timers.h: Remove compile-time-auto-inlining complexity

Fixes bug mentioned in #72 (oops!), also progress towards #57.
This commit is contained in:
Angus Gratton 2015-11-28 16:17:31 +11:00
parent d14d5b1aab
commit 336bad573d
5 changed files with 186 additions and 309 deletions

View file

@ -6,30 +6,122 @@
* BSD Licensed as described in the file LICENSE
*/
#include <esp/timer.h>
#include <esp/dport_regs.h>
#include <stdio.h>
#include <stdlib.h>
/*
* These are the runtime implementations for functions that are linked in if any of
* the arguments aren't known at compile time (values are evaluated at
* compile time otherwise.)
*/
uint32_t _timer_freq_to_count_runtime(const timer_frc_t frc, const uint32_t freq, const timer_clkdiv_t div)
/* Timer divisor number to maximum frequency */
#define _FREQ_DIV1 (80*1000*1000)
#define _FREQ_DIV16 (5*1000*1000)
#define _FREQ_DIV256 312500
const static uint32_t IROM _TIMER_FREQS[] = { _FREQ_DIV1, _FREQ_DIV16, _FREQ_DIV256 };
/* Timer divisor index to divisor value */
const static uint32_t IROM _TIMER_DIV_VAL[] = { 1, 16, 256 };
void timer_set_interrupts(const timer_frc_t frc, bool enable)
{
return _timer_freq_to_count_impl(frc, freq, div);
const uint32_t dp_bit = (frc == FRC1) ? DPORT_INT_ENABLE_FRC1 : DPORT_INT_ENABLE_FRC2;
const uint32_t int_mask = BIT((frc == FRC1) ? INUM_TIMER_FRC1 : INUM_TIMER_FRC2);
if(enable) {
DPORT.INT_ENABLE |= dp_bit;
_xt_isr_unmask(int_mask);
} else {
DPORT.INT_ENABLE &= ~dp_bit;
_xt_isr_mask(int_mask);
}
}
uint32_t _timer_time_to_count_runtime(const timer_frc_t frc, uint32_t us, const timer_clkdiv_t div)
uint32_t timer_freq_to_count(const timer_frc_t frc, const uint32_t freq, const timer_clkdiv_t div)
{
return _timer_time_to_count_runtime(frc, us, div);
if(div < TIMER_CLKDIV_1 || div > TIMER_CLKDIV_256)
return 0; /* invalid divider */
if(freq > _TIMER_FREQS[div])
return 0; /* out of range for given divisor */
uint64_t counts = _TIMER_FREQS[div]/freq;
return counts;
}
bool _timer_set_frequency_runtime(const timer_frc_t frc, uint32_t freq)
uint32_t timer_time_to_count(const timer_frc_t frc, uint32_t us, const timer_clkdiv_t div)
{
return _timer_set_frequency_runtime(frc, freq);
if(div < TIMER_CLKDIV_1 || div > TIMER_CLKDIV_256)
return 0; /* invalid divider */
const uint32_t TIMER_MAX = timer_max_load(frc);
if(div != TIMER_CLKDIV_256) /* timer tick in MHz */
{
/* timer is either 80MHz or 5MHz, so either 80 or 5 MHz counts per us */
const uint32_t counts_per_us = ((div == TIMER_CLKDIV_1) ? _FREQ_DIV1 : _FREQ_DIV16)/1000/1000;
if(us > TIMER_MAX/counts_per_us)
return 0; /* Multiplying us by mhz_per_count will overflow TIMER_MAX */
return us*counts_per_us;
}
else /* /256 divider, 312.5kHz freq so need to scale up */
{
/* derived from naive floating point equation that we can't use:
counts = (us/1000/1000)*_FREQ_DIV256;
counts = (us/2000)*(_FREQ_DIV256/500);
counts = us*(_FREQ_DIV256/500)/2000;
*/
const uint32_t scalar = _FREQ_DIV256/500;
if(us > 1+UINT32_MAX/scalar)
return 0; /* Multiplying us by _FREQ_DIV256/500 will overflow uint32_t */
uint32_t counts = (us*scalar)/2000;
if(counts > TIMER_MAX)
return 0; /* counts value too high for timer type */
return counts;
}
}
bool _timer_set_timeout_runtime(const timer_frc_t frc, uint32_t us)
bool timer_set_frequency(const timer_frc_t frc, uint32_t freq)
{
return _timer_set_timeout_impl(frc, us);
uint32_t counts = 0;
timer_clkdiv_t div = timer_freq_to_div(freq);
counts = timer_freq_to_count(frc, freq, div);
if(counts == 0)
{
printf("ABORT: No counter for timer %u frequency %u\r\n", frc, freq);
abort();
}
timer_set_divider(frc, div);
if(frc == FRC1)
{
timer_set_load(frc, counts);
timer_set_reload(frc, true);
}
else /* FRC2 */
{
/* assume that if this overflows it'll wrap, so we'll get desired behaviour */
TIMER(1).ALARM = counts + TIMER(1).COUNT;
}
return true;
}
bool timer_set_timeout(const timer_frc_t frc, uint32_t us)
{
uint32_t counts = 0;
timer_clkdiv_t div = timer_time_to_div(us);
counts = timer_time_to_count(frc, us, div);
if(counts == 0)
return false; /* can't set frequency */
timer_set_divider(frc, div);
if(frc == FRC1)
{
timer_set_load(frc, counts);
}
else /* FRC2 */
{
TIMER(1).ALARM = counts + TIMER(1).COUNT;
}
return true;
}

