/* The classic "blink" example * * This sample code is in the public domain. */ #include "espressif/esp_common.h" #include "esp/uart.h" #include "FreeRTOS.h" #include "task.h" #include "esp8266.h" const int gpio = 14; /* This task uses the high level GPIO API (esp_gpio.h) to blink an LED. * * Even though it reads better than the register-level version in blinkenRegisterTask, * they compile to the exact same instructions (except gpio_enable also set the output type in * the GPIO control register). */ void blinkenTask(void *pvParameters) { gpio_enable(gpio, GPIO_OUTPUT); while(1) { gpio_write(gpio, 1); vTaskDelay(1000 / portTICK_RATE_MS); gpio_write(gpio, 0); vTaskDelay(1000 / portTICK_RATE_MS); } } /* This task uses all raw register operations to set the pins. It's not fully parameterised, as the IOMUX_GPIO# macros involve a non-linear mapping from GPIO to IOMUX ports. There is no significant performance benefit to this way over the blinkenTask version, so it's probably better to use the blinkenTask version. NOTE: This task isn't enabled by default, see the commented out line in user_init. */ void blinkenRegisterTask(void *pvParameters) { GPIO.ENABLE_OUT_SET = BIT(gpio); IOMUX_GPIO14 = IOMUX_GPIO14_FUNC_GPIO | IOMUX_PIN_OUTPUT_ENABLE; /* change this line if you change 'gpio' */ while(1) { GPIO.OUT_SET = BIT(gpio); vTaskDelay(1000 / portTICK_RATE_MS); GPIO.OUT_CLEAR = BIT(gpio); vTaskDelay(1000 / portTICK_RATE_MS); } } void user_init(void) { uart_set_baud(0, 115200); xTaskCreate(blinkenTask, (signed char *)"blinkenTask", 256, NULL, 2, NULL); //xTaskCreate(blinkenRegisterTask, (signed char *)"blinkenRegisterTask", 256, NULL, 2, NULL); }