Add clear version of commit 72f30ad
.
This commit is contained in:
parent
e12077513f
commit
6178865cc6
16 changed files with 1044 additions and 0 deletions
22
examples/ds18b20_broadcaster/LICENSE
Normal file
22
examples/ds18b20_broadcaster/LICENSE
Normal file
|
@ -0,0 +1,22 @@
|
|||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2016 Grzegorz Hetman : ghetman@gmail.com
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
3
examples/ds18b20_broadcaster/Makefile
Normal file
3
examples/ds18b20_broadcaster/Makefile
Normal file
|
@ -0,0 +1,3 @@
|
|||
PROGRAM=ds18b20_broadcaster
|
||||
EXTRA_COMPONENTS = extras/onewire extras/ds18b20
|
||||
include ../../common.mk
|
20
examples/ds18b20_broadcaster/README.md
Normal file
20
examples/ds18b20_broadcaster/README.md
Normal file
|
@ -0,0 +1,20 @@
|
|||
# DS19B20 Broadcaster
|
||||
|
||||
>In this example you can see how to get data from multiple
|
||||
>ds18b20 sensor and emit result over udb broadcaster address.
|
||||
|
||||
As a client server, you can use this simple udp receiver, writen in python:
|
||||
|
||||
```
|
||||
import select, socket
|
||||
|
||||
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
||||
s.bind(('<broadcast>', 8005))
|
||||
s.setblocking(0)
|
||||
|
||||
while True:
|
||||
result = select.select([s],[],[])
|
||||
msg = result[0][0].recv(1024)
|
||||
print msg.strip()
|
||||
|
||||
```
|
118
examples/ds18b20_broadcaster/ds18b20_broadcaster.c
Normal file
118
examples/ds18b20_broadcaster/ds18b20_broadcaster.c
Normal file
|
@ -0,0 +1,118 @@
|
|||
#include <string.h>
|
||||
|
||||
#include "espressif/esp_common.h"
|
||||
#include "esp/uart.h"
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "timers.h"
|
||||
#include "queue.h"
|
||||
#include "lwip/api.h"
|
||||
#include "ssid_config.h"
|
||||
|
||||
// DS18B20 driver
|
||||
#include "ds18b20/ds18b20.h"
|
||||
// Onewire init
|
||||
#include "onewire/onewire.h"
|
||||
|
||||
void broadcast_temperature(void *pvParameters)
|
||||
{
|
||||
|
||||
uint8_t amount = 0;
|
||||
uint8_t sensors = 2;
|
||||
ds_sensor_t t[sensors];
|
||||
|
||||
// Use GPIO 13 as one wire pin.
|
||||
uint8_t GPIO_FOR_ONE_WIRE = 13;
|
||||
|
||||
char msg[100];
|
||||
|
||||
// Broadcaster part
|
||||
err_t err;
|
||||
// Initialize one wire bus.
|
||||
onewire_init(GPIO_FOR_ONE_WIRE);
|
||||
|
||||
while(1) {
|
||||
|
||||
// Send out some UDP data
|
||||
struct netconn* conn;
|
||||
|
||||
// Create UDP connection
|
||||
conn = netconn_new(NETCONN_UDP);
|
||||
|
||||
// Connect to local port
|
||||
err = netconn_bind(conn, IP_ADDR_ANY, 8004);
|
||||
|
||||
if (err != ERR_OK) {
|
||||
netconn_delete(conn);
|
||||
printf("%s : Could not bind! (%s)\n", __FUNCTION__, lwip_strerr(err));
|
||||
continue;
|
||||
}
|
||||
|
||||
err = netconn_connect(conn, IP_ADDR_BROADCAST, 8005);
|
||||
|
||||
if (err != ERR_OK) {
|
||||
netconn_delete(conn);
|
||||
printf("%s : Could not connect! (%s)\n", __FUNCTION__, lwip_strerr(err));
|
||||
continue;
|
||||
}
|
||||
|
||||
for(;;) {
|
||||
// Search all DS18B20, return its amount and feed 't' structure with result data.
|
||||
amount = readDS18B20(GPIO_FOR_ONE_WIRE, t);
|
||||
|
||||
if (amount < sensors){
|
||||
printf("Something is wrong, I expect to see %d sensors \nbut just %d was detected!\n", sensors, amount);
|
||||
}
|
||||
|
||||
for (int i = 0; i < amount; ++i)
|
||||
{
|
||||
// Multiple "" here is just to satisfy compiler and don`t raise 'hex escape sequence out of range' warning.
|
||||
sprintf(msg, "Sensor %d report: %d.%d ""\xC2""\xB0""C\n",t[i].id, t[i].major, t[i].minor);
|
||||
printf("%s", msg);
|
||||
|
||||
struct netbuf* buf = netbuf_new();
|
||||
void* data = netbuf_alloc(buf, strlen(msg));
|
||||
|
||||
memcpy (data, msg, strlen(msg));
|
||||
err = netconn_send(conn, buf);
|
||||
|
||||
if (err != ERR_OK) {
|
||||
printf("%s : Could not send data!!! (%s)\n", __FUNCTION__, lwip_strerr(err));
|
||||
continue;
|
||||
}
|
||||
netbuf_delete(buf); // De-allocate packet buffer
|
||||
}
|
||||
vTaskDelay(1000/portTICK_RATE_MS);
|
||||
}
|
||||
|
||||
err = netconn_disconnect(conn);
|
||||
printf("%s : Disconnected from IP_ADDR_BROADCAST port 12346 (%s)\n", __FUNCTION__, lwip_strerr(err));
|
||||
|
||||
err = netconn_delete(conn);
|
||||
printf("%s : Deleted connection (%s)\n", __FUNCTION__, lwip_strerr(err));
|
||||
|
||||
vTaskDelay(1000/portTICK_RATE_MS);
|
||||
}
|
||||
}
|
||||
|
||||
void user_init(void)
|
||||
{
|
||||
uart_set_baud(0, 115200);
|
||||
|
||||
printf("SDK version:%s\n", sdk_system_get_sdk_version());
|
||||
|
||||
// Set led to indicate wifi status.
