/* * Driver for Bosch Sensortec BME680 digital temperature, humity, pressure and * gas sensor connected to I2C or SPI * * Part of esp-open-rtos [https://github.com/SuperHouse/esp-open-rtos] * * PLEASE NOTE: * Due to the complexity of the sensor output value computation based on many * calibration parameters, the original Bosch Sensortec BME680 driver that is * released as open source [https://github.com/BoschSensortec/BME680_driver] * and integrated for internal use. Please note the license of this part, which * is an extended BSD license and can be found in each of that source files. * * --------------------------------------------------------------------------- * * The BSD License (3-clause license) * * Copyright (c) 2017 Gunar Schorcht (https://github.com/gschorcht] * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include "bme680_drv.h" #include "FreeRTOS.h" #include "task.h" #include "espressif/esp_common.h" #include "espressif/sdk_private.h" #ifdef BME680_DEBUG #define debug(s, f, ...) printf("%s %s: " s "\n", "BME680", f, ## __VA_ARGS__) #else #define debug(s, f, ...) #endif #define error(s, f, ...) printf("%s %s: " s "\n", "BME680", f, ## __VA_ARGS__) #define BME680_BG_TASK_PRIORITY 9 /** * Forward declation of internal functions used by embedded Bosch Sensortec BME680 driver. */ static void bme680_user_delay_ms(uint32_t period); static int8_t bme680_user_spi_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len); static int8_t bme680_user_spi_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len); static int8_t bme680_user_i2c_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len); static int8_t bme680_user_i2c_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len); /** * Sensor data structures */ bme680_sensor_t bme680_sensors[BME680_MAX_SENSORS]; /** */ static bool bme680_valid_sensor (uint32_t sensor, const char* function) { if (sensor < 0 || sensor > BME680_MAX_SENSORS) { debug("Wrong sensor id %d.", function, sensor); return false; } if (!bme680_sensors[sensor].active) { debug("Sensor with id %d is not active.", function, sensor); return false; } return true; } static bool bme680_is_available (uint32_t id) { struct bme680_dev *dev = &bme680_sensors[id].dev; if (!bme680_valid_sensor(id, __FUNCTION__) || bme680_get_regs(BME680_CHIP_ID_ADDR, &dev->chip_id, 1, dev) != BME680_OK) { return false; } return true; } static void bme680_compute_values (uint8_t id, struct bme680_field_data* data) { if (!bme680_valid_sensor(id, __FUNCTION__) || !data) return; bme680_value_set_t act; bme680_value_set_t avg = bme680_sensors[id].average; float w = bme680_sensors[id].average_weight; act.temperature = bme680_sensors[id].dev.tph_sett.os_temp ? data->temperature / 100.0f : 0; act.pressure = bme680_sensors[id].dev.tph_sett.os_pres ? data->pressure / 100.0f : 0; act.humidity = bme680_sensors[id].dev.tph_sett.os_hum ? data->humidity / 1000.0f : 0; act.gas = bme680_sensors[id].dev.gas_sett.heatr_dur ? data->gas_resistance : 0; if (bme680_sensors[id].average_first_measurement || !bme680_sensors[id].average_computation) { bme680_sensors[id].average_first_measurement = false; avg = act; } else { avg.temperature = w * act.temperature + (1-w) * avg.temperature; avg.humidity = w * act.humidity + (1-w) * avg.humidity; avg.pressure = w * act.pressure + (1-w) * avg.pressure; avg.gas = w * act.gas + (1-w) * avg.gas; } bme680_sensors[id].actual = act; bme680_sensors[id].average = avg; } static void bme680_background_task (void *pvParameters) { uint32_t id = (uint32_t)pvParameters; uint32_t next_time = sdk_system_get_time (); while (1) { debug("%.3f Sensor %d", __FUNCTION__, (double)sdk_system_get_time()*1e-3, id); struct bme680_dev* dev = &bme680_sensors[id].dev; struct bme680_field_data data; uint8_t set_required_settings; int8_t rslt = BME680_OK; /* Select the power mode */ /* Must be set before writing the sensor configuration */ dev->power_mode = BME680_FORCED_MODE; debug ("Using oversampling rates: %d %d %d", __FUNCTION__, bme680_sensors[id].dev.tph_sett.os_temp, bme680_sensors[id].dev.tph_sett.os_pres, bme680_sensors[id].dev.tph_sett.os_hum); /* Set the required sensor settings needed */ set_required_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_FILTER_SEL | BME680_GAS_SENSOR_SEL; /* Set the desired sensor configuration */ rslt = bme680_set_sensor_settings(set_required_settings, dev); /* Set the power mode to forced mode to trigger one TPHG measurement cycle */ rslt = bme680_set_sensor_mode(dev); /* Get the total measurement duration so as to sleep or wait till the * measurement is complete */ uint16_t meas_period; bme680_get_profile_dur(&meas_period, dev); vTaskDelay(meas_period/portTICK_PERIOD_MS); /* Delay till the measurement is ready */ if ((rslt = bme680_get_sensor_data(&data, dev)) == BME680_OK) { bme680_compute_values(id, &data); debug("%d ms: %.2f C, %.2f Percent, %.2f hPa, %.2f Ohm", __FUNCTION__, sdk_system_get_time (), bme680_sensors[id].actual.temperature, bme680_sensors[id].actual.humidity, bme680_sensors[id].actual.pressure, bme680_sensors[id].actual.gas); if (bme680_sensors[id].cb_function) bme680_sensors[id].cb_function(id, bme680_sensors[id].actual, bme680_sensors[id].average); } else error("Could not get data from sensor with id %d", __FUNCTION__,id); /* Compute next measurement time as well as remaining cycle time*/ uint32_t system_time = sdk_system_get_time (); uint32_t remaining_time; next_time = next_time + bme680_sensors[id].period*1000; // in us if (next_time < system_time) // in case of timer overflow remaining_time = UINT32_MAX - system_time + next_time; else // normal case remaining_time = next_time - system_time; /* Delay the background task by the cycle time */ vTaskDelay(remaining_time/1000/portTICK_PERIOD_MS); } } bool bme680_init_driver() { for (int id=0; id < BME680_MAX_SENSORS; id++) bme680_sensors[id].active = false; return true; } uint32_t bme680_create_sensor(uint8_t bus, uint8_t addr, uint8_t cs) { static uint32_t id; static char bg_task_name[20]; // search for first free sensor data structure for (id=0; id < BME680_MAX_SENSORS; id++) { debug("id=%d active=%d", __FUNCTION__, id, bme680_sensors[id].active); if (!bme680_sensors[id].active) break; } debug("id=%d", __FUNCTION__, id); if (id == BME680_MAX_SENSORS) { debug("No more sensor data structures available.", __FUNCTION__); return -1; } // init sensor data structure bme680_sensors[id].bus = bus; bme680_sensors[id].addr = addr; bme680_sensors[id].period = 1000; bme680_sensors[id].average_computation = true; bme680_sensors[id].average_first_measurement = true; bme680_sensors[id].average_weight = 0.2; bme680_sensors[id].cb_function = NULL; bme680_sensors[id].bg_task = NULL; bme680_sensors[id].dev.dev_id = id; if (bme680_sensors[id].addr) { // I2C interface used bme680_sensors[id].addr = addr; bme680_sensors[id].dev.intf = BME680_I2C_INTF; bme680_sensors[id].dev.read = bme680_user_i2c_read; bme680_sensors[id].dev.write = bme680_user_i2c_write; bme680_sensors[id].dev.delay_ms = bme680_user_delay_ms; } else { // SPI interface used bme680_sensors[id].spi_cs_pin = cs; bme680_sensors[id].dev.intf = BME680_SPI_INTF; bme680_sensors[id].dev.read = bme680_user_spi_read; bme680_sensors[id].dev.write = bme680_user_spi_write; bme680_sensors[id].dev.delay_ms = bme680_user_delay_ms; gpio_enable(bme680_sensors[id].spi_cs_pin, GPIO_OUTPUT); gpio_write (bme680_sensors[id].spi_cs_pin, true); } // initialize