#include "onewire.h" // global search state static unsigned char ROM_NO[ONEWIRE_NUM][8]; static uint8_t LastDiscrepancy[ONEWIRE_NUM]; static uint8_t LastFamilyDiscrepancy[ONEWIRE_NUM]; static uint8_t LastDeviceFlag[ONEWIRE_NUM]; void onewire_init(uint8_t pin) { gpio_enable(pin, GPIO_INPUT); onewire_reset_search(pin); } // Perform the onewire reset function. We will wait up to 250uS for // the bus to come high, if it doesn't then it is broken or shorted // and we return a 0; // // Returns 1 if a device asserted a presence pulse, 0 otherwise. // uint8_t onewire_reset(uint8_t pin) { uint8_t r; uint8_t retries = 125; noInterrupts(); DIRECT_MODE_INPUT(pin); interrupts(); // wait until the wire is high... just in case do { if (--retries == 0) return 0; delayMicroseconds(2); } while ( !DIRECT_READ(pin)); noInterrupts(); DIRECT_WRITE_LOW(pin); DIRECT_MODE_OUTPUT(pin); // drive output low interrupts(); delayMicroseconds(480); noInterrupts(); DIRECT_MODE_INPUT(pin); // allow it to float delayMicroseconds(70); r = !DIRECT_READ(pin); interrupts(); delayMicroseconds(410); return r; } // Write a bit. Port and bit is used to cut lookup time and provide // more certain timing. // static void onewire_write_bit(uint8_t pin, uint8_t v) { if (v & 1) { noInterrupts(); DIRECT_WRITE_LOW(pin); DIRECT_MODE_OUTPUT(pin); // drive output low delayMicroseconds(10); DIRECT_WRITE_HIGH(pin); // drive output high interrupts(); delayMicroseconds(55); } else { noInterrupts(); DIRECT_WRITE_LOW(pin); DIRECT_MODE_OUTPUT(pin); // drive output low delayMicroseconds(65); DIRECT_WRITE_HIGH(pin); // drive output high interrupts(); delayMicroseconds(5); } } // Read a bit. Port and bit is used to cut lookup time and provide // more certain timing. // static uint8_t onewire_read_bit(uint8_t pin) { uint8_t r; noInterrupts(); DIRECT_MODE_OUTPUT(pin); DIRECT_WRITE_LOW(pin); delayMicroseconds(3); DIRECT_MODE_INPUT(pin); // let pin float, pull up will raise delayMicroseconds(10); r = DIRECT_READ(pin); interrupts(); delayMicroseconds(53); return r; } // Write a byte. The writing code uses the active drivers to raise the // pin high, if you need power after the write (e.g. DS18S20 in // parasite power mode) then set 'power' to 1, otherwise the pin will // go tri-state at the end of the write to avoid heating in a short or // other mishap. // void onewire_write(uint8_t pin, uint8_t v, uint8_t power /* = 0 */) { uint8_t bitMask; for (bitMask = 0x01; bitMask; bitMask <<= 1) { onewire_write_bit(pin, (bitMask & v)?1:0); } if ( !power) { noInterrupts(); DIRECT_MODE_INPUT(pin); DIRECT_WRITE_LOW(pin); interrupts(); } } void onewire_write_bytes(uint8_t pin, const uint8_t *buf, uint16_t count, bool power /* = 0 */) { uint16_t i; for (i = 0 ; i < count ; i++) onewire_write(pin, buf[i], ONEWIRE_DEFAULT_POWER); if (!power) { noInterrupts(); DIRECT_MODE_INPUT(pin); DIRECT_WRITE_LOW(pin); interrupts(); } } // Read a byte // uint8_t onewire_read(uint8_t pin) { uint8_t bitMask; uint8_t r = 0; for (bitMask = 0x01; bitMask; bitMask <<= 1) { if (onewire_read_bit(pin)) r |= bitMask; } return r; } void onewire_read_bytes(uint8_t pin, uint8_t *buf, uint16_t count) { uint16_t i; for (i = 0 ; i < count ; i++) buf[i] = onewire_read(pin); } // Do a ROM select // void onewire_select(uint8_t pin, const uint8_t rom[8]) { uint8_t i; onewire_write(pin, 0x55, ONEWIRE_DEFAULT_POWER); // Choose ROM for (i = 0; i < 8; i++) onewire_write(pin, rom[i], ONEWIRE_DEFAULT_POWER); } // Do a ROM skip // void onewire_skip(uint8_t pin) { onewire_write(pin, 0xCC, ONEWIRE_DEFAULT_POWER); // Skip ROM } void onewire_depower(uint8_t pin) { noInterrupts(); DIRECT_MODE_INPUT(pin); interrupts(); } // You need to use this function to start a search again from the beginning. // You do not need to do it for the first search, though you could. // void onewire_reset_search(uint8_t pin) { // reset the search state LastDiscrepancy[pin] = 0; LastDeviceFlag[pin] = 0; LastFamilyDiscrepancy[pin] = 0; int i; for(i = 7; ; i--) { ROM_NO[pin][i] = 0; if ( i == 0) break; } } // Setup the search to find the device type 'family_code' on the next call // to search(*newAddr) if it is present. // void