esp-open-rtos/extras/lis3dh/lis3dh.c

1275 lines
40 KiB
C
Raw Normal View History

/*
* Driver for LIS3DH 3-axes digital accelerometer connected to I2C or SPI.
*
* This driver is for the usage with the ESP8266 and FreeRTOS (esp-open-rtos)
* [https://github.com/SuperHouse/esp-open-rtos]. It is also working with ESP32
* and ESP-IDF [https://github.com/espressif/esp-idf.git] as well as Linux
* based systems using a wrapper library for ESP8266 functions.
*
* ---------------------------------------------------------------------------
*
* The BSD License (3-clause license)
*
* Copyright (c) 2017 Gunar Schorcht (https://github.com/gschorcht)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* The information provided is believed to be accurate and reliable. The
* copyright holder assumes no responsibility for the consequences of use
* of such information nor for any infringement of patents or other rights
* of third parties which may result from its use. No license is granted by
* implication or otherwise under any patent or patent rights of the copyright
* holder.
*/
#include <string.h>
#include <stdlib.h>
#include "lis3dh.h"
#if defined(LIS3DH_DEBUG_LEVEL_2)
#define debug(s, f, ...) printf("%s %s: " s "\n", "LIS3DH", f, ## __VA_ARGS__)
#define debug_dev(s, f, d, ...) printf("%s %s: bus %d, addr %02x - " s "\n", "LIS3DH", f, d->bus, d->addr, ## __VA_ARGS__)
#else
#define debug(s, f, ...)
#define debug_dev(s, f, d, ...)
#endif
#if defined(LIS3DH_DEBUG_LEVEL_1) || defined(LIS3DH_DEBUG_LEVEL_2)
#define error(s, f, ...) printf("%s %s: " s "\n", "LIS3DH", f, ## __VA_ARGS__)
#define error_dev(s, f, d, ...) printf("%s %s: bus %d, addr %02x - " s "\n", "LIS3DH", f, d->bus, d->addr, ## __VA_ARGS__)
#else
#define error(s, f, ...)
#define error_dev(s, f, d, ...)
#endif
// register addresses
#define LIS3DH_REG_STATUS_AUX 0x07
#define LIS3DH_REG_OUT_ADC1_L 0x08
#define LIS3DH_REG_OUT_ADC1_H 0x09
#define LIS3DH_REG_OUT_ADC2_L 0x0a
#define LIS3DH_REG_OUT_ADC2_H 0x0b
#define LIS3DH_REG_OUT_ADC3_L 0x0c
#define LIS3DH_REG_OUT_ADC3_H 0x0d
#define LIS3DH_REG_INT_COUNTER 0x0e
#define LIS3DH_REG_WHO_AM_I 0x0f
#define LIS3DH_REG_TEMP_CFG 0x1f
#define LIS3DH_REG_CTRL1 0x20
#define LIS3DH_REG_CTRL2 0x21
#define LIS3DH_REG_CTRL3 0x22
#define LIS3DH_REG_CTRL4 0x23
#define LIS3DH_REG_CTRL5 0x24
#define LIS3DH_REG_CTRL6 0x25
#define LIS3DH_REG_REFERENCE 0x26
#define LIS3DH_REG_STATUS 0x27
#define LIS3DH_REG_OUT_X_L 0x28
#define LIS3DH_REG_OUT_X_H 0x29
#define LIS3DH_REG_OUT_Y_L 0x2a
#define LIS3DH_REG_OUT_Y_H 0x2b
#define LIS3DH_REG_OUT_Z_L 0x2c
#define LIS3DH_REG_OUT_Z_H 0x2d
#define LIS3DH_REG_FIFO_CTRL 0x2e
#define LIS3DH_REG_FIFO_SRC 0x2f
#define LIS3DH_REG_INT1_CFG 0x30
#define LIS3DH_REG_INT1_SRC 0x31
#define LIS3DH_REG_INT1_THS 0x32
#define LIS3DH_REG_INT1_DUR 0x33
#define LIS3DH_REG_INT2_CFG 0x34
#define LIS3DH_REG_INT2_SRC 0x35
