sysparam fixes, tests, spi flash refactoring (#299)

Original work by @ourairquality
* Sysparam threadsafe and SPI access
* Sysparam test cases
* Fix for negative int8
* Sysparam getting bool without memory allocation. Bool tests.
* SPI flash refactoring.
* Extract common spiflash.c into core.
* Use spiflash.c in sysparam.
* Use memcpy in spiflash.c insted of hand-written version.
* Tests for spiflash.c
This commit is contained in:
sheinz 2017-03-21 23:18:04 +02:00 committed by Ruslan V. Uss
parent 07ca0d2e9e
commit a91ec6eb61
10 changed files with 724 additions and 406 deletions

View file

@ -36,4 +36,6 @@ typedef struct {
uint32_t status_mask; uint32_t status_mask;
} sdk_flashchip_t; } sdk_flashchip_t;
extern sdk_flashchip_t sdk_flashchip;
#endif /* _FLASHCHIP_H */ #endif /* _FLASHCHIP_H */

View file

@ -21,14 +21,14 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#ifndef __ESP_SPIFFS_FLASH_H__ #ifndef __SPIFLASH_H__
#define __ESP_SPIFFS_FLASH_H__ #define __SPIFLASH_H__
#include <stdint.h> #include <stdint.h>
#include <stdbool.h>
#include "common_macros.h" #include "common_macros.h"
#define ESP_SPIFFS_FLASH_OK 0 #define SPI_FLASH_SECTOR_SIZE 4096
#define ESP_SPIFFS_FLASH_ERROR 1
/** /**
* Read data from SPI flash. * Read data from SPI flash.
@ -37,9 +37,9 @@
* @param buf Buffer to read to. Doesn't have to be aligned. * @param buf Buffer to read to. Doesn't have to be aligned.
* @param size Size of data to read. Buffer size must be >= than data size. * @param size Size of data to read. Buffer size must be >= than data size.
* *
* @return ESP_SPIFFS_FLASH_OK or ESP_SPIFFS_FLASH_ERROR * @return true if success, otherwise false
*/ */
uint32_t IRAM esp_spiffs_flash_read(uint32_t addr, uint8_t *buf, uint32_t size); bool IRAM spiflash_read(uint32_t addr, uint8_t *buf, uint32_t size);
/** /**
* Write data to SPI flash. * Write data to SPI flash.
@ -48,17 +48,17 @@ uint32_t IRAM esp_spiffs_flash_read(uint32_t addr, uint8_t *buf, uint32_t size);
* @param buf Buffer of data to write to flash. Doesn't have to be aligned. * @param buf Buffer of data to write to flash. Doesn't have to be aligned.
* @param size Size of data to write. Buffer size must be >= than data size. * @param size Size of data to write. Buffer size must be >= than data size.
* *
* @return ESP_SPIFFS_FLASH_OK or ESP_SPIFFS_FLASH_ERROR * @return true if success, otherwise false
*/ */
uint32_t IRAM esp_spiffs_flash_write(uint32_t addr, uint8_t *buf, uint32_t size); bool IRAM spiflash_write(uint32_t addr, uint8_t *buf, uint32_t size);
/** /**
* Erase a sector. * Erase a sector.
* *
* @param addr Address of sector to erase. Must be sector aligned. * @param addr Address of sector to erase. Must be sector aligned.
* *
* @return ESP_SPIFFS_FLASH_OK or ESP_SPIFFS_FLASH_ERROR * @return true if success, otherwise false
*/ */
uint32_t IRAM esp_spiffs_flash_erase_sector(uint32_t addr); bool IRAM spiflash_erase_sector(uint32_t addr);
#endif // __ESP_SPIFFS_FLASH_H__ #endif // __SPIFLASH_H__

View file

@ -119,7 +119,7 @@ sysparam_status_t sysparam_init(uint32_t base_addr, uint32_t top_addr);
* you reformat the area currently being used, you will also need to call * you reformat the area currently being used, you will also need to call
* sysparam_init() again afterward before you will be able to continue using * sysparam_init() again afterward before you will be able to continue using
* it. * it.
*/ */
sysparam_status_t sysparam_create_area(uint32_t base_addr, uint16_t num_sectors, bool force); sysparam_status_t sysparam_create_area(uint32_t base_addr, uint16_t num_sectors, bool force);
/** Get the start address and size of the currently active sysparam area /** Get the start address and size of the currently active sysparam area
@ -180,24 +180,20 @@ sysparam_status_t sysparam_compact();
*/ */
sysparam_status_t sysparam_get_data(const char *key, uint8_t **destptr, size_t *actual_length, bool *is_binary); sysparam_status_t sysparam_get_data(const char *key, uint8_t **destptr, size_t *actual_length, bool *is_binary);
/** Get the value associated with a key (static buffers only) /** Get the value associated with a key (static value buffer)
* *
* This performs the same function as sysparam_get_data() but without * This performs the same function as sysparam_get_data() but without
* performing any memory allocations. It can thus be used before the heap has * allocating memory for the result value. It can thus be used before the heap
* been configured or in other cases where using the heap would be a problem * has been configured or in other cases where using the heap would be a
* (i.e. in an OOM handler, etc). It requires that the caller pass in a * problem (i.e. in an OOM handler, etc). It requires that the caller pass in
* suitably sized buffer for the value to be read (if the supplied buffer is * a suitably sized buffer for the value to be read (if the supplied buffer is
* not large enough, the returned value will be truncated and the full * not large enough, the returned value will be truncated and the full required
* required length will be returned in `actual_length`). * length will be returned in `actual_length`).
*
* NOTE: In addition to being large enough for the value, the supplied buffer
* must also be at least as large as the length of the key being requested.
* If it is not, an error will be returned.
* *
* @param[in] key Key name (zero-terminated string) * @param[in] key Key name (zero-terminated string)
* @param[in] buffer Pointer to a buffer to hold the returned value * @param[in] dest Pointer to a buffer to hold the returned value.
* @param[in] buffer_size Length of the supplied buffer in bytes * @param[in] dest_size Length of the supplied buffer in bytes.
* @param[out] actual_length pointer to a location to hold the actual length * @param[out] actual_length Pointer to a location to hold the actual length
* of the data which was associated with the key * of the data which was associated with the key
* (may be NULL). * (may be NULL).
* @param[out] is_binary Pointer to a bool to hold whether the returned * @param[out] is_binary Pointer to a bool to hold whether the returned
@ -210,10 +206,10 @@ sysparam_status_t sysparam_get_data(const char *key, uint8_t **destptr, size_t *
* @retval ::SYSPARAM_ERR_CORRUPT Sysparam region has bad/corrupted data * @retval ::SYSPARAM_ERR_CORRUPT Sysparam region has bad/corrupted data
* @retval ::SYSPARAM_ERR_IO I/O error reading/writing flash * @retval ::SYSPARAM_ERR_IO I/O error reading/writing flash
*/ */
sysparam_status_t sysparam_get_data_static(const char *key, uint8_t *buffer, size_t buffer_size, size_t *actual_length, bool *is_binary); sysparam_status_t sysparam_get_data_static(const char *key, uint8_t *dest, size_t dest_size, size_t *actual_length, bool *is_binary);
/** Get the string value associated with a key /** Get the string value associated with a key
* *
* This routine can be used if you know that the value in a key will (or at * This routine can be used if you know that the value in a key will (or at
* least should) be a string. It will return a zero-terminated char buffer * least should) be a string. It will return a zero-terminated char buffer
* containing the value retrieved. * containing the value retrieved.
@ -240,9 +236,10 @@ sysparam_status_t sysparam_get_data_static(const char *key, uint8_t *buffer, siz
sysparam_status_t sysparam_get_string(const char *key, char **destptr); sysparam_status_t sysparam_get_string(const char *key, char **destptr);
/** Get the int32_t value associated with a key /** Get the int32_t value associated with a key
* *
* This routine can be used if you know that the value in a key will (or at * This routine can be used if you know that the value in a key will (or at
* least should) be an int32_t value. * least should) be an int32_t value. This is done without allocating any
* memory.
* *
* Note: If the status result is anything other than ::SYSPARAM_OK, the value * Note: If the status result is anything other than ::SYSPARAM_OK, the value
* in `result` is not changed. This means it is possible to set a default * in `result` is not changed. This means it is possible to set a default
@ -266,7 +263,8 @@ sysparam_status_t sysparam_get_int32(const char *key, int32_t *result);
/** Get the int8_t value associated with a key /** Get the int8_t value associated with a key
* *
* This routine can be used if you know that the value in a key will (or at * This routine can be used if you know that the value in a key will (or at
* least should) be a uint8_t binary value. * least should) be a uint8_t binary value. This is done without allocating any
* memory.
* *
* Note: If the status result is anything other than ::SYSPARAM_OK, the value * Note: If the status result is anything other than ::SYSPARAM_OK, the value
* in `result` is not changed. This means it is possible to set a default * in `result` is not changed. This means it is possible to set a default
@ -288,7 +286,7 @@ sysparam_status_t sysparam_get_int32(const char *key, int32_t *result);
sysparam_status_t sysparam_get_int8(const char *key, int8_t *result); sysparam_status_t sysparam_get_int8(const char *key, int8_t *result);
/** Get the boolean value associated with a key /** Get the boolean value associated with a key
* *
* This routine can be used if you know that the value in a key will (or at * This routine can be used if you know that the value in a key will (or at
* least should) be a boolean setting. It will read the specified value as a * least should) be a boolean setting. It will read the specified value as a
* text string and attempt to parse it as a boolean value. * text string and attempt to parse it as a boolean value.
@ -320,7 +318,7 @@ sysparam_status_t sysparam_get_bool(const char *key, bool *result);
* *
* The supplied value can be any data, up to 255 bytes in length. If `value` * The supplied value can be any data, up to 255 bytes in length. If `value`
* is NULL or `value_len` is 0, this is treated as a request to delete any * is NULL or `value_len` is 0, this is treated as a request to delete any
* current entry matching `key`. * current entry matching `key`. This is done without allocating any memory.
* *
* If `binary` is true, the data will be considered binary (unprintable) data, * If `binary` is true, the data will be considered binary (unprintable) data,
* and this will be annotated in the saved entry. This does not affect the * and this will be annotated in the saved entry. This does not affect the
@ -368,7 +366,8 @@ sysparam_status_t sysparam_set_string(const char *key, const char *value);
/** Set a key's value as a number /** Set a key's value as a number
* *
* Write an int32_t binary value to the specified key. This does the inverse of * Write an int32_t binary value to the specified key. This does the inverse of
* the sysparam_get_int32() function. * the sysparam_get_int32() function. This is done without allocating any
* memory.
* *
* @param[in] key Key name (zero-terminated string) * @param[in] key Key name (zero-terminated string)
* @param[in] value Value to set * @param[in] value Value to set
@ -386,10 +385,8 @@ sysparam_status_t sysparam_set_int32(const char *key, int32_t value);
/** Set a key's value as a number /** Set a key's value as a number
* *
* Write an int8_t binary value to the specified key. This does the inverse of * Write an int8_t binary value to the specified key. This does the inverse of
* the sysparam_get_int8() function. * the sysparam_get_int8() function. This is done without allocating any
* * memory.
* Note that if the key already contains a value which parses to the same
* boolean (true/false) value, it is left unchanged.
* *
* @param[in] key Key name (zero-terminated string) * @param[in] key Key name (zero-terminated string)
* @param[in] value Value to set * @param[in] value Value to set