embedded Bosch Sensortec driver if (bme680_init(&bme680_sensors[id].dev)) { error("Could not initialize the sensor device with id %d", __FUNCTION__, id); return -1; } bme680_sensors[id].active = true; /* Set the default temperature, pressure and humidity settings */ bme680_set_oversampling_rates (id, os_1x, os_1x, os_1x); bme680_set_filter_size (id, iir_size_3); /* Set heater default profile 320 degree Celcius for 150 ms */ bme680_set_heater_profile (id, 320, 150); // check whether sensor is available if (!bme680_is_available(id)) { debug("Sensor with id %d is not available", __FUNCTION__, id); bme680_sensors[id].active = false; return -1; } snprintf (bg_task_name, 20, "bme680_bg_task_%d", id); if (xTaskCreate (bme680_background_task, bg_task_name, 256, (void*)id, BME680_BG_TASK_PRIORITY, &bme680_sensors[id].bg_task) != pdPASS) { vTaskDelete(bme680_sensors[id].bg_task); error("Could not create the background task %s for sensor with id %d\n", __FUNCTION__, bg_task_name, id); bme680_sensors[id].active = false; return false; } return id; } bool bme680_delete_sensor(uint32_t sensor) { if (!bme680_valid_sensor(sensor, __FUNCTION__)) return false; bme680_sensors[sensor].active = false; if (bme680_sensors[sensor].bg_task) vTaskDelete(bme680_sensors[sensor].bg_task); return true; } bool bme680_set_measurement_period (uint32_t sensor, uint32_t period) { if (!bme680_valid_sensor(sensor, __FUNCTION__)) return false; if (period < 20) error("Period of %d ms is less than the minimum " "period of 20 ms for sensor with id %d.", __FUNCTION__, period, sensor); bme680_sensors[sensor].period = period; return true; } bool bme680_set_callback_function (uint32_t sensor, bme680_cb_function_t bme680_user_function) { if (!bme680_valid_sensor(sensor, __FUNCTION__)) return false; bme680_sensors[sensor].cb_function = bme680_user_function; debug("Set callback function done.", __FUNCTION__); return false; } bool bme680_get_values(uint32_t sensor, bme680_value_set_t *actual, bme680_value_set_t *average) { if (!bme680_valid_sensor(sensor, __FUNCTION__)) return false; if (actual) *actual = bme680_sensors[sensor].actual; if (average) *average = bme680_sensors[sensor].average; return true; } bool bme680_enable_average_computation (uint32_t sensor, bool enabled) { if (!bme680_valid_sensor(sensor, __FUNCTION__)) return false; bme680_sensors[sensor].average_computation = enabled; bme680_sensors[sensor].average_first_measurement = enabled; return true; } bool bme680_set_average_weight (uint32_t sensor, float weight) { if (!bme680_valid_sensor(sensor, __FUNCTION__)) return false; bme680_sensors[sensor].average_first_measurement = true; bme680_sensors[sensor].average_weight = weight; return true; } bool bme680_set_oversampling_rates (uint32_t sensor, bme680_oversampling_t ost, bme680_oversampling_t osp, bme680_oversampling_t osh) { if (!bme680_valid_sensor(sensor, __FUNCTION__)) return false; /* Set the temperature, pressure and humidity settings */ bme680_sensors[sensor].dev.tph_sett.os_temp = ost; bme680_sensors[sensor].dev.tph_sett.os_pres = osp; bme680_sensors[sensor].dev.tph_sett.os_hum = osh; debug ("Setting oversampling rates done: osrt=%d osp=%d osrh=%d", __FUNCTION__, bme680_sensors[sensor].dev.tph_sett.os_temp, bme680_sensors[sensor].dev.tph_sett.os_pres, bme680_sensors[sensor].dev.tph_sett.os_hum); bme680_sensors[sensor].average_first_measurement = true; return true; } bool bme680_set_heater_profile (uint32_t sensor, uint16_t temperature, uint16_t duration) { if (!bme680_valid_sensor(sensor, __FUNCTION__)) return false; /* Set the temperature, pressure and humidity settings */ bme680_sensors[sensor].dev.gas_sett.heatr_temp = temperature; /* degree Celsius */ bme680_sensors[sensor].dev.gas_sett.heatr_dur = duration; /* milliseconds */ debug ("Setting heater profile done: temperature=%d duration=%d", __FUNCTION__, bme680_sensors[sensor].dev.gas_sett.heatr_temp, bme680_sensors[sensor].dev.gas_sett.heatr_dur); /* Set the remaining default gas sensor settings and link the heating profile */ if (temperature == 0 || duration == 0) bme680_sensors[sensor].dev.gas_sett.run_gas = BME680_DISABLE_GAS_MEAS; else bme680_sensors[sensor].dev.