/* FreeRTOS V7.5.2 - Copyright (C) 2013 Real Time Engineers Ltd. VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. *************************************************************************** * * * FreeRTOS provides completely free yet professionally developed, * * robust, strictly quality controlled, supported, and cross * * platform software that has become a de facto standard. * * * * Help yourself get started quickly and support the FreeRTOS * * project by purchasing a FreeRTOS tutorial book, reference * * manual, or both from: http://www.FreeRTOS.org/Documentation * * * * Thank you! * * * *************************************************************************** This file is part of the FreeRTOS distribution. FreeRTOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception. >>! NOTE: The modification to the GPL is included to allow you to distribute >>! a combined work that includes FreeRTOS without being obliged to provide >>! the source code for proprietary components outside of the FreeRTOS >>! kernel. FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Full license text is available from the following link: http://www.freertos.org/a00114.html 1 tab == 4 spaces! *************************************************************************** * * * Having a problem? Start by reading the FAQ "My application does * * not run, what could be wrong?" * * * * http://www.FreeRTOS.org/FAQHelp.html * * * *************************************************************************** http://www.FreeRTOS.org - Documentation, books, training, latest versions, license and Real Time Engineers Ltd. contact details. http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, including FreeRTOS+Trace - an indispensable productivity tool, a DOS compatible FAT file system, and our tiny thread aware UDP/IP stack. http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS licenses offer ticketed support, indemnification and middleware. http://www.SafeRTOS.com - High Integrity Systems also provide a safety engineered and independently SIL3 certified version for use in safety and mission critical applications that require provable dependability. 1 tab == 4 spaces! */ #ifndef TIMERS_H #define TIMERS_H #ifndef INC_FREERTOS_H #error "include FreeRTOS.h must appear in source files before include timers.h" #endif /*lint -e537 This headers are only multiply included if the application code happens to also be including task.h. */ #include "task.h" /*lint +e956 */ #ifdef __cplusplus extern "C" { #endif /* IDs for commands that can be sent/received on the timer queue. These are to be used solely through the macros that make up the public software timer API, as defined below. */ #define tmrCOMMAND_START ( ( portBASE_TYPE ) 0 ) #define tmrCOMMAND_STOP ( ( portBASE_TYPE ) 1 ) #define tmrCOMMAND_CHANGE_PERIOD ( ( portBASE_TYPE ) 2 ) #define tmrCOMMAND_DELETE ( ( portBASE_TYPE ) 3 ) /*----------------------------------------------------------- * MACROS AND DEFINITIONS *----------------------------------------------------------*/ /** * Type by which software timers are referenced. For example, a call to * xTimerCreate() returns an xTimerHandle variable that can then be used to * reference the subject timer in calls to other software timer API functions * (for example, xTimerStart(), xTimerReset(), etc.). */ typedef void * xTimerHandle; /* Define the prototype to which timer callback functions must conform. */ typedef void (*tmrTIMER_CALLBACK)( xTimerHandle xTimer ); /** * xTimerHandle xTimerCreate( const signed char *pcTimerName, * portTickType xTimerPeriodInTicks, * unsigned portBASE_TYPE uxAutoReload, * void * pvTimerID, * tmrTIMER_CALLBACK pxCallbackFunction ); * * Creates a new software timer instance. This allocates the storage required * by the new timer, initialises the new timers internal state, and returns a * handle by which the new timer can be referenced. * * Timers are created in the dormant state. The xTimerStart(), xTimerReset(), * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and * xTimerChangePeriodFromISR() API functions can all be used to transition a timer into the * active state. * * @param pcTimerName A text name that is assigned to the timer. This is done * purely to assist debugging. The kernel itself only ever references a timer by * its handle, and never by its name. * * @param xTimerPeriodInTicks The timer period. The time is defined in tick periods so * the constant portTICK_RATE_MS can be used to convert a time that has been * specified in milliseconds. For example, if the timer must expire after 100 * ticks, then xTimerPeriodInTicks should be set to 100. Alternatively, if the timer * must expire after 500ms, then xPeriod can be set to ( 500 / portTICK_RATE_MS ) * provided configTICK_RATE_HZ is less than or equal to 1000. * * @param uxAutoReload If uxAutoReload is set to pdTRUE then the timer will * expire repeatedly with a frequency set by the xTimerPeriodInTicks parameter. If * uxAutoReload is set to pdFALSE