View file

@ -23,43 +23,73 @@ typedef enum {
} timer_frc_t;
/* Return current count value for timer. */
INLINED uint32_t timer_get_count(const timer_frc_t frc);
static inline uint32_t timer_get_count(const timer_frc_t frc)
{
return TIMER(frc).COUNT;
}
/* Return current load value for timer. */
INLINED uint32_t timer_get_load(const timer_frc_t frc);
static inline uint32_t timer_get_load(const timer_frc_t frc)
{
return TIMER(frc).LOAD;
}
/* Write load value for timer. */
INLINED void timer_set_load(const timer_frc_t frc, const uint32_t load);
static inline void timer_set_load(const timer_frc_t frc, const uint32_t load)
{
TIMER(frc).LOAD = load;
}
/* Returns maximum load value for timer. */
INLINED uint32_t timer_max_load(const timer_frc_t frc);
static inline uint32_t timer_max_load(const timer_frc_t frc)
{
return (frc == FRC1) ? TIMER_FRC1_MAX_LOAD : UINT32_MAX;
}
/* Set the timer divider value */
INLINED void timer_set_divider(const timer_frc_t frc, const timer_clkdiv_t div);
static inline void timer_set_divider(const timer_frc_t frc, const timer_clkdiv_t div)
{
if(div < TIMER_CLKDIV_1 || div > TIMER_CLKDIV_256)
return;
TIMER(frc).CTRL = SET_FIELD(TIMER(frc).CTRL, TIMER_CTRL_CLKDIV, div);
}
/* Enable or disable timer interrupts
This both sets the xtensa interrupt mask and writes to the DPORT register
that allows timer interrupts.
*/
INLINED void timer_set_interrupts(const timer_frc_t frc, bool enable);
void timer_set_interrupts(const timer_frc_t frc, bool enable);
/* Turn the timer on or off */
INLINED void timer_set_run(const timer_frc_t frc, const bool run);
static inline void timer_set_run(const timer_frc_t frc, const bool run)
{
if (run)
TIMER(frc).CTRL |= TIMER_CTRL_RUN;
else
TIMER(frc).CTRL &= ~TIMER_CTRL_RUN;
}
/* Get the run state of the timer (on or off) */
INLINED bool timer_get_run(const timer_frc_t frc);
static inline bool timer_get_run(const timer_frc_t frc)
{
return TIMER(frc).CTRL & TIMER_CTRL_RUN;
}
/* Set timer auto-reload on or off */
INLINED void timer_set_reload(const timer_frc_t frc, const bool reload);
static inline void timer_set_reload(const timer_frc_t frc, const bool reload)
{
if (reload)
TIMER(frc).CTRL |= TIMER_CTRL_RELOAD;
else
TIMER(frc).CTRL &= ~TIMER_CTRL_RELOAD;
}
/* Get the auto-reload state of the timer (on or off) */
INLINED bool timer_get_reload(const timer_frc_t frc);
/* Return a suitable timer divider for the specified frequency,
or -1 if none is found.
*/
INLINED timer_clkdiv_t timer_freq_to_div(uint32_t freq);
static inline bool timer_get_reload(const timer_frc_t frc)
{
return TIMER(frc).CTRL & TIMER_CTRL_RELOAD;
}
/* Return the number of timer counts to achieve the specified
* frequency with the specified divisor.
@ -68,14 +98,41 @@ INLINED timer_clkdiv_t timer_freq_to_div(uint32_t freq);
