#include "onewire.h" #include "string.h" #include "task.h" #include "esp/gpio.h" #define ONEWIRE_SELECT_ROM 0x55 #define ONEWIRE_SKIP_ROM 0xcc #define ONEWIRE_SEARCH 0xf0 // Waits up to `max_wait` microseconds for the specified pin to go high. // Returns true if successful, false if the bus never comes high (likely // shorted). static inline bool _onewire_wait_for_bus(int pin, int max_wait) { bool state; for (int i = 0; i < ((max_wait + 4) / 5); i++) { if (gpio_read(pin)) break; sdk_os_delay_us(5); } state = gpio_read(pin); // Wait an extra 1us to make sure the devices have an adequate recovery // time before we drive things low again. sdk_os_delay_us(1); return state; } // Perform the onewire reset function. We will wait up to 250uS for // the bus to come high, if it doesn't then it is broken or shorted // and we return false; // // Returns true if a device asserted a presence pulse, false otherwise. // bool onewire_reset(int pin) { bool r; gpio_enable(pin, GPIO_OUT_OPEN_DRAIN); gpio_write(pin, 1); // wait until the wire is high... just in case if (!_onewire_wait_for_bus(pin, 250)) return false; gpio_write(pin, 0); sdk_os_delay_us(480); taskENTER_CRITICAL(); gpio_write(pin, 1); // allow it to float sdk_os_delay_us(70); r = !gpio_read(pin); taskEXIT_CRITICAL(); // Wait for all devices to finish pulling the bus low before returning if (!_onewire_wait_for_bus(pin, 410)) return false; return r; } static bool _onewire_write_bit(int pin, bool v) { if (!_onewire_wait_for_bus(pin, 10)) return false; if (v) { taskENTER_CRITICAL(); gpio_write(pin, 0); // drive output low sdk_os_delay_us(10); gpio_write(pin, 1); // allow output high taskEXIT_CRITICAL(); sdk_os_delay_us(55); } else { taskENTER_CRITICAL(); gpio_write(pin, 0); // drive output low sdk_os_delay_us(65); gpio_write(pin, 1); // allow output high taskEXIT_CRITICAL(); } sdk_os_delay_us(1); return true; } static int _onewire_read_bit(int pin) { int r; if (!_onewire_wait_for_bus(pin, 10)) return -1; taskENTER_CRITICAL(); gpio_write(pin, 0); sdk_os_delay_us(2); gpio_write(pin, 1); // let pin float, pull up will raise sdk_os_delay_us(11); r = gpio_read(pin); // Must sample within 15us of start taskEXIT_CRITICAL(); sdk_os_delay_us(48); return r; } // Write a byte. The writing code uses open-drain mode and expects the pullup // resistor to pull the line high when not driven low. If you need strong // power after the write (e.g. DS18B20 in parasite power mode) then call // onewire_power() after this is complete to actively drive the line high. // bool onewire_write(int pin, uint8_t v) { uint8_t bitMask; for (bitMask = 0x01; bitMask; bitMask <<= 1) { if (!_onewire_write_bit(pin, (bitMask & v))) { return false; } } return true; } bool onewire_write_bytes(int pin, const uint8_t *buf, size_t count) { size_t i; for (i = 0 ; i < count ; i++) { if (!onewire_write(pin, buf[i])) { return false; } } return true; } // Read a byte // int onewire_read(int pin) { uint8_t bitMask; int r = 0; int bit; for (bitMask = 0x01; bitMask; bitMask <<= 1) { bit = _onewire_read_bit(pin); if (bit < 0) { return -1; } else if (bit) { r |= bitMask; } } return r; } bool onewire_read_bytes(int pin, uint8_t *buf, size_t count) { size_t i; int b; for (i = 0 ; i < count ; i++) { b = onewire_read(pin); if (b < 0) return false; buf[i] = b; } return true; } bool onewire_select(int pin, onewire_addr_t addr) { uint8_t i; if (!onewire_write(pin, ONEWIRE_SELECT_ROM)) { return false; } for (i = 0; i < 8; i++) { if (!onewire_write(pin, addr & 0xff)) { return false; } addr >>= 8; } return true; } bool onewire_skip_rom(int pin) { return onewire_write(pin, ONEWIRE_SKIP_ROM); } bool onewire_power(int pin) { // Make sure the bus is not being held low before driving it high, or we // may end up shorting ourselves out. if (!