|
||||
sdk_wifi_status_led_install(2, PERIPHS_IO_MUX_GPIO2_U, FUNC_GPIO2);
|
||||
|
||||
struct sdk_station_config config = {
|
||||
.ssid = WIFI_SSID,
|
||||
.password = WIFI_PASS,
|
||||
};
|
||||
|
||||
// Required to call wifi_set_opmode before station_set_config.
|
||||
sdk_wifi_set_opmode(STATION_MODE);
|
||||
sdk_wifi_station_set_config(&config);
|
||||
|
||||
xTaskCreate(&broadcast_temperature, (signed char *)"broadcast_temperature", 256, NULL, 2, NULL);
|
||||
}
|
||||
|
22
examples/ds18b20_onewire/LICENSE
Normal file
22
examples/ds18b20_onewire/LICENSE
Normal file
|
@ -0,0 +1,22 @@
|
|||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2016 Grzegorz Hetman : ghetman@gmail.com
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
3
examples/ds18b20_onewire/Makefile
Normal file
3
examples/ds18b20_onewire/Makefile
Normal file
|
@ -0,0 +1,3 @@
|
|||
PROGRAM=ds18b20_onewire
|
||||
EXTRA_COMPONENTS = extras/onewire extras/ds18b20
|
||||
include ../../common.mk
|
57
examples/ds18b20_onewire/ds18b20_onewire.c
Normal file
57
examples/ds18b20_onewire/ds18b20_onewire.c
Normal file
|
@ -0,0 +1,57 @@
|
|||
/* ds18b20 - Retrieves temperature from ds18b20 sensors and print it out.
|
||||
*
|
||||
* This sample code is in the public domain.,
|
||||
*/
|
||||
#include "espressif/esp_common.h"
|
||||
#include "esp/uart.h"
|
||||
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "timers.h"
|
||||
#include "queue.h"
|
||||
|
||||
// DS18B20 driver
|
||||
#include "ds18b20/ds18b20.h"
|
||||
// Onewire init
|
||||
#include "onewire/onewire.h"
|
||||
|
||||
void print_temperature(void *pvParameters)
|
||||
{
|
||||
int delay = 500;
|
||||
uint8_t amount = 0;
|
||||
// Declare amount of sensors
|
||||
uint8_t sensors = 2;
|
||||
ds_sensor_t t[sensors];
|
||||
|
||||
// Use GPIO 13 as one wire pin.
|
||||
uint8_t GPIO_FOR_ONE_WIRE = 13;
|
||||
|
||||
onewire_init(GPIO_FOR_ONE_WIRE);
|
||||
|
||||
while(1) {
|
||||
// Search all DS18B20, return its amount and feed 't' structure with result data.
|
||||
amount = readDS18B20(GPIO_FOR_ONE_WIRE, t);
|
||||
|
||||
if (amount < sensors){
|
||||
printf("Something is wrong, I expect to see %d sensors \nbut just %d was detected!\n", sensors, amount);
|
||||
}
|
||||
|
||||
for (int i = 0; i < amount; ++i)
|
||||
{
|
||||
// Multiple "" here is just to satisfy compiler and don`t raise 'hex escape sequence out of range' warning.
|
||||
printf("Sensor %d report: %d.%d ""\xC2""\xB0""C\n",t[i].id, t[i].major, t[i].minor);
|
||||
}
|
||||
printf("\n");
|
||||
vTaskDelay(delay / portTICK_RATE_MS);
|
||||
}
|
||||
}
|
||||
|
||||
void user_init(void)
|
||||
{
|
||||
uart_set_baud(0, 115200);
|
||||
|
||||
printf("SDK version:%s\n", sdk_system_get_sdk_version());
|
||||
|
||||
xTaskCreate(&print_temperature, (signed char *)"print_temperature", 256, NULL, 2, NULL);
|
||||
}
|
||||
|
22
extras/ds18b20/LICENSE
Normal file
22
extras/ds18b20/LICENSE
Normal file
|
@ -0,0 +1,22 @@
|
|||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2016 Grzegorz Hetman : ghetman@gmail.com
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
9
extras/ds18b20/component.mk
Normal file
9
extras/ds18b20/component.mk
Normal file
|
@ -0,0 +1,9 @@
|
|||
# Component makefile for extras/ds18b20
|
||||
|
||||
# expected anyone using bmp driver includes it as 'ds18b20/ds18b20.h'
|
||||
INC_DIRS += $(ds18b20_ROOT)..