*
* Returns 0 if the given freq/divisor combo cannot be achieved.
*
* Compile-time evaluates if all arguments are available at compile time.
*/
INLINED uint32_t timer_freq_to_count(const timer_frc_t frc, uint32_t freq, const timer_clkdiv_t div);
uint32_t timer_freq_to_count(const timer_frc_t frc, uint32_t freq, const timer_clkdiv_t div);
/* Return a suitable timer divider for the specified frequency,
or -1 if none is found.
*/
static inline timer_clkdiv_t timer_freq_to_div(uint32_t freq)
{
/*
try to maintain resolution without risking overflows.
these values are a bit arbitrary at the moment! */
if(freq > 100*1000)
return TIMER_CLKDIV_1;
else if(freq > 100)
return TIMER_CLKDIV_16;
else
return TIMER_CLKDIV_256;
}
/* Return a suitable timer divider for the specified duration in
microseconds or -1 if none is found.
*/
INLINED timer_clkdiv_t timer_time_to_div(uint32_t us);
static inline timer_clkdiv_t timer_time_to_div(uint32_t us)
{
/*
try to maintain resolution without risking overflows. Similar to
timer_freq_to_div, these values are a bit arbitrary at the
moment! */
if(us < 1000)
return TIMER_CLKDIV_1;
else if(us < 10*1000)
return TIMER_CLKDIV_16;
else
return TIMER_CLKDIV_256;
}
/* Return the number of timer counts for the specified timer duration
* in microseconds, when using the specified divisor.
@ -84,9 +141,8 @@ INLINED timer_clkdiv_t timer_time_to_div(uint32_t us);
*
* Returns 0 if the given time/divisor combo cannot be achieved.
*
* Compile-time evaluates if all arguments are available at compile time.
*/
INLINED uint32_t timer_time_to_count(const timer_frc_t frc, uint32_t us, const timer_clkdiv_t div);
uint32_t timer_time_to_count(const timer_frc_t frc, uint32_t us, const timer_clkdiv_t div);
/* Set a target timer interrupt frequency in Hz.
@ -104,11 +160,8 @@ INLINED uint32_t timer_time_to_count(const timer_frc_t frc, uint32_t us, const t
timer_set_run.
Returns true on success, false if given frequency could not be set.
Compile-time evaluates to simple register writes if all arguments
are available at compile time.
*/
INLINED bool timer_set_frequency(const timer_frc_t frc, uint32_t freq);
bool timer_set_frequency(const timer_frc_t frc, uint32_t freq);
/* Sets the timer for a oneshot interrupt in 'us' microseconds.
@ -124,13 +177,8 @@ INLINED bool timer_set_frequency(const timer_frc_t frc, uint32_t freq);
timer_set_run(TIMER_FRC1, false);
Returns true if the timeout was successfully set.
Compile-time evaluates to simple register writes if all arguments
are available at compile time.
*/
INLINED bool timer_set_timeout(const timer_frc_t frc, uint32_t us);
#include "timer_private.h"
bool timer_set_timeout(const timer_frc_t frc, uint32_t us);
#ifdef __cplusplus
}