then the timer will be a one-shot timer and * enter the dormant state after it expires. * * @param pvTimerID An identifier that is assigned to the timer being created. * Typically this would be used in the timer callback function to identify which * timer expired when the same callback function is assigned to more than one * timer. * * @param pxCallbackFunction The function to call when the timer expires. * Callback functions must have the prototype defined by tmrTIMER_CALLBACK, * which is "void vCallbackFunction( xTimerHandle xTimer );". * * @return If the timer is successfully create then a handle to the newly * created timer is returned. If the timer cannot be created (because either * there is insufficient FreeRTOS heap remaining to allocate the timer * structures, or the timer period was set to 0) then 0 is returned. * * Example usage: * @verbatim * #define NUM_TIMERS 5 * * // An array to hold handles to the created timers. * xTimerHandle xTimers[ NUM_TIMERS ]; * * // An array to hold a count of the number of times each timer expires. * long lExpireCounters[ NUM_TIMERS ] = { 0 }; * * // Define a callback function that will be used by multiple timer instances. * // The callback function does nothing but count the number of times the * // associated timer expires, and stop the timer once the timer has expired * // 10 times. * void vTimerCallback( xTimerHandle pxTimer ) * { * long lArrayIndex; * const long xMaxExpiryCountBeforeStopping = 10; * * // Optionally do something if the pxTimer parameter is NULL. * configASSERT( pxTimer ); * * // Which timer expired? * lArrayIndex = ( long ) pvTimerGetTimerID( pxTimer ); * * // Increment the number of times that pxTimer has expired. * lExpireCounters[ lArrayIndex ] += 1; * * // If the timer has expired 10 times then stop it from running. * if( lExpireCounters[ lArrayIndex ] == xMaxExpiryCountBeforeStopping ) * { * // Do not use a block time if calling a timer API function from a * // timer callback function, as doing so could cause a deadlock! * xTimerStop( pxTimer, 0 ); * } * } * * void main( void ) * { * long x; * * // Create then start some timers. Starting the timers before the scheduler * // has been started means the timers will start running immediately that * // the scheduler starts. * for( x = 0; x < NUM_TIMERS; x++ ) * { * xTimers[ x ] = xTimerCreate( "Timer", // Just a text name, not used by the kernel. * ( 100 * x ), // The timer period in ticks. * pdTRUE, // The timers will auto-reload themselves when they expire. * ( void * ) x, // Assign each timer a unique id equal to its array index. * vTimerCallback // Each timer calls the same callback when it expires. * ); * * if( xTimers[ x ] == NULL ) * { * // The timer was not created. * } * else * { * // Start the timer. No block time is specified, and even if one was * // it would be ignored because the scheduler has not yet been * // started. * if( xTimerStart( xTimers[ x ], 0 ) != pdPASS ) * { * // The timer could not be set into the Active state. * } * } * } * * // ... * // Create tasks here. * // ... * * // Starting the scheduler will start the timers running as they have already * // been set into the active state. * xTaskStartScheduler(); * * // Should not reach here. * for( ;; ); * } * @endverbatim */ xTimerHandle xTimerCreate( const signed char * const pcTimerName, portTickType xTimerPeriodInTicks, unsigned portBASE_TYPE uxAutoReload, void * pvTimerID, tmrTIMER_CALLBACK pxCallbackFunction ) PRIVILEGED_FUNCTION; /** * void *pvTimerGetTimerID( xTimerHandle xTimer ); * * Returns the ID assigned to the timer. * * IDs are assigned to timers using the pvTimerID parameter of the call to * xTimerCreated() that was used to create the timer. * * If the same callback function is assigned to multiple timers then the timer * ID can be used within the callback function to identify which timer actually * expired. * * @param xTimer The timer being queried. * * @return The ID assigned to the timer being queried. * * Example usage: * * See the xTimerCreate() API function example usage scenario. */ void *pvTimerGetTimerID( xTimerHandle xTimer ) PRIVILEGED_FUNCTION; /** * portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ); * * Queries a timer to see if it is active or dormant. * * A timer will be dormant if: * 1) It has been created but not started, or * 2) It is an expired on-shot timer that has not been restarted. * * Timers are created in the dormant state. The xTimerStart(), xTimerReset(), * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and * xTimerChangePeriodFromISR() API functions can all be used to transition a timer into the * active state. * * @param xTimer The timer being queried. * * @return pdFALSE will be returned if the timer is dormant. A value other than * pdFALSE will be returned if the timer is active. * * Example usage: * @verbatim * // This function assumes xTimer has already been created. * void vAFunction( xTimerHandle xTimer ) * { * if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )" * { * // xTimer