|
||||
|
||||
# args for passing into compile rule generation
|
||||
ds18b20_SRC_DIR = $(ds18b20_ROOT)
|
||||
|
||||
$(eval $(call component_compile_rules,ds18b20))
|
105
extras/ds18b20/ds18b20.c
Normal file
105
extras/ds18b20/ds18b20.c
Normal file
|
@ -0,0 +1,105 @@
|
|||
#include "onewire/onewire.h"
|
||||
#include "ds18b20.h"
|
||||
|
||||
#define DS1820_WRITE_SCRATCHPAD 0x4E
|
||||
#define DS1820_READ_SCRATCHPAD 0xBE
|
||||
#define DS1820_COPY_SCRATCHPAD 0x48
|
||||
#define DS1820_READ_EEPROM 0xB8
|
||||
#define DS1820_READ_PWRSUPPLY 0xB4
|
||||
#define DS1820_SEARCHROM 0xF0
|
||||
#define DS1820_SKIP_ROM 0xCC
|
||||
#define DS1820_READROM 0x33
|
||||
#define DS1820_MATCHROM 0x55
|
||||
#define DS1820_ALARMSEARCH 0xEC
|
||||
#define DS1820_CONVERT_T 0x44
|
||||
|
||||
uint8_t readDS18B20(uint8_t pin, ds_sensor_t *result){
|
||||
|
||||
uint8_t addr[8];
|
||||
uint8_t sensor_id = 0;
|
||||
onewire_reset_search(pin);
|
||||
|
||||
while(onewire_search(pin, addr)){
|
||||
uint8_t crc = onewire_crc8(addr, 7);
|
||||
if (crc != addr[7]){
|
||||
printf("CRC check failed: %02X %02X\n", addr[7], crc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
onewire_reset(pin);
|
||||
onewire_select(pin, addr);
|
||||
onewire_write(pin, DS1820_CONVERT_T, ONEWIRE_DEFAULT_POWER);
|
||||
sdk_os_delay_us(750);
|
||||
onewire_reset(pin);
|
||||
onewire_select(pin, addr);
|
||||
onewire_write(pin, DS1820_READ_SCRATCHPAD, ONEWIRE_DEFAULT_POWER);
|
||||
|
||||
uint8_t get[10];
|
||||
|
||||
for (int k=0;k<9;k++){
|
||||
get[k]=onewire_read(pin);
|
||||
}
|
||||
|
||||
//printf("\n ScratchPAD DATA = %X %X %X %X %X %X %X %X %X\n",get[8],get[7],get[6],get[5],get[4],get[3],get[2],get[1],get[0]);
|
||||
crc = onewire_crc8(get, 8);
|
||||
|
||||
if (crc != get[8]){
|
||||
printf("CRC check failed: %02X %02X\n", get[8], crc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t temp_msb = get[1]; // Sign byte + lsbit
|
||||
uint8_t temp_lsb = get[0]; // Temp data plus lsb
|
||||
uint16_t temp = temp_msb << 8 | temp_lsb;
|
||||
|
||||
float temperature;
|
||||
|
||||
temperature = (temp * 625.0)/10000;
|
||||
//printf("Got a DS18B20 Reading: %d.%d\n", (int)temperature, (int)(temperature - (int)temperature) * 100);
|
||||
result[sensor_id].id = sensor_id;
|
||||
result[sensor_id].major = (int)temperature;
|
||||
result[sensor_id].minor = (int)(temperature) - (int)temperature * 100;
|
||||
sensor_id++;
|
||||
}
|
||||
return sensor_id;
|
||||
}
|
||||
|
||||
float read_single_DS18B20(uint8_t pin){
|
||||
|
||||
onewire_init(pin);
|
||||
onewire_reset(pin);
|
||||
|
||||
onewire_write(pin, DS1820_SKIP_ROM, ONEWIRE_DEFAULT_POWER);
|
||||
onewire_write(pin, DS1820_CONVERT_T, ONEWIRE_DEFAULT_POWER);
|
||||
|
||||
sdk_os_delay_us(750);
|
||||
|
||||
onewire_reset(pin);
|
||||
onewire_write(pin, DS1820_SKIP_ROM, ONEWIRE_DEFAULT_POWER);
|
||||
onewire_write(pin, DS1820_READ_SCRATCHPAD, ONEWIRE_DEFAULT_POWER);
|
||||
|
||||
uint8_t get[10];
|
||||
|
||||
for (int k=0;k<9;k++){
|
||||
get[k]=onewire_read(pin);
|
||||
}
|
||||
|
||||
//printf("\n ScratchPAD DATA = %X %X %X %X %X %X %X %X %X\n",get[8],get[7],get[6],get[5],get[4],get[3],get[2],get[1],get[0]);
|
||||
uint8_t crc = onewire_crc8(get, 8);
|
||||
|
||||
if (crc != get[8]){
|
||||
printf("CRC check failed: %02X %02X", get[8], crc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t temp_msb = get[1]; // Sign byte + lsbit
|
||||
uint8_t temp_lsb = get[0]; // Temp data plus lsb
|
||||
|
||||
uint16_t temp = temp_msb << 8 | temp_lsb;
|
||||
|
||||
float temperature;
|
||||
|
||||
temperature = (temp * 625.0)/10000;
|
||||
return temperature;
|
||||
//printf("Got a DS18B20 Reading: %d.%d\n", (int)temperature, (int)(temperature - (int)temperature) * 100);
|
||||
}
|
20
extras/ds18b20/ds18b20.h
Normal file
20
extras/ds18b20/ds18b20.h
Normal file
|
@ -0,0 +1,20 @@
|
|||
#ifndef DRIVER_DS18B20_H_
|
||||
#define DRIVER_DS18B20_H_
|
||||
|
||||
typedef struct {
|
||||
uint8_t id;
|
||||
uint8_t major;
|
||||
uint8_t minor;
|
||||
} ds_sensor_t;
|
||||
|
||||
// Scan all ds18b20 sensors on bus and return its amount.