View file

@ -1,266 +0,0 @@
/* Private header parts of the timer API implementation
*
* Part of esp-open-rtos
* Copyright (C) 2015 Superhouse Automation Pty Ltd
* BSD Licensed as described in the file LICENSE
*/
#ifndef _ESP_TIMER_PRIVATE_H
#define _ESP_TIMER_PRIVATE_H
#ifdef __cplusplus
extern "C" {
#endif
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "esp/dport_regs.h"
/* Timer divisor index to max frequency */
#define _FREQ_DIV1 (80*1000*1000)
#define _FREQ_DIV16 (5*1000*1000)
#define _FREQ_DIV256 312500
const static uint32_t IROM _TIMER_FREQS[] = { _FREQ_DIV1, _FREQ_DIV16, _FREQ_DIV256 };
/* Timer divisor index to divisor value */
const static uint32_t IROM _TIMER_DIV_VAL[] = { 1, 16, 256 };
INLINED uint32_t timer_get_count(const timer_frc_t frc)
{
return TIMER(frc).COUNT;
}
INLINED uint32_t timer_get_load(const timer_frc_t frc)
{
return TIMER(frc).LOAD;
}
INLINED void timer_set_load(const timer_frc_t frc, const uint32_t load)
{
TIMER(frc).LOAD = load;
}
INLINED uint32_t timer_max_load(const timer_frc_t frc)
{
return (frc == FRC1) ? TIMER_FRC1_MAX_LOAD : UINT32_MAX;
}
INLINED void timer_set_divider(const timer_frc_t frc, const timer_clkdiv_t div)
{
if(div < TIMER_CLKDIV_1 || div > TIMER_CLKDIV_256)
return;
TIMER(frc).CTRL = SET_FIELD(TIMER(frc).CTRL, TIMER_CTRL_CLKDIV, div);
}
INLINED void timer_set_interrupts(const timer_frc_t frc, bool enable)
{
const uint32_t dp_bit = (frc == FRC1) ? DPORT_INT_ENABLE_FRC1 : DPORT_INT_ENABLE_FRC2;
const uint32_t int_mask = BIT((frc == FRC1) ? INUM_TIMER_FRC1 : INUM_TIMER_FRC2);
if(enable) {
DPORT.INT_ENABLE |= dp_bit;
_xt_isr_unmask(int_mask);
} else {
DPORT.INT_ENABLE &= ~dp_bit;
_xt_isr_mask(int_mask);
}
}
INLINED void timer_set_run(const timer_frc_t frc, const bool run)
{
if (run)
TIMER(frc).CTRL |= TIMER_CTRL_RUN;
else
TIMER(frc).CTRL &= ~TIMER_CTRL_RUN;
}
INLINED bool timer_get_run(const timer_frc_t frc)
{
return TIMER(frc).CTRL & TIMER_CTRL_RUN;
}
INLINED void timer_set_reload(const timer_frc_t frc, const bool reload)
{
if (reload)
TIMER(frc).CTRL |= TIMER_CTRL_RELOAD;
else
TIMER(frc).CTRL &= ~TIMER_CTRL_RELOAD;
}
INLINED bool timer_get_reload(const timer_frc_t frc)
{
return TIMER(frc).CTRL & TIMER_CTRL_RELOAD;
}
INLINED timer_clkdiv_t timer_freq_to_div(uint32_t freq)
{
/*
try to maintain resolution without risking overflows.
these values are a bit arbitrary at the moment! */
if(freq > 100*1000)
return TIMER_CLKDIV_1;
else if(freq > 100)
return TIMER_CLKDIV_16;
else
return TIMER_CLKDIV_256;
}
/* timer_timer_to_count implementation - inline if all args are constant, call normally otherwise */
INLINED uint32_t _timer_freq_to_count_impl(const timer_frc_t frc, const uint32_t freq, const timer_clkdiv_t div)
{
if(div < TIMER_CLKDIV_1 || div > TIMER_CLKDIV_256)
return 0; /* invalid divider */
if(freq > _TIMER_FREQS[div])
return 0; /* out of range for given divisor */
uint64_t counts = _TIMER_FREQS[div]/freq;
return counts;
}
uint32_t _timer_freq_to_count_runtime(const timer_frc_t frc, const uint32_t freq, const timer_clkdiv_t div);
INLINED uint32_t timer_freq_to_count(const timer_frc_t frc, const uint32_t freq, const timer_clkdiv_t div)
{
if(__builtin_constant_p(frc) && __builtin_constant_p(freq) && __builtin_constant_p(div))
return _timer_freq_to_count_impl(frc, freq, div);
else
return _timer_freq_to_count_runtime(frc, freq, div);
}
INLINED timer_clkdiv_t timer_time_to_div(uint32_t us)
{
/*
try to maintain resolution without risking overflows. Similar to
timer_freq_to_div, these values are a bit arbitrary at the
moment! */
if(us < 1000)
return TIMER_CLKDIV_1;
else if(us < 10*1000)
return TIMER_CLKDIV_16;
else
return TIMER_CLKDIV_256;
}
/* timer_timer_to_count implementation - inline if all args are constant, call normally otherwise */
