SPIFFS: Wait SPI idle optimization.

This commit is contained in:
sheinz 2016-07-19 17:38:21 +03:00
parent 4b1568cbb9
commit 281faa2cac

View file

@ -27,25 +27,45 @@
#include "FreeRTOS.h" #include "FreeRTOS.h"
#include "esp/rom.h" #include "esp/rom.h"
#include "esp/spi_regs.h" #include "esp/spi_regs.h"
#include <string.h>
/**
* Note about Wait_SPI_Idle.
*
* Each write/erase flash operation sets BUSY bit in flash status register.
* If attempt to access flash while BUSY bit is set operation will fail.
* Function Wait_SPI_Idle loops until this bit is not cleared.
*
* The approach in the following code is that each write function that is
* accessible from the outside should leave flash in Idle state.
* The read operations doesn't set BUSY bit in a flash. So they do not wait.
* They relay that previous operation is completely finished.
*
* This approach is different from ESP8266 bootrom where Wait_SPI_Idle is
* called where it needed and not.
*/
#define SPI_WRITE_MAX_SIZE 32 #define SPI_WRITE_MAX_SIZE 32
#define SPI_READ_MAX_SIZE 32 #define SPI_READ_MAX_SIZE 32
/** /**
* Low level SPI flash write. Write block of data up to SPI_WRITE_MAX_SIZE. * Low level SPI flash write. Write block of data up to 64 bytes.
*/ */
static inline uint32_t IRAM spi_write_data(sdk_flashchip_t *chip, uint32_t addr, static inline uint32_t IRAM spi_write_data(sdk_flashchip_t *chip, uint32_t addr,
uint8_t *buf, uint32_t size) uint8_t *buf, uint32_t size)
{ {
Wait_SPI_Idle(chip); // wait for previous write to finish
SPI(0).ADDR = (addr & 0x00FFFFFF) | (size << 24); SPI(0).ADDR = (addr & 0x00FFFFFF) | (size << 24);
uint32_t words = size >> 2;
if (size & 0b11) {
words++;
}
uint32_t data = 0; uint32_t data = 0;
// Copy more than size, in order not to handle unaligned size. for (uint32_t i = 0; i < (words << 2); i++) {
// The exact size will be written to flash data >>= 8;
for (uint32_t i = 0; i != SPI_WRITE_MAX_SIZE; i++) { data >>= 8;
data |= (uint32_t)buf[i] << 24; data |= (uint32_t)buf[i] << 24;
if (i & 0b11) { if (i & 0b11) {
SPI(0).W[i >> 2] = data; SPI(0).W[i >> 2] = data;
} }
@ -57,13 +77,12 @@ static inline uint32_t IRAM spi_write_data(sdk_flashchip_t *chip, uint32_t addr,
SPI(0).CMD = SPI_CMD_PP; SPI(0).CMD = SPI_CMD_PP;
while (SPI(0).CMD) {} while (SPI(0).CMD) {}
Wait_SPI_Idle(chip);
return ESP_SPIFFS_FLASH_OK; return ESP_SPIFFS_FLASH_OK;
} }
/** /**
* Write a page of flash. Data block should bot cross page boundary. * Write a page of flash. Data block should not cross page boundary.
*/ */
static uint32_t IRAM spi_write_page(sdk_flashchip_t *flashchip, uint32_t dest_addr, static uint32_t IRAM spi_write_page(sdk_flashchip_t *flashchip, uint32_t dest_addr,
uint8_t *buf, uint32_t size) uint8_t *buf, uint32_t size)
@ -77,8 +96,6 @@ static uint32_t IRAM spi_write_page(sdk_flashchip_t *flashchip, uint32_t dest_ad
return ESP_SPIFFS_FLASH_OK; return ESP_SPIFFS_FLASH_OK;
} }
Wait_SPI_Idle(flashchip);
while (size >= SPI_WRITE_MAX_SIZE) { while (size >= SPI_WRITE_MAX_SIZE) {