_onewire_wait_for_bus(pin, 10)) return false; gpio_enable(pin, GPIO_OUTPUT); gpio_write(pin, 1); return true; } void onewire_depower(int pin) { gpio_enable(pin, GPIO_OUT_OPEN_DRAIN); } void onewire_search_start(onewire_search_t *search) { // reset the search state memset(search, 0, sizeof(*search)); } void onewire_search_prefix(onewire_search_t *search, uint8_t family_code) { uint8_t i; search->rom_no[0] = family_code; for (i = 1; i < 8; i++) { search->rom_no[i] = 0; } search->last_discrepancy = 64; search->last_device_found = false; } // Perform a search. If the next device has been successfully enumerated, its // ROM address will be returned. If there are no devices, no further // devices, or something horrible happens in the middle of the // enumeration then ONEWIRE_NONE is returned. Use OneWire::reset_search() to // start over. // // --- Replaced by the one from the Dallas Semiconductor web site --- //-------------------------------------------------------------------------- // Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing // search state. // Return 1 : device found, ROM number in ROM_NO buffer // 0 : device not found, end of search // onewire_addr_t onewire_search_next(onewire_search_t *search, int pin) { //TODO: add more checking for read/write errors uint8_t id_bit_number; uint8_t last_zero, search_result; int rom_byte_number; uint8_t id_bit, cmp_id_bit; onewire_addr_t addr; unsigned char rom_byte_mask; bool search_direction; // initialize for search id_bit_number = 1; last_zero = 0; rom_byte_number = 0; rom_byte_mask = 1; search_result = 0; // if the last call was not the last one if (!search->last_device_found) { // 1-Wire reset if (!onewire_reset(pin)) { // reset the search search->last_discrepancy = 0; search->last_device_found = false; return ONEWIRE_NONE; } // issue the search command onewire_write(pin, ONEWIRE_SEARCH); // loop to do the search do { // read a bit and its complement id_bit = _onewire_read_bit(pin); cmp_id_bit = _onewire_read_bit(pin); // check for no devices on 1-wire if ((id_bit < 0) || (cmp_id_bit < 0)) { // Read error break; } else if ((id_bit == 1) && (cmp_id_bit == 1)) { break; } else { // all devices coupled have 0 or 1 if (id_bit != cmp_id_bit) { search_direction = id_bit; // bit write value for search } else { // if this discrepancy if before the Last Discrepancy // on a previous next then pick the same as last time if (id_bit_number < search->last_discrepancy) { search_direction = ((search->rom_no[rom_byte_number] & rom_byte_mask) > 0); } else { // if equal to last pick 1, if not then pick 0 search_direction = (id_bit_number == search->last_discrepancy); } // if 0 was picked then record its position in LastZero if (!search_direction) { last_zero = id_bit_number; } } // set or clear the bit in the ROM byte rom_byte_number // with mask rom_byte_mask if (search_direction) { search->rom_no[rom_byte_number] |= rom_byte_mask; } else { search->rom_no[rom_byte_number] &= ~rom_byte_mask; } // serial number search direction write bit _onewire_write_bit(pin, search_direction); // increment the byte counter id_bit_number // and shift the mask rom_byte_mask id_bit_number++; rom_byte_mask <<= 1; // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask if (rom_byte_mask == 0) { rom_byte_number++; rom_byte_mask = 1; } } } while (rom_byte_number < 8); // loop until through all ROM bytes 0-7 // if the search was successful then if (!(id_bit_number < 65)) { // search successful so set last_discrepancy,last_device_found,search_result search->last_discrepancy = last_zero; // check for last device if (search->last_discrepancy == 0) { search->last_device_found = true; } search_result = 1; } } // if no device found then reset counters so next 'search' will be like a first if (!search_result || !search->rom_no[0]) { search->last_discrepancy = 0; search->last_device_found = false; return ONEWIRE_NONE; } else { addr = 0; for (rom_byte_number = 7; rom_byte_number >= 0; rom_byte_number--) { addr = (addr << 8) | search->rom_no[rom_byte_number]; } //printf("Ok I found something at %08x%08x...