|
||||
// Result are saved in array of ds_sensor_t structure.
|
||||
// Cause printf in esp sdk don`t support float,
|
||||
// I split result as two number (major, minor).
|
||||
uint8_t readDS18B20(uint8_t pin, ds_sensor_t *result);
|
||||
|
||||
// This method is just to demonstrate how to read
|
||||
// temperature from single dallas chip.
|
||||
float read_single_DS18B20(uint8_t pin);
|
||||
|
||||
#endif
|
22
extras/onewire/LICENSE
Normal file
22
extras/onewire/LICENSE
Normal file
|
@ -0,0 +1,22 @@
|
|||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2014 zeroday nodemcu.com
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
7
extras/onewire/README.md
Normal file
7
extras/onewire/README.md
Normal file
|
@ -0,0 +1,7 @@
|
|||
# Yet another one wire driver for the ESP8266
|
||||
|
||||
This is a port of bit banging one wire driver based on nodemcu implementaion.
|
||||
|
||||
Seams that they port it from https://www.pjrc.com/teensy/td_libs_OneWire.html
|
||||
|
||||
For all aspect regarding license, please check LICENSE file and coresponding projects.
|
10
extras/onewire/component.mk
Normal file
10
extras/onewire/component.mk
Normal file
|
@ -0,0 +1,10 @@
|
|||
# Component makefile for extras/onewire
|
||||
|
||||
# expected anyone using onewire driver includes it as 'onewire/onewire.h'
|
||||
INC_DIRS += $(onewire_ROOT)..
|
||||
|
||||
# args for passing into compile rule generation
|
||||
onewire_INC_DIR =
|
||||
onewire_SRC_DIR = $(onewire_ROOT)
|
||||
|
||||
$(eval $(call component_compile_rules,onewire))
|
466
extras/onewire/onewire.c
Normal file
466
extras/onewire/onewire.c
Normal file
|
@ -0,0 +1,466 @@
|
|||
#include "onewire.h"
|
||||
|
||||
// global search state
|
||||
static unsigned char ROM_NO[ONEWIRE_NUM][8];
|
||||
static uint8_t LastDiscrepancy[ONEWIRE_NUM];
|
||||
static uint8_t LastFamilyDiscrepancy[ONEWIRE_NUM];
|
||||
static uint8_t LastDeviceFlag[ONEWIRE_NUM];
|
||||
|
||||
void onewire_init(uint8_t pin)
|
||||
{
|
||||
gpio_enable(pin, GPIO_INPUT);
|
||||
onewire_reset_search(pin);
|
||||
}
|
||||
|
||||
// Perform the onewire reset function. We will wait up to 250uS for
|
||||
// the bus to come high, if it doesn't then it is broken or shorted
|
||||
// and we return a 0;
|
||||
//
|
||||
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
|
||||
//
|
||||
uint8_t onewire_reset(uint8_t pin)
|
||||
{
|
||||
uint8_t r;
|
||||
uint8_t retries = 125;
|
||||
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(pin);
|
||||
interrupts();
|
||||
// wait until the wire is high... just in case
|
||||
do {
|
||||
if (--retries == 0) return 0;
|
||||
delayMicroseconds(2);
|
||||
} while ( !DIRECT_READ(pin));
|
||||
|
||||
noInterrupts();
|
||||
DIRECT_WRITE_LOW(pin);
|
||||
DIRECT_MODE_OUTPUT(pin); // drive output low
|
||||
interrupts();
|
||||
delayMicroseconds(480);
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(pin); // allow it to float
|
||||
delayMicroseconds(70);
|
||||
r = !DIRECT_READ(pin);
|
||||
interrupts();
|
||||
delayMicroseconds(410);
|
||||
return r;
|
||||
}
|
||||
|
||||
// Write a bit. Port and bit is used to cut lookup time and provide
|
||||
// more certain timing.
|
||||
//
|
||||
static void onewire_write_bit(uint8_t pin, uint8_t v)
|
||||
{
|
||||
if (v & 1) {
|
||||
noInterrupts();
|
||||
DIRECT_WRITE_LOW(pin);
|
||||
DIRECT_MODE_OUTPUT(pin); // drive output low
|
||||
delayMicroseconds(10);
|
||||
DIRECT_WRITE_HIGH(pin); // drive output high
|
||||
interrupts();
|
||||
delayMicroseconds(55);
|
||||
} else {
|
||||
noInterrupts();
|
||||
DIRECT_WRITE_LOW(pin);
|
||||
DIRECT_MODE_OUTPUT(pin); // drive output low
|
||||
delayMicroseconds(65);
|
||||
DIRECT_WRITE_HIGH(pin); // drive output high
|
||||
interrupts();
|
||||
delayMicroseconds(5);
|
||||
}
|
||||
}
|
||||
|
||||
// Read a bit. Port and bit is used to cut lookup time and provide
|
||||
// more certain timing.