View file

@ -21,12 +21,13 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include "esp_spiffs_flash.h" #include "include/spiflash.h"
#include "flashchip.h"
#include "espressif/spi_flash.h" #include "include/flashchip.h"
#include "FreeRTOS.h" #include "include/esp/rom.h"
#include "esp/rom.h" #include "include/esp/spi_regs.h"
#include "esp/spi_regs.h"
#include <FreeRTOS.h>
#include <string.h> #include <string.h>
/** /**
@ -52,25 +53,6 @@
#define SPI_READ_MAX_SIZE 60 #define SPI_READ_MAX_SIZE 60
/**
* Copy unaligned data to 4-byte aligned destination buffer.
*
* @param words Number of 4-byte words to write.
*
* @see unaligned_memcpy.S
*/
void memcpy_unaligned_src(volatile uint32_t *dst, uint8_t *src, uint8_t words);
/**
* Copy 4-byte aligned source data to unaligned destination buffer.
*
* @param bytes Number of byte to copy to dst.
*
* @see unaligned_memcpy.S
*/
void memcpy_unaligned_dst(uint8_t *dst, volatile uint32_t *src, uint8_t bytes);
/** /**
* Low level SPI flash write. Write block of data up to 64 bytes. * Low level SPI flash write. Write block of data up to 64 bytes.
*/ */
@ -86,7 +68,9 @@ static inline void IRAM spi_write_data(sdk_flashchip_t *chip, uint32_t addr,
SPI(0).ADDR = (addr & 0x00FFFFFF) | (size << 24); SPI(0).ADDR = (addr & 0x00FFFFFF) | (size << 24);
memcpy_unaligned_src(SPI(0).W, buf, words); memcpy((void*)SPI(0).W, buf, words<<2);
__asm__ volatile("memw");
SPI_write_enable(chip); SPI_write_enable(chip);
@ -97,16 +81,16 @@ static inline void IRAM spi_write_data(sdk_flashchip_t *chip, uint32_t addr,
/** /**
* Write a page of flash. Data block should not cross page boundary. * Write a page of flash. Data block should not cross page boundary.
*/ */
static uint32_t IRAM spi_write_page(sdk_flashchip_t *flashchip, uint32_t dest_addr, static bool IRAM spi_write_page(sdk_flashchip_t *flashchip, uint32_t dest_addr,
uint8_t *buf, uint32_t size) uint8_t *buf, uint32_t size)
{ {
// check if block to write doesn't cross page boundary // check if block to write doesn't cross page boundary
if (flashchip->page_size < size + (dest_addr % flashchip->page_size)) { if (flashchip->page_size < size + (dest_addr % flashchip->page_size)) {
return ESP_SPIFFS_FLASH_ERROR; return false;
} }
if (size < 1) { if (size < 1) {
return ESP_SPIFFS_FLASH_OK; return true;
} }
while (size >= SPI_WRITE_MAX_SIZE) { while (size >= SPI_WRITE_MAX_SIZE) {
@ -117,58 +101,58 @@ static uint32_t IRAM spi_write_page(sdk_flashchip_t *flashchip, uint32_t dest_ad
buf += SPI_WRITE_MAX_SIZE; buf += SPI_WRITE_MAX_SIZE;
if (size < 1) { if (size < 1) {
return ESP_SPIFFS_FLASH_OK; return true;
} }
} }
spi_write_data(flashchip, dest_addr, buf, size); spi_write_data(flashchip, dest_addr, buf, size);
return ESP_SPIFFS_FLASH_OK; return true;
} }
/** /**
* Split block of data into pages and write pages. * Split block of data into pages and write pages.
*/ */
static uint32_t IRAM spi_write(uint32_t addr, uint8_t *dst, uint32_t size) static bool IRAM spi_write(uint32_t addr, uint8_t *dst, uint32_t size)
{ {
if (sdk_flashchip.chip_size < (addr + size)) { if (sdk_flashchip.chip_size < (addr + size)) {
return ESP_SPIFFS_FLASH_ERROR; return false;
} }
uint32_t write_bytes_to_page = sdk_flashchip.page_size - uint32_t write_bytes_to_page = sdk_flashchip.page_size -
(addr % sdk_flashchip.page_size); // TODO: place for optimization (addr % sdk_flashchip.page_size); // TODO: place for optimization
if (size < write_bytes_to_page) { if (size < write_bytes_to_page) {
if (spi_write_page(&sdk_flashchip, addr, dst, size)) { if (!spi_write_page(&sdk_flashchip, addr, dst, size)) {
return ESP_SPIFFS_FLASH_ERROR; return false;
} }
} else { } else {
if (spi_write_page(&sdk_flashchip, addr, dst, write_bytes_to_page)) { if (!spi_write_page(&sdk_flashchip, addr, dst, write_bytes_to_page)) {
return ESP_SPIFFS_FLASH_ERROR; return false;
} }
uint32_t offset = write_bytes_to_page; uint32_t offset = write_bytes_to_page;
uint32_t pages_to_write = (size - offset) / sdk_flashchip.page_size; uint32_t pages_to_write = (size - offset) / sdk_flashchip.page_size;
for (uint8_t i = 0; i != pages_to_write; i++) { for (uint8_t i = 0; i != pages_to_write; i++) {
if (spi_write_page(&sdk_flashchip, addr + offset, if (!spi_write_page(&sdk_flashchip, addr + offset,
dst + offset, sdk_flashchip.page_size)) { dst + offset, sdk_flashchip.page_size)) {
return ESP_SPIFFS_FLASH_ERROR; return false;
} }
offset += sdk_flashchip.page_size; offset += sdk_flashchip.page_size;
} }
if (spi_write_page(&sdk_flashchip, addr + offset, if (!spi_write_page(&sdk_flashchip, addr + offset,
dst + offset, size - offset)) { dst + offset, size - offset)) {
return ESP_SPIFFS_FLASH_ERROR; return false;
} }
} }
return ESP_SPIFFS_FLASH_OK; return true;
} }
uint32_t IRAM esp_spiffs_flash_write(uint32_t addr, uint8_t *buf, uint32_t size) bool IRAM spiflash_write(uint32_t addr, uint8_t *buf, uint32_t size)
{ {
uint32_t result = ESP_SPIFFS_FLASH_ERROR; bool result = false;
if (buf) { if (buf) {
vPortEnterCritical(); vPortEnterCritical();
@ -197,21 +181,23 @@ static inline void IRAM read_block(sdk_flashchip_t *chip, uint32_t addr,
while (SPI(0).CMD) {}; while (SPI(0).CMD) {};
memcpy_unaligned_dst(buf, SPI(0).W, size); __asm__ volatile("memw");
memcpy(buf, (const void*)SPI(0).W, size);
} }
/** /**
* Read SPI flash data. Data region doesn't need to be page aligned. * Read SPI flash data. Data region doesn't need to be page aligned.
*/ */
static inline uint32_t IRAM read_data(sdk_flashchip_t *flashchip, uint32_t addr, static inline bool IRAM read_data(sdk_flashchip_t *flashchip, uint32_t addr,
uint8_t *dst, uint32_t size) uint8_t *dst, uint32_t size)
{ {
if (size < 1) { if (size < 1) {
return ESP_SPIFFS_FLASH_OK; return true;
} }
if ((addr + size) > flashchip->chip_size) { if ((addr + size) > flashchip->chip_size) {
return ESP_SPIFFS_FLASH_ERROR; return false;
} }
while (size >= SPI_READ_MAX_SIZE) { while (size >= SPI_READ_MAX_SIZE) {
@ -225,12 +211,12 @@ static inline uint32_t IRAM read_data(sdk_flashchip_t *flashchip, uint32_t addr,
read_block(flashchip, addr, dst, size); read_block(flashchip, addr, dst, size);
} }
return ESP_SPIFFS_FLASH_OK; return true;
} }
uint32_t IRAM esp_spiffs_flash_read(uint32_t dest_addr, uint8_t *buf, uint32_t size) bool IRAM spiflash_read(uint32_t dest_addr, uint8_t *buf, uint32_t size)
{ {
uint32_t result = ESP_SPIFFS_FLASH_ERROR; bool result = false;
if (buf) { if (buf) {
vPortEnterCritical(); vPortEnterCritical();
@ -245,14 +231,14 @@ uint32_t IRAM esp_spiffs_flash_read(uint32_t dest_addr, uint8_t *buf, uint32_t s
return result; return result;
} }
uint32_t IRAM esp_spiffs_flash_erase_sector(uint32_t addr) bool IRAM spiflash_erase_sector(uint32_t addr)
{ {
if ((addr + sdk_flashchip.sector_size) > sdk_flashchip.chip_size) { if ((addr + sdk_flashchip.sector_size) > sdk_flashchip.chip_size) {
return ESP_SPIFFS_FLASH_ERROR; return false;
} }
if (addr & 0xFFF) { if (addr & 0xFFF) {
return ESP_SPIFFS_FLASH_ERROR; return false;
} }
vPortEnterCritical(); vPortEnterCritical();
@ -269,5 +255,5 @@ uint32_t IRAM esp_spiffs_flash_erase_sector(uint32_t addr)
Cache_Read_Enable(0, 0, 1); Cache_Read_Enable(0, 0, 1);
vPortExitCritical(); vPortExitCritical();
return ESP_SPIFFS_FLASH_OK; return true;
} }

