LIS3DH driver added

This commit is contained in:
Gunar Schorcht 2017-12-21 19:04:59 +01:00
parent c3ae04c93f
commit a943619dfc
8 changed files with 3499 additions and 0 deletions

3
examples/lis3dh/Makefile Normal file
View file

@ -0,0 +1,3 @@
PROGRAM=LIS3DH
EXTRA_COMPONENTS = extras/i2c extras/lis3dh
include ../../common.mk

View file

@ -0,0 +1,338 @@
/**
* Simple example with one sensor connected to I2C or SPI. It demonstrates the
* different approaches to fetch the data. Either one of the interrupt signals
* is used or new data are fetched periodically.
*
* Harware configuration:
*
* I2C
*
* +-----------------+ +----------+
* | ESP8266 / ESP32 | | LIS3DH |
* | | | |
* | GPIO 14 (SCL) ----> SCL |
* | GPIO 13 (SDA) <---> SDA |
* | GPIO 5 <---- INT1 |
* | GPIO 4 <---- DRDY/INT2|
* +-----------------+ +----------+
*
* SPI
*
* +-----------------+ +----------+ +-----------------+ +----------+
* | ESP8266 | | LIS3DH | | ESP32 | | LIS3DH |
* | | | | | | | |
* | GPIO 14 (SCK) ----> SCK | | GPIO 16 (SCK) ----> SCK |
* | GPIO 13 (MOSI)----> SDI | | GPIO 17 (MOSI)----> SDI |
* | GPIO 12 (MISO)<---- SDO | | GPIO 18 (MISO)<---- SDO |
* | GPIO 2 (CS) ----> CS | | GPIO 19 (CS) ----> CS |
* | GPIO 5 <---- INT1 | | GPIO 5 <---- INT1 |
* | GPIO 4 <---- DRDY/INT2| | GPIO 4 <---- DRDY/INT2|
* +-----------------+ +---------+ +-----------------+ +----------+
*/
/* -- use following constants to define the example mode ----------- */
// #define SPI_USED // if defined SPI is used, otherwise I2C
#define DATA_INT // data ready and FIFO status interrupts
// #define CLICK_INT // click detection interrupt
// #define ACTIVITY_INT // wake-up, free fall or 6D/4D orientation detection
// #define FIFO_MODE // multiple sample read mode
#if defined(DATA_INT) || defined(ACTIVITY_INT) || defined(CLICK_INT)
#define INT_USED
#endif
/* -- includes ----------------------------------------------------- */
#include "lis3dh.h"
/** -- platform dependent definitions ------------------------------ */
#ifdef ESP_PLATFORM // ESP32 (ESP-IDF)
// user task stack depth for ESP32
#define TASK_STACK_DEPTH 2048
// SPI interface definitions for ESP32
#define SPI_BUS HSPI_HOST
#define SPI_SCK_GPIO 16
#define SPI_MOSI_GPIO 17
#define SPI_MISO_GPIO 18
#define SPI_CS_GPIO 19
#else // ESP8266 (esp-open-rtos)
// user task stack depth for ESP8266
#define TASK_STACK_DEPTH 256
// SPI interface definitions for ESP8266
#define SPI_BUS 1
#define SPI_SCK_GPIO 14
#define SPI_MOSI_GPIO 13
#define SPI_MISO_GPIO 12
#define SPI_CS_GPIO 2 // GPIO 15, the default CS of SPI bus 1, can't be used
#endif // ESP_PLATFORM
// I2C interface defintions for ESP32 and ESP8266
#define I2C_BUS 0
#define I2C_SCL_PIN 14
#define I2C_SDA_PIN 13
#define I2C_FREQ I2C_FREQ_100K
// interrupt GPIOs defintions for ESP8266 and ESP32
#define INT1_PIN 5
#define INT2_PIN 4
/* -- user tasks --------------------------------------------------- */
static lis3dh_sensor_t* sensor;
/**
* Common function used to get sensor data.
*/
void read_data ()
{
#ifdef FIFO_MODE
lis3dh_float_data_fifo_t fifo;
if (lis3dh_new_data (sensor))
{
uint8_t num = lis3dh_get_float_data_fifo (sensor, fifo);
printf("%.3f LIS3DH num=%d\n", (double)sdk_system_get_time()*1e-3, num);
for (int i=0; i < num; i++)
// max. full scale is +-16 g and best resolution is 1 mg, i.e. 5 digits
printf("%.3f LIS3DH (xyz)[g] ax=%+7.3f ay=%+7.3f az=%+7.3f\n",
(double)sdk_system_get_time()*1e-3,
fifo[i].ax, fifo[i].ay, fifo[i].az);
}
#else
lis3dh_float_data_t data;
if (lis3dh_new_data (sensor) &&
lis3dh_get_float_data (sensor, &data))
// max. full scale is +-16 g and best resolution is 1 mg, i.e. 5 digits
printf("%.3f LIS3DH (xyz)[g] ax=%+7.3f ay=%+7.3f az=%+7.3f\n",
(double)sdk_system_get_time()*1e-3,
data.ax, data.ay, data.az);
#endif // FIFO_MODE
}
#ifdef INT_USED
/**
* In this case, any of the possible interrupts on interrupt signal *INT1* is
* used to fetch the data.
*
* When interrupts are used, the user has to define interrupt handlers that
* either fetches the data directly or triggers a task which is waiting to
* fetch the data. In this example, the interrupt handler sends an event to
* a waiting task to trigger the data gathering.
*/
static QueueHandle_t gpio_evt_queue = NULL;
// User task that fetches the sensor values.
void user_task_interrupt (void *pvParameters)
{
uint32_t gpio_num;
while (1)
{
if (xQueueReceive(gpio_evt_queue, &gpio_num, portMAX_DELAY))
{
lis3dh_int_activity_source_t activity_src;
lis3dh_int_data_source_t data_src;
lis3dh_int_click_source_t click_src;
// get the source of the interrupt and reset INT signals
lis3dh_get_int_activity_source (sensor, &activity_src, lis3dh_int1_signal);
lis3dh_get_int_data_source (sensor, &data_src);
lis3dh_get_int_click_source (sensor, &click_src);
// in case of DRDY interrupt or activity interrupt read one data sample
if (data_src.data_ready || activity_src.active)
read_data ();
// in case of FIFO interrupts read the whole FIFO
else if (data_src.fifo_watermark || data_src.fifo_overrun)
read_data ();
else if (click_src.active)
printf("%.3f LIS3DH %s\n", (double)sdk_system_get_time()*1e-3,
click_src.s_click ? "single click" : "double click");
}
}
}
// Interrupt handler which resumes user_task_interrupt on interrupt
void IRAM int_signal_handler (uint8_t gpio)
{
// send an event with GPIO to the interrupt user task
xQueueSendFromISR(gpio_evt_queue, &gpio, NULL);
}
#else // !INT_USED
/*
* In this example, user task fetches the sensor values every seconds.
*/
void user_task_periodic(void *pvParameters)
{
vTaskDelay (100/portTICK_PERIOD_MS);
while (1)
{
// read sensor data
read_data ();
// passive waiting until 1 second is over
vTaskDelay(100/portTICK_PERIOD_MS);
}
}
#endif // INT_USED
/* -- main program ------------------------------------------------- */
void user_init(void)
{
// Set UART Parameter.
uart_set_baud(0, 115200);
// Give the UART some time to settle
vTaskDelay(1);
/** -- MANDATORY PART -- */
#ifdef SPI_USED
// init the sensor connnected to SPI
spi_bus_init (SPI_BUS, SPI_SCK_GPIO, SPI_MISO_GPIO, SPI_MOSI_GPIO);
// init the sensor connected to SPI_BUS with SPI_CS_GPIO as chip select.
sensor = lis3dh_init_sensor (SPI_BUS, 0, SPI_CS_GPIO);
#else
// init all I2C bus interfaces at which LIS3DH sensors are connected
i2c_init (I2C_BUS, I2C_SCL_PIN, I2C_SDA_PIN, I2C_FREQ);
// init the sensor with slave address LIS3DH_I2C_ADDRESS_1 connected to I2C_BUS.
sensor = lis3dh_init_sensor (I2C_BUS, LIS3DH_I2C_ADDRESS_1, 0);
#endif
if (sensor)
{
// --- SYSTEM CONFIGURATION PART ----
#if !defined (INT_USED)
// create a user task that fetches data from sensor periodically
xTaskCreate(user_task_periodic, "user_task_periodic", TASK_STACK_DEPTH, NULL, 2, NULL);
#else // INT_USED
// create a task that is triggered only in case of interrupts to fetch the data
xTaskCreate(user_task_interrupt, "user_task_interrupt", TASK_STACK_DEPTH, NULL, 2, NULL);
// create event queue
gpio_evt_queue = xQueueCreate(10, sizeof(uint8_t));
// configure interupt pins for *INT1* and *INT2* signals and set the interrupt handler
gpio_enable(INT1_PIN, GPIO_INPUT);
gpio_set_interrupt(INT1_PIN, GPIO_INTTYPE_EDGE_POS, int_signal_handler);
#endif // !defined(INT_USED)
// -- SENSOR CONFIGURATION PART ---
// Interrupt configuration has to be done before the sensor is set
// into measurement mode
// set polarity of INT signals if necessary
// lis3dh_config_int_signals (sensor, lis3dh_high_active);
#ifdef DATA_INT
// enable data interrupts on INT1 (data ready or FIFO status interrupts)
// data ready and FIFO status interrupts must not be enabled at the same time
#ifdef FIFO_MODE
lis3dh_enable_int_data (sensor, lis3dh_fifo_overrun, true);
lis3dh_enable_int_data (sensor, lis3dh_fifo_watermark, true);
#else
lis3dh_enable_int_data (sensor, lis3dh_data_ready, true);
#endif // FIFO_MODE
#endif // DATA_INT
#ifdef ACTIVITY_INT
// enable data interrupts on INT1
lis3dh_int_activity_config_t act_config;
act_config.activity = lis3dh_wake_up;
// act_config.activity = lis3dh_free_fall;
// act_config.activity = lis3dh_6d_movement;
// act_config.activity = lis3dh_6d_position;
// act_config.activity = lis3dh_4d_movement;
// act_config.activity = lis3dh_4d_position;
act_config.threshold = 10;
act_config.x_low_enabled = false;
act_config.x_high_enabled = true;
act_config.y_low_enabled = false;
act_config.y_high_enabled = true;
act_config.z_low_enabled = false;
act_config.z_high_enabled = true;
act_config.duration = 0;
act_config.latch = true;
lis3dh_set_int_activity_config (sensor, lis3dh_int1_signal, &act_config);
#endif // ACTIVITY_INT
#ifdef CLICK_INT
// enable click interrupt on INT1
lis3dh_int_click_config_t click_config;
click_config.threshold = 10;
click_config.x_single = false;
click_config.x_double = false;
click_config.y_single = false;
click_config.y_double = false;
click_config.z_single = true;
click_config.z_double = false;
click_config.latch = true;
click_config.time_limit = 1;
click_config.time_latency = 1;
click_config.time_window = 3;
lis3dh_set_int_click_config (sensor, lis3dh_int1_signal, &click_config);
#endif // CLICK_INT
#ifdef FIFO_MODE
// clear FIFO and activate FIFO mode if needed
lis3dh_set_fifo_mode (sensor, lis3dh_bypass, 0, lis3dh_int1_signal);
lis3dh_set_fifo_mode (sensor, lis3dh_stream, 10, lis3dh_int1_signal);
#endif
// configure HPF and reset the reference by dummy read
lis3dh_config_hpf (sensor, lis3dh_hpf_normal, 0, true, true, true, true);
lis3dh_get_hpf_ref (sensor);
// enable ADC inputs and temperature sensor for ADC input 3
lis3dh_enable_adc (sensor, true, true);
// LAST STEP: Finally set scale and mode to start measurements
lis3dh_set_scale(sensor, lis3dh_scale_2g);
lis3dh_set_mode (sensor, lis3dh_odr_10, lis3dh_high_res, true, true, true);
// -- SENSOR CONFIGURATION PART ---
}
}