|
||||
//
|
||||
static uint8_t onewire_read_bit(uint8_t pin)
|
||||
{
|
||||
uint8_t r;
|
||||
|
||||
noInterrupts();
|
||||
DIRECT_MODE_OUTPUT(pin);
|
||||
DIRECT_WRITE_LOW(pin);
|
||||
delayMicroseconds(3);
|
||||
DIRECT_MODE_INPUT(pin); // let pin float, pull up will raise
|
||||
delayMicroseconds(10);
|
||||
r = DIRECT_READ(pin);
|
||||
interrupts();
|
||||
delayMicroseconds(53);
|
||||
return r;
|
||||
}
|
||||
|
||||
// Write a byte. The writing code uses the active drivers to raise the
|
||||
// pin high, if you need power after the write (e.g. DS18S20 in
|
||||
// parasite power mode) then set 'power' to 1, otherwise the pin will
|
||||
// go tri-state at the end of the write to avoid heating in a short or
|
||||
// other mishap.
|
||||
//
|
||||
void onewire_write(uint8_t pin, uint8_t v, uint8_t power /* = 0 */) {
|
||||
uint8_t bitMask;
|
||||
|
||||
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
||||
onewire_write_bit(pin, (bitMask & v)?1:0);
|
||||
}
|
||||
if ( !power) {
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(pin);
|
||||
DIRECT_WRITE_LOW(pin);
|
||||
interrupts();
|
||||
}
|
||||
}
|
||||
|
||||
void onewire_write_bytes(uint8_t pin, const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
|
||||
uint16_t i;
|
||||
for (i = 0 ; i < count ; i++)
|
||||
onewire_write(pin, buf[i], ONEWIRE_DEFAULT_POWER);
|
||||
if (!power) {
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(pin);
|
||||
DIRECT_WRITE_LOW(pin);
|
||||
interrupts();
|
||||
}
|
||||
}
|
||||
|
||||
// Read a byte
|
||||
//
|
||||
uint8_t onewire_read(uint8_t pin) {
|
||||
uint8_t bitMask;
|
||||
uint8_t r = 0;
|
||||
|
||||
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
||||
if (onewire_read_bit(pin)) r |= bitMask;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void onewire_read_bytes(uint8_t pin, uint8_t *buf, uint16_t count) {
|
||||
uint16_t i;
|
||||
for (i = 0 ; i < count ; i++)
|
||||
buf[i] = onewire_read(pin);
|
||||
}
|
||||
|
||||
// Do a ROM select
|
||||
//
|
||||
void onewire_select(uint8_t pin, const uint8_t rom[8])
|
||||
{
|
||||
uint8_t i;
|
||||
|
||||
onewire_write(pin, 0x55, ONEWIRE_DEFAULT_POWER); // Choose ROM
|
||||
|
||||
for (i = 0; i < 8; i++) onewire_write(pin, rom[i], ONEWIRE_DEFAULT_POWER);
|
||||
}
|
||||
|
||||
// Do a ROM skip
|
||||
//
|
||||
void onewire_skip(uint8_t pin)
|
||||
{
|
||||
onewire_write(pin, 0xCC, ONEWIRE_DEFAULT_POWER); // Skip ROM
|
||||
}
|
||||
|
||||
void onewire_depower(uint8_t pin)
|
||||
{
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(pin);
|
||||
interrupts();
|
||||
}
|
||||
|
||||
// You need to use this function to start a search again from the beginning.
|
||||
// You do not need to do it for the first search, though you could.
|
||||
//
|
||||
void onewire_reset_search(uint8_t pin)
|
||||
{
|
||||
// reset the search state
|
||||
LastDiscrepancy[pin] = 0;
|
||||
LastDeviceFlag[pin] = 0;
|
||||
LastFamilyDiscrepancy[pin] = 0;
|
||||
int i;
|
||||
for(i = 7; ; i--) {
|
||||
ROM_NO[pin][i] = 0;
|
||||
if ( i == 0) break;
|
||||
}
|
||||
}
|
||||
|
||||
// Setup the search to find the device type 'family_code' on the next call
|
||||
// to search(*newAddr) if it is present.
|
||||
//
|
||||
void onewire_target_search(uint8_t pin, uint8_t family_code)
|
||||
{
|
||||
// set the search state to find SearchFamily type devices
|
||||
ROM_NO[pin][0] = family_code;
|
||||
uint8_t i;
|
||||
for (i = 1; i < 8; i++)
|
||||
ROM_NO[pin][i] = 0;
|
||||
LastDiscrepancy[pin] = 64;
|
||||
LastFamilyDiscrepancy[pin] = 0;
|
||||
LastDeviceFlag[pin] = 0;
|
||||
}
|
||||
|
||||
// Perform a search. If this function returns a '1' then it has
|
||||
// enumerated the next device and you may retrieve the ROM from the
|
||||
// OneWire::address variable. If there are no devices, no further
|
||||
// devices, or something horrible happens in the middle of the
|
||||
// enumeration then a 0 is returned. If a new device is found then
|
||||
// its address is copied to newAddr. Use OneWire::reset_search() to
|
||||
// start over.
|
||||
//
|
||||
// --- Replaced by the one from the Dallas Semiconductor web site ---
|
||||
//--------------------------------------------------------------------------
|
||||
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
|
||||
// search state.