View file

@ -8,14 +8,12 @@
#include <string.h> #include <string.h>
#include <stdio.h> #include <stdio.h>
#include <sysparam.h> #include <sysparam.h>
#include <espressif/spi_flash.h> #include "spiflash.h"
#include "flashchip.h"
#include <common_macros.h> #include <common_macros.h>
#include "FreeRTOS.h" #include "FreeRTOS.h"
#include "semphr.h" #include "semphr.h"
//TODO: make this properly threadsafe
//TODO: reduce stack usage
/* The "magic" value that indicates the start of a sysparam region in flash. /* The "magic" value that indicates the start of a sysparam region in flash.
*/ */
#define SYSPARAM_MAGIC 0x70524f45 // "EORp" in little-endian #define SYSPARAM_MAGIC 0x70524f45 // "EORp" in little-endian
@ -33,11 +31,14 @@
*/ */
#define SCAN_BUFFER_SIZE 8 // words #define SCAN_BUFFER_SIZE 8 // words
/* The size of the temporary buffer used for reading back and verifying data /* The size in words of the buffer used for reading keys when searching for a
* written to flash. Making this larger will make the write-and-verify * match, for reading payloads to check if the value has changed, and reading
* operation slightly faster, but will use more heap during writes * back from the flash to verify writes. Will work well if big enough for
* commonly used keys, and must be at least one word. Stack allocated so not too
* large!
*/ */
#define VERIFY_BUF_SIZE 64 #define BOUNCE_BUFFER_WORDS 3
#define BOUNCE_BUFFER_SIZE (BOUNCE_BUFFER_WORDS * sizeof(uint32_t))
/* Size of region/entry headers. These should not normally need tweaking (and /* Size of region/entry headers. These should not normally need tweaking (and
* will probably require some code changes if they are tweaked). * will probably require some code changes if they are tweaked).
@ -76,14 +77,16 @@
/******************************* Useful Macros *******************************/ /******************************* Useful Macros *******************************/
#define ROUND_TO_WORD_BOUNDARY(x) (((x) + 3) & 0xfffffffc) #define ROUND_TO_WORD_BOUNDARY(x) (((x) + 3) & 0xfffffffc)
#define ENTRY_SIZE(payload_len) (ENTRY_HEADER_SIZE + ROUND_TO_WORD_BOUNDARY(payload_len)) #define ENTRY_SIZE(payload_len) (ENTRY_HEADER_SIZE + payload_len)
#define max(x, y) ((x) > (y) ? (x) : (y)) #define max(x, y) ((x) > (y) ? (x) : (y))
#define min(x, y) ((x) < (y) ? (x) : (y)) #define min(x, y) ((x) < (y) ? (x) : (y))
#define debug(level, format, ...) if (SYSPARAM_DEBUG >= (level)) { printf("%s" format "\n", "sysparam: ", ## __VA_ARGS__); } #define debug(level, format, ...) if (SYSPARAM_DEBUG >= (level)) { printf("%s" format "\n", "sysparam: ", ## __VA_ARGS__); }
#define CHECK_FLASH_OP(x) do { int __x = (x); if ((__x) != SPI_FLASH_RESULT_OK) { debug(1, "FLASH ERR: %d", __x); return SYSPARAM_ERR_IO; } } while (0); #define CHECK_FLASH_OP(x) do { bool __x = (x); if (!(__x)) { \
debug(1, "FLASH ERR: %d", __x); return SYSPARAM_ERR_IO; \
} } while (0);
/********************* Internal datatypes and structures *********************/ /********************* Internal datatypes and structures *********************/
@ -119,50 +122,28 @@ static struct {
/***************************** Internal routines *****************************/ /***************************** Internal routines *****************************/
static inline IRAM sysparam_status_t _do_write(uint32_t addr, const void *data, size_t data_size) { static sysparam_status_t _write_and_verify(uint32_t addr, const void *data, size_t data_size) {
CHECK_FLASH_OP(sdk_spi_flash_write(addr, (void*) data, data_size)); uint8_t bounce[BOUNCE_BUFFER_SIZE];
return SYSPARAM_OK;
}
static inline IRAM sysparam_status_t _do_verify(uint32_t addr, const void *data, void *buffer, size_t len) { for (int i = 0; i < data_size; i += BOUNCE_BUFFER_SIZE) {
CHECK_FLASH_OP(sdk_spi_flash_read(addr, buffer, len)); size_t count = min(data_size - i, BOUNCE_BUFFER_SIZE);
if (memcmp(data, buffer, len)) { memcpy(bounce, data + i, count);
return SYSPARAM_ERR_IO; CHECK_FLASH_OP(spiflash_write(addr + i, bounce, count));
CHECK_FLASH_OP(spiflash_read(addr + i, bounce, count));
if (memcmp(data + i, bounce, count) != 0) {
debug(1, "Flash write (@ 0x%08x) verify failed!", addr);
return SYSPARAM_ERR_IO;
}
} }
return SYSPARAM_OK; return SYSPARAM_OK;
} }
/*FIXME: Eventually, this should probably be implemented down at the SPI flash library layer, where it can just compare bytes/words straight from the SPI hardware buffer instead of allocating a whole separate temp buffer, reading chunks into that, and then doing a memcmp.. */
static IRAM sysparam_status_t _write_and_verify(uint32_t addr, const void *data, size_t data_size) {
int i;
size_t count;
sysparam_status_t status = SYSPARAM_OK;
uint8_t *verify_buf = malloc(VERIFY_BUF_SIZE);
if (!verify_buf) return SYSPARAM_ERR_NOMEM;
do {
status = _do_write(addr, data, data_size);
if (status != SYSPARAM_OK) break;
for (i = 0; i < data_size; i += VERIFY_BUF_SIZE) {
count = min(data_size - i, VERIFY_BUF_SIZE);
status = _do_verify(addr + i, data + i, verify_buf, count);
if (status != SYSPARAM_OK) {
debug(1, "Flash write (@ 0x%08x) verify failed!", addr);
break;
}
}
} while (false);
free(verify_buf);
return status;
}
/** Erase the sectors of a region */ /** Erase the sectors of a region */
static sysparam_status_t _format_region(uint32_t addr, uint16_t num_sectors) { static sysparam_status_t _format_region(uint32_t addr, uint16_t num_sectors) {
uint16_t sector = addr / sdk_flashchip.sector_size;
int i; int i;
for (i = 0; i < num_sectors; i++) { for (i = 0; i < num_sectors; i++) {
CHECK_FLASH_OP(sdk_spi_flash_erase_sector(sector + i)); CHECK_FLASH_OP(spiflash_erase_sector(addr + (i * SPI_FLASH_SECTOR_SIZE)));
} }
return SYSPARAM_OK; return SYSPARAM_OK;
} }
@ -212,7 +193,7 @@ static sysparam_status_t init_write_context(struct sysparam_context *ctx) {
memset(ctx, 0, sizeof(*ctx)); memset(ctx, 0, sizeof(*ctx));
ctx->addr = _sysparam_info.end_addr; ctx->addr = _sysparam_info.end_addr;
debug(3, "read entry header @ 0x%08x", ctx->addr); debug(3, "read entry header @ 0x%08x", ctx->addr);
CHECK_FLASH_OP(sdk_spi_flash_read(ctx->addr, (void*) &ctx->entry, ENTRY_HEADER_SIZE)); CHECK_FLASH_OP(spiflash_read(ctx->addr, (void*) &ctx->entry, ENTRY_HEADER_SIZE));
return SYSPARAM_OK; return SYSPARAM_OK;
} }
@ -238,7 +219,10 @@ static sysparam_status_t _find_entry(struct sysparam_context *ctx, uint16_t matc
// workaround is to make sure that the next write operation // workaround is to make sure that the next write operation
// will always start with a compaction, which will leave off // will always start with a compaction, which will leave off
// the invalid data at the end and fix the issue going forward. // the invalid data at the end and fix the issue going forward.
debug(1, "Encountered entry with invalid length (0x%04x) @ 0x%08x (region end is 0x%08x). Truncating entries.", ctx->entry.len, ctx->addr, _sysparam_info.end_addr); debug(1, "Encountered entry with invalid length (0x%04x) @ 0x%08x (region end is 0x%08x). Truncating entries.",
ctx->entry.len,
ctx->addr, _sysparam_info.end_addr);
_sysparam_info.force_compact = true; _sysparam_info.force_compact = true;