999
extras/lis3dh/README.md Normal file
View file

@ -0,0 +1,999 @@
# Driver for the LIS3DH 3-axes digital output accelerometer
The driver is for the usage with the ESP8266 and [esp-open-rtos](https://github.com/SuperHouse/esp-open-rtos).
It is also working with ESP32 and [ESP-IDF](https://github.com/espressif/esp-idf.git) using a wrapper component for ESP8266 functions, see folder ```components/esp8266_wrapper```, as well as Linux based systems using a wrapper library.
The driver can also be used with LIS3DE, LIS2DH, LIS2DH12, LIS2DE, and LIS2DE12
## About the sensor
LIS3DH is a low-power high performance **3-axis accelerometer sensor** connected to **I2C** or **SPI** with a full scale of up to **±16 g**. It supports different measuring rates.
**Main features** of the sensor are:
- 4 selectable full scales of ±2 g, ±4 g, ±8 g, and ±16 g
- 9 measuring rates from 1 Hz to 5 kHz
- 16 bit accelerometer value data output
- 2 independent programmable interrupt generators for free-fall and motion detection
- integrated high-pass filters with 3 modes and 4 different cut off frequencies
- embedded temperature sensor
- embedded 32 levels of 16 bit data output FIFO
- 6D/4D orientation detection
- Free-fall detection
- Motion detection
- click/double click recognition
- I2C and SPI digital output interface
## Sensor operation
### Sensor modes
LIS3DH provides different operating modes.
- **Power Down mode** is configured automatically after power up boot sequence. In this mode, almost all internal blocks of the device are switched off. Register content is preserved, but there are no measurements performed.
- **Normal mode** is the standard measurement mode. In this mode measurements are performed with a resolution of **10 bit** at the defined output data rate (**ODR**).
- **Low-power mode** is the measurement mode with reduced power consumption. Measurements are performed with a resolution of only **8 bit** at the defined output data rate (**ODR**).
- **High-resolution mode** is the measurement mode where measurements are performed with a resolution of 12 bit at the defined output data rate (**ODR**). Only output data rates (ODR) up to 400 Hz are available.
Switching from any mode to any another mode with the exception of high-resolution mode takes only 1/ODR. Switching from any mode to the high-resolution mode takes 7/ODRs.
### Output Data Rates
In normal, low-power and high-resolution modes, measurements are performed at a defined output rate. Following output data rates (ODR) are supported in the different modes:
Driver symbol | Normal mode<br>```lis3dh_normal``` | Low-power mode<br>```lis3dh_low_power``` | High-resolution mode<br>```lis3dh_high_res```
:---------------------- |:------------:|:---------------:|:--------------------:
```lis3dh_power_down``` | Power down | Power down | Power down
```lis3dh_normal_1``` | 1 Hz | 1 Hz | 1 Hz
```lis3dh_normal_10``` | 10 Hz | 10 Hz | 10 Hz
```lis3dh_normal_25``` | 25 Hz | 25 Hz | 25 Hz
```lis3dh_normal_50``` | 50 Hz | 50 Hz | 50 Hz
```lis3dh_normal_100``` | 100 Hz | 100 Hz | 100 Hz
```lis3dh_normal_200``` | 200 Hz | 200 Hz | 200 Hz
```lis3dh_normal_400``` | 400 Hz | 400 Hz | 400 Hz
```lis3dh_normal_1600```| - | 1600 Hz | -
```lis3dh_normal_5000```| 1250 Hz | 5000 Hz | -
The **easiest way to use the sensor** is simply to initialize it with function ```lis3dh_init_sensor``` and then set it to any measurement mode with function ```lis3dh_set_mode``` to start measurements with the given output data rate (ODR).
```
...
static lis3dh_sensor_t* sensor = 0;
...
if ((sensor = lis3dh_init_sensor (I2C_BUS, LIS3DH_I2C_ADDRESS_2, 0)))
{
...
lis3dh_set_mode (sensor, lis3dh_odr_10, lis3dh_high_res, true, true, true)
...
}
...
```
In this example, a LIS3DH sensor connected to I2C is initialized and set to high-resolution mode to start measurements for all three axes with an output data rate (ODR) of 10 Hz.
**Please note:**
- Function ```lis3dh_init_sensor``` resets the sensor completely, switches it to the power down mode, and returns a pointer to a sensor device data structure on success. All registers are reset to default values and the embedded FIFO is cleared.
- All sensor configurations should be done before calling function ```lis3dh_set_mode```. In particular, the interrupt configuration should be performed before to avoid loosing the first interrupt and locking the system.
## Measurement results
### Output data format
The sensor determines periodically the accelerations for2 all axes that are enabled for measurement and produces output data with the selected output data rate (ODR).
Raw **output data** (**raw data**) are given as 16-bit signed integer values in 2s complement representation and are always left-aligned. The resolution depends on the selected operation mode and the selected full scale. For example, in low power mode with 8-bit resolution only the high byte is used.
range and the resolution of these data depend the selected measurement mode and on the sensitivity of the sensor which is selected by the **full scale** value. The LIS3DH allows to select the following full scales:
Full Scale | Driver symbol | Resolution 12 bit <br>```lis3dh_high_res``` | Resolution 10 bit<br>```lis3dh_normal``` | Resolution 8 bit <br>```lis3dh_low_power```
:--------------------- | -----------:|-----------:|:---------------
```lis3dh_scale_2g``` | ±2 g | 1 mg | 4 mg | 16 mg
```lis3dh_scale_4g``` | ±4 g | 2 mg | 8 mg | 32 mg
```lis3dh_scale_8g``` | ±8 g | 4 mg | 16 mg | 64 mg
```lis3dh_scale_16g``` |±16 g | 12 mg | 48 mg | 192 mg
By default, a full scale of ±2 g is used. Function ```lis3dh_set_scale``` can be used to change it.
```
lis3dh_set_scale(sensor, lis3dh_scale_4g);
```
### Fetching output data
To get the information whether new data are available, the user task can either use
- the function ```lis3dh_new_data``` to check periodically whether new output data are available, or
- the data ready interrupt (DRDY) which is thrown as soon as new output data are available (see below).
Last measurement results can then be fetched either
- as raw data using function ```lis3dh_get_raw_data``` or
- as floating point values in g using function ```lis3dh_get_float_data```.
It is recommended to use function ```lis3dh_get_float_data``` since it already converts measurement results to real values according to the selected full scale.
```
void user_task_periodic(void *pvParameters)
{
lis3dh_float_data_t data;
while (1)
{
// execute task every 10 ms
vTaskDelay (10/portTICK_PERIOD_MS);
...
// test for new data
if (!lis3dh_new_data (sensor))
continue;
// fetch new data
if (lis3dh_get_float_data (sensor, &data))
{
// do something with data
...
}
}
}
```
**Please note:**
The functions ```lis3dh_get_float_data``` and ```lis3dh_get_raw_data``` always return the last available results. If these functions are called more often than measurements are performed, some measurement results are retrieved multiple times. If these functions are called too rarely, some measurement results will be lost.
### High pass filtering
LIS3DH provides embedded high-pass filtering capability to improve measurement results. Please refer the [datasheet](http://www.st.com/resource/en/datasheet/lis3dh.pdf) or [application note](http://www.st.com/resource/en/application_note/cd00290365.pdf) for more details.
The high pass filter can independently apply to
- the raw output data,
- the data used for click detection, and
- the data used for interrupt generation like wake-up, free fall or 6D/4D orientation detection.
The mode and the cutoff frequency of the high pass filter can be configured using function ```lis3dh_config_hpf```. Following HPF modes are available:
Driver symbol | HPF mode
:--------------|:---------
lis3dh_hpf_normal | Normal mode
lis3dh_hpf_reference | Reference mode
lis3dh_hpf_autoreset | Auto-reset on interrupt
For each output data rate (ODR), 4 different HPF cutoff frequencies can be used. Furthermore, a number of boolean parameters indicate to which data the HPF is applied.
```
...
// configure HPF
lis3dh_config_hpf (sensor, lis3dh_hpf_normal, 0, true, true, true, true);
// reset the reference by dummy read
lis3dh_get_hpf_ref (sensor);
...
```
### FIFO
In order to limit the rate at which the host processor has to fetch the data, the LIS3DH embeds a first-in first-out buffer (FIFO). This is in particular helpful at high output data rates. The FIFO buffer can work in four different modes and is able to store up to 32 accelerometer samples. Please refer the [datasheet](http://www.st.com/resource/en/datasheet/lis3dh.pdf) or [application note](http://www.st.com/resource/en/application_note/cd00290365.pdf) for more details.
Driver symbol | FIFO mode
--------------|-------------------------
lis3dh_bypass | Bypass mode (FIFO is not used)
lis3dh_fifo | FIFO mode
lis3dh_stream | Stream mode