onewire_target_search(uint8_t pin, uint8_t family_code) { // set the search state to find SearchFamily type devices ROM_NO[pin][0] = family_code; uint8_t i; for (i = 1; i < 8; i++) ROM_NO[pin][i] = 0; LastDiscrepancy[pin] = 64; LastFamilyDiscrepancy[pin] = 0; LastDeviceFlag[pin] = 0; } // Perform a search. If this function returns a '1' then it has // enumerated the next device and you may retrieve the ROM from the // OneWire::address variable. If there are no devices, no further // devices, or something horrible happens in the middle of the // enumeration then a 0 is returned. If a new device is found then // its address is copied to newAddr. Use OneWire::reset_search() to // start over. // // --- Replaced by the one from the Dallas Semiconductor web site --- //-------------------------------------------------------------------------- // Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing // search state. // Return 1 : device found, ROM number in ROM_NO buffer // 0 : device not found, end of search // uint8_t onewire_search(uint8_t pin, uint8_t *newAddr) { uint8_t id_bit_number; uint8_t last_zero, rom_byte_number, search_result; uint8_t id_bit, cmp_id_bit; unsigned char rom_byte_mask, search_direction; // initialize for search id_bit_number = 1; last_zero = 0; rom_byte_number = 0; rom_byte_mask = 1; search_result = 0; // if the last call was not the last one if (!LastDeviceFlag[pin]) { // 1-Wire reset if (!onewire_reset(pin)) { // reset the search LastDiscrepancy[pin] = 0; LastDeviceFlag[pin] = 0; LastFamilyDiscrepancy[pin] = 0; return 0; } // issue the search command onewire_write(pin, 0xF0, ONEWIRE_DEFAULT_POWER); // loop to do the search do { // read a bit and its complement id_bit = onewire_read_bit(pin); cmp_id_bit = onewire_read_bit(pin); // check for no devices on 1-wire if ((id_bit == 1) && (cmp_id_bit == 1)) break; else { // all devices coupled have 0 or 1 if (id_bit != cmp_id_bit) search_direction = id_bit; // bit write value for search else { // if this discrepancy if before the Last Discrepancy // on a previous next then pick the same as last time if (id_bit_number < LastDiscrepancy[pin]) search_direction = ((ROM_NO[pin][rom_byte_number] & rom_byte_mask) > 0); else // if equal to last pick 1, if not then pick 0 search_direction = (id_bit_number == LastDiscrepancy[pin]); // if 0 was picked then record its position in LastZero if (search_direction == 0) { last_zero = id_bit_number; // check for Last discrepancy in family if (last_zero < 9) LastFamilyDiscrepancy[pin] = last_zero; } } // set or clear the bit in the ROM byte rom_byte_number // with mask rom_byte_mask if (search_direction == 1) ROM_NO[pin][rom_byte_number] |= rom_byte_mask; else ROM_NO[pin][rom_byte_number] &= ~rom_byte_mask; // serial number search direction write bit onewire_write_bit(pin, search_direction); // increment the byte counter id_bit_number // and shift the mask rom_byte_mask id_bit_number++; rom_byte_mask <<= 1; // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask if (rom_byte_mask == 0) { rom_byte_number++; rom_byte_mask = 1; } } } while(rom_byte_number < 8); // loop until through all ROM bytes 0-7 // if the search was successful then if (!(id_bit_number < 65)) { // search successful so set LastDiscrepancy,LastDeviceFlag,search_result LastDiscrepancy[pin] = last_zero; // check for last device if (LastDiscrepancy[pin] == 0) LastDeviceFlag[pin] = 1; search_result = 1; } } // if no device found then reset counters so next 'search' will be like a first if (!search_result || !ROM_NO[pin][0]) { LastDiscrepancy[pin] = 0; LastDeviceFlag[pin] = 0; LastFamilyDiscrepancy[pin] = 0; search_result = 0; } else { for (rom_byte_number = 0; rom_byte_number < 8; rom_byte_number++) { newAddr[rom_byte_number] = ROM_NO[pin][rom_byte_number]; //printf("Ok I found something at %d - %x...