#define LIS3DH_REG_INT2_THS 0x36
#define LIS3DH_REG_INT2_DUR 0x37
#define LIS3DH_REG_CLICK_CFG 0x38
#define LIS3DH_REG_CLICK_SRC 0x39
#define LIS3DH_REG_CLICK_THS 0x3a
#define LIS3DH_REG_TIME_LIMIT 0x3b
#define LIS3DH_REG_TIME_LATENCY 0x3c
#define LIS3DH_REG_TIME_WINDOW 0x3d
// register structure definitions
struct lis3dh_reg_status
{
uint8_t XDA :1; // STATUS<0> X axis new data available
uint8_t YDA :1; // STATUS<1> Y axis new data available
uint8_t ZDA :1; // STATUS<2> Z axis new data available
uint8_t ZYXDA :1; // STATUS<3> X, Y and Z axis new data available
uint8_t XOR :1; // STATUS<4> X axis data overrun
uint8_t YOR :1; // STATUS<5> Y axis data overrun
uint8_t ZOR :1; // STATUS<6> Z axis data overrun
uint8_t ZYXOR :1; // STATUS<7> X, Y and Z axis data overrun
};
#define LIS3DH_ANY_DATA_READY 0x0f // LIS3DH_REG_STATUS<3:0>
struct lis3dh_reg_ctrl1
{
uint8_t Xen :1; // CTRL1<0> X axis enable
uint8_t Yen :1; // CTRL1<1> Y axis enable
uint8_t Zen :1; // CTRL1<2> Z axis enable
uint8_t LPen :1; // CTRL1<3> Low power mode enable
uint8_t ODR :4; // CTRL1<7:4> Data rate selection
};
struct lis3dh_reg_ctrl2
{
uint8_t HPIS1 :1; // CTRL2<0> HPF enabled for AOI on INT2
uint8_t HPIS2 :1; // CTRL2<1> HPF enabled for AOI on INT2
uint8_t HPCLICK :1; // CTRL2<2> HPF enabled for CLICK
uint8_t FDS :1; // CTRL2<3> Filter data selection
uint8_t HPCF :2; // CTRL2<5:4> HPF cutoff frequency
uint8_t HPM :2; // CTRL2<7:6> HPF mode
};
struct lis3dh_reg_ctrl3
{
uint8_t unused :1; // CTRL3<0> unused
uint8_t I1_OVERRUN :1; // CTRL3<1> FIFO Overrun interrupt on INT1
uint8_t I1_WTM1 :1; // CTRL3<2> FIFO Watermark interrupt on INT1
uint8_t IT_DRDY2 :1; // CTRL3<3> DRDY2 (ZYXDA) interrupt on INT1
uint8_t IT_DRDY1 :1; // CTRL3<4> DRDY1 (321DA) interrupt on INT1
uint8_t I1_AOI2 :1; // CTRL3<5> AOI2 interrupt on INT1
uint8_t I1_AOI1 :1; // CTRL3<6> AOI1 interrupt on INT1
uint8_t I1_CLICK :1; // CTRL3<7> CLICK interrupt on INT1
};
struct lis3dh_reg_ctrl4
{
uint8_t SIM :1; // CTRL4<0> SPI serial interface selection
uint8_t ST :2; // CTRL4<2:1> Self test enable
uint8_t HR :1; // CTRL4<3> High resolution output mode
uint8_t FS :2; // CTRL4<5:4> Full scale selection
uint8_t BLE :1; // CTRL4<6> Big/litle endian data selection
uint8_t BDU :1; // CTRL4<7> Block data update
};
struct lis3dh_reg_ctrl5
{
uint8_t D4D_INT2 :1; // CTRL5<0> 4D detection enabled on INT1
uint8_t LIR_INT2 :1; // CTRL5<1> Latch interrupt request on INT1
uint8_t D4D_INT1 :1; // CTRL5<2> 4D detection enabled on INT2
uint8_t LIR_INT1 :1; // CTRL5<3> Latch interrupt request on INT1
uint8_t unused :2; // CTRL5<5:4> unused
uint8_t FIFO_EN :1; // CTRL5<6> FIFO enabled
uint8_t BOOT :1; // CTRL5<7> Reboot memory content
};
struct lis3dh_reg_ctrl6
{
uint8_t unused1 :1; // CTRL6<0> unused
uint8_t H_LACTIVE:1; // CTRL6<1> Interrupt polarity
uint8_t unused2 :1; // CTRL6<2> unused
uint8_t I2_ACT :1; // CTRL6<3> ?