lis3dh_stream_to_fifo | Stream-to-FIFO mode
The FIFO mode can be set using function ```lis3dh_set_fifo_mode```. This function takes three parameters
- the FIFO mode,
- a threshold value which defines a watermark level, and
- an interrupt source that is used in Stream-to-FIFO mode.
The watermark level is used by the sensor to set a watermark flag and to generate optionally an interrupt when the FIFO content exceeds this level. They can be used to gather a minimum number of axes acceleration samples with the sensor before the data are fetched as a single read operation from the sensor.
```
...
// clear FIFO
lis3dh_set_fifo_mode (sensor, lis3dh_bypass, 0, lis3dh_int1_signal);
// activate FIFO mode
lis3dh_set_fifo_mode (sensor, lis3dh_stream, 10, lis3dh_int1_signal);
...
```
**Please note**: To clear the FIFO at any time, set the FIFO mode to ```lis3dh_bypass``` and back to the desired FIFO mode.
To read data from the FIFO, simply use either
- the function ```lis3dh_get_raw_data_fifo``` to all get raw output data stored in FIFO or
- the function ```lis3dh_get_float_data_fifo``` to get all data stored in FIFO and converted to real values in dps (degrees per second).
Both functions clear the FIFO and return the number of samples read from the FIFO.
```
void user_task_periodic (void *pvParameters)
{
lis3dh_float_data_fifo_t data;
while (1)
{
// execute task every 500 ms
vTaskDelay (500/portTICK_PERIOD_MS);
...
// test for new data
if (!lis3dh_new_data (sensor))
continue;
// fetch data from fifo
uint8_t num = lis3dh_get_float_data_fifo (sensor, data);
for (int i = 0; i < num; i++)
{
// do something with data[i] ...
}
}
```
### Interrupts
The LIS3DH supports two dedicated interrupt signals **```INT1```** and **```INT2```** and three different types of interrupts:
- data ready and FIFO status interrupts,
- activity detection interrupts like wake-up, free fall, and 6D/4D orientation detection, and
- click detection interrupts.
While activity detection and click detection interrupts can be configured for both interrupt signals, data ready and FIFO status interrupts can be configured only for interrupt signal ```INT1```.
#### Data ready and FIFO status interrupts
Following sources can generate an interrupt on signal ```INT1```:
Interrupt source | Driver symbol
:-----------------|:-------------
Output data become ready to read | lis3dh_data_ready
FIFO content exceeds the watermark level | lis3dh_fifo_watermark
FIFO is completely filled | lis3dh_fifo_overrun
Each of these interrupt sources can be enabled or disabled separately with function ```lis3dh_enable_int_data```. By default all interrupt sources are disabled.
```
lis3dh_enable_int_data (sensor, lis3dh_data_ready, true);
```
Whenever an interrupt is generated at interrupt signal ```INT1```, the function ```lis3dh_get_int_data_source``` can be used to determine the source of the interrupt. This function returns a data structure of type ```lis3dh_int_data_source_t``` that contain a boolean member for each source that can be tested for true.
```
void int1_handler ()
{
lis3dh_int_data_source_t data_src;
// get interrupt source of INT1
lis3dh_get_int_data_source (sensor, &data_src);
// if data ready interrupt, get the results and do something with them
if (data_src.data_ready)
// ... read data
// in case of FIFO interrupts read the whole FIFO
else if (data_src.fifo_watermark || data_src.fifo_overrun)
// read FIFO data
...
}
```
#### Activity detection interrupts
Activity detection allows to generate interrupts whenever a configured condition occur. If activated, the acceleration of each axis is compared with a defined threshold to check whether it is below or above the threshold. The results of all activated comparisons are then combined OR or AND to generate the interrupt signal.
The configuration of the threshold valid for all axes, the activated comparisons and the selected AND/OR combination allows to recognize special situations:
- **Wake-up detection** refers the special condition that the acceleration measured along any axis is above the defined threshold (```lis3dh_wake_up```).
- **Free fall detection** refers the special condition that the acceleration measured along all the axes goes to zero (```lis3dh_free_fall```).
- **6D/4D Orientation Detection** refers to the special condition that the measured acceleration along certain axes is above and along the other axes is below the threshold which indicates a particular orientation (```lis3dh_6d_movement```, ```lis3dh_6d_position```, ```lis3dh_4d_movement```, ```lis3dh_4d_position```).
Activity detection interrupts can be configured with the function ```lis3dh_get_int_activity_config```. This function requires as parameters the configuration of type ```lis3dh_int_activity_config_t``` and the interrupt signal to be used for activity detection interrupts.
For example, wake-up detection interrupt on signal ```INT1``` could be configured as following:
```
lis3dh_int_activity_config_t act_config;
act_config.activity = lis3dh_wake_up;
act_config.threshold = 10;
act_config.x_low_enabled = false;
act_config.x_high_enabled = true;
act_config.y_low_enabled = false;
act_config.y_high_enabled = true;
act_config.z_low_enabled = false;
act_config.z_high_enabled = true;
act_config.duration = 0;
act_config.latch = true;
lis3dh_set_int_activity_config (sensor, lis3dh_int1_signal, &act_config);
```
The parameter of type ```lis3dh_int_activity_config_t``` also configures
- whether the interrupt signal should latched until the interrupt source is read, and
- which time in 1/ODR an interrupt condition has to be given before the interrupt is generated.
As with data ready and FIFO status interrupts, function ```lis3dh_get_int_activity_source``` can be used to determine the source of an activity interrupt whenever it is generated. This function returns a data structure of type ```lis3dh_int_activity_source_t``` which contains a boolean member for each source that can be tested for true.
```
void int1_handler ()
{
lis3dh_int_data_source_t data_src;
lis3dh_int_activity_source_t activity_src;
// get interrupt source of INT1
lis3dh_get_int_data_source (sensor, &data_src);
lis3dh_get_int_activity_source (sensor, &activity_src, lis3dh_int1_signal);
// if data ready interrupt, get the results and do something with them
if (data_src.data_ready)
// ... read data
// in case of FIFO interrupts read the whole FIFO
else if (data_src.fifo_watermark || data_src.fifo_overrun)
// read FIFO data
// in case of activity interrupt
else if (activity_src.active)
// ... read data
...
}
```
**Please note** Activating all threshold comparisons and the OR combination (```lis3dh_wake_up```) is the most flexible way to deal with activity interrupts. Functions such as free fall detection and so on can then be realized by suitably combining the various interrupt sources by the user task. Following example realizes the free fall detection in user task.
```
lis3dh_int_activity_config_t act_config;
act_config.activity = lis3dh_wake_up;
act_config.threshold = 10;
act_config.x_low_enabled = true;
act_config.x_high_enabled = true;
act_config.y_low_enabled = true;
act_config.y_high_enabled = true;
act_config.z_low_enabled = true;
act_config.z_high_enabled = true;
act_config.duration = 0;
act_config.latch = true;
lis3dh_set_int_activity_config (sensor, lis3dh_int1_signal, &act_config);
```
```
void int1_handler ()
{
lis3dh_int_activity_source_t activity_src;
// get interrupt source of INT1
lis3dh_get_int_activity_source (sensor, &activity_src, lis3dh_int1_signal);
// detect free fall (all accelerations are below the threshold)
if (activity_src.x_low && activity_src.y_low && activity_src.z_low)
...
...
}
```
#### Click detection interrupts
A sequence of acceleration values over time measured along certain axes can be used to detect single and double clicks. Please refer the [datasheet](http://www.st.com/resource/en/datasheet/lis3dh.pdf) or [application note](http://www.st.com/resource/en/application_note/cd00290365.pdf) for more information.
Click detection interrupts are configured with function ```lis3dh_set_int_click_config```. This function requires as parameters the configuration of type ```lis3dh_int_click_config_t``` and the interrupt signal to be used for click detection interrupts.
In following example, the single click detection for z-axis is enabled with a time limit of 1/ODR, a time latency of 1/ODR and a time window of 3/ODR.
```
lis3dh_int_click_config_t click_config;
click_config.threshold = 10;
click_config.x_single = false;
click_config.x_double = false;
click_config.y_single = false;
click_config.y_double = false;
click_config.z_single = true;
click_config.z_double = false;
click_config.latch = true;
click_config.time_limit = 1;
click_config.time_latency = 1;
click_config.time_window = 3;