if (spi_write_data(flashchip, dest_addr, buf, SPI_WRITE_MAX_SIZE)) { if (spi_write_data(flashchip, dest_addr, buf, SPI_WRITE_MAX_SIZE)) {
return ESP_SPIFFS_FLASH_ERROR; return ESP_SPIFFS_FLASH_ERROR;
@ -96,6 +113,7 @@ static uint32_t IRAM spi_write_page(sdk_flashchip_t *flashchip, uint32_t dest_ad
if (spi_write_data(flashchip, dest_addr, buf, size)) { if (spi_write_data(flashchip, dest_addr, buf, size)) {
return ESP_SPIFFS_FLASH_ERROR; return ESP_SPIFFS_FLASH_ERROR;
} }
return ESP_SPIFFS_FLASH_OK; return ESP_SPIFFS_FLASH_OK;
} }
@ -115,9 +133,7 @@ static uint32_t IRAM spi_write(uint32_t addr, uint8_t *dst, uint32_t size)
if (spi_write_page(&sdk_flashchip, addr, dst, size)) { if (spi_write_page(&sdk_flashchip, addr, dst, size)) {
return ESP_SPIFFS_FLASH_ERROR; return ESP_SPIFFS_FLASH_ERROR;
} }
return ESP_SPIFFS_FLASH_OK; } else {
}
if (spi_write_page(&sdk_flashchip, addr, dst, write_bytes_to_page)) { if (spi_write_page(&sdk_flashchip, addr, dst, write_bytes_to_page)) {
return ESP_SPIFFS_FLASH_ERROR; return ESP_SPIFFS_FLASH_ERROR;
} }
@ -136,6 +152,8 @@ static uint32_t IRAM spi_write(uint32_t addr, uint8_t *dst, uint32_t size)
dst + offset, size - offset)) { dst + offset, size - offset)) {
return ESP_SPIFFS_FLASH_ERROR; return ESP_SPIFFS_FLASH_ERROR;
} }
}
return ESP_SPIFFS_FLASH_OK; return ESP_SPIFFS_FLASH_OK;
} }
@ -149,6 +167,9 @@ uint32_t IRAM esp_spiffs_flash_write(uint32_t addr, uint8_t *buf, uint32_t size)
result = spi_write(addr, buf, size); result = spi_write(addr, buf, size);
// make sure all write operations is finished before exiting
Wait_SPI_Idle(&sdk_flashchip);
Cache_Read_Enable(0, 0, 1); Cache_Read_Enable(0, 0, 1);
vPortExitCritical(); vPortExitCritical();
} }
@ -157,7 +178,7 @@ uint32_t IRAM esp_spiffs_flash_write(uint32_t addr, uint8_t *buf, uint32_t size)
} }
/** /**
* Read SPI flash up to SPI_READ_MAX_SIZE size. * Read SPI flash up to 64 bytes.
*/ */
static inline void IRAM read_block(sdk_flashchip_t *chip, uint32_t addr, static inline void IRAM read_block(sdk_flashchip_t *chip, uint32_t addr,
uint8_t *buf, uint32_t size) uint8_t *buf, uint32_t size)
@ -189,8 +210,6 @@ static inline uint32_t IRAM read_data(sdk_flashchip_t *flashchip, uint32_t addr,
return ESP_SPIFFS_FLASH_ERROR; return ESP_SPIFFS_FLASH_ERROR;
} }
Wait_SPI_Idle(flashchip);
while (size >= SPI_READ_MAX_SIZE) { while (size >= SPI_READ_MAX_SIZE) {
read_block(flashchip, addr, dst, SPI_READ_MAX_SIZE); read_block(flashchip, addr, dst, SPI_READ_MAX_SIZE);
dst += SPI_READ_MAX_SIZE; dst += SPI_READ_MAX_SIZE;
@ -237,10 +256,10 @@ uint32_t IRAM esp_spiffs_flash_erase_sector(uint32_t addr)
SPI_write_enable(&sdk_flashchip); SPI_write_enable(&sdk_flashchip);
Wait_SPI_Idle(&sdk_flashchip);
SPI(0).ADDR = addr & 0x00FFFFFF; SPI(0).ADDR = addr & 0x00FFFFFF;
SPI(0).CMD = SPI_CMD_SE; SPI(0).CMD = SPI_CMD_SE;
while (SPI(0).CMD) {}; while (SPI(0).CMD) {};
Wait_SPI_Idle(&sdk_flashchip); Wait_SPI_Idle(&sdk_flashchip);
Cache_Read_Enable(0, 0, 1); Cache_Read_Enable(0, 0, 1);