|
||||
// Return 1 : device found, ROM number in ROM_NO buffer
|
||||
// 0 : device not found, end of search
|
||||
//
|
||||
uint8_t onewire_search(uint8_t pin, uint8_t *newAddr)
|
||||
{
|
||||
uint8_t id_bit_number;
|
||||
uint8_t last_zero, rom_byte_number, search_result;
|
||||
uint8_t id_bit, cmp_id_bit;
|
||||
|
||||
unsigned char rom_byte_mask, search_direction;
|
||||
|
||||
// initialize for search
|
||||
id_bit_number = 1;
|
||||
last_zero = 0;
|
||||
rom_byte_number = 0;
|
||||
rom_byte_mask = 1;
|
||||
search_result = 0;
|
||||
|
||||
// if the last call was not the last one
|
||||
if (!LastDeviceFlag[pin])
|
||||
{
|
||||
// 1-Wire reset
|
||||
if (!onewire_reset(pin))
|
||||
{
|
||||
// reset the search
|
||||
LastDiscrepancy[pin] = 0;
|
||||
LastDeviceFlag[pin] = 0;
|
||||
LastFamilyDiscrepancy[pin] = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// issue the search command
|
||||
onewire_write(pin, 0xF0, ONEWIRE_DEFAULT_POWER);
|
||||
|
||||
// loop to do the search
|
||||
do
|
||||
{
|
||||
// read a bit and its complement
|
||||
id_bit = onewire_read_bit(pin);
|
||||
cmp_id_bit = onewire_read_bit(pin);
|
||||
|
||||
// check for no devices on 1-wire
|
||||
if ((id_bit == 1) && (cmp_id_bit == 1))
|
||||
break;
|
||||
else
|
||||
{
|
||||
// all devices coupled have 0 or 1
|
||||
if (id_bit != cmp_id_bit)
|
||||
search_direction = id_bit; // bit write value for search
|
||||
else
|
||||
{
|
||||
// if this discrepancy if before the Last Discrepancy
|
||||
// on a previous next then pick the same as last time
|
||||
if (id_bit_number < LastDiscrepancy[pin])
|
||||
search_direction = ((ROM_NO[pin][rom_byte_number] & rom_byte_mask) > 0);
|
||||
else
|
||||
// if equal to last pick 1, if not then pick 0
|
||||
search_direction = (id_bit_number == LastDiscrepancy[pin]);
|
||||
|
||||
// if 0 was picked then record its position in LastZero
|
||||
if (search_direction == 0)
|
||||
{
|
||||
last_zero = id_bit_number;
|
||||
|
||||
// check for Last discrepancy in family
|
||||
if (last_zero < 9)
|
||||
LastFamilyDiscrepancy[pin] = last_zero;
|
||||
}
|
||||
}
|
||||
|
||||
// set or clear the bit in the ROM byte rom_byte_number
|
||||
// with mask rom_byte_mask
|
||||
if (search_direction == 1)
|
||||
ROM_NO[pin][rom_byte_number] |= rom_byte_mask;
|
||||
else
|
||||
ROM_NO[pin][rom_byte_number] &= ~rom_byte_mask;
|
||||
|
||||
// serial number search direction write bit
|
||||
onewire_write_bit(pin, search_direction);
|
||||
|
||||
// increment the byte counter id_bit_number
|
||||
// and shift the mask rom_byte_mask
|
||||
id_bit_number++;
|
||||
rom_byte_mask <<= 1;
|
||||
|
||||
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
|
||||
if (rom_byte_mask == 0)
|
||||
{
|
||||
rom_byte_number++;
|
||||
rom_byte_mask = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
|
||||
|
||||
// if the search was successful then
|
||||
if (!(id_bit_number < 65))
|
||||
{
|
||||
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
|
||||
LastDiscrepancy[pin] = last_zero;
|
||||
|
||||
// check for last device
|
||||
if (LastDiscrepancy[pin] == 0)
|
||||
LastDeviceFlag[pin] = 1;
|
||||
|
||||
search_result = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// if no device found then reset counters so next 'search' will be like a first
|
||||
if (!search_result || !ROM_NO[pin][0])
|
||||
{
|
||||
LastDiscrepancy[pin] = 0;
|
||||
LastDeviceFlag[pin] = 0;
|
||||
LastFamilyDiscrepancy[pin] = 0;
|
||||
search_result = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (rom_byte_number = 0; rom_byte_number < 8; rom_byte_number++)
|
||||
{
|
||||
newAddr[rom_byte_number] = ROM_NO[pin][rom_byte_number];
|
||||
//printf("Ok I found something at %d - %x...\n",rom_byte_number, newAddr[rom_byte_number]);
|
||||
}
|
||||
}
|
||||
return search_result;
|
||||
}
|
||||
|
||||
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
|
||||
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
|
||||
//
|
||||
|
||||
#if ONEWIRE_CRC8_TABLE
|
||||
// This table comes from Dallas sample code where it is freely reusable,
|
||||
// though Copyright (C) 2000 Dallas Semiconductor Corporation
|
||||
static const uint8_t dscrc_table[] = {
|
||||
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
|
||||
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
|
||||
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
|
||||
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
|
||||
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
|
||||
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
|
||||
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
|
||||
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
|
||||
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
|
||||
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
|
||||
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
|
||||
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
|
||||
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
|
||||
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
|
||||
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
|
||||
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
|
||||
|
||||
#ifndef pgm_read_byte
|
||||
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
|
||||
#endif
|
||||
|
||||
//
|
||||
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
|
||||
// and the registers. (note: this might better be done without to
|
||||
// table, it would probably be smaller and certainly fast enough
|
||||
// compared to all those delayMicrosecond() calls. But I got
|
||||
// confused, so I use this table from the examples.)