lis3dh_set_int_click_config (sensor, lis3dh_int1_signal, &click_config);
```
As with other interrupts, the function ```lis3dh_get_int_click_source``` can be used to determine the source of the interrupt signal whenever it is generated. This function returns a data structure of type ```lis3dh_int_click_source_t``` that contains a boolean member for each source that can be tested for true.
```
void int1_handler ()
{
lis3dh_int_click_source_t click_src;
// get interrupt source of INT1
lis3dh_get_int_click_source (sensor, &click_src);
// detect single click along z-axis
if (click_src.z_click && click_src.s_click)
...
...
}
```
#### Interrupt signal properties
By default, interrupt signals are high active. Using function ```lis3dh_config_int_signals```, the level of the interrupt signal can be changed.
Driver symbol | Meaning
:-------------|:-------
lis3dh_high_active | Interrupt signal is high active (default)
lis3dh_low_active | Interrupt signal is low active
### Analog inputs and temperature sensor
The LIS3DH sensor contains an auxiliary ADC with 3 separate dedicated inputs ADC1, ADC2, and ADC3. ADC3 can be connected to the internal temperatur sensor. The input range is 1200 ± 400 mV. The resolution of the A/D converter is 10 bit in normal and high-resolution mode, but only 8 bit in low-power mode.
ADC inputs can be activated and deactivated (default) with function ```lis3dh_enable_adc```. If parameter ```temp``` is true, ADC3 is connected to the internal temperature sensor and provides the temperature in degrees.
ADC sampling rate is the same the output data rate (ODR). Results are given as left-aligned 16-bit signed integer values in 2s complement. Function ```lis3dh_get_adc``` can be used to get the results.
### Low level functions
The LIS3DH is a very complex and flexible sensor with a lot of features. It can be used for a big number of different use cases. Since it is quite impossible to implement a high level interface which is generic enough to cover all the functionality of the sensor for all different use cases, there are two low level interface functions that allow direct read and write access to the registers of the sensor.
```
bool lis3dh_read_reg (lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len);
bool lis3dh_write_reg (lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len);
```
**Please note**
These functions should only be used to do something special that is not covered by the high level interface AND if you exactly know what you do and what it might affect. Please be aware that it might affect the high level interface.
## Usage
First, the hardware configuration has to be established.
### Hardware configurations
Following figure shows a possible hardware configuration for ESP8266 and ESP32 if I2C interface is used to connect the sensor.
```
+-----------------+ +----------+
| ESP8266 / ESP32 | | LIS3DH |
| | | |
| GPIO 14 (SCL) >-----> SCL |
| GPIO 13 (SDA) <-----> SDA |
| GPIO 5 <------ INT1 |
| GPIO 4 <------ DRDY/INT2|
+-----------------+ +----------+
```
If SPI interface is used, configuration for ESP8266 and ESP32 could look like following.
```
+-----------------+ +----------+ +-----------------+ +----------+
| ESP8266 | | LIS3DH | | ESP32 | | LIS3DH |
| | | | | | | |
| GPIO 14 (SCK) ------> SCK | | GPIO 16 (SCK) ------> SCK |
| GPIO 13 (MOSI)------> SDI | | GPIO 17 (MOSI)------> SDI |
| GPIO 12 (MISO)<------ SDO | | GPIO 18 (MISO)<------ SDO |
| GPIO 2 (CS) ------> CS | | GPIO 19 (CS) ------> CS |
| GPIO 5 <------ INT1 | | GPIO 5 <------ INT1 |
+-----------------+ +----------+ +-----------------+ +----------+
```
### Communication interface settings
Dependent on the hardware configuration, the communication interface and interrupt settings have to be defined. In case ESP32 is used, the configuration could look like
```
#ifdef ESP_PLATFORM // ESP32 (ESP-IDF)
// user task stack depth for ESP32
#define TASK_STACK_DEPTH 2048
// SPI interface definitions for ESP32
#define SPI_BUS HSPI_HOST
#define SPI_SCK_GPIO 16
#define SPI_MOSI_GPIO 17
#define SPI_MISO_GPIO 18
#define SPI_CS_GPIO 19
#else // ESP8266 (esp-open-rtos)
// user task stack depth for ESP8266
#define TASK_STACK_DEPTH 256
// SPI interface definitions for ESP8266
#define SPI_BUS 1
#define SPI_SCK_GPIO 14
#define SPI_MOSI_GPIO 13
#define SPI_MISO_GPIO 12
#define SPI_CS_GPIO 2 // GPIO 15, the default CS of SPI bus 1, can't be used
#endif // ESP_PLATFORM
// I2C interface defintions for ESP32 and ESP8266
#define I2C_BUS 0
#define I2C_SCL_PIN 14
#define I2C_SDA_PIN 13
#define I2C_FREQ I2C_FREQ_100K
// interrupt GPIOs defintions for ESP8266 and ESP32
#define INT1_PIN 5
#define INT2_PIN 4
```
### Main program
#### Initialization
If I2C interfaces are used, they have to be initialized first.
```
i2c_init (I2C_BUS, I2C_SCL_PIN, I2C_SDA_PIN, I2C_FREQ);
```
SPI interface has only to be initialized explicitly on ESP32 platform to declare the GPIOs that are used for SPI interface.
```
#ifdef ESP_PLATFORM
spi_bus_init (SPI_BUS, SPI_SCK_GPIO, SPI_MISO_GPIO, SPI_MOSI_GPIO);
#endif
```
Once the interfaces are initialized, function ```lis3dh_init_sensor``` has to be called for each LIS3DH sensor in order to initialize the sensor and to check its availability as well as its error state. This function returns a pointer to a sensor device data structure or NULL in case of error.
The parameter *bus* specifies the ID of the I2C or SPI bus to which the sensor is connected.
```
static lis3dh_sensor_t* sensor;
```
For sensors connected to an I2C interface, a valid I2C slave address has to be defined as parameter *addr*. In that case parameter *cs* is ignored.
```
sensor = lis3dh_init_sensor (I2C_BUS, LIS3DH_I2C_ADDRESS_1, 0);
```
If parameter *addr* is 0, the sensor is connected to a SPI bus. In that case, parameter *cs* defines the GPIO used as CS signal.
```
sensor = lis3dh_init_sensor (SPI_BUS, 0, SPI_CS_GPIO);
```
The remaining of the program is independent on the communication interface.
#### Periodic user task
If initialization of the sensor was successful, the user task that uses the sensor has to be created. The user task can use different approaches to fetch new data. Either new data are fetched periodically or interrupt signals are used when new data are available or a configured event happens.
If new data are fetched **periodically** the implementation of the user task is quite simple and could look like following.
```
void user_task_periodic(void *pvParameters)
{
lis3dh_float_data_t data;
while (1)
{
// execute task every 10 ms
vTaskDelay (10/portTICK_PERIOD_MS);
...
// test for new data
if (!lis3dh_new_data (sensor))
continue;
// fetch new data
if (lis3dh_get_float_data (sensor, &data))
{
// do something with data
...
}
}
}
...
// create a user task that fetches data from sensor periodically
xTaskCreate(user_task_periodic, "user_task_periodic", TASK_STACK_DEPTH, NULL, 2, NULL);
```
The user task simply tests periodically with a higher rate than the output data rate (ODR) of the sensor whether new data are available. If new data are available, it fetches the data.
#### Interrupt user task
A different approach is to use one of the **interrupts** INT1 or INT2. In this case, the user has to implement an interrupt handler that either fetches the data directly or triggers a task, that is waiting to fetch the data.
```
static QueueHandle_t gpio_evt_queue = NULL;
// Interrupt handler which resumes sends an event to the waiting user_task_interrupt
void IRAM int_signal_handler (uint8_t gpio)
{
// send an event with GPIO to the interrupt user task
xQueueSendFromISR(gpio_evt_queue, &gpio, NULL);
}
// User task that fetches the sensor values
void user_task_interrupt (void *pvParameters)
{
uint32_t gpio_num;
while (1)
{
if (xQueueReceive(gpio_evt_queue, &gpio_num, portMAX_DELAY))
{
// test for new data
if (!lis3dh_new_data (sensor))
continue;
// fetch new data
if (lis3dh_get_float_data (sensor, &data))
{
// do something with data
...
}
}
}
}
...
// create a task that is triggered only in case of interrupts to fetch the data
xTaskCreate(user_task_interrupt, "user_task_interrupt", TASK_STACK_DEPTH, NULL, 2, NULL);
...
```
In this example, there is
- a task that is fetching data when it receives an event, and
- an interrupt handler that generates the event on interrupt.
Finally, interrupt handlers have to be activated for the GPIOs which are connected to the interrupt signals.
```
// configure interrupt pins for *INT1* and *INT2* signals and set the interrupt handler
gpio_set_interrupt(INT1_PIN, GPIO_INTTYPE_EDGE_POS, int_signal_handler);
gpio_set_interrupt(INT2_PIN, GPIO_INTTYPE_EDGE_POS, int_signal_handler);
```
Furthermore, the interrupts have to be enabled and configured in the LIS3DH sensor, see section **Interrupts** above.
