/* * The MIT License (MIT) * * Copyright (c) 2015 Johan Kanflo (github.com/kanflo) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include // sdk_os_delay_us #include "i2c.h" // I2C driver for ESP8266 written for use with esp-open-rtos // Based on https://en.wikipedia.org/wiki/I²C#Example_of_bit-banging_the_I.C2.B2C_Master_protocol // With calling overhead, we end up at ~100kbit/s #define CLK_HALF_PERIOD_US (1) #define CLK_STRETCH (10) static bool started; static uint8_t g_scl_pin; static uint8_t g_sda_pin; void i2c_init(uint8_t scl_pin, uint8_t sda_pin) { started = false; g_scl_pin = scl_pin; g_sda_pin = sda_pin; // Just to prevent these pins floating too much if not connected. gpio_set_pullup(g_scl_pin, 1, 1); gpio_set_pullup(g_sda_pin, 1, 1); // I2C bus idle state. gpio_enable(g_scl_pin, GPIO_INPUT); gpio_enable(g_scl_pin, GPIO_INPUT); // Set the pins to a low output state for when they are configured // as outputs. gpio_write(g_scl_pin, 0); gpio_write(g_sda_pin, 0); } static void i2c_delay(void) { sdk_os_delay_us(CLK_HALF_PERIOD_US); } // Set SCL as input, allowing it to float high, and return current // level of line, 0 or 1 static bool read_scl(void) { gpio_enable(g_scl_pin, GPIO_INPUT); return gpio_read(g_scl_pin); // Clock high, valid ACK } // Set SDA as input and return current level of line, 0 or 1 static bool read_sda(void) { gpio_enable(g_sda_pin, GPIO_INPUT); // TODO: Without this delay we get arbitration lost in i2c_stop i2c_delay(); return gpio_read(g_sda_pin); // Clock high, valid ACK } // Actively drive SCL signal low static void clear_scl(void) { gpio_enable(g_scl_pin, GPIO_OUT_OPEN_DRAIN); } // Actively drive SDA signal low static void clear_sda(void) { gpio_enable(g_sda_pin, GPIO_OUT_OPEN_DRAIN); } // Output start condition void i2c_start(void) { uint32_t clk_stretch = CLK_STRETCH; if (started) { // if started, do a restart cond // Set SDA to 1 (void) read_sda(); i2c_delay(); while (read_scl() == 0 && clk_stretch--) ; // Repeated start setup time, minimum 4.7us i2c_delay(); } if (read_sda() == 0) { printf("I2C: arbitration lost in i2c_start\n"); } // SCL is high, set SDA from 1 to 0. clear_sda(); i2c_delay(); clear_scl(); started = true; } // Output stop condition void i2c_stop(void) { uint32_t clk_stretch = CLK_STRETCH; // Set SDA to 0 clear_sda(); i2c_delay(); // Clock stretching while (read_scl() == 0 && clk_stretch--) ; // Stop bit setup time, minimum 4us i2c_delay(); // SCL is high, set SDA from 0 to 1 if (read_sda() == 0) { printf("I2C: arbitration lost in i2c_stop\n"); } i2c_delay(); started = false; } // Write a bit to I2C bus static void i2c_write_bit(bool bit) { uint32_t clk_stretch = CLK_STRETCH; if (bit) { (void) read_sda(); } else { clear_sda(); } i2c_delay(); // Clock stretching while (read_scl() == 0 && clk_stretch--) ; // SCL is high, now data is valid // If SDA is high, check that nobody else is driving SDA if (bit && read_sda() == 0) { printf("I2C: arbitration lost in i2c_write_bit\n"); } i2c_delay(); clear_scl(); } // Read a bit from I2C bus static bool i2c_read_bit(void) { uint32_t clk_stretch = CLK_STRETCH; bool bit; // Let the slave drive data (void) read_sda(); i2c_delay(); // Clock stretching while (read_scl() == 0 && clk_stretch--) ; // SCL is high, now data is valid bit = read_sda(); i2c_delay(); clear_scl(); return bit; } bool i2c_write(uint8_t byte) { bool nack; uint8_t bit; for (bit = 0; bit < 8; bit++) { i2c_write_bit((byte & 0x80) != 0); byte <<= 1; } nack = i2c_read_bit(); return !nack; } uint8_t i2c_read(bool ack) { uint8_t byte = 0; uint8_t bit; for (bit = 0; bit < 8; bit++) { byte = (byte << 1) | i2c_read_bit(); } i2c_write_bit(ack); return byte; } bool i2c_slave_write(uint8_t slave_addr, uint8_t *data, uint8_t len) { bool success = false; do { i2c_start(); if (!i2c_write(slave_addr << 1)) break; while (len--) { if (!i2c_write(*data++)) break; } i2c_stop(); success = true; } while(0); return success; } bool i2c_slave_read(uint8_t slave_addr, uint8_t data, uint8_t *buf, uint32_t len) { bool success = false; do { i2c_start(); if (!i2c_write(slave_addr << 1)) { break; } i2c_write(data); i2c_stop(); i2c_start(); if (!i2c_write(slave_addr << 1 | 1)) { // Slave address + read break; } while(len) { *buf = i2c_read(len == 1); buf++; len--; } success = true; } while(0); i2c_stop(); if (!success) { printf("I2C: write error\n"); } return success; }