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS; bme680_sensors[sensor].average_first_measurement = true; return true; } bool bme680_set_filter_size(uint32_t sensor, bme680_filter_size_t size) { if (!bme680_valid_sensor(sensor, __FUNCTION__)) return false; /* Set the temperature, pressure and humidity settings */ bme680_sensors[sensor].dev.tph_sett.filter = size; debug ("Setting filter size done: size=%d", __FUNCTION__, bme680_sensors[sensor].dev.tph_sett.filter); bme680_sensors[sensor].average_first_measurement = true; return true; } /** * Internal functions used by embedded Bosch Sensortec BME680 driver. */ static void bme680_user_delay_ms(uint32_t period) { /* * Return control or wait, * for a period amount of milliseconds */ vTaskDelay(period / portTICK_PERIOD_MS); } #define BME680_SPI_BUF_SIZE 64 // SPI register data buffer size of ESP866 static const spi_settings_t bus_settings = { .mode = SPI_MODE0, .freq_divider = SPI_FREQ_DIV_10M, .msb = true, .minimal_pins = true, .endianness = SPI_LITTLE_ENDIAN }; static int8_t bme680_user_spi_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) { /* * The parameter dev_id can be used as a variable to select which Chip Select pin has * to be set low to activate the relevant device on the SPI bus */ /* * Data on the bus should be like * |----------------+---------------------+-------------| * | MOSI | MISO | Chip Select | * |----------------+---------------------|-------------| * | (don't care) | (don't care) | HIGH | * | (reg_addr) | (don't care) | LOW | * | (don't care) | (reg_data[0]) | LOW | * | (....) | (....) | LOW | * | (don't care) | (reg_data[len - 1]) | LOW | * | (don't care) | (don't care) | HIGH | * |----------------+---------------------|-------------| */ // debug("dev_id=%d, reg_addr=%0x, len=%d\n", __FUNCTION__, dev_id, reg_addr, len); if (len >= BME680_SPI_BUF_SIZE) { error("Error on read from SPI slave on bus 1. Tried to transfer more" "than %d byte in one read operation.", __FUNCTION__, BME680_SPI_BUF_SIZE); return -1; } spi_settings_t old_settings; static uint8_t mosi[BME680_SPI_BUF_SIZE]; static uint8_t miso[BME680_SPI_BUF_SIZE]; memset (mosi, 0xff, BME680_SPI_BUF_SIZE); memset (miso, 0xff, BME680_SPI_BUF_SIZE); mosi[0] = reg_addr; uint8_t bus = bme680_sensors[dev_id].bus; uint8_t spi_cs_pin = bme680_sensors[dev_id].spi_cs_pin; spi_get_settings(bus, &old_settings); spi_set_settings(bus, &bus_settings); gpio_write(spi_cs_pin, false); size_t success = spi_transfer (bus, (const void*)mosi, (void*)miso, len+1, SPI_8BIT); gpio_write(spi_cs_pin, true); spi_set_settings(bus, &old_settings); if (!success) { error("Could not read data from SPI bus %d", __FUNCTION__, bus); return -1; } for (int i=0; i < len; i++) reg_data[i] = miso[i+1]; # ifdef BME680_DEBUG printf("BME680 %s: Read the following bytes: ", __FUNCTION__); printf("%0x ", reg_addr); for (int i=0; i < len; i++) printf("%0x ", reg_data[i]); printf("\n"); # endif return 0; } static int8_t bme680_user_spi_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) { /* * The parameter dev_id can be used as a variable to select which Chip Select pin has * to be set low to activate the relevant device on the SPI bus */ /* * Data on the bus should be like * |---------------------+--------------+-------------| * | MOSI | MISO | Chip Select | * |---------------------+--------------|-------------| * | (don't care) | (don't care) | HIGH | * | (reg_addr) | (don't care) | LOW | * | (reg_data[0]) | (don't care) | LOW | * | (....) | (....) | LOW | * | (reg_data[len - 1]) | (don't care) | LOW | * | (don't care) | (don't care) | HIGH | * |---------------------+--------------|-------------| */ static uint8_t mosi[BME680_SPI_BUF_SIZE]; if (len >= BME680_SPI_BUF_SIZE) { error("Error on write to SPI slave on bus 1. Tried to transfer more" "than %d byte in one write operation.", __FUNCTION__, BME680_SPI_BUF_SIZE); return -1; } mosi[0] = reg_addr; for (int i = 0; i < len; i++) mosi[i+1] = reg_data[i]; # ifdef BME680_DEBUG printf("BME680 %s: Write the following bytes: ", __FUNCTION__); for (int i = 0; i < len+1; i++) printf("%0x ", mosi[i]); printf("\n"); # endif spi_settings_t old_settings; uint8_t bus = bme680_sensors[dev_id].bus; uint8_t spi_cs_pin = bme680_sensors[dev_id].spi_cs_pin; spi_get_settings(bus, &old_settings); spi_set_settings(bus, &bus_settings); gpio_write(spi_cs_pin, false); size_t success = spi_transfer (bus, (const void*)mosi, NULL, len+1, SPI_8BIT); gpio_write(spi_cs_pin, true); spi_set_settings(bus, &old_settings); if (!success) { error("Could not write data to SPI bus %d", __FUNCTION__, bus); return -1; } return 0; } static int8_t bme680_user_i2c_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) { /* * The parameter dev_id can be used as a variable to store the I2C address of the device */ /* * Data on the bus should be like * |------------+---------------------| * | I2C action | Data | * |------------+---------------------| * | Start | - | * | Write | (reg_addr) | * | Stop | - | * | Start | - | * | Read | (reg_data[0]) | * | Read | (....) | * | Read | (reg_data[len - 1]) | * | Stop | - | * |------------+---------------------| */ debug ("Read %d byte from i2c slave on bus %d with addr %0x.", __FUNCTION__, len, bme680_sensors[dev_id].bus, bme680_sensors[dev_id].addr); int result = i2c_slave_read(bme680_sensors[dev_id].bus, bme680_sensors[dev_id].addr, ®_addr, reg_data, len); if (result) { error("Error %d on read %d byte from I2C slave on bus %d with addr %0x.", __FUNCTION__, result, len, bme680_sensors[dev_id].bus, bme680_sensors[dev_id].addr); return result; } # ifdef BME680_DEBUG printf("BME680 %s: Read following bytes: ", __FUNCTION__); printf("%0x ", reg_addr); for (int i=0; i < len; i++) printf("%0x ", reg_data[i]); printf("\n"); # endif return result; } static int8_t bme680_user_i2c_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint16_t len) { /* * The parameter dev_id can be used as a variable to store the I2C address of the device */ /* * Data on the bus should be like * |------------+---------------------| * | I2C action | Data | * |------------+---------------------| * | Start | - | * | Write | (reg_addr) | * | Write | (reg_data[0]) | * | Write | (....) | * | Write | (reg_data[len - 1]) | * | Stop | - | * |------------+---------------------| */ debug ("Write %d byte to i2c slave on bus %d with addr %0x.", __FUNCTION__, len, bme680_sensors[dev_id].bus, bme680_sensors[dev_id].addr); int result = i2c_slave_write(bme680_sensors[dev_id].bus, bme680_sensors[dev_id].addr, ®_addr, reg_data, len); if (result) { error("Error %d on write to i2c slave on bus %d with addr %0x.", __FUNCTION__, result, bme680_sensors[dev_id].bus, bme680_sensors[dev_id].addr); return result; } # ifdef BME680_DEBUG printf("BME680 %s: Wrote the following bytes: ", __FUNCTION__); printf("%0x ", reg_addr); for (int i=0; i < len; i++) printf("%0x ", reg_data[i]); printf("\n"); # endif return result; }