#### Configuring the sensor
Optionally, you could wish to set some measurement parameters. For details see the sections above, the header file of the driver ```lis3dh.h```, and of course the data sheet of the sensor.
#### Starting measurements
As last step, the sensor mode has be set to start periodic measurement. The sensor mode can be changed anytime later.
```
...
// start periodic measurement with output data rate of 10 Hz
lis3dh_set_mode (sensor, lis3dh_odr_10, lis3dh_high_res, true, true, true);
...
```
## Full Example
```
/* -- use following constants to define the example mode ----------- */
// #define SPI_USED // if defined SPI is used, otherwise I2C
#define DATA_INT // data ready and FIFO status interrupts
// #define CLICK_INT // click detection interrupt
// #define ACTIVITY_INT // wake-up, free fall or 6D/4D orientation detection
// #define FIFO_MODE // multiple sample read mode
#if defined(DATA_INT) || defined(ACTIVITY_INT) || defined(CLICK_INT)
#define INT_USED
#endif
/* -- includes ----------------------------------------------------- */
#include "lis3dh.h"
/** -- platform dependent definitions ------------------------------ */
#ifdef ESP_PLATFORM // ESP32 (ESP-IDF)
// user task stack depth for ESP32
#define TASK_STACK_DEPTH 2048
// SPI interface definitions for ESP32
#define SPI_BUS HSPI_HOST
#define SPI_SCK_GPIO 16
#define SPI_MOSI_GPIO 17
#define SPI_MISO_GPIO 18
#define SPI_CS_GPIO 19
#else // ESP8266 (esp-open-rtos)
// user task stack depth for ESP8266
#define TASK_STACK_DEPTH 256
// SPI interface definitions for ESP8266
#define SPI_BUS 1
#define SPI_SCK_GPIO 14
#define SPI_MOSI_GPIO 13
#define SPI_MISO_GPIO 12
#define SPI_CS_GPIO 2 // GPIO 15, the default CS of SPI bus 1, can't be used
#endif // ESP_PLATFORM
// I2C interface defintions for ESP32 and ESP8266
#define I2C_BUS 0
#define I2C_SCL_PIN 14
#define I2C_SDA_PIN 13
#define I2C_FREQ I2C_FREQ_100K
// interrupt GPIOs defintions for ESP8266 and ESP32
#define INT1_PIN 5
#define INT2_PIN 4
/* -- user tasks ---------------------------------------------- */
static lis3dh_sensor_t* sensor;
/**
* Common function used to get sensor data.
*/
void read_data ()
{
#ifdef FIFO_MODE
lis3dh_float_data_fifo_t fifo;
if (lis3dh_new_data (sensor))
{
uint8_t num = lis3dh_get_float_data_fifo (sensor, fifo);
printf("%.3f LIS3DH num=%d\n", (double)sdk_system_get_time()*1e-3, num);
for (int i=0; i < num; i++)
// max. full scale is +-16 g and best resolution is 1 mg, i.e. 5 digits
printf("%.3f LIS3DH (xyz)[g] ax=%+7.3f ay=%+7.3f az=%+7.3f\n",
(double)sdk_system_get_time()*1e-3,
fifo[i].ax, fifo[i].ay, fifo[i].az);
}
#else
lis3dh_float_data_t data;
if (lis3dh_new_data (sensor) &&
lis3dh_get_float_data (sensor, &data))
// max. full scale is +-16 g and best resolution is 1 mg, i.e. 5 digits
printf("%.3f LIS3DH (xyz)[g] ax=%+7.3f ay=%+7.3f az=%+7.3f\n",
(double)sdk_system_get_time()*1e-3,
data.ax, data.ay, data.az);
#endif // FIFO_MODE
}
#ifdef INT_USED
/**
* In this case, any of the possible interrupts on interrupt signal *INT1* is
* used to fetch the data.
*
* When interrupts are used, the user has to define interrupt handlers that
* either fetches the data directly or triggers a task which is waiting to
* fetch the data. In this example, the interrupt handler sends an event to
* a waiting task to trigger the data gathering.
*/
static QueueHandle_t gpio_evt_queue = NULL;
// User task that fetches the sensor values.
void user_task_interrupt (void *pvParameters)
{
uint32_t gpio_num;
while (1)
{
if (xQueueReceive(gpio_evt_queue, &gpio_num, portMAX_DELAY))
{
lis3dh_int_activity_source_t activity_src;
lis3dh_int_data_source_t data_src;
lis3dh_int_click_source_t click_src;
// get the source of the interrupt and reset INT signals
lis3dh_get_int_activity_source (sensor, &activity_src, lis3dh_int1_signal);
lis3dh_get_int_data_source (sensor, &data_src);
lis3dh_get_int_click_source (sensor, &click_src);
// in case of DRDY interrupt or activity interrupt read one data sample
if (data_src.data_ready || activity_src.active)
read_data ();
// in case of FIFO interrupts read the whole FIFO
else if (data_src.fifo_watermark || data_src.fifo_overrun)
read_data ();
else if (click_src.active)
printf("%.3f LIS3DH %s\n", (double)sdk_system_get_time()*1e-3,
click_src.s_click ? "single click" : "double click");
}
}
}
// Interrupt handler which resumes user_task_interrupt on interrupt
void IRAM int_signal_handler (uint8_t gpio)
{
// send an event with GPIO to the interrupt user task
xQueueSendFromISR(gpio_evt_queue, &gpio, NULL);
}
#else // !INT_USED
/*
* In this example, user task fetches the sensor values every seconds.
*/
void user_task_periodic(void *pvParameters)
{
vTaskDelay (100/portTICK_PERIOD_MS);
while (1)
{
// read sensor data
read_data ();
// passive waiting until 1 second is over
vTaskDelay(100/portTICK_PERIOD_MS);
}
}
#endif // INT_USED
/* -- main program ---------------------------------------------- */
void user_init(void)
{
// Set UART Parameter.
uart_set_baud(0, 115200);
// Give the UART some time to settle
vTaskDelay(1);
/** -- MANDATORY PART -- */
#ifdef SPI_USED
// init the sensor connnected to SPI
spi_bus_init (SPI_BUS, SPI_SCK_GPIO, SPI_MISO_GPIO, SPI_MOSI_GPIO);
// init the sensor connected to SPI_BUS with SPI_CS_GPIO as chip select.
sensor = lis3dh_init_sensor (SPI_BUS, 0, SPI_CS_GPIO);
#else
// init all I2C bus interfaces at which LIS3DH sensors are connected
i2c_init (I2C_BUS, I2C_SCL_PIN, I2C_SDA_PIN, I2C_FREQ);
// init the sensor with slave address LIS3DH_I2C_ADDRESS_1 connected to I2C_BUS.
sensor = lis3dh_init_sensor (I2C_BUS, LIS3DH_I2C_ADDRESS_1, 0);
#endif
if (sensor)
{
// --- SYSTEM CONFIGURATION PART ----
#if !defined (INT_USED)
// create a user task that fetches data from sensor periodically
xTaskCreate(user_task_periodic, "user_task_periodic", TASK_STACK_DEPTH, NULL, 2, NULL);
#else // INT_USED
// create a task that is triggered only in case of interrupts to fetch the data
xTaskCreate(user_task_interrupt, "user_task_interrupt", TASK_STACK_DEPTH, NULL, 2, NULL);
// create event queue
gpio_evt_queue = xQueueCreate(10, sizeof(uint8_t));
// configure interupt pins for *INT1* and *INT2* signals and set the interrupt handler
gpio_enable(INT1_PIN, GPIO_INPUT);
gpio_set_interrupt(INT1_PIN, GPIO_INTTYPE_EDGE_POS, int_signal_handler);
#endif // !defined(INT_USED)
// -- SENSOR CONFIGURATION PART ---
// Interrupt configuration has to be done before the sensor is set
// into measurement mode
// set polarity of INT signals if necessary
// lis3dh_config_int_signals (sensor, lis3dh_high_active);
#ifdef DATA_INT
// enable data interrupts on INT1 (data ready or FIFO status interrupts)
// data ready and FIFO status interrupts must not be enabled at the same time
#ifdef FIFO_MODE
lis3dh_enable_int_data (sensor, lis3dh_fifo_overrun, true);
lis3dh_enable_int_data (sensor, lis3dh_fifo_watermark, true);
#else
lis3dh_enable_int_data (sensor, lis3dh_data_ready, true);
#endif // FIFO_MODE
#endif // DATA_INT
#ifdef ACTIVITY_INT
// enable data interrupts on INT1
lis3dh_int_activity_config_t act_config;
act_config.activity = lis3dh_wake_up;
// act_config.activity = lis3dh_free_fall;
// act_config.activity = lis3dh_6d_movement;
// act_config.activity = lis3dh_6d_position;
// act_config.activity = lis3dh_4d_movement;
// act_config.activity = lis3dh_4d_position;
act_config.threshold = 10;
act_config.x_low_enabled = false;
act_config.x_high_enabled = true;
act_config.y_low_enabled = false;
act_config.y_high_enabled = true;
act_config.z_low_enabled = false;
act_config.z_high_enabled = true;
act_config.duration = 0;
act_config.latch = true;
lis3dh_set_int_activity_config (sensor, lis3dh_int1_signal, &act_config);
#endif // ACTIVITY_INT
#ifdef CLICK_INT
// enable click interrupt on INT1
lis3dh_int_click_config_t click_config;
click_config.threshold = 10;
click_config.x_single = false;
click_config.x_double = false;
click_config.y_single = false;
click_config.y_double = false;
click_config.z_single = true;
click_config.z_double = false;
click_config.latch = true;
click_config.time_limit = 1;
click_config.time_latency = 1;
click_config.time_window = 3;
lis3dh_set_int_click_config (sensor, lis3dh_int1_signal, &click_config);
#endif // CLICK_INT
#ifdef FIFO_MODE
// clear FIFO and activate FIFO mode if needed
lis3dh_set_fifo_mode (sensor, lis3dh_bypass, 0, lis3dh_int1_signal);
lis3dh_set_fifo_mode (sensor, lis3dh_stream, 10, lis3dh_int1_signal);
#endif
// configure HPF and reset the reference by dummy read
lis3dh_config_hpf (sensor, lis3dh_hpf_normal, 0, true, true, true, true);
lis3dh_get_hpf_ref (sensor);
// enable ADC inputs and temperature sensor for ADC input 3
lis3dh_enable_adc (sensor, true, true);
// LAST STEP: Finally set scale and mode to start measurements
lis3dh_set_scale(sensor, lis3dh_scale_2g);
lis3dh_set_mode (sensor, lis3dh_odr_10, lis3dh_high_res, true, true, true);
// -- SENSOR CONFIGURATION PART ---
}
}
```