|
||||
//
|
||||
uint8_t onewire_crc8(const uint8_t *addr, uint8_t len)
|
||||
{
|
||||
uint8_t crc = 0;
|
||||
|
||||
while (len--) {
|
||||
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#else
|
||||
//
|
||||
// Compute a Dallas Semiconductor 8 bit CRC directly.
|
||||
// this is much slower, but much smaller, than the lookup table.
|
||||
//
|
||||
uint8_t onewire_crc8(const uint8_t *addr, uint8_t len)
|
||||
{
|
||||
uint8_t crc = 0;
|
||||
|
||||
while (len--) {
|
||||
uint8_t inbyte = *addr++;
|
||||
uint8_t i;
|
||||
for (i = 8; i; i--) {
|
||||
uint8_t mix = (crc ^ inbyte) & 0x01;
|
||||
crc >>= 1;
|
||||
if (mix) crc ^= 0x8C;
|
||||
inbyte >>= 1;
|
||||
}
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Compute the 1-Wire CRC16 and compare it against the received CRC.
|
||||
// Example usage (reading a DS2408):
|
||||
// // Put everything in a buffer so we can compute the CRC easily.
|
||||
// uint8_t buf[13];
|
||||
// buf[0] = 0xF0; // Read PIO Registers
|
||||
// buf[1] = 0x88; // LSB address
|
||||
// buf[2] = 0x00; // MSB address
|
||||
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
|
||||
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
|
||||
// if (!CheckCRC16(buf, 11, &buf[11])) {
|
||||
// // Handle error.
|
||||
// }
|
||||
//
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param inverted_crc - The two CRC16 bytes in the received data.
|
||||
// This should just point into the received data,
|
||||
// *not* at a 16-bit integer.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return 1, iff the CRC matches.
|
||||
bool onewire_check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
|
||||
{
|
||||
crc = ~onewire_crc16(input, len, crc);
|
||||
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
|
||||
}
|
||||
|
||||
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
|
||||
// the integrity of data received from many 1-Wire devices. Note that the
|
||||
// CRC computed here is *not* what you'll get from the 1-Wire network,
|
||||
// for two reasons:
|
||||
// 1) The CRC is transmitted bitwise inverted.
|
||||
// 2) Depending on the endian-ness of your processor, the binary
|
||||
// representation of the two-byte return value may have a different
|
||||
// byte order than the two bytes you get from 1-Wire.
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return The CRC16, as defined by Dallas Semiconductor.
|
||||
uint16_t onewire_crc16(const uint8_t* input, uint16_t len, uint16_t crc)
|
||||
{
|
||||
static const uint8_t oddparity[16] =
|
||||
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
|
||||
|
||||
uint16_t i;
|
||||
for (i = 0 ; i < len ; i++) {
|
||||
// Even though we're just copying a byte from the input,
|
||||
// we'll be doing 16-bit computation with it.
|
||||
uint16_t cdata = input[i];
|
||||
cdata = (cdata ^ crc) & 0xff;
|
||||
crc >>= 8;
|
||||
|
||||
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
|
||||
crc ^= 0xC001;
|
||||
|
||||
cdata <<= 6;
|
||||
crc ^= cdata;
|
||||
cdata <<= 1;
|
||||
crc ^= cdata;
|
||||
}
|
||||
return crc;
|
||||
}
|
138
extras/onewire/onewire.h
Normal file
138
extras/onewire/onewire.h
Normal file
|
@ -0,0 +1,138 @@
|
|||
#ifndef __ONEWIRE_H__
|
||||
#define __ONEWIRE_H__
|
||||
|
||||
#include <espressif/esp_misc.h> // sdk_os_delay_us
|
||||
#include "FreeRTOS.h"
|
||||
|
||||
// 1 for keeping the parasitic power on H
|
||||
#define ONEWIRE_DEFAULT_POWER 1
|
||||
|
||||
// Maximum number of devices.
|
||||
#define ONEWIRE_NUM 20
|
||||
|
||||
// You can exclude certain features from OneWire. In theory, this
|
||||
// might save some space. In practice, the compiler automatically
|
||||
// removes unused code (technically, the linker, using -fdata-sections
|
||||
// and -ffunction-sections when compiling, and Wl,--gc-sections
|
||||
// when linking), so most of these will not result in any code size
|
||||
// reduction. Well, unless you try to use the missing features
|
||||
// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
|
||||
// is the exception, because it selects a fast but large algorithm
|
||||
// or a small but slow algorithm.
|
||||
|
||||
// Select the table-lookup method of computing the 8-bit CRC
|
||||
// by setting this to 1. The lookup table enlarges code size by
|
||||
// about 250 bytes. It does NOT consume RAM (but did in very
|
||||
// old versions of OneWire). If you disable this, a slower
|
||||
// but very compact algorithm is used.
