Merge pull request #629 from ourairquality/uart-rx-rewrite

stdin_uart: rewrite to use a FreeRTOS queue.
This commit is contained in:
Ruslan V. Uss 2018-06-17 12:20:16 +05:00 committed by GitHub
commit e3a7ee66cd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -40,40 +40,63 @@
#define UART0_RX_SIZE (128) // ESP8266 UART HW FIFO size #define UART0_RX_SIZE (128) // ESP8266 UART HW FIFO size
static SemaphoreHandle_t uart0_sem = NULL; static QueueHandle_t uart0_queue;
static bool inited = false; static bool inited = false;
static void uart0_rx_init(void); static bool uart0_rx_init(void);
static int uart0_nonblock; static int uart0_nonblock;
static TickType_t uart0_vtime; static TickType_t uart0_vtime = portMAX_DELAY;
uint32_t uart0_parity_errors;
uint32_t uart0_framing_errors;
uint32_t uart0_breaks_detected;
IRAM void uart0_rx_handler(void *arg) IRAM void uart0_rx_handler(void *arg)
{ {
// TODO: Handle UART1, see reg 0x3ff20020, bit2, bit0 represents uart1 and uart0 respectively // TODO: Handle UART1, see reg 0x3ff20020, bit2, bit0 represents uart1 and uart0 respectively
if (!UART(UART0).INT_STATUS & UART_INT_STATUS_RXFIFO_FULL) {
return;
}
// printf(" [%08x (%d)]\n", READ_PERI_REG(UART_INT_ST(UART0)), READ_PERI_REG(UART_STATUS(UART0)) & (UART_RXFIFO_CNT << UART_RXFIFO_CNT_S)); // printf(" [%08x (%d)]\n", READ_PERI_REG(UART_INT_ST(UART0)), READ_PERI_REG(UART_STATUS(UART0)) & (UART_RXFIFO_CNT << UART_RXFIFO_CNT_S));
if (UART(UART0).INT_STATUS & UART_INT_STATUS_RXFIFO_FULL) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
do {
// If new data arrives and the status changes after checking here, them
// the interrupt will be re-triggered.
uint32_t int_status = UART(UART0).INT_STATUS;
if (int_status & UART_INT_STATUS_RXFIFO_FULL) {
size_t count = UART(UART0).STATUS & (UART_STATUS_RXFIFO_COUNT_M << UART_STATUS_RXFIFO_COUNT_S);
for (size_t i = 0; i < count; i++) {
char ch = UART(UART0).FIFO & (UART_FIFO_DATA_M << UART_FIFO_DATA_S);
xQueueSendToBackFromISR(uart0_queue, &ch, &xHigherPriorityTaskWoken);
}
UART(UART0).INT_CLEAR = UART_INT_CLEAR_RXFIFO_FULL; UART(UART0).INT_CLEAR = UART_INT_CLEAR_RXFIFO_FULL;
if (UART(UART0).STATUS & (UART_STATUS_RXFIFO_COUNT_M << UART_STATUS_RXFIFO_COUNT_S)) { // If new data has arrived then the interrupt status will remain set.
long int xHigherPriorityTaskWoken; } else if (int_status & UART_INT_STATUS_PARITY_ERR) {
_xt_isr_mask(1 << INUM_UART); uart0_parity_errors++;
_xt_clear_ints(1<<INUM_UART); UART(UART0).INT_CLEAR = UART_INT_CLEAR_PARITY_ERR;
xSemaphoreGiveFromISR(uart0_sem, &xHigherPriorityTaskWoken); } else if (int_status & UART_INT_STATUS_FRAMING_ERR) {
uart0_framing_errors++;
UART(UART0).INT_CLEAR = UART_INT_CLEAR_FRAMING_ERR;
} else if (int_status & UART_INT_STATUS_BREAK_DETECTED) {
uart0_breaks_detected++;
UART(UART0).INT_CLEAR = UART_INT_CLEAR_BREAK_DETECTED;
} else if (int_status & 0xff) {
printf("Error: unexpected uart irq, INT_STATUS 0x%02x\n", int_status);
} else {
break;
}
} while (1);
if(xHigherPriorityTaskWoken) { if(xHigherPriorityTaskWoken) {
portYIELD(); portYIELD();
} }
} }
} else {
printf("Error: unexpected uart irq, INT_STATUS 0x%02x\n", UART(UART0).INT_STATUS);
}
}
uint32_t uart0_num_char(void) uint32_t uart0_num_char(void)
{ {
uint32_t count; uint32_t count;
if (!inited) uart0_rx_init(); if (!inited) uart0_rx_init();
count = UART(UART0).STATUS & (UART_STATUS_RXFIFO_COUNT_M << UART_STATUS_RXFIFO_COUNT_S); count = uxQueueMessagesWaiting(uart0_queue);
return count; return count;
} }
@ -95,37 +118,39 @@ TickType_t uart0_set_vtime(TickType_t ticks)
// of this function // of this function
long _read_stdin_r(struct _reent *r, int fd, char *ptr, int len) long _read_stdin_r(struct _reent *r, int fd, char *ptr, int len)
{ {
TickType_t vtime = uart0_vtime;
int nonblock = uart0_nonblock;
if (nonblock) {
vtime = 0;
}
if (!inited) uart0_rx_init(); if (!inited) uart0_rx_init();
for(int i = 0; i < len; i++) {
if (!(UART(UART0).STATUS & (UART_STATUS_RXFIFO_COUNT_M << UART_STATUS_RXFIFO_COUNT_S))) { for(size_t i = 0; i < len; i++, ptr++) {
_xt_isr_unmask(1 << INUM_UART); if (xQueueReceive(uart0_queue, (void*)ptr, vtime) == pdFALSE) {
if (uart0_nonblock) {
if (i > 0) { if (i > 0) {
return i; return i;
} }
if (nonblock) {
r->_errno = EAGAIN; r->_errno = EAGAIN;
return -1; return -1;
} }
if (uart0_vtime) {
if (!xSemaphoreTake(uart0_sem, uart0_vtime)) {
if (i > 0) {
return i;
}
return 0; return 0;
} }
} else if (!xSemaphoreTake(uart0_sem, portMAX_DELAY)) {
printf("\nFailed to get sem\n");
}
}
ptr[i] = UART(UART0).FIFO & (UART_FIFO_DATA_M << UART_FIFO_DATA_S);
} }
return len; return len;
} }
static void uart0_rx_init(void) static bool uart0_rx_init(void)
{ {
uart0_queue = xQueueCreate(64, sizeof(char));
if (!uart0_queue) {
return false;
}
int trig_lvl = 1; int trig_lvl = 1;
uart0_sem = xSemaphoreCreateCounting(UART0_RX_SIZE, 0);
_xt_isr_attach(INUM_UART, uart0_rx_handler, NULL); _xt_isr_attach(INUM_UART, uart0_rx_handler, NULL);
_xt_isr_unmask(1 << INUM_UART); _xt_isr_unmask(1 << INUM_UART);
@ -142,7 +167,10 @@ static void uart0_rx_init(void)
UART(UART0).INT_CLEAR = 0x1ff; UART(UART0).INT_CLEAR = 0x1ff;
// enable rx_interrupt // enable rx_interrupt
UART(UART0).INT_ENABLE = UART_INT_ENABLE_RXFIFO_FULL; UART(UART0).INT_ENABLE = UART_INT_ENABLE_RXFIFO_FULL | UART_INT_ENABLE_PARITY_ERR |
UART_INT_ENABLE_FRAMING_ERR | UART_INT_ENABLE_BREAK_DETECTED;
inited = true; inited = true;
return true;
} }