break; break;
} }
@ -251,7 +235,7 @@ static sysparam_status_t _find_entry(struct sysparam_context *ctx, uint16_t matc
} }
debug(3, "read entry header @ 0x%08x", ctx->addr); debug(3, "read entry header @ 0x%08x", ctx->addr);
CHECK_FLASH_OP(sdk_spi_flash_read(ctx->addr, (void*) &ctx->entry, ENTRY_HEADER_SIZE)); CHECK_FLASH_OP(spiflash_read(ctx->addr, (void*) &ctx->entry, ENTRY_HEADER_SIZE));
debug(3, " idflags = 0x%04x", ctx->entry.idflags); debug(3, " idflags = 0x%04x", ctx->entry.idflags);
if (ctx->entry.idflags == 0xffff) { if (ctx->entry.idflags == 0xffff) {
// 0xffff is never a valid id field, so this means we've hit the // 0xffff is never a valid id field, so this means we've hit the
@ -295,17 +279,39 @@ static sysparam_status_t _find_entry(struct sysparam_context *ctx, uint16_t matc
} }
/** Read the payload from the current entry pointed to by `ctx` */ /** Read the payload from the current entry pointed to by `ctx` */
static inline sysparam_status_t _read_payload(struct sysparam_context *ctx, uint8_t *buffer, size_t buffer_size) { static inline sysparam_status_t _read_payload(struct sysparam_context *ctx, uint8_t *buffer, size_t buffer_size) {
debug(3, "read payload (%d) @ 0x%08x", min(buffer_size, ctx->entry.len), ctx->addr); uint32_t addr = ctx->addr + ENTRY_HEADER_SIZE;
CHECK_FLASH_OP(sdk_spi_flash_read(ctx->addr + ENTRY_HEADER_SIZE, (void*) buffer, min(buffer_size, ctx->entry.len))); size_t size = min(buffer_size, ctx->entry.len);
debug(3, "read payload (%d) @ 0x%08x", size, addr);
CHECK_FLASH_OP(spiflash_read(addr, buffer, buffer_size));
return SYSPARAM_OK;
}
static inline sysparam_status_t _compare_payload(struct sysparam_context *ctx, uint8_t *value, size_t size) {
debug(3, "compare payload (%d) @ 0x%08x", size, ctx->addr);
if (ctx->entry.len != size) return SYSPARAM_NOTFOUND;
uint32_t bounce[BOUNCE_BUFFER_WORDS];
uint32_t addr = ctx->addr + ENTRY_HEADER_SIZE;
int i;
for (i = 0; i < size; i += BOUNCE_BUFFER_SIZE) {
int len = min(size - i, BOUNCE_BUFFER_SIZE);
CHECK_FLASH_OP(spiflash_read(addr + i, (void*)bounce, len));
if (memcmp(value + i, bounce, len)) {
// Mismatch.
return SYSPARAM_NOTFOUND;
}
}
return SYSPARAM_OK; return SYSPARAM_OK;
} }
/** Find the entry corresponding to the specified key name */ /** Find the entry corresponding to the specified key name */
static sysparam_status_t _find_key(struct sysparam_context *ctx, const char *key, uint16_t key_len, uint8_t *buffer) { static sysparam_status_t _find_key(struct sysparam_context *ctx, const char *key, uint16_t key_len) {
sysparam_status_t status; sysparam_status_t status;
debug(3, "find key: %s", key ? key : "(null)"); debug(3, "find key len %d: %s", key_len, key ? key : "(null)");
while (true) { while (true) {
// Find the next key entry // Find the next key entry
status = _find_entry(ctx, ENTRY_ID_ANY, false); status = _find_entry(ctx, ENTRY_ID_ANY, false);
@ -316,12 +322,12 @@ static sysparam_status_t _find_key(struct sysparam_context *ctx, const char *key
break; break;
} }
if (ctx->entry.len == key_len) { if (ctx->entry.len == key_len) {
status = _read_payload(ctx, buffer, key_len); status = _compare_payload(ctx, (uint8_t *)key, key_len);
if (status < 0) return status; if (status == SYSPARAM_OK) {
if (!memcmp(key, buffer, key_len)) {
// We have a match // We have a match
break; break;
} }
if (status != SYSPARAM_NOTFOUND) return status;
debug(3, "entry payload does not match"); debug(3, "entry payload does not match");
} else { } else {
debug(3, "key length (%d) does not match (%d)", ctx->entry.len, key_len); debug(3, "key length (%d) does not match (%d)", ctx->entry.len, key_len);
@ -394,13 +400,11 @@ static inline sysparam_status_t _delete_entry(uint32_t addr) {
debug(2, "Deleting entry @ 0x%08x", addr); debug(2, "Deleting entry @ 0x%08x", addr);
debug(3, "read entry header @ 0x%08x", addr); debug(3, "read entry header @ 0x%08x", addr);
CHECK_FLASH_OP(sdk_spi_flash_read(addr, (void*) &entry, ENTRY_HEADER_SIZE)); CHECK_FLASH_OP(spiflash_read(addr, (uint8_t*) &entry, ENTRY_HEADER_SIZE));
// Set the ID to zero to mark it as "deleted" // Set the ID to zero to mark it as "deleted"
entry.idflags &= ~ENTRY_FLAG_ALIVE; entry.idflags &= ~ENTRY_FLAG_ALIVE;
debug(3, "write entry header @ 0x%08x", addr); debug(3, "write entry header @ 0x%08x", addr);
CHECK_FLASH_OP(sdk_spi_flash_write(addr, (void*) &entry, ENTRY_HEADER_SIZE)); return _write_and_verify(addr, &entry, ENTRY_HEADER_SIZE);
return SYSPARAM_OK;
} }
/** Compact the current region, removing all deleted/unused entries, and write /** Compact the current region, removing all deleted/unused entries, and write
@ -424,7 +428,11 @@ static sysparam_status_t _compact_params(struct sysparam_context *ctx, int *key_
uint16_t binary_flag; uint16_t binary_flag;
uint16_t num_sectors = _sysparam_info.region_size / sdk_flashchip.sector_size; uint16_t num_sectors = _sysparam_info.region_size / sdk_flashchip.sector_size;
debug(1, "compacting region (current size %d, expect to recover %d%s bytes)...", _sysparam_info.end_addr - _sysparam_info.cur_base, ctx ? ctx->compactable : 0, (ctx && ctx->unused_keys > 0) ? "+ (unused keys present)" : ""); debug(1, "compacting region (current size %d, expect to recover %d%s bytes)...",
_sysparam_info.end_addr - _sysparam_info.cur_base,
ctx ? ctx->compactable : 0,
(ctx && ctx->unused_keys > 0) ? "+ (unused keys present)" : "");
status = _format_region(new_base, num_sectors); status = _format_region(new_base, num_sectors);
if (status < 0) return status; if (status < 0) return status;
status = sysparam_iter_start(&iter); status = sysparam_iter_start(&iter);
@ -505,7 +513,7 @@ sysparam_status_t sysparam_init(uint32_t base_addr, uint32_t top_addr) {
top_addr = base_addr + sdk_flashchip.sector_size; top_addr = base_addr + sdk_flashchip.sector_size;
} }
for (addr0 = base_addr; addr0 < top_addr; addr0 += sdk_flashchip.sector_size) { for (addr0 = base_addr; addr0 < top_addr; addr0 += sdk_flashchip.sector_size) {
CHECK_FLASH_OP(sdk_spi_flash_read(addr0, (void*) &header0, REGION_HEADER_SIZE)); CHECK_FLASH_OP(spiflash_read(addr0, (void*) &header0, REGION_HEADER_SIZE));
if (header0.magic == SYSPARAM_MAGIC) { if (header0.magic == SYSPARAM_MAGIC) {
// Found a starting point... // Found a starting point...
break; break;
@ -523,7 +531,7 @@ sysparam_status_t sysparam_init(uint32_t base_addr, uint32_t top_addr) {
} else { } else {
addr1 = addr0 + num_sectors * sdk_flashchip.sector_size; addr1 = addr0 + num_sectors * sdk_flashchip.sector_size;
} }
CHECK_FLASH_OP(sdk_spi_flash_read(addr1, (void*) &header1, REGION_HEADER_SIZE)); CHECK_FLASH_OP(spiflash_read(addr1, (uint8_t*) &header1, REGION_HEADER_SIZE));
if (header1.magic == SYSPARAM_MAGIC) { if (header1.magic == SYSPARAM_MAGIC) {
// Yay! Found the other one. Sanity-check it.. // Yay! Found the other one. Sanity-check it..
@ -600,7 +608,7 @@ sysparam_status_t sysparam_create_area(uint32_t base_addr, uint16_t num_sectors,
// we're not going to be clobbering something else important. // we're not going to be clobbering something else important.
