_HEATER_NOT_USED) { // convert gas only if raw data are valid and heater was stable if (raw.gas_valid && raw.heater_stable) results->gas_resistance = bme680_convert_gas (dev, raw.gas_resistance, raw.gas_range); else if (!raw.gas_valid) dev->error_code = BME680_MEAS_GAS_NOT_VALID; else dev->error_code = BME680_HEATER_NOT_STABLE; } debug_dev ("Fixed point sensor valus - %d ms: %d/100 C, %d/1000 Percent, %d Pascal, %d Ohm", __FUNCTION__, dev, sdk_system_get_time (), results->temperature, results->humidity, results->pressure, results->gas_resistance); return true; } bool bme680_get_results_float (bme680_sensor_t* dev, bme680_values_float_t* results) { if (!dev || !results) return false; bme680_values_fixed_t fixed; if (!bme680_get_results_fixed (dev, &fixed)) return false; results->temperature = fixed.temperature / 100.0f; results->pressure = fixed.pressure / 100.0f; results->humidity = fixed.humidity / 1000.0f; results->gas_resistance = fixed.gas_resistance; return true; } bool bme680_measure_fixed (bme680_sensor_t* dev, bme680_values_fixed_t* results) { int32_t duration = bme680_force_measurement (dev); if (duration == BME680_NOK) return false; // measurment couldn't be started else if (duration > 0) // wait for results vTaskDelay (duration); return bme680_get_results_fixed (dev, results); } bool bme680_measure_float (bme680_sensor_t* dev, bme680_values_float_t* results) { int32_t duration = bme680_force_measurement (dev); if (duration == BME680_NOK) return false; // measurment couldn't be started else if (duration > 0) // wait for results vTaskDelay (duration); return bme680_get_results_float (dev, results); } #define bme_set_reg_bit(byte, bitname, bit) ( (byte & ~bitname##_BITS) | \ ((bit << bitname##_SHIFT) & bitname##_BITS) ) #define bme_get_reg_bit(byte, bitname) ( (byte & bitname##_BITS) >> bitname##_SHIFT ) bool bme680_set_oversampling_rates (bme680_sensor_t* dev, bme680_oversampling_rate_t ost, bme680_oversampling_rate_t osp, bme680_oversampling_rate_t osh) { if (!dev) return false; dev->error_code = BME680_OK; bool ost_changed = dev->settings.osr_temperature != ost; bool osp_changed = dev->settings.osr_pressure != osp; bool osh_changed = dev->settings.osr_humidity != osh; if (!ost_changed && !osp_changed && !osh_changed) return true; // Set the temperature, pressure and humidity oversampling dev->settings.osr_temperature = ost; dev->settings.osr_pressure = osp; dev->settings.osr_humidity = osh; uint8_t reg; if (ost_changed || osp_changed) { // read the current register value if (!bme680_read_reg(dev, BME680_REG_CTRL_MEAS, ®, 1)) return false; // set changed bit values if (ost_changed) reg = bme_set_reg_bit (reg, BME680_OSR_T, ost); if (osp_changed) reg = bme_set_reg_bit (reg, BME680_OSR_P, osp); // write back the new register value if (!bme680_write_reg(dev, BME680_REG_CTRL_MEAS, ®, 1)) return false; } if (osh_changed) { // read the current register value if (!bme680_read_reg(dev, BME680_REG_CTRL_HUM, ®, 1)) return false; // set changed bit value reg = bme_set_reg_bit (reg, BME680_OSR_H, osh); // write back the new register value if (!bme680_write_reg(dev, BME680_REG_CTRL_HUM, ®, 1)) return false; } debug_dev ("Setting oversampling rates done: osrt=%d osp=%d osrh=%d", __FUNCTION__, dev, dev->settings.osr_temperature, dev->settings.osr_pressure, dev->settings.osr_humidity); return