\n",rom_byte_number, newAddr[rom_byte_number]); } } return search_result; } // The 1-Wire CRC scheme is described in Maxim Application Note 27: // "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" // #if ONEWIRE_CRC8_TABLE // This table comes from Dallas sample code where it is freely reusable, // though Copyright (C) 2000 Dallas Semiconductor Corporation static const uint8_t dscrc_table[] = { 0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65, 157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220, 35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98, 190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255, 70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7, 219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154, 101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36, 248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185, 140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205, 17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80, 175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238, 50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115, 202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139, 87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22, 233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168, 116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53}; #ifndef pgm_read_byte #define pgm_read_byte(addr) (*(const uint8_t *)(addr)) #endif // // Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM // and the registers. (note: this might better be done without to // table, it would probably be smaller and certainly fast enough // compared to all those delayMicrosecond() calls. But I got // confused, so I use this table from the examples.) // uint8_t onewire_crc8(const uint8_t *addr, uint8_t len) { uint8_t crc = 0; while (len--) { crc = pgm_read_byte(dscrc_table + (crc ^ *addr++)); } return crc; } #else // // Compute a Dallas Semiconductor 8 bit CRC directly. // this is much slower, but much smaller, than the lookup table. // uint8_t onewire_crc8(const uint8_t *addr, uint8_t len) { uint8_t crc = 0; while (len--) { uint8_t inbyte = *addr++; uint8_t i; for (i = 8; i; i--) { uint8_t mix = (crc ^ inbyte) & 0x01; crc >>= 1; if (mix) crc ^= 0x8C; inbyte >>= 1; } } return crc; } #endif // Compute the 1-Wire CRC16 and compare it against the received CRC. // Example usage (reading a DS2408): // // Put everything in a buffer so we can compute the CRC easily. // uint8_t buf[13]; // buf[0] = 0xF0; // Read PIO Registers // buf[1] = 0x88; // LSB address // buf[2] = 0x00; // MSB address // WriteBytes(net, buf, 3); // Write 3 cmd bytes // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16 // if (!CheckCRC16(buf, 11, &buf[11])) { // // Handle error. // } // // @param input - Array of bytes to checksum. // @param len - How many bytes to use. // @param inverted_crc - The two CRC16 bytes in the received data. // This should just point into the received data, // *not* at a 16-bit integer. // @param crc - The crc starting value (optional) // @return 1, iff the CRC matches. bool onewire_check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc) { crc = ~onewire_crc16(input, len, crc); return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1]; } // Compute a Dallas Semiconductor 16 bit CRC. This is required to check // the integrity of data received from many 1-Wire devices. Note that the // CRC computed here is *not* what you'll get from the 1-Wire network, // for two reasons: // 1) The CRC is transmitted bitwise inverted. // 2) Depending on the endian-ness of your processor, the binary // representation of the two-byte return value may have a different // byte order than the two bytes you get from 1-Wire. // @param input - Array of bytes to checksum. // @param len - How many bytes to use. // @param crc - The crc starting value (optional) // @return The CRC16, as defined by Dallas Semiconductor. uint16_t onewire_crc16(const uint8_t* input, uint16_t len, uint16_t crc) { static const uint8_t oddparity[16] = { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; uint16_t i; for (i = 0 ; i < len ; i++) { // Even though we're just copying a byte from the input, // we'll be doing 16-bit computation with it. uint16_t cdata = input[i]; cdata = (cdata ^ crc) & 0xff; crc >>= 8; if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4]) crc ^= 0xC001; cdata <<= 6; crc ^= cdata; cdata <<= 1; crc ^= cdata; } return crc; }