for (addr = base_addr; addr < base_addr + region_size * 2; addr += SCAN_BUFFER_SIZE) { for (addr = base_addr; addr < base_addr + region_size * 2; addr += SCAN_BUFFER_SIZE) {
debug(3, "read %d words @ 0x%08x", SCAN_BUFFER_SIZE, addr); debug(3, "read %d words @ 0x%08x", SCAN_BUFFER_SIZE, addr);
CHECK_FLASH_OP(sdk_spi_flash_read(addr, buffer, SCAN_BUFFER_SIZE * 4)); CHECK_FLASH_OP(spiflash_read(addr, (uint8_t*)buffer, SCAN_BUFFER_SIZE * 4));
for (i = 0; i < SCAN_BUFFER_SIZE; i++) { for (i = 0; i < SCAN_BUFFER_SIZE; i++) {
if (buffer[i] != 0xffffffff) { if (buffer[i] != 0xffffffff) {
// Uh oh, not empty. // Uh oh, not empty.
@ -655,70 +663,79 @@ sysparam_status_t sysparam_get_data(const char *key, uint8_t **destptr, size_t *
sysparam_status_t status; sysparam_status_t status;
size_t key_len = strlen(key); size_t key_len = strlen(key);
uint8_t *buffer; uint8_t *buffer;
uint8_t *newbuf;
if (!_sysparam_info.cur_base) return SYSPARAM_ERR_NOINIT;
buffer = malloc(key_len + 2); xSemaphoreTake(_sysparam_info.sem, portMAX_DELAY);
if (!buffer) return SYSPARAM_ERR_NOMEM;
do {
_init_context(&ctx);
status = _find_key(&ctx, key, key_len, buffer);
if (status != SYSPARAM_OK) break;
// Find the associated value
status = _find_value(&ctx, ctx.entry.idflags);
if (status != SYSPARAM_OK) break;
newbuf = realloc(buffer, ctx.entry.len + 1);
if (!newbuf) {
status = SYSPARAM_ERR_NOMEM;
break;
}
buffer = newbuf;
status = _read_payload(&ctx, buffer, ctx.entry.len);
if (status != SYSPARAM_OK) break;
// Zero-terminate the result, just in case (doesn't hurt anything for
// non-string data, and can avoid nasty mistakes if the caller wants to
// interpret the result as a string).
buffer[ctx.entry.len] = 0;
*destptr = buffer;
if (actual_length) *actual_length = ctx.entry.len;
if (is_binary) *is_binary = (bool)(ctx.entry.idflags & ENTRY_FLAG_BINARY);
return SYSPARAM_OK;
} while (false);
free(buffer);
if (actual_length) *actual_length = 0; if (actual_length) *actual_length = 0;
if (!_sysparam_info.cur_base) {
status = SYSPARAM_ERR_NOINIT;
goto done;
}
_init_context(&ctx);
status = _find_key(&ctx, key, key_len);
if (status != SYSPARAM_OK) goto done;
// Find the associated value
status = _find_value(&ctx, ctx.entry.idflags);
if (status != SYSPARAM_OK) goto done;
buffer = malloc(ctx.entry.len + 1);
if (!buffer) {
status = SYSPARAM_ERR_NOMEM;
goto done;
}
status = _read_payload(&ctx, buffer, ctx.entry.len);
if (status != SYSPARAM_OK) {
free(buffer);
goto done;
}
// Zero-terminate the result, just in case (doesn't hurt anything for
// non-string data, and can avoid nasty mistakes if the caller wants to
// interpret the result as a string).
buffer[ctx.entry.len] = 0;
*destptr = buffer;
if (actual_length) *actual_length = ctx.entry.len;
if (is_binary) *is_binary = (bool)(ctx.entry.idflags & ENTRY_FLAG_BINARY);
status = SYSPARAM_OK;
done:
xSemaphoreGive(_sysparam_info.sem);
return status; return status;
} }
sysparam_status_t sysparam_get_data_static(const char *key, uint8_t *buffer, size_t buffer_size, size_t *actual_length, bool *is_binary) { sysparam_status_t sysparam_get_data_static(const char *key, uint8_t *dest, size_t dest_size, size_t *actual_length, bool *is_binary) {
struct sysparam_context ctx; struct sysparam_context ctx;
sysparam_status_t status = SYSPARAM_OK; sysparam_status_t status = SYSPARAM_OK;
size_t key_len = strlen(key); size_t key_len = strlen(key);
if (!_sysparam_info.cur_base) return SYSPARAM_ERR_NOINIT; xSemaphoreTake(_sysparam_info.sem, portMAX_DELAY);
// Supplied buffer must be at least as large as the key, or 2 bytes,
// whichever is larger.
if (buffer_size < max(key_len, 2)) return SYSPARAM_ERR_NOMEM;
if (actual_length) *actual_length = 0; if (actual_length) *actual_length = 0;
if (!_sysparam_info.cur_base) {
status = SYSPARAM_ERR_NOINIT;
goto done;
}
_init_context(&ctx); _init_context(&ctx);
status = _find_key(&ctx, key, key_len, buffer); status = _find_key(&ctx, key, key_len);
if (status != SYSPARAM_OK) return status; if (status != SYSPARAM_OK) goto done;
status = _find_value(&ctx, ctx.entry.idflags); status = _find_value(&ctx, ctx.entry.idflags);
if (status != SYSPARAM_OK) return status; if (status != SYSPARAM_OK) goto done;
status = _read_payload(&ctx, buffer, buffer_size); status = _read_payload(&ctx, dest, dest_size);
if (status != SYSPARAM_OK) return status; if (status != SYSPARAM_OK) goto done;
if (actual_length) *actual_length = ctx.entry.len; if (actual_length) *actual_length = ctx.entry.len;
if (is_binary) *is_binary = (bool)(ctx.entry.idflags & ENTRY_FLAG_BINARY); if (is_binary) *is_binary = (bool)(ctx.entry.idflags & ENTRY_FLAG_BINARY);
return SYSPARAM_OK;
done:
xSemaphoreGive(_sysparam_info.sem);
return status;
} }
sysparam_status_t sysparam_get_string(const char *key, char **destptr) { sysparam_status_t sysparam_get_string(const char *key, char **destptr) {
@ -741,63 +758,78 @@ sysparam_status_t sysparam_get_string(const char *key, char **destptr) {
} }
sysparam_status_t sysparam_get_int32(const char *key, int32_t *result) { sysparam_status_t sysparam_get_int32(const char *key, int32_t *result) {
char *buffer;
char *endptr;
int32_t value; int32_t value;
size_t actual_length;
bool is_binary;
sysparam_status_t status; sysparam_status_t status;
status = sysparam_get_string(key, &buffer); status = sysparam_get_data_static(key, (uint8_t *)&value, sizeof(int32_t),
&actual_length, &is_binary);
if (status != SYSPARAM_OK) return status; if (status != SYSPARAM_OK) return status;
value = strtol(buffer, &endptr, 0); if (!is_binary || actual_length != sizeof(int32_t))
if (*endptr) {
// There was extra crap at the end of the string.
free(buffer);
return SYSPARAM_PARSEFAILED; return SYSPARAM_PARSEFAILED;
}
*result = value; *result = value;
free(buffer); return status;
return SYSPARAM_OK;
} }
sysparam_status_t sysparam_get_int8(const char *key, int8_t *result) { sysparam_status_t sysparam_get_int8(const char *key, int8_t *result) {
int32_t value; int8_t value;
size_t actual_length;
bool is_binary;
sysparam_status_t status; sysparam_status_t status;
status = sysparam_get_int32(key, &value); status = sysparam_get_data_static(key, (uint8_t *)&value, sizeof(int8_t),
if (status == SYSPARAM_OK) { &actual_length, &is_binary);
*result = value; if (status != SYSPARAM_OK) return status;
} if (!is_binary || actual_length != sizeof(int8_t))
return SYSPARAM_PARSEFAILED;
*result = value;
return status; return status;
} }
sysparam_status_t sysparam_get_bool(const char *key, bool *result) { sysparam_status_t sysparam_get_bool(const char *key, bool *result) {
char *buffer; const size_t buf_size = 8;
char buf[buf_size + 1]; // extra byte for zero termination
size_t data_len = 0;
bool binary = false;
sysparam_status_t status; sysparam_status_t status;
status = sysparam_get_string(key, &buffer); status = sysparam_get_data_static(key, (uint8_t*)buf,
buf_size, &data_len, &binary);
if (status != SYSPARAM_OK) return status; if (status != SYSPARAM_OK) return status;
do { do {
if (!strcasecmp(buffer, "y") || if (binary) {
!strcasecmp(buffer, "yes") || if (data_len == 1) { // int8 value
!strcasecmp(buffer, "t") || *result = (int8_t)(*buf) ? true : false;