true; } bool bme680_set_filter_size(bme680_sensor_t* dev, bme680_filter_size_t size) { if (!dev) return false; dev->error_code = BME680_OK; bool size_changed = dev->settings.filter_size != size; if (!size_changed) return true; /* Set the temperature, pressure and humidity settings */ dev->settings.filter_size = size; uint8_t reg; // read the current register value if (!bme680_read_reg(dev, BME680_REG_CONFIG, ®, 1)) return false; // set changed bit value reg = bme_set_reg_bit (reg, BME680_FILTER, size); // write back the new register value if (!bme680_write_reg(dev, BME680_REG_CONFIG, ®, 1)) return false; debug_dev ("Setting filter size done: size=%d", __FUNCTION__, dev, dev->settings.filter_size); return true; } bool bme680_set_heater_profile (bme680_sensor_t* dev, uint8_t profile, uint16_t temperature, uint16_t duration) { if (!dev) return false; if (profile > BME680_HEATER_PROFILES-1) { error_dev("Wrong heater profile id %d.", __FUNCTION__, dev, profile); dev->error_code = BME680_WRONG_HEAT_PROFILE; return false; } dev->error_code = BME680_OK; bool temperature_changed = dev->settings.heater_temperature[profile] != temperature; bool duration_changed = dev->settings.heater_duration[profile] != duration; if (!temperature_changed && !duration_changed) return true; // set external gas sensor configuration dev->settings.heater_temperature[profile] = temperature; // degree Celsius dev->settings.heater_duration [profile] = duration; // milliseconds // compute internal gas sensor configuration parameters uint8_t heat_dur = bme680_heater_duration(duration); // internal duration value uint8_t heat_res = bme680_heater_resistance(dev, temperature); // internal temperature value // set internal gas sensor configuration parameters if changed if (temperature_changed && !bme680_write_reg(dev, BME680_REG_RES_HEAT_BASE+profile, &heat_res, 1)) return false; if (duration_changed && !bme680_write_reg(dev, BME680_REG_GAS_WAIT_BASE+profile, &heat_dur, 1)) return false; debug_dev ("Setting heater profile %d done: temperature=%d duration=%d " "heater_resistance=%02x heater_duration=%02x", __FUNCTION__, dev, profile, dev->settings.heater_temperature[profile], dev->settings.heater_duration[profile], heat_dur, heat_res); return true; } bool bme680_use_heater_profile (bme680_sensor_t* dev, int8_t profile) { if (!dev) return false; if (profile != BME680_HEATER_NOT_USED && (profile < 0 || profile > BME680_HEATER_PROFILES-1)) { error_dev("Wrong heater profile id %d.", __FUNCTION__, dev, profile); dev->error_code = BME680_WRONG_HEAT_PROFILE; return false; } if (dev->settings.heater_profile == profile) return false; dev->settings.heater_profile = profile; uint8_t reg = 0; // set // set active profile reg = bme_set_reg_bit (reg, BME680_NB_CONV, profile != BME680_HEATER_NOT_USED ? profile : 0); // enable or disable gas measurement reg = bme_set_reg_bit (reg, BME680_RUN_GAS, (profile != BME680_HEATER_NOT_USED && dev->settings.heater_temperature[profile] && dev->settings.heater_duration[profile])); if (!bme680_write_reg(dev, BME680_REG_CTRL_GAS_1, ®, 1)) return false; return true; } bool bme680_set_ambient_temperature (bme680_sensor_t* dev, int16_t ambient) { if (!dev) return false; dev->error_code = BME680_OK; bool ambient_changed = dev->settings.ambient_temperature != ambient; if (!ambient_changed) return true; // set ambient temperature