is active, do something. * } * else * { * // xTimer is not active, do something else. * } * } * @endverbatim */ portBASE_TYPE xTimerIsTimerActive( xTimerHandle xTimer ) PRIVILEGED_FUNCTION; /** * xTimerGetTimerDaemonTaskHandle() is only available if * INCLUDE_xTimerGetTimerDaemonTaskHandle is set to 1 in FreeRTOSConfig.h. * * Simply returns the handle of the timer service/daemon task. It it not valid * to call xTimerGetTimerDaemonTaskHandle() before the scheduler has been started. */ xTaskHandle xTimerGetTimerDaemonTaskHandle( void ); /** * portBASE_TYPE xTimerStart( xTimerHandle xTimer, portTickType xBlockTime ); * * Timer functionality is provided by a timer service/daemon task. Many of the * public FreeRTOS timer API functions send commands to the timer service task * though a queue called the timer command queue. The timer command queue is * private to the kernel itself and is not directly accessible to application * code. The length of the timer command queue is set by the * configTIMER_QUEUE_LENGTH configuration constant. * * xTimerStart() starts a timer that was previously created using the * xTimerCreate() API function. If the timer had already been started and was * already in the active state, then xTimerStart() has equivalent functionality * to the xTimerReset() API function. * * Starting a timer ensures the timer is in the active state. If the timer * is not stopped, deleted, or reset in the mean time, the callback function * associated with the timer will get called 'n' ticks after xTimerStart() was * called, where 'n' is the timers defined period. * * It is valid to call xTimerStart() before the scheduler has been started, but * when this is done the timer will not actually start until the scheduler is * started, and the timers expiry time will be relative to when the scheduler is * started, not relative to when xTimerStart() was called. * * The configUSE_TIMERS configuration constant must be set to 1 for xTimerStart() * to be available. * * @param xTimer The handle of the timer being started/restarted. * * @param xBlockTime Specifies the time, in ticks, that the calling task should * be held in the Blocked state to wait for the start command to be successfully * sent to the timer command queue, should the queue already be full when * xTimerStart() was called. xBlockTime is ignored if xTimerStart() is called * before the scheduler is started. * * @return pdFAIL will be returned if the start command could not be sent to * the timer command queue even after xBlockTime ticks had passed. pdPASS will * be returned if the command was successfully sent to the timer command queue. * When the command is actually processed will depend on the priority of the * timer service/daemon task relative to other tasks in the system, although the * timers expiry time is relative to when xTimerStart() is actually called. The * timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY * configuration constant. * * Example usage: * * See the xTimerCreate() API function example usage scenario. * */ #define xTimerStart( xTimer, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCount() ), NULL, ( xBlockTime ) ) /** * portBASE_TYPE xTimerStop( xTimerHandle xTimer, portTickType xBlockTime ); * * Timer functionality is provided by a timer service/daemon task. Many of the * public FreeRTOS timer API functions send commands to the timer service task * though a queue called the timer command queue. The timer command queue is * private to the kernel itself and is not directly accessible to application * code. The length of the timer command queue is set by the * configTIMER_QUEUE_LENGTH configuration constant. * * xTimerStop() stops a timer that was previously started using either of the * The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimerResetFromISR(), * xTimerChangePeriod() or xTimerChangePeriodFromISR() API functions. * * Stopping a timer ensures the timer is not in the active state. * * The configUSE_TIMERS configuration constant must be set to 1 for xTimerStop() * to be available. * * @param xTimer The handle of the timer being stopped. * * @param xBlockTime Specifies the time, in ticks, that the calling task should * be held in the Blocked state to wait for the stop command to be successfully * sent to the timer command queue, should the queue already be full when * xTimerStop() was called. xBlockTime is ignored if xTimerStop() is called * before the scheduler is started. * * @return pdFAIL will be returned if the stop command could not be sent to * the timer command queue even after xBlockTime ticks had passed. pdPASS will * be returned if the command was successfully sent to the timer command queue. * When the command is actually processed will depend on the priority of the * timer service/daemon task relative to other tasks in the system. The timer * service/daemon task priority is set by the configTIMER_TASK_PRIORITY * configuration constant. * * Example usage: * * See the xTimerCreate() API function