!strcasecmp(buffer, "true") || } else if (data_len == 4) { // int32 value
!strcmp(buffer, "1")) { *result = (int32_t)(*buf) ? true : false;
} else {
status = SYSPARAM_PARSEFAILED;
}
break;
}
buf[data_len] = 0;
if (!strcasecmp(buf, "y") ||
!strcasecmp(buf, "yes") ||
!strcasecmp(buf, "t") ||
!strcasecmp(buf, "true") ||
!strcmp(buf, "1")) {
*result = true; *result = true;
break; break;
} }
if (!strcasecmp(buffer, "n") || if (!strcasecmp(buf, "n") ||
!strcasecmp(buffer, "no") || !strcasecmp(buf, "no") ||
!strcasecmp(buffer, "f") || !strcasecmp(buf, "f") ||
!strcasecmp(buffer, "false") || !strcasecmp(buf, "false") ||
!strcmp(buffer, "0")) { !strcmp(buf, "0")) {
*result = false; *result = false;
break; break;
} }
status = SYSPARAM_PARSEFAILED; status = SYSPARAM_PARSEFAILED;
} while (0); } while (0);
free(buffer);
return status; return status;
} }
@ -806,48 +838,30 @@ sysparam_status_t sysparam_set_data(const char *key, const uint8_t *value, size_
struct sysparam_context write_ctx; struct sysparam_context write_ctx;
sysparam_status_t status = SYSPARAM_OK; sysparam_status_t status = SYSPARAM_OK;
uint16_t key_len = strlen(key); uint16_t key_len = strlen(key);
uint8_t *buffer;
uint8_t *newbuf;
size_t free_space; size_t free_space;
size_t needed_space; size_t needed_space;
bool free_value = false;
int key_id = -1; int key_id = -1;
uint32_t old_value_addr = 0; uint32_t old_value_addr = 0;
uint16_t binary_flag; uint16_t binary_flag;
if (!_sysparam_info.cur_base) return SYSPARAM_ERR_NOINIT;
if (!key_len) return SYSPARAM_ERR_BADVALUE; if (!key_len) return SYSPARAM_ERR_BADVALUE;
if (key_len > MAX_KEY_LEN) return SYSPARAM_ERR_BADVALUE; if (key_len > MAX_KEY_LEN) return SYSPARAM_ERR_BADVALUE;
if (value_len > MAX_VALUE_LEN) return SYSPARAM_ERR_BADVALUE; if (value_len > MAX_VALUE_LEN) return SYSPARAM_ERR_BADVALUE;
xSemaphoreTake(_sysparam_info.sem, portMAX_DELAY);
if (!value) value_len = 0; if (!value) value_len = 0;
debug(1, "updating value for '%s' (%d bytes)", key, value_len); debug(1, "updating value for '%s' (%d bytes)", key, value_len);
if (value_len && ((intptr_t)value & 0x3)) {
// The passed value isn't word-aligned. This will be a problem later xSemaphoreTake(_sysparam_info.sem, portMAX_DELAY);
// when calling `sdk_spi_flash_write`, so make a word-aligned copy.
buffer = malloc(value_len); if (!_sysparam_info.cur_base) {
if (!buffer) { status = SYSPARAM_ERR_NOINIT;
status = SYSPARAM_ERR_NOMEM;
goto done;
}
memcpy(buffer, value, value_len);
value = buffer;
free_value = true;
}
// Create a working buffer for `_find_key` to use.
buffer = malloc(key_len);
if (!buffer) {
if (free_value) free((void *)value);
status = SYSPARAM_ERR_NOMEM;
goto done; goto done;
} }
do { do {
_init_context(&ctx); _init_context(&ctx);
status = _find_key(&ctx, key, key_len, buffer); status = _find_key(&ctx, key, key_len);
if (status == SYSPARAM_OK) { if (status == SYSPARAM_OK) {
// Key already exists, see if there's a current value. // Key already exists, see if there's a current value.
key_id = ctx.entry.idflags & ENTRY_MASK_ID; key_id = ctx.entry.idflags & ENTRY_MASK_ID;
@ -862,24 +876,17 @@ sysparam_status_t sysparam_set_data(const char *key, const uint8_t *value, size_
if (value_len) { if (value_len) {
if (old_value_addr) { if (old_value_addr) {
if ((ctx.entry.idflags & ENTRY_FLAG_BINARY) == binary_flag && ctx.entry.len == value_len) { if ((ctx.entry.idflags & ENTRY_FLAG_BINARY) == binary_flag &&
ctx.entry.len == value_len) {
// Are we trying to write the same value that's already there? // Are we trying to write the same value that's already there?
if (value_len > key_len) { status = _compare_payload(&ctx, (uint8_t *)value, value_len);
newbuf = realloc(buffer, value_len); if (status == SYSPARAM_OK) {
if (!newbuf) {
status = SYSPARAM_ERR_NOMEM;
break;
}
buffer = newbuf;
}
status = _read_payload(&ctx, buffer, value_len);
if (status < 0) break;
if (!memcmp(buffer, value, value_len)) {
// Yup, it's a match! No need to do anything further, // Yup, it's a match! No need to do anything further,
// just leave the current value as-is. // just leave the current value as-is.
status = SYSPARAM_OK; status = SYSPARAM_OK;
break; break;
} }
if (status != SYSPARAM_NOTFOUND) goto done;
} }
// Since we will be deleting the old value (if any) make sure // Since we will be deleting the old value (if any) make sure
@ -981,9 +988,6 @@ sysparam_status_t sysparam_set_data(const char *key, const uint8_t *value, size_
debug(1, "New addr is 0x%08x (%d bytes remaining)", _sysparam_info.end_addr, _sysparam_info.cur_base + _sysparam_info.region_size - _sysparam_info.end_addr); debug(1, "New addr is 0x%08x (%d bytes remaining)", _sysparam_info.end_addr, _sysparam_info.cur_base + _sysparam_info.region_size - _sysparam_info.end_addr);
} while (false); } while (false);
if (free_value) free((void *)value);
free(buffer);
done: done:
xSemaphoreGive(_sysparam_info.sem); xSemaphoreGive(_sysparam_info.sem);
@ -995,15 +999,11 @@ sysparam_status_t sysparam_set_string(const char *key, const char *value) {
} }
sysparam_status_t sysparam_set_int32(const char *key, int32_t value) { sysparam_status_t sysparam_set_int32(const char *key, int32_t value) {
uint8_t buffer[12]; return sysparam_set_data(key, (const uint8_t *)&value, sizeof(value), true);
int len;
len = snprintf((char *)buffer, 12, "%d", value);
return sysparam_set_data(key, buffer, len, false);
} }
sysparam_status_t sysparam_set_int8(const char *key, int8_t value) { sysparam_status_t sysparam_set_int8(const char *key, int8_t value) {
return sysparam_set_int32(key, value); return sysparam_set_data(key, (const uint8_t *)&value, sizeof(value), true);
} }
sysparam_status_t sysparam_set_bool(const char *key, bool value) { sysparam_status_t sysparam_set_bool(const char *key, bool value) {
@ -1043,7 +1043,6 @@ sysparam_status_t sysparam_iter_start(sysparam_iter_t *iter) {
} }
sysparam_status_t sysparam_iter_next(sysparam_iter_t *iter) { sysparam_status_t sysparam_iter_next(sysparam_iter_t *iter) {
uint8_t buffer[2];
sysparam_status_t status; sysparam_status_t status;
size_t required_len; size_t required_len;
struct sysparam_context *ctx = iter->ctx; struct sysparam_context *ctx = iter->ctx;
@ -1052,7 +1051,7 @@ sysparam_status_t sysparam_iter_next(sysparam_iter_t *iter) {
char *newbuf; char *newbuf;
while (true) { while (true) {
status = _find_key(ctx, NULL, 0, buffer); status = _find_key(ctx, NULL, 0);
if (status != SYSPARAM_OK) return status; if (status != SYSPARAM_OK) return status;
memcpy(&value_ctx, ctx, sizeof(value_ctx)); memcpy(&value_ctx, ctx, sizeof(value_ctx));
@ -1060,7 +1059,7 @@ sysparam_status_t sysparam_iter_next(sysparam_iter_t *iter) {
if (status < 0) return status; if (status < 0) return status;
if (status == SYSPARAM_NOTFOUND) continue; if (status == SYSPARAM_NOTFOUND) continue;
key_space = ROUND_TO_WORD_BOUNDARY(ctx->entry.len + 1); key_space = ctx->entry.len + 1;
required_len = key_space + value_ctx.entry.len + 1; required_len = key_space + value_ctx.entry.len + 1;
if (required_len > iter->bufsize) { if (required_len > iter->bufsize) {
newbuf = realloc(iter->key, required_len); newbuf = realloc(iter->key, required_len);