configuration dev->settings.ambient_temperature = ambient; // degree Celsius // update all valid heater profiles uint8_t data[10]; for (int i = 0; i < BME680_HEATER_PROFILES; i++) { data[i] = dev->settings.heater_temperature[i] ? bme680_heater_resistance(dev, dev->settings.heater_temperature[i]) : 0; } if (!bme680_write_reg(dev, BME680_REG_RES_HEAT_BASE, data, 10)) return false; debug_dev ("Setting heater ambient temperature done: ambient=%d", __FUNCTION__, dev, dev->settings.ambient_temperature); return true; } bool bme680_set_mode (bme680_sensor_t *dev, uint8_t mode) { if (!dev) return false; dev->error_code = BME680_OK; uint8_t reg; if (!bme680_read_reg(dev, BME680_REG_CTRL_MEAS, ®, 1)) return false; reg = bme_set_reg_bit (reg, BME680_MODE, mode); if (!bme680_write_reg(dev, BME680_REG_CTRL_MEAS, ®, 1)) return false; return true; } /** Functions for internal use only */ /** * @brief Check the chip ID to test whether sensor is available */ static bool bme680_is_available (bme680_sensor_t* dev) { uint8_t chip_id; if (!dev) return false; dev->error_code = BME680_OK; if (!bme680_read_reg (dev, BME680_REG_ID, &chip_id, 1)) return false; if (chip_id != 0x61) { error_dev ("Chip id %02x is wrong, should be 0x61.", __FUNCTION__, dev, chip_id); dev->error_code = BME680_WRONG_CHIP_ID; return false; } return true; } static bool bme680_reset (bme680_sensor_t* dev) { if (!dev) return false; dev->error_code = BME680_OK; uint8_t reg = BME680_RESET_CMD; // send reset command if (!bme680_write_reg(dev, BME680_REG_RESET, ®, 1)) return false; // wait the time the sensor needs for reset bme680_delay_ms (BME680_RESET_PERIOD); // check whether the sensor is reachable again if (!bme680_read_reg(dev, BME680_REG_STATUS, ®, 1)) { dev->error_code = BME680_RESET_CMD_FAILED; return false; } return true; } /** * @brief Calculate temperature from raw temperature value * @ref BME280 datasheet, page 50 */ static int16_t bme680_convert_temperature (bme680_sensor_t *dev, uint32_t raw_temperature) { if (!dev) return 0; bme680_calib_data_t* cd = &dev->calib_data; int64_t var1; int64_t var2; int16_t temperature; var1 = ((((raw_temperature >> 3) - ((int32_t)cd->par_t1 << 1))) * ((int32_t)cd->par_t2)) >> 11; var2 = (((((raw_temperature >> 4) - ((int32_t)cd->par_t1)) * ((raw_temperature >> 4) - ((int32_t)cd->par_t1))) >> 12) * ((int32_t)cd->par_t3)) >> 14; cd->t_fine = (int32_t)(var1 + var2); temperature = (cd->t_fine * 5 + 128) >> 8; return temperature; } /** * @brief Calculate pressure from raw pressure value * @copyright Copyright (C) 2017 - 2018 Bosch Sensortec GmbH * * The algorithm was extracted from the original Bosch Sensortec BME680 driver * published as open source. Divisions and multiplications by potences of 2 * were replaced by shift operations for effeciency reasons. * * @ref [BME680_diver](https://github.com/BoschSensortec/BME680_driver) * @ref BME280 datasheet, page 50 */ static uint32_t bme680_convert_pressure (bme680_sensor_t *dev, uint32_t raw_pressure) { if (!dev) return 0; bme680_calib_data_t* cd = &dev->calib_data; int32_t var1; int32_t var2; int32_t var3; int32_t var4; int32_t pressure; var1 = (((int32_t) cd->t_fine) >> 1) - 64000; var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * (int32_t) cd->par_p6) >> 2; var2 = ((var2) * (int32_t) cd->par_p6) >> 2; var2 = var2 + ((var1 * (int32_t)cd->par_p5) << 