View file

@ -0,0 +1,10 @@
# Component makefile for extras/lis3dh
# expected anyone using SHT3x driver includes it as 'lis3dh/lis3dh.h'
INC_DIRS += $(lis3dh_ROOT)..
INC_DIRS += $(lis3dh_ROOT)
# args for passing into compile rule generation
lis3dh_SRC_DIR = $(lis3dh_ROOT)
$(eval $(call component_compile_rules,lis3dh))

1239
extras/lis3dh/lis3dh.c Normal file

File diff suppressed because it is too large Load diff

462
extras/lis3dh/lis3dh.h Normal file
View file

@ -0,0 +1,462 @@
/**
* Driver for LIS3DH 3-axes digital accelerometer connected to I2C or SPI.
*
* This driver is for the usage with the ESP8266 and FreeRTOS (esp-open-rtos)
* [https://github.com/SuperHouse/esp-open-rtos]. It is also working with ESP32
* and ESP-IDF [https://github.com/espressif/esp-idf.git] as well as Linux
* based systems using a wrapper library for ESP8266 functions.
*
* ---------------------------------------------------------------------------
*
* The BSD License (3-clause license)
*
* Copyright (c) 2017 Gunar Schorcht (https://github.com/gschorcht)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __LIS3DH_H__
#define __LIS3DH_H__
// Uncomment one of the following defines to enable debug output
// #define LIS3DH_DEBUG_LEVEL_1 // only error messages
// #define LIS3DH_DEBUG_LEVEL_2 // debug and error messages
// LIS3DH addresses (also used for LIS2DH, LIS2DH12 and LIS2DE12)
#define LIS3DH_I2C_ADDRESS_1 0x18 // SDO pin is low
#define LIS3DH_I2C_ADDRESS_2 0x19 // SDO pin is high
// LIS3DE addresse (also used for LIS2DE)
#define LIS3DE_I2C_ADDRESS_1 0x28 // SDO pin is low
#define LIS3DE_I2C_ADDRESS_2 0x29 // SDO pin is high
// LIS3DH chip id
#define LIS3DH_CHIP_ID 0x33 // LIS3DH_REG_WHO_AM_I<7:0>
// Definition of error codes
#define LIS3DH_OK 0
#define LIS3DH_NOK -1
#define LIS3DH_INT_ERROR_MASK 0x000f
#define LIS3DH_DRV_ERROR_MASK 0xfff0
// Error codes for I2C and SPI interfaces ORed with LIS3DH driver error codes
#define LIS3DH_I2C_READ_FAILED 1
#define LIS3DH_I2C_WRITE_FAILED 2
#define LIS3DH_I2C_BUSY 3
#define LIS3DH_SPI_WRITE_FAILED 4
#define LIS3DH_SPI_READ_FAILED 5
#define LIS3DH_SPI_BUFFER_OVERFLOW 6
// LIS3DH driver error codes ORed with error codes for I2C and SPI interfaces
#define LIS3DH_WRONG_CHIP_ID ( 1 << 8)
#define LIS3DH_WRONG_BANDWIDTH ( 2 << 8)
#define LIS3DH_GET_RAW_DATA_FAILED ( 3 << 8)
#define LIS3DH_GET_RAW_DATA_FIFO_FAILED ( 4 << 8)
#define LIS3DH_WRONG_INT_TYPE ( 5 << 8)
#define LIS3DH_CONFIG_INT_SIGNALS_FAILED ( 6 << 8)
#define LIS3DH_CONFIG_INT_FAILED ( 7 << 8)
#define LIS3DH_INT_SOURCE_FAILED ( 8 << 8)
#define LIS3DH_CONFIG_HPF_FAILED ( 9 << 8)
#define LIS3DH_ENABLE_HPF_FAILED (10 << 8)
#define LIS3DH_CONFIG_CLICK_FAILED (11 << 8)
#define LIS3DH_CLICK_SOURCE_FAILED (12 << 8)
#define LIS3DH_GET_ADC_DATA_FAILED (13 << 8)
#define LIS3DH_SENSOR_IN_BYPASS_MODE (14 << 8)
#define LIS3DH_SENSOR_IN_FIFO_MODE (15 << 8)
#define LIS3DH_ODR_TOO_HIGH (16 << 8)
#include "lis3dh_platform.h"
#include "lis3dh_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @brief Initialize the sensor
*
* Reset the sensor and switch to power down mode. All registers are reset to
* default values. FIFO is cleared.
*
* @param bus I2C or SPI bus at which LIS3DH sensor is connected
* @param addr I2C addr of the LIS3DH sensor, 0 for using SPI
* @param cs SPI CS GPIO, ignored for I2C
* @return pointer to sensor data structure, or NULL on error
*/
lis3dh_sensor_t* lis3dh_init_sensor (uint8_t bus, uint8_t addr, uint8_t cs);
/**
* @brief Set sensor mode
*
* @param dev pointer to the sensor device data structure
* @param odr sensor output data rate (ODR)
* @param res sensor resolution
* @param x true enable x-axis, false disable x-axis
* @param y true enable y-axis, false disable y-axis
* @param z true enable z-axis, false disable z-axis
* @return true on success, false on error
*/
bool lis3dh_set_mode (lis3dh_sensor_t* dev,
lis3dh_odr_mode_t odr, lis3dh_resolution_t res,
bool x, bool y, bool z);
/**
* @brief Set scale (full scale range)
*
* @param dev pointer to the sensor device data structure
* @param scale full range scale
* @return true on success, false on error
*/
bool lis3dh_set_scale (lis3dh_sensor_t* dev, lis3dh_scale_t scale);
/**
* @brief Set FIFO mode
*
* FIFO watermark can be used to generate an interrupt when FIFO content
* exceeds the value. It is ignored in bypass mode.
*
*
* @param dev pointer to the sensor device data structure
* @param mode FIFO mode
* @param thresh FIFO watermark (ignored in bypass mode)
* @param trigger interrupt signal used as trigger (only in Stream-to-FIFO)
* @return true on success, false on error
*/
bool lis3dh_set_fifo_mode (lis3dh_sensor_t* dev, lis3dh_fifo_mode_t mode,
uint8_t thresh, lis3dh_int_signals_t trigger);
/**
* @brief Test whether new data samples are available
*
* @param dev pointer to the sensor device data structure
* @return true on new data, otherwise false
*/
bool lis3dh_new_data (lis3dh_sensor_t* dev);
/**
* @brief Get one sample of sensor data as floating point values (unit 1g)
*
* Function works only in bypass mode and fails in FIFO modes. In FIFO modes,
* function *lis3dh_get_float_data_fifo* has to be used instead to get data.
*
* @param dev pointer to the sensor device data structure
* @param data pointer to float data structure filled with g values
* @return true on success, false on error
*/
bool lis3dh_get_float_data (lis3dh_sensor_t* dev,
lis3dh_float_data_t* data);
/**
* @brief Get all samples of sensor data stored in the FIFO (unit g)
*
* In bypass mode, it returns only one sensor data sample.
*
* @param dev pointer to the sensor device data structure
* @param data array of 32 float data structures filled with g values
* @return number of data sets read from fifo on success or 0 on error
*/
uint8_t lis3dh_get_float_data_fifo (lis3dh_sensor_t* dev,
lis3dh_float_data_fifo_t data);
/**
* @brief Get one sample of raw sensor data as 16 bit two's complements
*
* Function works only in bypass mode and fails in FIFO modes. In FIFO modes,
* function *lis3dh_get_raw_data_fifo* has to be used instead to get data.
*
* @param dev pointer to the sensor device data structure
* @param raw pointer to raw data structure filled with values
* @return true on success, false on error
*/
bool lis3dh_get_raw_data (lis3dh_sensor_t* dev, lis3dh_raw_data_t* raw);
/**
* @brief Get all samples of raw sensor data stored in the FIFO
*
* In bypass mode, it returns only one raw data sample.
*
* @param dev pointer to the sensor device data structure
* @param raw array of 32 raw data structures
* @return number of data sets read from fifo on success or 0 on error
*/
uint8_t lis3dh_get_raw_data_fifo (lis3dh_sensor_t* dev,
lis3dh_raw_data_fifo_t raw);
/**
* @brief Set configuration for activity (inertial) interrupt INT1/INT2
*
* Set the configuration for interrupts that are generated when a certain
* acceleration is higher or lower than defined threshold and one of the
* following activities are recognized: wake-up, free fall or 6D/4D
* orientation detection
*
* @param dev pointer to the sensor device data structure
* @param signal specifies the interrupt signal used in function
* @param config configuration for the specified interrupt signal
* @return true on success, false on error
*/
bool lis3dh_set_int_activity_config (lis3dh_sensor_t* dev,
lis3dh_int_signals_t signal,
lis3dh_int_activity_config_t* config);
/**
* @brief Get cofiguration for activity (inertial) interrupt INT1/INT2
*
* Get the configuration for interrupts that are generated when a certain
* acceleration is higher or lower than defined threshold and one of the
* following activities is recognized: wake-up, free fall or 6D/4D orientation
* detection
*
* @param dev pointer to the sensor device data structure
* @param signal specifies the interrupt signal used in function
* @param config configuration for the specified interrupt signal
* @return true on success, false on error
*/
bool lis3dh_get_int_activity_config (lis3dh_sensor_t* dev,
lis3dh_int_signals_t signal,
lis3dh_int_activity_config_t* config);
/**
* @brief Get the source of the activity (inertial) interrupt INT1/INT2
*
* Returns a byte with flags that indicate the activity which triggered
* the interrupt signal (see INTx_SRC register in datasheet for details)
*
* @param dev pointer to the sensor device data structure
* @param source pointer to the interrupt source
* @param signal specifies the interrupt signal used in function
* @return true on success, false on error
*/
