/* FreeRTOS V7.5.2 - Copyright (C) 2013 Real Time Engineers Ltd. VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. *************************************************************************** * * * FreeRTOS provides completely free yet professionally developed, * * robust, strictly quality controlled, supported, and cross * * platform software that has become a de facto standard. * * * * Help yourself get started quickly and support the FreeRTOS * * project by purchasing a FreeRTOS tutorial book, reference * * manual, or both from: http://www.FreeRTOS.org/Documentation * * * * Thank you! * * * *************************************************************************** This file is part of the FreeRTOS distribution. FreeRTOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception. >>! NOTE: The modification to the GPL is included to allow you to distribute >>! a combined work that includes FreeRTOS without being obliged to provide >>! the source code for proprietary components outside of the FreeRTOS >>! kernel. FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Full license text is available from the following link: http://www.freertos.org/a00114.html 1 tab == 4 spaces! *************************************************************************** * * * Having a problem? Start by reading the FAQ "My application does * * not run, what could be wrong?" * * * * http://www.FreeRTOS.org/FAQHelp.html * * * *************************************************************************** http://www.FreeRTOS.org - Documentation, books, training, latest versions, license and Real Time Engineers Ltd. contact details. http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, including FreeRTOS+Trace - an indispensable productivity tool, a DOS compatible FAT file system, and our tiny thread aware UDP/IP stack. http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS licenses offer ticketed support, indemnification and middleware. http://www.SafeRTOS.com - High Integrity Systems also provide a safety engineered and independently SIL3 certified version for use in safety and mission critical applications that require provable dependability. 1 tab == 4 spaces! */ /* * A sample implementation of pvPortMalloc() and vPortFree() that permits * allocated blocks to be freed, but does not combine adjacent free blocks * into a single larger block (and so will fragment memory). See heap_4.c for * an equivalent that does combine adjacent blocks into single larger blocks. * * See heap_1.c, heap_3.c and heap_4.c for alternative implementations, and the * memory management pages of http://www.FreeRTOS.org for more information. */ #include /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining all the API functions to use the MPU wrappers. That should only be done when task.h is included from an application file. */ #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE #include "FreeRTOS.h" #include "task.h" #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /* A few bytes might be lost to byte aligning the heap start address. */ #define configADJUSTED_HEAP_SIZE ( configTOTAL_HEAP_SIZE - portBYTE_ALIGNMENT ) /* * Initialises the heap structures before their first use. */ static void prvHeapInit( void ); /* Allocate the memory for the heap. */ static unsigned char ucHeap[ configTOTAL_HEAP_SIZE ]; /* Define the linked list structure. This is used to link free blocks in order of their size. */ typedef struct A_BLOCK_LINK { struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */ size_t xBlockSize; /*<< The size of the free block. */ } xBlockLink; static const unsigned short heapSTRUCT_SIZE = ( ( sizeof ( xBlockLink ) + ( portBYTE_ALIGNMENT - 1 ) ) & ~portBYTE_ALIGNMENT_MASK ); #define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( heapSTRUCT_SIZE * 2 ) ) /* Create a couple of list links to mark the start and end of the list. */ static xBlockLink xStart, xEnd; /* Keeps track of the number of free bytes remaining, but says nothing about fragmentation. */ static size_t xFreeBytesRemaining = configADJUSTED_HEAP_SIZE; /* STATIC FUNCTIONS ARE DEFINED AS MACROS TO MINIMIZE THE FUNCTION CALL DEPTH. */ /* * Insert a block into the list of free blocks - which is ordered by size of * the block. Small blocks at the start of the list and large blocks at the end * of the list. */ #define prvInsertBlockIntoFreeList( pxBlockToInsert ) \ { \ xBlockLink *pxIterator; \ size_t xBlockSize; \ \ xBlockSize = pxBlockToInsert->xBlockSize; \ \ /* Iterate through the list until a block is found that has a larger size */ \ /* than the block we are inserting. */ \ for( pxIterator = &xStart; pxIterator->pxNextFreeBlock->xBlockSize < xBlockSize; pxIterator = pxIterator->pxNextFreeBlock ) \ { \ /* There is nothing to do here - just iterate to the