1); var2 = (var2 >> 2) + ((int32_t) cd->par_p4 << 16); var1 = (((var1 >> 2) * (var1 >> 2)) >> 13); var1 = (((var1) * ((int32_t) cd->par_p3 << 5)) >> 3) + (((int32_t) cd->par_p2 * var1) >> 1); var1 = var1 >> 18; var1 = ((32768 + var1) * (int32_t) cd->par_p1) >> 15; pressure = 1048576 - raw_pressure; pressure = (int32_t)((pressure - (var2 >> 12)) * ((uint32_t)3125)); var4 = (1 << 31); pressure = (pressure >= var4) ? (( pressure / (uint32_t) var1) << 1) : ((pressure << 1) / (uint32_t) var1); var1 = ((int32_t) cd->par_p9 * (int32_t) (((pressure >> 3) * (pressure >> 3)) >> 13)) >> 12; var2 = ((int32_t)(pressure >> 2) * (int32_t) cd->par_p8) >> 13; var3 = ((int32_t)(pressure >> 8) * (int32_t)(pressure >> 8) * (int32_t)(pressure >> 8) * (int32_t)cd->par_p10) >> 17; pressure = (int32_t)(pressure) + ((var1 + var2 + var3 + ((int32_t)cd->par_p7 << 7)) >> 4); return (uint32_t) pressure; } /** * @brief Calculate humidty from raw humidity data * @copyright Copyright (C) 2017 - 2018 Bosch Sensortec GmbH * * The algorithm was extracted from the original Bosch Sensortec BME680 driver * published as open source. Divisions and multiplications by potences of 2 * were replaced by shift operations for effeciency reasons. * * @ref [BME680_diver](https://github.com/BoschSensortec/BME680_driver) */ static uint32_t bme680_convert_humidity (bme680_sensor_t *dev, uint16_t raw_humidity) { if (!dev) return 0; bme680_calib_data_t* cd = &dev->calib_data; int32_t var1; int32_t var2; int32_t var3; int32_t var4; int32_t var5; int32_t var6; int32_t temp_scaled; int32_t humidity; temp_scaled = (((int32_t) cd->t_fine * 5) + 128) >> 8; var1 = (int32_t) (raw_humidity - ((int32_t) ((int32_t) cd->par_h1 << 4))) - (((temp_scaled * (int32_t) cd->par_h3) / ((int32_t) 100)) >> 1); var2 = ((int32_t) cd->par_h2 * (((temp_scaled * (int32_t) cd->par_h4) / ((int32_t) 100)) + (((temp_scaled * ((temp_scaled * (int32_t) cd->par_h5) / ((int32_t) 100))) >> 6) / ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10; var3 = var1 * var2; var4 = (int32_t) cd->par_h6 << 7; var4 = ((var4) + ((temp_scaled * (int32_t) cd->par_h7) / ((int32_t) 100))) >> 4; var5 = ((var3 >> 14) * (var3 >> 14)) >> 10; var6 = (var4 * var5) >> 1; humidity = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12; if (humidity > 100000) /* Cap at 100%rH */ humidity = 100000; else if (humidity < 0) humidity = 0; return (uint32_t) humidity; } /** * @brief Lookup table for gas resitance computation * @ref BME680 datasheet, page 19 */ static float lookup_table[16][2] = { // const1, const2 // gas_range { 1.0 , 8000000.0 }, // 0 { 1.0 , 4000000.0 }, // 1 { 1.0 , 2000000.0 }, // 2 { 1.0 , 1000000.0 }, // 3 { 1.0 , 499500.4995 }, // 4 { 0.99 , 248262.1648 }, // 5 { 1.0 , 125000.0 }, // 6 { 0.992, 63004.03226 }, // 7 { 1.0 , 31281.28128 }, // 8 { 1.0 , 15625.0 }, // 9 { 0.998, 7812.5 }, // 10 { 0.995, 3906.25 }, // 11 { 1.0 , 1953.125 }, // 12 { 0.99 , 976.5625 }, // 13 { 1.0 , 488.28125 }, // 14 { 1.0 , 244.140625 } // 15 }; /** * @brief Calculate gas resistance from raw gas resitance value and gas range * @ref BME680 datasheet */ static uint32_t bme680_convert_gas (bme680_sensor_t *dev, uint16_t gas, uint8_t gas_range) { if (!dev) return 0; bme680_calib_data_t* cd = &dev->calib_data; float var1 = (1340.0 + 5.0 * cd->range_sw_err) * lookup_table[gas_range][0]; return var1 * lookup_table[gas_range][1] / (gas - 512.0 + var1); } #define msb_lsb_xlsb_to_20bit(t,b,o) (t)((t) b[o] << 12 | (t) b[o+1] << 4 | b[o+2] >> 4) #define msb_lsb_to_type(t,b,o) (t)(((t)b[o] << 8) | b[o+1]) #define BME680_RAW_P_OFF BME680_REG_PRESS_MSB_0-BME680_REG_MEAS_STATUS_0 #define BME680_RAW_T_OFF (BME680_RAW_P_OFF + BME680_REG_TEMP_MSB_0 - BME680_REG_PRESS_MSB_0) #define BME680_RAW_H_OFF (BME680_RAW_T_OFF + BME680_REG_HUM_MSB_0 - BME680_REG_TEMP_MSB_0) #define BME680_RAW_G_OFF (BME680_RAW_H_OFF + BME680_REG_GAS_R_MSB_0 - BME680_REG_HUM_MSB_0) static bool bme680_get_raw_data(bme680_sensor_t *dev, bme680_raw_data_t* raw_data) { if (!dev || !raw_data) return false; dev->error_code = BME680_OK; if (!dev->meas_started) { error_dev ("Measurement was not started.", __FUNCTION__, dev); dev->error_code = BME680_MEAS_NOT_RUNNING; return false; } uint8_t raw[BME680_REG_RAW_DATA_LEN] = { 0 }; if (!(dev->meas_status & BME680_NEW_DATA_BITS)) { // read maesurment status from sensor if (!bme680_read_reg(dev, BME680_REG_MEAS_STATUS_0, raw, 2)) { error_dev ("Could not read measurement status from sensor.", __FUNCTION__, dev); return false; } // test whether there are new data dev->meas_status = raw[0]; if (dev->meas_status & BME680_MEASURING_BITS && !(dev->meas_status & BME680_NEW_DATA_BITS)) { debug_dev ("Measurement is still running.", __FUNCTION__, dev); dev->error_code = BME680_MEAS_STILL_RUNNING; return false; } else if (!(dev->meas_status & BME680_NEW_DATA_BITS)) { debug_dev ("No new data.", __FUNCTION__, dev); dev->error_code = BME680_NO_NEW_DATA; return false; } } dev->meas_started = false; raw_data->gas_index = (dev->meas_status & BME680_GAS_MEAS_INDEX_BITS); // if there are new data, read raw data from sensor if (!bme680_read_reg(dev, BME680_REG_RAW_DATA_0, raw, BME680_REG_RAW_DATA_LEN)) { error_dev ("Could not read raw data from sensor.", __FUNCTION__, dev); return false; } raw_data->gas_valid = bme_get_reg_bit(raw[BME680_RAW_G_OFF+1],BME680_GAS_VALID); raw_data->heater_stable = bme_get_reg_bit(raw[BME680_RAW_G_OFF+1],BME680_HEAT_STAB_R); raw_data->temperature = msb_lsb_xlsb_to_20bit (uint32_t, raw, BME680_RAW_T_OFF); raw_data->pressure = msb_lsb_xlsb_to_20bit (uint32_t, raw, BME680_RAW_P_OFF); raw_data->humidity = msb_lsb_to_type (uint16_t, raw, BME680_RAW_H_OFF); raw_data->gas_resistance = ((uint16_t)raw[BME680_RAW_G_OFF] << 2) | raw[BME680_RAW_G_OFF+1] >> 6; raw_data->gas_range = raw[BME680_RAW_G_OFF+1] & BME680_GAS_RANGE_R_BITS; /* // These data are not documented and it is not really clear when they are filled if (!bme680_read_reg(dev, BME680_REG_MEAS_STATUS_1, raw, BME680_REG_RAW_DATA_LEN)) { error_dev ("Could not read raw data from sensor.", __FUNCTION__, dev); return false; } if (!bme680_read_reg(dev, BME680_REG_MEAS_STATUS_2, raw, BME680_REG_RAW_DATA_LEN)) { error_dev ("Could not read raw data from sensor.", __FUNCTION__, dev); return false; } */ debug ("Raw data: %d %d %d %d %d",__FUNCTION__, raw_data->temperature, raw_data->pressure, raw_data->humidity, raw_data->gas_resistance, raw_data->gas_range); return true; } /** * @brief Calculate internal duration representation * * Durations are internally representes as one byte * * duration = value<5:0> * multiplier<7:6> * * where the multiplier is 1, 4, 16, or 64. Maximum duration is therefore * 64*64 = 4032 ms. The function takes a real world duration