example usage scenario. * */ #define xTimerStop( xTimer, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP, 0U, NULL, ( xBlockTime ) ) /** * portBASE_TYPE xTimerChangePeriod( xTimerHandle xTimer, * portTickType xNewPeriod, * portTickType xBlockTime ); * * Timer functionality is provided by a timer service/daemon task. Many of the * public FreeRTOS timer API functions send commands to the timer service task * though a queue called the timer command queue. The timer command queue is * private to the kernel itself and is not directly accessible to application * code. The length of the timer command queue is set by the * configTIMER_QUEUE_LENGTH configuration constant. * * xTimerChangePeriod() changes the period of a timer that was previously * created using the xTimerCreate() API function. * * xTimerChangePeriod() can be called to change the period of an active or * dormant state timer. * * The configUSE_TIMERS configuration constant must be set to 1 for * xTimerChangePeriod() to be available. * * @param xTimer The handle of the timer that is having its period changed. * * @param xNewPeriod The new period for xTimer. Timer periods are specified in * tick periods, so the constant portTICK_RATE_MS can be used to convert a time * that has been specified in milliseconds. For example, if the timer must * expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively, * if the timer must expire after 500ms, then xNewPeriod can be set to * ( 500 / portTICK_RATE_MS ) provided configTICK_RATE_HZ is less than * or equal to 1000. * * @param xBlockTime Specifies the time, in ticks, that the calling task should * be held in the Blocked state to wait for the change period command to be * successfully sent to the timer command queue, should the queue already be * full when xTimerChangePeriod() was called. xBlockTime is ignored if * xTimerChangePeriod() is called before the scheduler is started. * * @return pdFAIL will be returned if the change period command could not be * sent to the timer command queue even after xBlockTime ticks had passed. * pdPASS will be returned if the command was successfully sent to the timer * command queue. When the command is actually processed will depend on the * priority of the timer service/daemon task relative to other tasks in the * system. The timer service/daemon task priority is set by the * configTIMER_TASK_PRIORITY configuration constant. * * Example usage: * @verbatim * // This function assumes xTimer has already been created. If the timer * // referenced by xTimer is already active when it is called, then the timer * // is deleted. If the timer referenced by xTimer is not active when it is * // called, then the period of the timer is set to 500ms and the timer is * // started. * void vAFunction( xTimerHandle xTimer ) * { * if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )" * { * // xTimer is already active - delete it. * xTimerDelete( xTimer ); * } * else * { * // xTimer is not active, change its period to 500ms. This will also * // cause the timer to start. Block for a maximum of 100 ticks if the * // change period command cannot immediately be sent to the timer * // command queue. * if( xTimerChangePeriod( xTimer, 500 / portTICK_RATE_MS, 100 ) == pdPASS ) * { * // The command was successfully sent. * } * else * { * // The command could not be sent, even after waiting for 100 ticks * // to pass. Take appropriate action here. * } * } * } * @endverbatim */ #define xTimerChangePeriod( xTimer, xNewPeriod, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD, ( xNewPeriod ), NULL, ( xBlockTime ) ) /** * portBASE_TYPE xTimerDelete( xTimerHandle xTimer, portTickType xBlockTime ); * * Timer functionality is provided by a timer service/daemon task. Many of the * public FreeRTOS timer API functions send commands to the timer service task * though a queue called the timer command queue. The timer command queue is * private to the kernel itself and is not directly accessible to application * code. The length of the timer command queue is set by the * configTIMER_QUEUE_LENGTH configuration constant. * * xTimerDelete() deletes a timer that was previously created using the * xTimerCreate() API function. * * The configUSE_TIMERS configuration constant must be set to 1 for * xTimerDelete() to be available. * * @param xTimer The handle of the timer being deleted. * * @param xBlockTime Specifies the time, in ticks, that the calling task should * be held in the Blocked state to wait for the delete command to be * successfully sent to the timer command queue, should the queue already be * full when xTimerDelete() was called. xBlockTime is ignored if xTimerDelete() * is called before the scheduler is started. * * @return pdFAIL will be returned if the delete command could not be sent to * the timer command queue even after xBlockTime ticks had passed. pdPASS will * be returned if the command was successfully sent to the timer command queue. * When the command is actually processed will depend on the