View file

@ -7,11 +7,10 @@
*/ */
#include "esp_spiffs.h" #include "esp_spiffs.h"
#include "spiffs.h" #include "spiffs.h"
#include <espressif/spi_flash.h> #include <spiflash.h>
#include <stdbool.h> #include <stdbool.h>
#include <esp/uart.h> #include <esp/uart.h>
#include <fcntl.h> #include <fcntl.h>
#include "esp_spiffs_flash.h"
spiffs fs; spiffs fs;
@ -34,7 +33,7 @@ static fs_buf_t cache_buf = {0};
static s32_t esp_spiffs_read(u32_t addr, u32_t size, u8_t *dst) static s32_t esp_spiffs_read(u32_t addr, u32_t size, u8_t *dst)
{ {
if (esp_spiffs_flash_read(addr, dst, size) == ESP_SPIFFS_FLASH_ERROR) { if (!spiflash_read(addr, dst, size)) {
return SPIFFS_ERR_INTERNAL; return SPIFFS_ERR_INTERNAL;
} }
@ -43,7 +42,7 @@ static s32_t esp_spiffs_read(u32_t addr, u32_t size, u8_t *dst)
static s32_t esp_spiffs_write(u32_t addr, u32_t size, u8_t *src) static s32_t esp_spiffs_write(u32_t addr, u32_t size, u8_t *src)
{ {
if (esp_spiffs_flash_write(addr, src, size) == ESP_SPIFFS_FLASH_ERROR) { if (!spiflash_write(addr, src, size)) {
return SPIFFS_ERR_INTERNAL; return SPIFFS_ERR_INTERNAL;
} }
@ -52,11 +51,10 @@ static s32_t esp_spiffs_write(u32_t addr, u32_t size, u8_t *src)
static s32_t esp_spiffs_erase(u32_t addr, u32_t size) static s32_t esp_spiffs_erase(u32_t addr, u32_t size)
{ {
uint32_t sectors = size / SPI_FLASH_SEC_SIZE; uint32_t sectors = size / SPI_FLASH_SECTOR_SIZE;
for (uint32_t i = 0; i < sectors; i++) { for (uint32_t i = 0; i < sectors; i++) {
if (esp_spiffs_flash_erase_sector(addr + (SPI_FLASH_SEC_SIZE * i)) if (!spiflash_erase_sector(addr + (SPI_FLASH_SECTOR_SIZE * i))) {
== ESP_SPIFFS_FLASH_ERROR) {
return SPIFFS_ERR_INTERNAL; return SPIFFS_ERR_INTERNAL;
} }
} }

View file

@ -1,112 +0,0 @@
/**
* The MIT License (MIT)
*
* Copyright (c) 2016 sheinz (https://github.com/sheinz)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
.text
.section .iram1.text, "x"
.literal_position
/**
* Copy unaligned data to 4-byte aligned buffer.
*/
.align 4
.global memcpy_unaligned_src
.type memcpy_unaligned_src, @function
memcpy_unaligned_src:
/* a2: dst, a3: src, a4: size */
ssa8l a3
srli a3, a3, 2
slli a3, a3, 2
beqz a4, u_src_end
l32i a6, a3, 0
u_src_loop:
l32i a7, a3, 4
src a8, a7, a6
memw
s32i a8, a2, 0
mov a6, a7
addi a3, a3, 4
addi a2, a2, 4
addi a4, a4, -1
bnez a4, u_src_loop
u_src_end:
movi a2, 0
ret.n
/**
* Copy data from 4-byte aligned source to unaligned destination buffer.
*/
.align 4
.global memcpy_unaligned_dst
.type memcpy_unaligned_dst, @function
memcpy_unaligned_dst:
/* a2: dst, a3: src, a4: size */
beqz.n a4, u_dst_end
extui a5, a4, 0, 2
beqz.n a5, aligned_dst_loop
u_dst_loop:
/* Load data word */
memw
l32i.n a5, a3, 0
/* Save byte number 0 */
s8i a5, a2, 0
addi.n a4, a4, -1
beqz a4, u_dst_end
addi.n a2, a2, 1
/* Shift and save byte number 1 */
srli a5, a5, 8
s8i a5, a2, 0
addi.n a4, a4, -1
beqz a4, u_dst_end
addi.n a2, a2, 1
/* Shift and save byte number 2 */
srli a5, a5, 8
s8i a5, a2, 0
addi.n a4, a4, -1
beqz a4, u_dst_end
addi.n a2, a2, 1
/* Shift and save byte number 3 */
srli a5, a5, 8
s8i a5, a2, 0
addi.n a4, a4, -1
addi.n a2, a2, 1
/* Next word */
addi.n a3, a3, 4
bnez.n a4, u_dst_loop
ret.n
aligned_dst_loop:
memw
l32i a5, a3, 0
s32i a5, a2, 0
addi.n a3, a3, 4
addi.n a2, a2, 4
addi.n a4, a4, -4
bnez.n a4, aligned_dst_loop
u_dst_end: ret.n

View file

@ -1,6 +1,6 @@
/* /*
* copyright (c) Espressif System 2010 * copyright (c) Espressif System 2010
* *
*/ */
#ifndef __SPI_FLASH_H__ #ifndef __SPI_FLASH_H__
@ -46,12 +46,6 @@ sdk_SpiFlashOpResult sdk_spi_flash_write(uint32_t des_addr, uint32_t *src, uint3
*/ */
sdk_SpiFlashOpResult sdk_spi_flash_read(uint32_t src_addr, uint32_t *des, uint32_t size); sdk_SpiFlashOpResult sdk_spi_flash_read(uint32_t src_addr, uint32_t *des, uint32_t size);
/* SDK uses this structure internally to account for flash size.
See flashchip.h for more info.
*/
extern sdk_flashchip_t sdk_flashchip;
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