value given * in milliseconds and computes the internal representation. * * @ref Datasheet */ static uint8_t bme680_heater_duration (uint16_t duration) { uint8_t multiplier = 0; while (duration > 63) { duration = duration / 4; multiplier++; } return (uint8_t) (duration | (multiplier << 6)); } /** * @brief Calculate internal heater resistance value from real temperature. * * @ref Datasheet of BME680 */ static uint8_t bme680_heater_resistance (const bme680_sensor_t *dev, uint16_t temp) { if (!dev) return 0; if (temp < BME680_HEATER_TEMP_MIN) temp = BME680_HEATER_TEMP_MIN; else if (temp > BME680_HEATER_TEMP_MAX) temp = BME680_HEATER_TEMP_MAX; const bme680_calib_data_t* cd = &dev->calib_data; // from datasheet double var1; double var2; double var3; double var4; double var5; uint8_t res_heat_x; var1 = ((double)cd->par_gh1 / 16.0) + 49.0; var2 = (((double)cd->par_gh2 / 32768.0) * 0.0005) + 0.00235; var3 = (double)cd->par_gh3 / 1024.0; var4 = var1 * (1.0 + (var2 * (double) temp)); var5 = var4 + (var3 * (double)dev->settings.ambient_temperature); res_heat_x = (uint8_t)(3.4 * ((var5 * (4.0 / (4.0 + (double)cd->res_heat_range)) * (1.0/(1.0 + ((double)cd->res_heat_val * 0.002)))) - 25)); return res_heat_x; } static void bme680_delay_ms(uint32_t period) { uint32_t start_time = sdk_system_get_time () / 1000; vTaskDelay((period + portTICK_PERIOD_MS-1) / portTICK_PERIOD_MS); while (sdk_system_get_time()/1000 - start_time < period) vTaskDelay (1); } static bool bme680_read_reg(bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len) { if (!dev || !data) return false; return (dev->addr) ? bme680_i2c_read (dev, reg, data, len) : bme680_spi_read (dev, reg, data, len); } static bool bme680_write_reg(bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len) { if (!dev || !data) return false; return (dev->addr) ? bme680_i2c_write (dev, reg, data, len) : bme680_spi_write (dev, reg, data, len); } #define BME680_SPI_BUF_SIZE 64 // SPI register data buffer size of ESP866 #define BME680_REG_SWITCH_MEM_PAGE BME680_REG_STATUS #define BME680_BIT_SWITCH_MEM_PAGE_0 0x00 #define BME680_BIT_SWITCH_MEM_PAGE_1 0x10 static bool bme680_spi_set_mem_page (bme680_sensor_t* dev, uint8_t reg) { // mem pages (reg 0x00 .. 0x7f = 1, reg 0x80 ... 0xff = 0 uint8_t mem_page = (reg < 0x80) ? BME680_BIT_SWITCH_MEM_PAGE_1 : BME680_BIT_SWITCH_MEM_PAGE_0; debug_dev ("Set mem page for register %02x to %d.", __FUNCTION__, dev, reg, mem_page); if (!bme680_spi_write (dev, BME680_REG_SWITCH_MEM_PAGE, &mem_page, 1)) { dev->error_code |= BME680_SPI_SET_PAGE_FAILED; return false; } // sdk_os_delay_us (100); return true; } static bool bme680_spi_read(bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len) { if (!dev || !data) return false; if (len >= BME680_SPI_BUF_SIZE) { dev->error_code |= BME680_SPI_BUFFER_OVERFLOW; error_dev ("Error on read from SPI slave on bus 1. Tried to transfer " "more than %d byte in one read operation.", __FUNCTION__, dev, BME680_SPI_BUF_SIZE); return false; } spi_semaphore_take (); // set mem page first if (!bme680_spi_set_mem_page (dev, reg)) { error_dev ("Error on read from SPI slave on bus 1. Could not set mem page.", __FUNCTION__, dev); spi_semaphore_give (); return false; } reg &= 0x7f; reg |= 0x80; static uint8_t mosi[BME680_SPI_BUF_SIZE]; static uint8_t miso[BME680_SPI_BUF_SIZE]; memset (mosi, 0xff, BME680_SPI_BUF_SIZE); memset (miso, 0xff, BME680_SPI_BUF_SIZE); mosi[0] = reg; if (!spi_transfer_pf (dev->bus, dev->cs, mosi, miso, len+1)) { error_dev ("Could not read data from SPI", __FUNCTION__, dev); dev->error_code |= BME680_SPI_READ_FAILED; spi_semaphore_give (); return false; } spi_semaphore_give (); // shift data one by left, first byte received while sending register address is invalid for (int i=0; i < len; i++) data[i] = miso[i+1]; #ifdef BME680_DEBUG_LEVEL_2 printf("BME680 %s: read the following bytes: ", __FUNCTION__); printf("%0x ", reg); for (int i=0; i < len; i++) printf("%0x ", data[i]); printf("\n"); #endif return true; } static bool bme680_spi_write(bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len) { if (!dev || !data) return false; static uint8_t mosi[BME680_SPI_BUF_SIZE]; if (len >= BME680_SPI_BUF_SIZE) { dev->error_code |= BME680_SPI_BUFFER_OVERFLOW; error_dev ("Error on write to SPI slave on bus 1. Tried to transfer more" "than %d byte in one write operation.", __FUNCTION__, dev, BME680_SPI_BUF_SIZE); return false; } spi_semaphore_take (); // set mem page first if not mem page register is used if (reg != BME680_REG_STATUS && !bme680_spi_set_mem_page (dev, reg)) { error_dev ("Error on write from SPI slave on bus 1. Could not set mem page.", __FUNCTION__, dev); spi_semaphore_give (); return false; } reg &= 0x7f; // first byte in output is the register address mosi[0] = reg; // shift data one byte right, first byte in output is the register address for (int i = 0; i < len; i++) mosi[i+1] = data[i]; #ifdef BME680_DEBUG_LEVEL_2 printf("BME680 %s: Write the following bytes: ", __FUNCTION__); for (int i = 0; i < len+1; i++) printf("%0x ", mosi[i]); printf("\n"); #endif if (!spi_transfer_pf (dev->bus, dev->cs, mosi, NULL, len+1)) { error_dev ("Could not write data to SPI.", __FUNCTION__, dev); dev->error_code |= BME680_SPI_WRITE_FAILED; spi_semaphore_give (); return false; } spi_semaphore_give (); return true; } static bool bme680_i2c_read(bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len) { if (!dev || !data) return false; debug_dev ("Read %d byte from i2c slave register %02x.", __FUNCTION__, dev, len, reg); int result = i2c_slave_read(dev->bus, dev->addr, ®, data, len); if (result) { dev->error_code |= (result == -EBUSY) ? BME680_I2C_BUSY : BME680_I2C_READ_FAILED; error_dev ("Error %d on read %d byte from I2C slave register %02x.", __FUNCTION__, dev, result, len, reg); return false; } # ifdef BME680_DEBUG_LEVEL_2 printf("BME680 %s: Read following bytes: ", __FUNCTION__); printf("%0x: ", reg); for (int i=0; i < len; i++) printf("%0x ", data[i]); printf("\n"); # endif return true; } static bool bme680_i2c_write(bme680_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len) { if (!dev || !data) return false; debug_dev ("Write %d byte to i2c slave register %02x.", __FUNCTION__, dev, len, reg); int result = i2c_slave_write(dev->bus, dev->addr, ®, data, len); if (result) { dev->error_code |= (result == -EBUSY) ? BME680_I2C_BUSY : BME680_I2C_WRITE_FAILED; error_dev ("Error %d on write %d byte to i2c slave register %02x.", __FUNCTION__, dev, result, len, reg); return false; } # ifdef BME680_DEBUG_LEVEL_2 printf("BME680 %s: Wrote the following bytes: ", __FUNCTION__); printf("%0x: ", reg); for (int i=0; i < len; i++) printf("%0x ", data[i]); printf("\n"); # endif return true; }