correct position. */ \ } \ \ /* Update the list to include the block being inserted in the correct */ \ /* position. */ \ pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock; \ pxIterator->pxNextFreeBlock = pxBlockToInsert; \ } /*-----------------------------------------------------------*/ void *pvPortMalloc( size_t xWantedSize ) { xBlockLink *pxBlock, *pxPreviousBlock, *pxNewBlockLink; static portBASE_TYPE xHeapHasBeenInitialised = pdFALSE; void *pvReturn = NULL; vTaskSuspendAll(); { /* If this is the first call to malloc then the heap will require initialisation to setup the list of free blocks. */ if( xHeapHasBeenInitialised == pdFALSE ) { prvHeapInit(); xHeapHasBeenInitialised = pdTRUE; } /* The wanted size is increased so it can contain a xBlockLink structure in addition to the requested amount of bytes. */ if( xWantedSize > 0 ) { xWantedSize += heapSTRUCT_SIZE; /* Ensure that blocks are always aligned to the required number of bytes. */ if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0 ) { /* Byte alignment required. */ xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) ); } } if( ( xWantedSize > 0 ) && ( xWantedSize < configADJUSTED_HEAP_SIZE ) ) { /* Blocks are stored in byte order - traverse the list from the start (smallest) block until one of adequate size is found. */ pxPreviousBlock = &xStart; pxBlock = xStart.pxNextFreeBlock; while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) ) { pxPreviousBlock = pxBlock; pxBlock = pxBlock->pxNextFreeBlock; } /* If we found the end marker then a block of adequate size was not found. */ if( pxBlock != &xEnd ) { /* Return the memory space - jumping over the xBlockLink structure at its start. */ pvReturn = ( void * ) ( ( ( unsigned char * ) pxPreviousBlock->pxNextFreeBlock ) + heapSTRUCT_SIZE ); /* This block is being returned for use so must be taken out of the list of free blocks. */ pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock; /* If the block is larger than required it can be split into two. */ if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE ) { /* This block is to be split into two. Create a new block following the number of bytes requested. The void cast is used to prevent byte alignment warnings from the compiler. */ pxNewBlockLink = ( void * ) ( ( ( unsigned char * ) pxBlock ) + xWantedSize ); /* Calculate the sizes of two blocks split from the single block. */ pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize; pxBlock->xBlockSize = xWantedSize; /* Insert the new block into the list of free blocks. */ prvInsertBlockIntoFreeList( ( pxNewBlockLink ) ); } xFreeBytesRemaining -= pxBlock->xBlockSize; } } } xTaskResumeAll(); #if( configUSE_MALLOC_FAILED_HOOK == 1 ) { if( pvReturn == NULL ) { extern void vApplicationMallocFailedHook( void ); vApplicationMallocFailedHook(); } } #endif return pvReturn; } /*-----------------------------------------------------------*/ void vPortFree( void *pv ) { unsigned char *puc = ( unsigned char * ) pv; xBlockLink *pxLink; if( pv != NULL ) { /* The memory being freed will have an xBlockLink structure immediately before it. */ puc -= heapSTRUCT_SIZE; /* This unexpected casting is to keep some compilers from issuing byte alignment warnings. */ pxLink = ( void * ) puc; vTaskSuspendAll(); { /* Add this block to the list of free blocks. */ prvInsertBlockIntoFreeList( ( ( xBlockLink * ) pxLink ) ); xFreeBytesRemaining += pxLink->xBlockSize; } xTaskResumeAll(); } } /*-----------------------------------------------------------*/ size_t xPortGetFreeHeapSize( void ) { return xFreeBytesRemaining; } /*-----------------------------------------------------------*/ void vPortInitialiseBlocks( void ) { /* This just exists to keep the linker quiet. */ } /*-----------------------------------------------------------*/ static void prvHeapInit( void ) { xBlockLink *pxFirstFreeBlock; unsigned char *pucAlignedHeap; /* Ensure the heap starts on a correctly aligned boundary. */ pucAlignedHeap = ( unsigned char * ) ( ( ( portPOINTER_SIZE_TYPE ) &ucHeap[ portBYTE_ALIGNMENT ] ) & ( ( portPOINTER_SIZE_TYPE ) ~portBYTE_ALIGNMENT_MASK ) ); /* xStart is used to hold a pointer to the first item in the list of free blocks. The void cast is used to prevent compiler warnings. */ xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap; xStart.xBlockSize = ( size_t ) 0; /* xEnd is used to mark the end of the list of free blocks. */ xEnd.xBlockSize = configADJUSTED_HEAP_SIZE; xEnd.pxNextFreeBlock = NULL; /* To start with there is a single free block that is sized to take up the entire heap space. */ pxFirstFreeBlock = ( void * ) pucAlignedHeap; pxFirstFreeBlock->xBlockSize = configADJUSTED_HEAP_SIZE; pxFirstFreeBlock->pxNextFreeBlock = &xEnd; } /*-----------------------------------------------------------*/