bool lis3dh_get_int_activity_source (lis3dh_sensor_t* dev,
lis3dh_int_activity_source_t* source,
lis3dh_int_signals_t signal);
/**
* @brief Enable/disable an data interrupt on signal INT1
*
* Enables or diables interrupts that are generated either when data are
* ready to read or FIFO activities like overrun an watermark happen.
*
* @param dev pointer to the sensor device data structure
* @param type type of interrupt to be enabled/disabled
* @param value true to enable/false to disable the interrupt
* @return true on success, false on error
*/
bool lis3dh_enable_int_data (lis3dh_sensor_t* dev,
lis3dh_int_data_t type, bool value);
/**
* @brief Get the source of the data interrupt on signal INT1
*
* @param dev pointer to the sensor device data structure
* @param source pointer to the interrupt source
* @return true on success, false on error
*/
bool lis3dh_get_int_data_source (lis3dh_sensor_t* dev,
lis3dh_int_data_source_t* source);
/**
* @brief Set configuration for click detection interrupt INT1/INT2
*
* Set the configuration for interrupts that are generated when single or
* double clicks are detected.
*
* @param dev pointer to the sensor device data structure
* @param signal specifies the interrupt signal used in function
* @param config configuration for the specified interrupt signal
* @return true on success, false on error
*/
bool lis3dh_set_int_click_config (lis3dh_sensor_t* dev,
lis3dh_int_signals_t signal,
lis3dh_int_click_config_t* config);
/**
* @brief Set configuration for click detection interrupt INT1/INT2
*
* Set the configuration for interrupts that are generated when single or
* double clicks are detected.
*
* @param dev pointer to the sensor device data structure
* @param signal specifies the interrupt signal used in function
* @param config configuration for the specified interrupt signal
* @return true on success, false on error
*/
bool lis3dh_get_int_click_config (lis3dh_sensor_t* dev,
lis3dh_int_signals_t signal,
lis3dh_int_click_config_t* config);
/**
* @brief Get the source of the click detection interrupt INT1/INT2
*
* Returns a byte with flags that indicate the activity which triggered
* the interrupt signal (see CLICK_SRC register in datasheet for details)
*
* @param dev pointer to the sensor device data structure
* @param signal specifies the interrupt signal used in function
* @param source pointer to the interrupt source
* @return true on success, false on error
*/
bool lis3dh_get_int_click_source (lis3dh_sensor_t* dev,
lis3dh_int_click_source_t* source);
/**
* @brief Set signal configuration for INT1 and INT2 signals
*
* @param dev pointer to the sensor device data structure
* @param level define interrupt signal as low or high active
* @return true on success, false on error
*/
bool lis3dh_config_int_signals (lis3dh_sensor_t* dev,
lis3dh_int_signal_level_t level);
/**
* @brief Config HPF (high pass filter)
*
* @param dev pointer to the sensor device data structure
* @param mode filter mode
* @param cutoff filter cutoff frequency (depends on ODR) [0 ... 3]
* @param data if true, use filtered data as sensor output
* @param click if true, use filtered data for CLICK function
* @param int1 if true, use filtered data for interrupt INT1 generation
* @param int2 if true, use filtered data for interrupt INT2 generation
* @return true on success, false on error
*/
bool lis3dh_config_hpf (lis3dh_sensor_t* dev,
lis3dh_hpf_mode_t mode, uint8_t cutoff,
bool data, bool click, bool int1, bool int2);
/**
* @brief Set HPF (high pass filter) reference
*
* Used to set the reference of HPF in reference mode *lis3dh_hpf_reference*.
* Used to reset the HPF in autoreset mode *lis3dh_hpf_autoreset*.
* Reference is given as two's complement.
*
* @param dev pointer to the sensor device data structure
* @param ref reference *lis3dh_hpf_reference* mode, otherwise ignored
* @return true on success, false on error
*/
bool lis3dh_set_hpf_ref (lis3dh_sensor_t* dev, int8_t ref);
/**
* @brief Get HPF (high pass filter) reference
*
* Used to reset the HPF in normal mode *lis3dh_hpf_normal*.
*
* @param dev pointer to the sensor device data structure
* @return HPF reference as two's complement
*/
int8_t lis3dh_get_hpf_ref (lis3dh_sensor_t* dev);
/**
* @brief Enable / disable ADC or temperatury sensor
*
* @param dev pointer to the sensor device data structure
* @param enable if true, ADC inputs are enabled
* @param temp if true, ADC input 3 is the output of temperature sensor
* @return true on success, false on error
*/
int8_t lis3dh_enable_adc (lis3dh_sensor_t* dev, bool enable, bool temp);
/**
* @brief Get ADC input or temperature
*
* @param dev pointer to the sensor device data structure
* @param adc1 ADC input 1
* @param adc2 ADC input 2
* @param adc3 ADC input 3 or temperature in degree if enabled
* @return true on success, false on error
*/
bool lis3dh_get_adc (lis3dh_sensor_t* dev,
uint16_t* adc1, uint16_t* adc2, uint16_t* adc3);
// ---- Low level interface functions -----------------------------
/**
* @brief Direct write to register
*
* PLEASE NOTE: This function should only be used to do something special that
* is not covered by the high level interface AND if you exactly know what you
* do and what effects it might have. Please be aware that it might affect the
* high level interface.
*
* @param dev pointer to the sensor device data structure
* @param reg address of the first register to be changed
* @param data pointer to the data to be written to the register
* @param len number of bytes to be written to the register
* @return true on success, false on error
*/
bool lis3dh_write_reg (lis3dh_sensor_t* dev,
uint8_t reg, uint8_t *data, uint16_t len);
/**
* @brief Direct read from register
*
* PLEASE NOTE: This function should only be used to do something special that
* is not covered by the high level interface AND if you exactly know what you
* do and what effects it might have. Please be aware that it might affect the
* high level interface.
*
* @param dev pointer to the sensor device data structure
* @param reg address of the first register to be read
* @param data pointer to the data to be read from the register
* @param len number of bytes to be read from the register
* @return true on success, false on error
*/
bool lis3dh_read_reg (lis3dh_sensor_t* dev,
uint8_t reg, uint8_t *data, uint16_t len);
#ifdef __cplusplus
}
#endif /* End of CPP guard */
#endif /* __LIS3DH_H__ */

View file

@ -0,0 +1,112 @@
/**
* Driver for LIS3DH 3-axes digital accelerometer connected to I2C or SPI.
*
* This driver is for the usage with the ESP8266 and FreeRTOS (esp-open-rtos)
* [https://github.com/SuperHouse/esp-open-rtos]. It is also working with ESP32
* and ESP-IDF [https://github.com/espressif/esp-idf.git] as well as Linux
* based systems using a wrapper library for ESP8266 functions.
*
* ---------------------------------------------------------------------------
*
* The BSD License (3-clause license)
*
* Copyright (c) 2017 Gunar Schorcht (https://github.com/gschorcht)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* Platform file: platform specific definitions, includes and functions
*/
#ifndef __LIS3DH_PLATFORM_H__
#define __LIS3DH_PLATFORM_H__
#if !defined(ESP_OPEN_RTOS)
#define ESP_OPEN_RTOS 1
#endif
#ifdef ESP_OPEN_RTOS // ESP8266
// platform specific includes
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "espressif/esp_common.h"
#include "espressif/sdk_private.h"
#include "esp/uart.h"
#include "esp/spi.h"
#include "i2c/i2c.h"
// platform specific definitions
#define spi_semaphore_init()
#define spi_semaphore_take()
#define spi_semaphore_give()
// platform specific SPI functions
#define spi_bus_init(bus,sck,miso,mosi) // not needed on ESP8266
static const spi_settings_t bus_settings = {
.mode = SPI_MODE0,
.freq_divider = SPI_FREQ_DIV_1M,
.msb = true,
.minimal_pins = false,
.endianness = SPI_LITTLE_ENDIAN
};
inline static bool spi_device_init (uint8_t bus, uint8_t cs)
{
gpio_enable(cs, GPIO_OUTPUT);
gpio_write (cs, true);
return true;
}
inline static size_t spi_transfer_pf(uint8_t bus, uint8_t cs, const uint8_t *mosi, uint8_t *miso, uint16_t len)
{
spi_settings_t old_settings;
spi_get_settings(bus, &old_settings);
spi_set_settings(bus, &bus_settings);
gpio_write(cs, false);
size_t transfered = spi_transfer (bus, (const void*)mosi, (void*)miso, len, SPI_8BIT);
gpio_write(cs, true);
spi_set_settings(bus, &old_settings);
return transfered;
}
#endif // ESP_OPEN_RTOS
#endif // __LIS3DH_PLATFORM_H__