INLINED uint32_t _timer_time_to_count_impl(const timer_frc_t frc, uint32_t us, const timer_clkdiv_t div)
{
if(div < TIMER_CLKDIV_1 || div > TIMER_CLKDIV_256)
return 0; /* invalid divider */
const uint32_t TIMER_MAX = timer_max_load(frc);
if(div != TIMER_CLKDIV_256) /* timer tick in MHz */
{
/* timer is either 80MHz or 5MHz, so either 80 or 5 MHz counts per us */
const uint32_t counts_per_us = ((div == TIMER_CLKDIV_1) ? _FREQ_DIV1 : _FREQ_DIV16)/1000/1000;
if(us > TIMER_MAX/counts_per_us)
return 0; /* Multiplying us by mhz_per_count will overflow TIMER_MAX */
return us*counts_per_us;
}
else /* /256 divider, 312.5kHz freq so need to scale up */
{
/* derived from naive floating point equation that we can't use:
counts = (us/1000/1000)*_FREQ_DIV256;
counts = (us/2000)*(_FREQ_DIV256/500);
counts = us*(_FREQ_DIV256/500)/2000;
*/
const uint32_t scalar = _FREQ_DIV256/500;
if(us > 1+UINT32_MAX/scalar)
return 0; /* Multiplying us by _FREQ_DIV256/500 will overflow uint32_t */
uint32_t counts = (us*scalar)/2000;
if(counts > TIMER_MAX)
return 0; /* counts value too high for timer type */
return counts;
}
}
uint32_t _timer_time_to_count_runtime(const timer_frc_t frc, uint32_t us, const timer_clkdiv_t div);
INLINED uint32_t timer_time_to_count(const timer_frc_t frc, uint32_t us, const timer_clkdiv_t div)
{
if(__builtin_constant_p(frc) && __builtin_constant_p(us) && __builtin_constant_p(div))
return _timer_time_to_count_impl(frc, us, div);
else
return _timer_time_to_count_runtime(frc, us, div);
}
/* timer_set_frequency implementation - inline if all args are constant, call normally otherwise */
INLINED bool _timer_set_frequency_impl(const timer_frc_t frc, uint32_t freq)
{
uint32_t counts = 0;
timer_clkdiv_t div = timer_freq_to_div(freq);
counts = timer_freq_to_count(frc, freq, div);
if(counts == 0)
{
printf("ABORT: No counter for timer %u frequency %u\r\n", frc, freq);
abort();
}
timer_set_divider(frc, div);
if(frc == FRC1)
{
timer_set_load(frc, counts);
timer_set_reload(frc, true);
}
else /* FRC2 */
{
/* assume that if this overflows it'll wrap, so we'll get desired behaviour */
TIMER(1).ALARM = counts + TIMER(1).COUNT;
}
return true;
}
bool _timer_set_frequency_runtime(const timer_frc_t frc, uint32_t freq);
INLINED bool timer_set_frequency(const timer_frc_t frc, uint32_t freq)
{
if(__builtin_constant_p(frc) && __builtin_constant_p(freq))
return _timer_set_frequency_impl(frc, freq);
else
return _timer_set_frequency_runtime(frc, freq);
}
/* timer_set_timeout implementation - inline if all args are constant, call normally otherwise */
INLINED bool _timer_set_timeout_impl(const timer_frc_t frc, uint32_t us)
{
uint32_t counts = 0;
timer_clkdiv_t div = timer_time_to_div(us);
counts = timer_time_to_count(frc, us, div);
if(counts == 0)
return false; /* can't set frequency */
timer_set_divider(frc, div);
if(frc == FRC1)
{
timer_set_load(frc, counts);
}
else /* FRC2 */
{
TIMER(1).ALARM = counts + TIMER(1).COUNT;
}
return true;
}
bool _timer_set_timeout_runtime(const timer_frc_t frc, uint32_t us);
INLINED bool timer_set_timeout(const timer_frc_t frc, uint32_t us)
{
if(__builtin_constant_p(frc) && __builtin_constant_p(us))
return _timer_set_timeout_impl(frc, us);
else
return _timer_set_timeout_runtime(frc, us);
}
#ifdef __cplusplus
}
#endif
#endif

View file

@ -7,10 +7,12 @@
#include <stdint.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <esp8266.h>
#include <esp/uart.h>
#include <stdio.h>
#include "FreeRTOS.h"
#include "task.h"

View file

@ -25,6 +25,7 @@
#include <esp8266.h>
#include <FreeRTOS.h>
#include <semphr.h>
#include <stdio.h>
#if (configUSE_COUNTING_SEMAPHORES == 0)
#error "You need to define configUSE_COUNTING_SEMAPHORES in a local FreeRTOSConfig.h, see examples/terminal/FreeRTOSConfig.h"