priority of the * timer service/daemon task relative to other tasks in the system. The timer * service/daemon task priority is set by the configTIMER_TASK_PRIORITY * configuration constant. * * Example usage: * * See the xTimerChangePeriod() API function example usage scenario. */ #define xTimerDelete( xTimer, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_DELETE, 0U, NULL, ( xBlockTime ) ) /** * portBASE_TYPE xTimerReset( xTimerHandle xTimer, portTickType xBlockTime ); * * Timer functionality is provided by a timer service/daemon task. Many of the * public FreeRTOS timer API functions send commands to the timer service task * though a queue called the timer command queue. The timer command queue is * private to the kernel itself and is not directly accessible to application * code. The length of the timer command queue is set by the * configTIMER_QUEUE_LENGTH configuration constant. * * xTimerReset() re-starts a timer that was previously created using the * xTimerCreate() API function. If the timer had already been started and was * already in the active state, then xTimerReset() will cause the timer to * re-evaluate its expiry time so that it is relative to when xTimerReset() was * called. If the timer was in the dormant state then xTimerReset() has * equivalent functionality to the xTimerStart() API function. * * Resetting a timer ensures the timer is in the active state. If the timer * is not stopped, deleted, or reset in the mean time, the callback function * associated with the timer will get called 'n' ticks after xTimerReset() was * called, where 'n' is the timers defined period. * * It is valid to call xTimerReset() before the scheduler has been started, but * when this is done the timer will not actually start until the scheduler is * started, and the timers expiry time will be relative to when the scheduler is * started, not relative to when xTimerReset() was called. * * The configUSE_TIMERS configuration constant must be set to 1 for xTimerReset() * to be available. * * @param xTimer The handle of the timer being reset/started/restarted. * * @param xBlockTime Specifies the time, in ticks, that the calling task should * be held in the Blocked state to wait for the reset command to be successfully * sent to the timer command queue, should the queue already be full when * xTimerReset() was called. xBlockTime is ignored if xTimerReset() is called * before the scheduler is started. * * @return pdFAIL will be returned if the reset command could not be sent to * the timer command queue even after xBlockTime ticks had passed. pdPASS will * be returned if the command was successfully sent to the timer command queue. * When the command is actually processed will depend on the priority of the * timer service/daemon task relative to other tasks in the system, although the * timers expiry time is relative to when xTimerStart() is actually called. The * timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY * configuration constant. * * Example usage: * @verbatim * // When a key is pressed, an LCD back-light is switched on. If 5 seconds pass * // without a key being pressed, then the LCD back-light is switched off. In * // this case, the timer is a one-shot timer. * * xTimerHandle xBacklightTimer = NULL; * * // The callback function assigned to the one-shot timer. In this case the * // parameter is not used. * void vBacklightTimerCallback( xTimerHandle pxTimer ) * { * // The timer expired, therefore 5 seconds must have passed since a key * // was pressed. Switch off the LCD back-light. * vSetBacklightState( BACKLIGHT_OFF ); * } * * // The key press event handler. * void vKeyPressEventHandler( char cKey ) * { * // Ensure the LCD back-light is on, then reset the timer that is * // responsible for turning the back-light off after 5 seconds of * // key inactivity. Wait 10 ticks for the command to be successfully sent * // if it cannot be sent immediately. * vSetBacklightState( BACKLIGHT_ON ); * if( xTimerReset( xBacklightTimer, 100 ) != pdPASS ) * { * // The reset command was not executed successfully. Take appropriate * // action here. * } * * // Perform the rest of the key processing here. * } * * void main( void ) * { * long x; * * // Create then start the one-shot timer that is responsible for turning * // the back-light off if no keys are pressed within a 5 second period. * xBacklightTimer = xTimerCreate( "BacklightTimer", // Just a text name, not used by the kernel. * ( 5000 / portTICK_RATE_MS), // The timer period in ticks. * pdFALSE, // The timer is a one-shot timer. * 0, // The id is not used by the callback so can take any value. * vBacklightTimerCallback // The callback function that switches the LCD back-light off. * ); * * if( xBacklightTimer == NULL ) * { * // The timer was not created. * } * else * { * // Start the timer. No block time is specified, and even if one was * // it would be ignored because the scheduler has not yet been * // started. * if( xTimerStart( xBacklightTimer, 0 ) != pdPASS ) * { * // The timer could not be set into the Active state. * } * } * * // ... * // Create tasks here. * // ... * * // Starting the scheduler will start the timer running as it has already * // been set into the active state. * xTaskStartScheduler(); * * // Should not reach here. * for( ;; ); * } * @endverbatim */ #define xTimerReset( xTimer, xBlockTime ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCount() ), NULL, ( xBlockTime ) ) /** * portBASE_TYPE xTimerStartFromISR( xTimerHandle xTimer, * portBASE_TYPE *pxHigherPriorityTaskWoken ); * * A version of xTimerStart() that can be called from an interrupt service * routine. * * @param xTimer The handle of the timer being started/restarted. * * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most * of its time in the Blocked state, waiting for messages to arrive on the timer * command queue. Calling xTimerStartFromISR() writes a message to the timer * command queue, so has the potential to transition the timer service/daemon * task out of the Blocked state. If calling xTimerStartFromISR() causes the * timer service/daemon task to leave the Blocked state, and the timer service/ * daemon task has a priority equal to or greater than the currently executing * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will * get set to pdTRUE internally within the xTimerStartFromISR() function. If * xTimerStartFromISR() sets this value to pdTRUE then a context switch should * be performed before the interrupt exits. * * @return pdFAIL will be returned if the start command could not be sent to * the timer command queue. pdPASS will be returned if the command was * successfully sent to the timer command queue. When the command is actually * processed will depend on the priority of the timer service/daemon task * relative to other tasks in the system, although the timers expiry time is * relative to when xTimerStartFromISR() is actually called. The timer service/daemon * task priority is set by the configTIMER_TASK_PRIORITY configuration constant. * * Example usage: * @verbatim * // This scenario assumes xBacklightTimer has already been created. When a * // key is pressed, an LCD back-light is switched on. If 5 seconds pass * // without a key being pressed, then the LCD back-light is switched off. In * // this case, the timer is a one-shot timer, and unlike the example given for * // the xTimerReset() function, the key press event handler is an interrupt * // service routine. * * // The callback function assigned to the one-shot timer. In this case the * // parameter is not used. * void vBacklightTimerCallback( xTimerHandle pxTimer ) * { * // The timer expired, therefore 5 seconds must have passed since a key * // was pressed. Switch off the LCD back-light. * vSetBacklightState( BACKLIGHT_OFF ); * } * * // The key press interrupt service routine. * void vKeyPressEventInterruptHandler( void ) * { * portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; * * // Ensure the LCD back-light is on, then restart the timer that is * // responsible for turning the back-light off after 5 seconds of * // key inactivity. This is an interrupt service routine so can only * // call FreeRTOS API functions that end in "FromISR". * vSetBacklightState( BACKLIGHT_ON ); * * // xTimerStartFromISR() or xTimerResetFromISR() could be called here * // as both cause the timer to re-calculate its expiry time. * // xHigherPriorityTaskWoken was initialised to pdFALSE when it was * // declared (in this function). * if( xTimerStartFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS ) * { * // The start command was not executed successfully. Take appropriate * // action here. * } * * // Perform the rest of the key processing here. * * // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch * // should be performed. The syntax required to perform a context switch * // from inside an ISR varies from port to port, and from compiler to * // compiler. Inspect the demos for the port you are using to find the * // actual syntax required. * if( xHigherPriorityTaskWoken != pdFALSE ) * { * // Call the interrupt safe yield function here (actual function * // depends on the FreeRTOS port being used. * } * } * @endverbatim */ #define xTimerStartFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U ) /** * portBASE_TYPE xTimerStopFromISR( xTimerHandle xTimer, * portBASE_TYPE *pxHigherPriorityTaskWoken ); * * A version of xTimerStop() that can be called from an interrupt service * routine. * * @param xTimer The handle of the timer being stopped. * * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most * of its time in the Blocked state, waiting for messages to arrive on the timer * command queue. Calling xTimerStopFromISR() writes a message to the timer * command queue, so has the potential to transition the timer service/daemon * task out of the Blocked state. If calling xTimerStopFromISR() causes the * timer service/daemon task to leave the Blocked state, and the timer service/ * daemon task has a priority