|
||||
#ifndef ONEWIRE_CRC8_TABLE
|
||||
#define ONEWIRE_CRC8_TABLE 0
|
||||
#endif
|
||||
|
||||
// Platform specific I/O definitions
|
||||
#define noInterrupts portDISABLE_INTERRUPTS
|
||||
#define interrupts portENABLE_INTERRUPTS
|
||||
#define delayMicroseconds sdk_os_delay_us
|
||||
|
||||
#define DIRECT_READ(pin) gpio_read(pin)
|
||||
#define DIRECT_MODE_INPUT(pin) gpio_enable(pin, GPIO_INPUT)
|
||||
#define DIRECT_MODE_OUTPUT(pin) gpio_enable(pin, GPIO_OUTPUT)
|
||||
#define DIRECT_WRITE_LOW(pin) gpio_write(pin, 0)
|
||||
#define DIRECT_WRITE_HIGH(pin) gpio_write(pin, 1)
|
||||
|
||||
void onewire_init(uint8_t pin);
|
||||
|
||||
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
|
||||
// with a presence pulse. Returns 0 if there is no device or the
|
||||
// bus is shorted or otherwise held low for more than 250uS
|
||||
uint8_t onewire_reset(uint8_t pin);
|
||||
|
||||
// Issue a 1-Wire rom select command, you do the reset first.
|
||||
void onewire_select(uint8_t pin, const uint8_t rom[8]);
|
||||
|
||||
// Issue a 1-Wire rom skip command, to address all on bus.
|
||||
void onewire_skip(uint8_t pin);
|
||||
|
||||
// Write a byte. If 'power' is one then the wire is held high at
|
||||
// the end for parasitically powered devices. You are responsible
|
||||
// for eventually depowering it by calling depower() or doing
|
||||
// another read or write.
|
||||
void onewire_write(uint8_t pin, uint8_t v, uint8_t power);
|
||||
|
||||
void onewire_write_bytes(uint8_t pin, const uint8_t *buf, uint16_t count, bool power);
|
||||
|
||||
// Read a byte.
|
||||
uint8_t onewire_read(uint8_t pin);
|
||||
|
||||
void onewire_read_bytes(uint8_t pin, uint8_t *buf, uint16_t count);
|
||||
|
||||
// Write a bit. The bus is always left powered at the end, see
|
||||
// note in write() about that.
|
||||
// void onewire_write_bit(uint8_t pin, uint8_t v);
|
||||
|
||||
// Read a bit.
|
||||
// uint8_t onewire_read_bit(uint8_t pin);
|
||||
|
||||
// Stop forcing power onto the bus. You only need to do this if
|
||||
// you used the 'power' flag to write() or used a write_bit() call
|
||||
// and aren't about to do another read or write. You would rather
|
||||
// not leave this powered if you don't have to, just in case
|
||||
// someone shorts your bus.
|
||||
void onewire_depower(uint8_t pin);
|
||||
|
||||
// Clear the search state so that if will start from the beginning again.
|
||||
void onewire_reset_search(uint8_t pin);
|
||||
|
||||
// Setup the search to find the device type 'family_code' on the next call
|
||||
// to search(*newAddr) if it is present.
|
||||
void onewire_target_search(uint8_t pin, uint8_t family_code);
|
||||
|
||||
// Look for the next device. Returns 1 if a new address has been
|
||||
// returned. A zero might mean that the bus is shorted, there are
|
||||
// no devices, or you have already retrieved all of them. It
|
||||
// might be a good idea to check the CRC to make sure you didn't
|
||||
// get garbage. The order is deterministic. You will always get
|
||||
// the same devices in the same order.
|
||||
uint8_t onewire_search(uint8_t pin, uint8_t *newAddr);
|
||||
|
||||
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
|
||||
// ROM and scratchpad registers.
|
||||
uint8_t onewire_crc8(const uint8_t *addr, uint8_t len);
|
||||
|
||||
// Compute the 1-Wire CRC16 and compare it against the received CRC.
|
||||
// Example usage (reading a DS2408):
|
||||
// // Put everything in a buffer so we can compute the CRC easily.
|
||||
// uint8_t buf[13];
|
||||
// buf[0] = 0xF0; // Read PIO Registers
|
||||
// buf[1] = 0x88; // LSB address
|
||||
// buf[2] = 0x00; // MSB address
|
||||
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
|
||||
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
|
||||
// if (!CheckCRC16(buf, 11, &buf[11])) {
|
||||
// // Handle error.
|
||||
// }
|
||||
//
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param inverted_crc - The two CRC16 bytes in the received data.
|
||||
// This should just point into the received data,
|
||||
// *not* at a 16-bit integer.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return True, iff the CRC matches.
|
||||
bool onewire_check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc);
|
||||
|
||||
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
|
||||
// the integrity of data received from many 1-Wire devices. Note that the
|
||||
// CRC computed here is *not* what you'll get from the 1-Wire network,
|
||||
// for two reasons:
|
||||
// 1) The CRC is transmitted bitwise inverted.
|
||||
// 2) Depending on the endian-ness of your processor, the binary
|
||||
// representation of the two-byte return value may have a different
|
||||
// byte order than the two bytes you get from 1-Wire.
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return The CRC16, as defined by Dallas Semiconductor.
|
||||
uint16_t onewire_crc16(const uint8_t* input, uint16_t len, uint16_t crc);
|
||||
|
||||
#endif
|
Loading…
Reference in a new issue