403
tests/cases/07_sysparam.c Normal file
View file

@ -0,0 +1,403 @@
#include <stdlib.h>
#include <string.h>
#include <FreeRTOS.h>
#include <task.h>
#include <sysparam.h>
#include <testcase.h>
// #define DEBUG
#ifdef DEBUG
#include <stdio.h>
#define debug(fmt, ...) printf("%s" fmt, "test: ", ## __VA_ARGS__);
#else
#define debug(fmt, ...)
#endif
DEFINE_SOLO_TESTCASE(07_sysparam_basic_test);
DEFINE_SOLO_TESTCASE(07_sysparam_load_test);
DEFINE_SOLO_TESTCASE(07_sysparam_bool_test);
#define TEST_ITERATIONS 10
#define KEY_BUF_SIZE 32
#define TEST_STRING_BUF_SIZE 64
#define NUMBER_OF_TEST_DATA 20
typedef struct {
uint32_t start_key_index;
uint32_t key_index;
} test_data_t;
typedef enum {
VALUE_STRING = 0,
VALUE_INT32,
VALUE_INT8,
VALUE_BOOL,
VALUE_ENUM_END
} value_type_t;
static uint32_t get_current_time()
{
return timer_get_count(FRC2) / 5000; // to get roughly 1ms resolution
}
/**
* Recreate sysparam area
*/
static inline void init_sysparam()
{
sysparam_status_t status;
uint32_t base_addr, num_sectors;
status = sysparam_get_info(&base_addr, &num_sectors);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_create_area(base_addr, num_sectors, /*force=*/true);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_init(base_addr, 0);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
debug("sysparam initialized at addr=%x, sectors=%d\n",
base_addr, num_sectors);
}
/**
* Initialize test data with random seed.
*/
static void test_data_init(test_data_t *data)
{
debug("test_data_init\n");
data->start_key_index = data->key_index = rand() % 100;
}
/**
* Reset test data to the initial seed.
*/
static void test_data_reset(test_data_t *data)
{
debug("test_data_reset\n");
data->key_index = data->start_key_index;
}
/**
* Get key string for the current data.
*/
static void test_data_get_key(test_data_t *data, char *key_buf)
{
sprintf(key_buf, "key_%d", data->key_index);
debug("test_data_get_key: key=%s\n", key_buf);
}
/**
* Generate test string for the current data.
*/
static void test_data_get_string(test_data_t *data, char *str_buf)
{
srand(data->key_index);
for (int i = 0; i < TEST_STRING_BUF_SIZE - 1; ++i) {
str_buf[i] = '0' + rand() % 74; // generate a char 0-9,a-z,A-Z and other
}
str_buf[TEST_STRING_BUF_SIZE-1] = 0; // terminate string with zero
debug("test_data_get_string: str=%s\n", str_buf);
}
/**
* Generate test int32 value for the current data.
*/
static int32_t test_data_get_int32(test_data_t *data)
{
srand(data->key_index);
int32_t v = rand();
debug("test_data_get_int32: value=%d\n", v);
return v;
}
/**
* Generate test int8 value for the current data.
*/
int8_t test_data_get_int8(test_data_t *data)
{
srand(data->key_index);
int8_t v = rand() % 256;
debug("test_data_get_int8: value=%d\n", v);
return v;
}
/**
* Generate test bool value for the current data.
*/
bool test_data_get_bool(test_data_t *data)
{
srand(data->key_index);
bool v = rand() % 2;
debug("test_data_get_bool, value=%s\n", v ? "true" : "false");
return v;
}
/**
* Get type of the current data.
*/
value_type_t test_data_get_type(test_data_t *data)
{
srand(data->key_index);
value_type_t t = rand() % VALUE_ENUM_END;
debug("test_data_get_type: type=%d\n", t);
return t;
}
/**
* Generate next data.
*/
void test_data_next(test_data_t *data)
{
data->key_index++;
debug("test_data_next: key_index=%d\n", data->key_index);
}
static void write_test_values(test_data_t *data)
{
sysparam_status_t status = SYSPARAM_ERR_BADVALUE;
char key_buf[KEY_BUF_SIZE];
char str_buf[TEST_STRING_BUF_SIZE];
for (int i = 0; i < NUMBER_OF_TEST_DATA; ++i) {
test_data_get_key(data, key_buf);
switch (test_data_get_type(data)) {
case VALUE_STRING:
test_data_get_string(data, str_buf);
status = sysparam_set_string(key_buf, str_buf);
break;
case VALUE_INT32:
status = sysparam_set_int32(key_buf, test_data_get_int32(data));
break;
case VALUE_INT8:
status = sysparam_set_int8(key_buf, test_data_get_int8(data));
break;
case VALUE_BOOL:
status = sysparam_set_bool(key_buf, test_data_get_bool(data));
break;
case VALUE_ENUM_END:
default:
break;
}
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
test_data_next(data);
}
}
static void verify_test_values(test_data_t *data)
{
sysparam_status_t status = SYSPARAM_ERR_BADVALUE;
char key_buf[KEY_BUF_SIZE];
char expected_str_buf[TEST_STRING_BUF_SIZE];
char *actual_str;
int32_t actual_int32;
int8_t actual_int8;
bool actual_bool;
for (int i = 0; i < NUMBER_OF_TEST_DATA; ++i) {
test_data_get_key(data, key_buf);
switch (test_data_get_type(data)) {
case VALUE_STRING:
test_data_get_string(data, expected_str_buf);
status = sysparam_get_string(key_buf, &actual_str);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_EQUAL_STRING(expected_str_buf, actual_str);
free(actual_str);
break;
case VALUE_INT32:
status = sysparam_get_int32(key_buf, &actual_int32);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_EQUAL_INT(test_data_get_int32(data), actual_int32);
break;
case VALUE_INT8:
status = sysparam_get_int8(key_buf, &actual_int8);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_EQUAL_INT(test_data_get_int8(data), actual_int8);
break;
case VALUE_BOOL:
status = sysparam_get_bool(key_buf, &actual_bool);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_TRUE(test_data_get_bool(data) == actual_bool);
break;
case VALUE_ENUM_END:
default:
break;
}
test_data_next(data);
}
}
static void clear_test_values(test_data_t *data)
{
char key_buf[KEY_BUF_SIZE];
sysparam_status_t status = SYSPARAM_ERR_BADVALUE;
for (int i = 0; i < NUMBER_OF_TEST_DATA; ++i) {
test_data_get_key(data, key_buf);
status = sysparam_set_data(key_buf, NULL, 0, false);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
test_data_next(data);
}
}
static void a_07_sysparam_load_test(void)
{
test_data_t test_data;
init_sysparam();
uint32_t start_time = get_current_time();
uint32_t free_heap_at_start = xPortGetFreeHeapSize();
for (int i = 0; i < TEST_ITERATIONS; ++i) {
test_data_init(&test_data);
write_test_values(&test_data);
test_data_reset(&test_data);
verify_test_values(&test_data);
test_data_reset(&test_data);
clear_test_values(&test_data);
}
TEST_ASSERT_EQUAL_INT_MESSAGE(free_heap_at_start, xPortGetFreeHeapSize(),
"Free heap size is less than at test start. Possible memory leak.");
printf("Test took %d ms\n", get_current_time() - start_time);
TEST_PASS();
}
static void a_07_sysparam_basic_test(void)
{
sysparam_status_t status;
int32_t int32_val = 0;
int8_t int8_val = 0;
char *str;
bool bool_val;
init_sysparam();
status = sysparam_set_int32("int_1", -123);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_get_int32("int_1", &int32_val);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_EQUAL_INT(-123, int32_val);
status = sysparam_set_int8("int_2", -34);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_get_int8("int_2", &int8_val);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_EQUAL_INT(-34, int8_val);
status = sysparam_set_string("str_1", "test string");
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_get_string("str_1", &str);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_EQUAL_STRING("test string", str);
free(str);
status = sysparam_set_bool("bool_true", true);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_get_bool("bool_true", &bool_val);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_TRUE(bool_val);
status = sysparam_set_bool("bool_false", false);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_get_bool("bool_false", &bool_val);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_FALSE(bool_val);
TEST_PASS();
}
typedef struct {
const char *key;
const char *str;
bool value;
} bool_test_data_t;
const static bool_test_data_t bool_data[] = {
{"str_true", "true", true},
{"str_True", "True", true},
{"str_TRUE", "TRUE", true},
{"str_t", "t", true},
{"str_T", "T", true},
{"str_y", "y", true},
{"str_Y", "Y", true},
{"str_yes", "yes", true},
{"str_Yes", "Yes", true},
{"str_YES", "YES", true},
{"str_1", "1", true},
{"str_false", "false", false},
{"str_False", "False", false},
{"str_FALSE", "FALSE", false},
{"str_f", "f", false},
{"str_F", "F", false},
{"str_n", "n", false},
{"str_N", "N", false},
{"str_no", "no", false},
{"str_No", "No", false},
{"str_NO", "NO", false},
{"str_0", "0", false},
};
static void a_07_sysparam_bool_test(void)
{
sysparam_status_t status;
bool value;
init_sysparam();
for (int i = 0; i < sizeof(bool_data) / sizeof(bool_data[0]); ++i) {
status = sysparam_set_string(bool_data[i].key, bool_data[i].str);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
}
status = sysparam_set_int8("int8_0", 0);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_set_int8("int8_1", 1);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_set_int32("int32_0", 0);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
status = sysparam_set_int32("int32_1", 1);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
for (int i = 0; i < sizeof(bool_data) / sizeof(bool_data[0]); ++i) {
debug("Getting bool key=%s\n", bool_data[i].key);
status = sysparam_get_bool(bool_data[i].key, &value);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_TRUE(bool_data[i].value == value);
}
status = sysparam_get_bool("int8_0", &value);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_FALSE(value);
status = sysparam_get_bool("int8_1", &value);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_TRUE(value);
status = sysparam_get_bool("int32_0", &value);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_FALSE(value);
status = sysparam_get_bool("int32_1", &value);
TEST_ASSERT_EQUAL_INT(SYSPARAM_OK, status);
TEST_ASSERT_TRUE(value);
TEST_PASS();
}

51
tests/cases/08_spiflash.c Normal file
View file

@ -0,0 +1,51 @@
#include <string.h>
#include <espressif/esp_common.h>
#include <esp/uart.h>
#include <esp/timer.h>
#include <FreeRTOS.h>
#include <task.h>
#include <esp8266.h>
#include <stdio.h>
#include <testcase.h>
#include <spiflash.h>
DEFINE_SOLO_TESTCASE(08_spiflash_unaligned)
/**
* Test unaligned access to spi flash.
*/
static void a_08_spiflash_unaligned(void)
{
const int test_addr = 0x100000 - (4096 * 8);
const char test_str[] = "test_string";
const int buf_size = 256;
uint8_t buf[buf_size];
TEST_ASSERT_TRUE(spiflash_erase_sector(test_addr));
TEST_ASSERT_TRUE(spiflash_erase_sector(test_addr + 4096));
TEST_ASSERT_TRUE(
spiflash_write(test_addr, (uint8_t*)test_str, sizeof(test_str)));
TEST_ASSERT_TRUE(spiflash_read(test_addr, buf, buf_size));
TEST_ASSERT_EQUAL_STRING(test_str, buf);
TEST_ASSERT_TRUE(
spiflash_write(test_addr + 31, (uint8_t*)test_str, sizeof(test_str)));
TEST_ASSERT_TRUE(spiflash_read(test_addr + 31, buf, buf_size));
TEST_ASSERT_EQUAL_STRING(test_str, buf);
TEST_ASSERT_TRUE(
spiflash_write(test_addr + 101, (uint8_t*)test_str, sizeof(test_str)));
TEST_ASSERT_TRUE(spiflash_read(test_addr + 101, buf + 1, buf_size - 1));
TEST_ASSERT_EQUAL_STRING(test_str, buf + 1);
TEST_ASSERT_TRUE(
spiflash_write(test_addr + 201, (uint8_t*)test_str + 1, sizeof(test_str) - 1));
TEST_ASSERT_TRUE(spiflash_read(test_addr + 201, buf + 1, buf_size - 1));
TEST_ASSERT_EQUAL_STRING(test_str + 1, buf + 1);
TEST_PASS();
}