equal to or greater than the currently executing * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will * get set to pdTRUE internally within the xTimerStopFromISR() function. If * xTimerStopFromISR() sets this value to pdTRUE then a context switch should * be performed before the interrupt exits. * * @return pdFAIL will be returned if the stop command could not be sent to * the timer command queue. pdPASS will be returned if the command was * successfully sent to the timer command queue. When the command is actually * processed will depend on the priority of the timer service/daemon task * relative to other tasks in the system. The timer service/daemon task * priority is set by the configTIMER_TASK_PRIORITY configuration constant. * * Example usage: * @verbatim * // This scenario assumes xTimer has already been created and started. When * // an interrupt occurs, the timer should be simply stopped. * * // The interrupt service routine that stops the timer. * void vAnExampleInterruptServiceRoutine( void ) * { * portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; * * // The interrupt has occurred - simply stop the timer. * // xHigherPriorityTaskWoken was set to pdFALSE where it was defined * // (within this function). As this is an interrupt service routine, only * // FreeRTOS API functions that end in "FromISR" can be used. * if( xTimerStopFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS ) * { * // The stop command was not executed successfully. Take appropriate * // action here. * } * * // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch * // should be performed. The syntax required to perform a context switch * // from inside an ISR varies from port to port, and from compiler to * // compiler. Inspect the demos for the port you are using to find the * // actual syntax required. * if( xHigherPriorityTaskWoken != pdFALSE ) * { * // Call the interrupt safe yield function here (actual function * // depends on the FreeRTOS port being used. * } * } * @endverbatim */ #define xTimerStopFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP, 0, ( pxHigherPriorityTaskWoken ), 0U ) /** * portBASE_TYPE xTimerChangePeriodFromISR( xTimerHandle xTimer, * portTickType xNewPeriod, * portBASE_TYPE *pxHigherPriorityTaskWoken ); * * A version of xTimerChangePeriod() that can be called from an interrupt * service routine. * * @param xTimer The handle of the timer that is having its period changed. * * @param xNewPeriod The new period for xTimer. Timer periods are specified in * tick periods, so the constant portTICK_RATE_MS can be used to convert a time * that has been specified in milliseconds. For example, if the timer must * expire after 100 ticks, then xNewPeriod should be set to 100. Alternatively, * if the timer must expire after 500ms, then xNewPeriod can be set to * ( 500 / portTICK_RATE_MS ) provided configTICK_RATE_HZ is less than * or equal to 1000. * * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most * of its time in the Blocked state, waiting for messages to arrive on the timer * command queue. Calling xTimerChangePeriodFromISR() writes a message to the * timer command queue, so has the potential to transition the timer service/ * daemon task out of the Blocked state. If calling xTimerChangePeriodFromISR() * causes the timer service/daemon task to leave the Blocked state, and the * timer service/daemon task has a priority equal to or greater than the * currently executing task (the task that was interrupted), then * *pxHigherPriorityTaskWoken will get set to pdTRUE internally within the * xTimerChangePeriodFromISR() function. If xTimerChangePeriodFromISR() sets * this value to pdTRUE then a context switch should be performed before the * interrupt exits. * * @return pdFAIL will be returned if the command to change the timers period * could not be sent to the timer command queue. pdPASS will be returned if the * command was successfully sent to the timer command queue. When the command * is actually processed will depend on the priority of the timer service/daemon * task relative to other tasks in the system. The timer service/daemon task * priority is set by the configTIMER_TASK_PRIORITY configuration constant. * * Example usage: * @verbatim * // This scenario assumes xTimer has already been created and started. When * // an interrupt occurs, the period of xTimer should be changed to 500ms. * * // The interrupt service routine that changes the period of xTimer. * void vAnExampleInterruptServiceRoutine( void ) * { * portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; * * // The interrupt has occurred - change the period of xTimer to 500ms. * // xHigherPriorityTaskWoken was set to pdFALSE where it was defined * // (within this function). As this is an interrupt service routine, only * // FreeRTOS API functions that end in "FromISR" can be used. * if( xTimerChangePeriodFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS ) * { * // The command to change the timers period was not executed * // successfully. Take appropriate action here. * } * * // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch * // should be performed. The syntax required to perform a context switch * // from inside an ISR varies from port to port, and from compiler to * // compiler. Inspect the demos for the port you are using to find the * // actual syntax required. * if( xHigherPriorityTaskWoken != pdFALSE ) * { * // Call the interrupt safe yield function here (actual function * // depends on the FreeRTOS port being used. * } * } * @endverbatim */ #define xTimerChangePeriodFromISR( xTimer, xNewPeriod, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD, ( xNewPeriod ), ( pxHigherPriorityTaskWoken ), 0U ) /** * portBASE_TYPE xTimerResetFromISR( xTimerHandle xTimer, * portBASE_TYPE *pxHigherPriorityTaskWoken ); * * A version of xTimerReset() that can be called from an interrupt service * routine. * * @param xTimer The handle of the timer that is to be started, reset, or * restarted. * * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most * of its time in the Blocked state, waiting for messages to arrive on the timer * command queue. Calling xTimerResetFromISR() writes a message to the timer * command queue, so has the potential to transition the timer service/daemon * task out of the Blocked state. If calling xTimerResetFromISR() causes the * timer service/daemon task to leave the Blocked state, and the timer service/ * daemon task has a priority equal to or greater than the currently executing * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will * get set to pdTRUE internally within the xTimerResetFromISR() function. If * xTimerResetFromISR() sets this value to pdTRUE then a context switch should * be performed before the interrupt exits. * * @return pdFAIL will be returned if the reset command could not be sent to * the timer command queue. pdPASS will be returned if the command was * successfully sent to the timer command queue. When the command is actually * processed will depend on the priority of the timer service/daemon task * relative to other tasks in the system, although the timers expiry time is * relative to when xTimerResetFromISR() is actually called. The timer service/daemon * task priority is set by the configTIMER_TASK_PRIORITY configuration constant. * * Example usage: * @verbatim * // This scenario assumes xBacklightTimer has already been created. When a * // key is pressed, an LCD back-light is switched on. If 5 seconds pass * // without a key being pressed, then the LCD back-light is switched off. In * // this case, the timer is a one-shot timer, and unlike the example given for * // the xTimerReset() function, the key press event handler is an interrupt * // service routine. * * // The callback function assigned to the one-shot timer. In this case the * // parameter is not used. * void vBacklightTimerCallback( xTimerHandle pxTimer ) * { * // The timer expired, therefore 5 seconds must have passed since a key * // was pressed. Switch off the LCD back-light. * vSetBacklightState( BACKLIGHT_OFF ); * } * * // The key press interrupt service routine. * void vKeyPressEventInterruptHandler( void ) * { * portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; * * // Ensure the LCD back-light is on, then reset the timer that is * // responsible for turning the back-light off after 5 seconds of * // key inactivity. This is an interrupt service routine so can only * // call FreeRTOS API functions that end in "FromISR". * vSetBacklightState( BACKLIGHT_ON ); * * // xTimerStartFromISR() or xTimerResetFromISR() could be called here * // as both cause the timer to re-calculate its expiry time. * // xHigherPriorityTaskWoken was initialised to pdFALSE when it was * // declared (in this function). * if( xTimerResetFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS ) * { * // The reset command was not executed successfully. Take appropriate * // action here. * } * * // Perform the rest of the key processing here. * * // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch * // should be performed. The syntax required to perform a context switch * // from inside an ISR varies from port to port, and from compiler to * // compiler. Inspect the demos for the port you are using to find the * // actual syntax required. * if( xHigherPriorityTaskWoken != pdFALSE ) * { * // Call the interrupt safe yield function here (actual function * // depends on the FreeRTOS port being used. * } * } * @endverbatim */ #define xTimerResetFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U ) /* * Functions beyond this part are not part of the public API and are intended * for use by the kernel only. */ portBASE_TYPE xTimerCreateTimerTask( void ) PRIVILEGED_FUNCTION; portBASE_TYPE xTimerGenericCommand( xTimerHandle xTimer, portBASE_TYPE xCommandID, portTickType xOptionalValue, signed portBASE_TYPE *pxHigherPriorityTaskWoken, portTickType xBlockTime ) PRIVILEGED_FUNCTION; #ifdef __cplusplus } #endif #endif /* TIMERS_H */