uint8_t I2_BOOT :1; // CTRL6<4> ?
uint8_t I2_AOI2 :1; // CTRL6<5> AOI2 interrupt on INT1
uint8_t I2_AOI1 :1; // CTRL6<6> AOI1 interrupt on INT1
uint8_t I2_CLICK :1; // CTRL6<7> CLICK interrupt on INT2
};
struct lis3dh_reg_fifo_ctrl
{
uint8_t FTH :5; // FIFO_CTRL<4:0> FIFO threshold
uint8_t TR :1; // FIFO_CTRL<5> Trigger selection INT1 / INT2
uint8_t FM :2; // FIFO_CTRL<7:6> FIFO mode
};
struct lis3dh_reg_fifo_src
{
uint8_t FFS :5; // FIFO_SRC<4:0> FIFO samples stored
uint8_t EMPTY :1; // FIFO_SRC<5> FIFO is empty
uint8_t OVRN_FIFO :1; // FIFO_SRC<6> FIFO buffer full
uint8_t WTM :1; // FIFO_SRC<7> FIFO content exceeds watermark
};
struct lis3dh_reg_intx_cfg
{
uint8_t XLIE :1; // INTx_CFG<0> X axis below threshold enabled
uint8_t XHIE :1; // INTx_CFG<1> X axis above threshold enabled
uint8_t YLIE :1; // INTx_CFG<2> Y axis below threshold enabled
uint8_t YHIE :1; // INTx_CFG<3> Y axis above threshold enabled
uint8_t ZLIE :1; // INTx_CFG<4> Z axis below threshold enabled
uint8_t ZHIE :1; // INTx_CFG<5> Z axis above threshold enabled
uint8_t SIXD :1; // INTx_CFG<6> 6D/4D orientation detecetion enabled
uint8_t AOI :1; // INTx_CFG<7> AND/OR combination of interrupt events
};
struct lis3dh_reg_intx_src
{
uint8_t XL :1; // INTx_SRC<0> X axis below threshold enabled
uint8_t XH :1; // INTx_SRC<1> X axis above threshold enabled
uint8_t YL :1; // INTx_SRC<2> Y axis below threshold enabled
uint8_t YH :1; // INTx_SRC<3> Y axis above threshold enabled
uint8_t ZL :1; // INTx_SRC<4> Z axis below threshold enabled
uint8_t ZH :1; // INTx_SRC<5> Z axis above threshold enabled
uint8_t IA :1; // INTx_SRC<6> Interrupt active
uint8_t unused:1; // INTx_SRC<7> unused
};
struct lis3dh_reg_click_cfg
{
uint8_t XS :1; // CLICK_CFG<0> X axis single click enabled
uint8_t XD :1; // CLICK_CFG<1> X axis double click enabled
uint8_t YS :1; // CLICK_CFG<2> Y axis single click enabled
uint8_t YD :1; // CLICK_CFG<3> Y axis double click enabled
uint8_t ZS :1; // CLICK_CFG<4> Z axis single click enabled
uint8_t ZD :1; // CLICK_CFG<5> Z axis double click enabled
uint8_t unused:2; // CLICK_CFG<7:6> unused
};
/** Forward declaration of functions for internal use */
static bool lis3dh_reset (lis3dh_sensor_t* dev);
static bool lis3dh_is_available(lis3dh_sensor_t* dev);
static bool lis3dh_i2c_read (lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len);
static bool lis3dh_i2c_write (lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len);
static bool lis3dh_spi_read (lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len);
static bool lis3dh_spi_write (lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len);
#define msb_lsb_to_type(t,b,o) (t)(((t)b[o] << 8) | b[o+1])
#define lsb_msb_to_type(t,b,o) (t)(((t)b[o+1] << 8) | b[o])