View file

@ -0,0 +1,336 @@
/**
* Driver for LIS3DH 3-axes digital accelerometer connected to I2C or SPI.
*
* This driver is for the usage with the ESP8266 and FreeRTOS (esp-open-rtos)
* [https://github.com/SuperHouse/esp-open-rtos]. It is also working with ESP32
* and ESP-IDF [https://github.com/espressif/esp-idf.git] as well as Linux
* based systems using a wrapper library for ESP8266 functions.
*
* ---------------------------------------------------------------------------
*
* The BSD License (3-clause license)
*
* Copyright (c) 2017 Gunar Schorcht (https://github.com/gschorcht)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO Activity SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __LIS3DH_TYPES_H__
#define __LIS3DH_TYPES_H__
#include "stdint.h"
#include "stdbool.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @brief Output data rates (ODR), related to resolution modes
*/
typedef enum {
lis3dh_power_down = 0, // power down mode
lis3dh_odr_1, // high resolution / normal / low power 1 Hz
lis3dh_odr_10, // high resolution / normal / low power 10 Hz
lis3dh_odr_25, // high resolution / normal / low power 25 Hz
lis3dh_odr_50, // high resolution / normal / low power 50 Hz
lis3dh_odr_100, // high resolution / normal / low power 100 Hz
lis3dh_odr_200, // high resolution / normal / low power 200 Hz
lis3dh_odr_400, // high resolution / normal / low power 400 Hz
lis3dh_odr_1600, // low power mode 1.6 kHz
lis3dh_odr_5000, // normal 1.25 kHz / low power 5 kHz
} lis3dh_odr_mode_t;
/**
* @brief Resolution modes, related to output data rates (ODR)
*/
typedef enum {
lis3dh_low_power, // low power mode resolution ( 8 bit data)
lis3dh_normal, // normal mode resolution (10 bit data)
lis3dh_high_res // high resolution mode (12 bit data)
} lis3dh_resolution_t;
/**
* @brief Full scale measurement range
*/
typedef enum {
lis3dh_scale_2g = 0, // default
lis3dh_scale_4g,
lis3dh_scale_8g,
lis3dh_scale_16g
} lis3dh_scale_t;
/**
* @brief FIFO mode
*/
typedef enum {
lis3dh_bypass = 0, // default
lis3dh_fifo = 1,
lis3dh_stream = 2,
lis3dh_trigger= 3
} lis3dh_fifo_mode_t;
/**
* @brief Interrupt signals
*/
typedef enum {
lis3dh_int1_signal = 0,
lis3dh_int2_signal = 1
} lis3dh_int_signals_t;
/**
* @brief Activity interrupt configuration for INT1/INT2 signals
*
* Activity interrupts are: axes movement wake-up, free-fall, 6D/4D detection.
*/
typedef struct {
enum { // activity type for the interrupt
lis3dh_wake_up, // AOI = 0, 6D = 0
lis3dh_free_fall, // AOI = 1, 6D = 0
lis3dh_6d_movement, // AOI = 0, 6D = 1, D4D = 0
lis3dh_6d_position, // AOI = 1, 6D = 1, D4D = 0
lis3dh_4d_movement, // AOI = 0, 6D = 1, D4D = 1
lis3dh_4d_position, // AOI = 1, 6D = 1, D4D = 1
} activity;
uint8_t threshold; // threshold used for comparison for all axes
bool x_low_enabled; // x lower than threshold interrupt enabled
bool x_high_enabled; // x higher than threshold interrupt enabled
bool y_low_enabled; // y lower than threshold interrupt enabled
bool y_high_enabled; // y higher than threshold interrupt enabled
bool z_low_enabled; // z lower than threshold interrupt enabled
bool z_high_enabled; // z higher than threshold interrupt enabled
bool latch; // latch the interrupt when true until the
// interrupt source has been read
uint8_t duration; // duration in 1/ODR an interrupt condition has
// to be given before the interrupt is generated
} lis3dh_int_activity_config_t;
/**
* @brief Activity interrupt source type for interrupt signals INT1/INT2
*/
typedef struct {
bool active:1; // true - one ore more activities occured
bool x_low :1; // true - x low activity occured
bool x_high:1; // true - x high activity occured
bool y_low :1; // true - z low activity occured
bool y_high:1; // true - z high activity occured
bool z_low :1; // true - z low activity occured
bool z_high:1; // true - z high activity occured
} lis3dh_int_activity_source_t;
/**
* @brief Data interrupt types for INT1 signal
*/
typedef enum {
lis3dh_data_ready, // interrupt when data are ready to read
lis3dh_fifo_watermark, // interrupt when FIFO exceeds the FIFO threashold
lis3dh_fifo_overrun // interrupt when FIFO is completely filled
} lis3dh_int_data_t;
/**
* @brief Data interrupt source type for INT1 signal
*/
typedef struct {
bool data_ready; // true when data are ready to read
bool fifo_watermark; // true when FIFO exceeds the FIFO threashold
bool fifo_overrun; // true when FIFO is completely filled
} lis3dh_int_data_source_t;
/**
* @brief Click interrupt configuration for interrupt signals INT1/INT2
*/
typedef struct {
bool x_single; // x-axis single tap interrupt enabled
bool x_double; // x-axis double tap interrupt enabled
bool y_single; // y-axis single tap interrupt enabled
bool y_double; // y-axis double tap interrupt enabled
bool z_single; // z-axis single tap interrupt enabled
bool z_double; // z-axis double tap interrupt enabled
uint8_t threshold; // threshold used for comparison for all axes
bool latch; // latch the interrupt when true until the
// interrupt source has been read
uint8_t time_limit; // maximum time interval between the start and the
// end of a cick (accel increases and falls back)
uint8_t time_latency; // click detection is disabled for that time after
// a was click detected (in 1/ODR)
uint8_t time_window; // time interval in which the second click has to
// to be detected in double clicks (in 1/ODR)
} lis3dh_int_click_config_t;
/**
* @brief Click interrupt configuration for interrupt signals INT1/INT2
*/
typedef struct {
bool x_click:1; // click detected in x direction
bool y_click:1; // click detected in y direction
bool z_click:1; // click detected in z direction
bool sign :1; // click sign (0 - posisitive, 1 - negative)
bool s_click:1; // single click detected
bool d_click:1; // double click detected
bool active :1; // true - one ore more Activities occured
} lis3dh_int_click_source_t;
/**
* @brief INT1, INT2 signal activity level
*/
typedef enum {
lis3dh_high_active = 0,
lis3dh_low_active
} lis3dh_int_signal_level_t;
/**
* @brief Raw data set as two complements
*/
typedef struct {
int16_t ax; // acceleration on x axis
int16_t ay; // acceleration on y axis
int16_t az; // acceleration on z axis
} lis3dh_raw_data_t;
/**
* @brief Raw data FIFO type
*/
typedef lis3dh_raw_data_t lis3dh_raw_data_fifo_t[32];
/**
* @brief Floating point output value set in degree
*/
typedef struct {
float ax; // acceleration on x axis
float ay; // acceleration on y axis
float az; // acceleration on z axis
} lis3dh_float_data_t;
/**
* @brief Floating point output value FIFO type
*/
typedef lis3dh_float_data_t lis3dh_float_data_fifo_t[32];
/**
* @brief HPF (high pass filter) modes
*/
typedef enum {
lis3dh_hpf_normal = 0, // normal mode (reset by reading reference)
lis3dh_hpf_reference, // reference signal for filtering
lis3dh_hpf_normal_x, // normal mode
lis3dh_hpf_autoreset // autoreset on interrupt Activity
} lis3dh_hpf_mode_t;
/**
* @brief LIS3DH sensor device data structure type
*/
typedef struct {
int error_code; // error code of last operation
uint8_t bus; // I2C = x, SPI = 1
uint8_t addr; // I2C = slave address, SPI = 0
uint8_t cs; // ESP8266, ESP32: GPIO used as SPI CS
// __linux__: device index
lis3dh_scale_t scale; // fill range scale (default 245 dps)
lis3dh_resolution_t res; // resolution used
lis3dh_fifo_mode_t fifo_mode; // FIFO operation mode (default bypass)
bool fifo_first; // first FIFO access
} lis3dh_sensor_t;
#ifdef __cplusplus
}
#endif /* End of CPP guard */
#endif /* __LIS3DH_TYPES_H__ */