\n", (uint32_t)(addr >> 32), (uint32_t)addr); } return addr; } // The 1-Wire CRC scheme is described in Maxim Application Note 27: // "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" // #if ONEWIRE_CRC8_TABLE // This table comes from Dallas sample code where it is freely reusable, // though Copyright (C) 2000 Dallas Semiconductor Corporation static const uint8_t dscrc_table[] = { 0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65, 157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220, 35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98, 190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255, 70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7, 219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154, 101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36, 248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185, 140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205, 17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80, 175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238, 50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115, 202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139, 87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22, 233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168, 116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53}; #ifndef pgm_read_byte #define pgm_read_byte(addr) (*(const uint8_t *)(addr)) #endif // // Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM // and the registers. (note: this might better be done without to // table, it would probably be smaller and certainly fast enough // compared to all those delayMicrosecond() calls. But I got // confused, so I use this table from the examples.) // uint8_t onewire_crc8(const uint8_t *data, uint8_t len) { uint8_t crc = 0; while (len--) { crc = pgm_read_byte(dscrc_table + (crc ^ *data++)); } return crc; } #else // // Compute a Dallas Semiconductor 8 bit CRC directly. // this is much slower, but much smaller, than the lookup table. // uint8_t onewire_crc8(const uint8_t *data, uint8_t len) { uint8_t crc = 0; while (len--) { uint8_t inbyte = *data++; for (int i = 8; i; i--) { uint8_t mix = (crc ^ inbyte) & 0x01; crc >>= 1; if (mix) crc ^= 0x8C; inbyte >>= 1; } } return crc; } #endif // Compute the 1-Wire CRC16 and compare it against the received CRC. // Example usage (reading a DS2408): // // Put everything in a buffer so we can compute the CRC easily. // uint8_t buf[13]; // buf[0] = 0xF0; // Read PIO Registers // buf[1] = 0x88; // LSB address // buf[2] = 0x00; // MSB address // WriteBytes(net, buf, 3); // Write 3 cmd bytes // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16 // if (!CheckCRC16(buf, 11, &buf[11])) { // // Handle error. // } // // @param input - Array of bytes to checksum. // @param len - How many bytes to use. // @param inverted_crc - The two CRC16 bytes in the received data. // This should just point into the received data, // *not* at a 16-bit integer. // @param crc - The crc starting value (optional) // @return 1, iff the CRC matches. bool onewire_check_crc16(const uint8_t* input, size_t len, const uint8_t* inverted_crc, uint16_t crc_iv) { uint16_t crc = ~onewire_crc16(input, len, crc_iv); return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1]; } // Compute a Dallas Semiconductor 16 bit CRC. This is required to check // the integrity of data received from many 1-Wire devices. Note that the // CRC computed here is *not* what you'll get from the 1-Wire network, // for two reasons: // 1) The CRC is transmitted bitwise inverted. // 2) Depending on the endian-ness of your processor, the binary // representation of the two-byte return value may have a different // byte order than the two bytes you get from 1-Wire. // @param input - Array of bytes to checksum. // @param len - How many bytes to use. // @param crc - The crc starting value (optional) // @return The CRC16, as defined by Dallas Semiconductor. uint16_t onewire_crc16(const uint8_t* input, size_t len, uint16_t crc_iv) { uint16_t crc = crc_iv; static const uint8_t oddparity[16] = { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; uint16_t i; for (i = 0 ; i < len ; i++) { // Even though we're just copying a byte from the input, // we'll be doing 16-bit computation with it. uint16_t cdata = input[i]; cdata = (cdata ^ crc) & 0xff; crc >>= 8; if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4]) crc ^= 0xC001; cdata <<= 6; crc ^= cdata; cdata <<= 1; crc ^= cdata; } return crc; }