#define lsb_to_type(t,b,o) (t)(b[o])
#define lis3dh_update_reg(dev,addr,type,elem,value) \
{ \
struct type __reg; \
if (!lis3dh_reg_read (dev, (addr), (uint8_t*)&__reg, 1)) \
return false; \
__reg.elem = (value); \
if (!lis3dh_reg_write (dev, (addr), (uint8_t*)&__reg, 1)) \
return false; \
}
lis3dh_sensor_t* lis3dh_init_sensor (uint8_t bus, uint8_t addr, uint8_t cs)
{
lis3dh_sensor_t* dev;
if ((dev = malloc (sizeof(lis3dh_sensor_t))) == NULL)
return NULL;
// init sensor data structure
dev->bus = bus;
dev->addr = addr;
dev->cs = cs;
dev->error_code = LIS3DH_OK;
dev->scale = lis3dh_scale_2_g;
dev->fifo_mode = lis3dh_bypass;
dev->fifo_first = true;
// if addr==0 then SPI is used and has to be initialized
if (!addr && !spi_device_init (bus, cs))
{
error_dev ("Could not initialize SPI interface.", __FUNCTION__, dev);
free (dev);
return NULL;
}
// check availability of the sensor
if (!lis3dh_is_available (dev))
{
error_dev ("Sensor is not available.", __FUNCTION__, dev);
free (dev);
return NULL;
}
// reset the sensor
if (!lis3dh_reset(dev))
{
error_dev ("Could not reset the sensor device.", __FUNCTION__, dev);
free (dev);
return NULL;
}
lis3dh_update_reg (dev, LIS3DH_REG_CTRL4, lis3dh_reg_ctrl4, FS, lis3dh_scale_2_g);
lis3dh_update_reg (dev, LIS3DH_REG_CTRL4, lis3dh_reg_ctrl4, BDU, 1);
return dev;
}
bool lis3dh_set_mode (lis3dh_sensor_t* dev,
lis3dh_odr_mode_t odr, lis3dh_resolution_t res,
bool x, bool y, bool z)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
dev->res = res;
struct lis3dh_reg_ctrl1 reg;
uint8_t old_odr;
// read current register values
if (!lis3dh_reg_read (dev, LIS3DH_REG_CTRL1, (uint8_t*)&reg, 1))
return false;
old_odr = reg.ODR;
// set mode
reg.Xen = x;
reg.Yen = y;
reg.Zen = z;
reg.ODR = odr;
reg.LPen = (res == lis3dh_low_power);
lis3dh_update_reg (dev, LIS3DH_REG_CTRL4, lis3dh_reg_ctrl4,
HR, (res == lis3dh_high_res));
if (!lis3dh_reg_write (dev, LIS3DH_REG_CTRL1, (uint8_t*)&reg, 1))
return false;
// if sensor was in power down mode it takes at least 100 ms to start in another mode
if (old_odr == lis3dh_power_down && odr != lis3dh_power_down)
vTaskDelay (15);
return false;
}
bool lis3dh_set_scale (lis3dh_sensor_t* dev, lis3dh_scale_t scale)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
dev->scale = scale;
// read CTRL4 register and write scale
lis3dh_update_reg (dev, LIS3DH_REG_CTRL4, lis3dh_reg_ctrl4, FS, scale);
return true;
}
bool lis3dh_set_fifo_mode (lis3dh_sensor_t* dev, lis3dh_fifo_mode_t mode,
uint8_t thresh, lis3dh_int_signal_t trigger)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
dev->fifo_mode = mode;
// read CTRL5 register and write FIFO_EN flag
lis3dh_update_reg (dev, LIS3DH_REG_CTRL5, lis3dh_reg_ctrl5, FIFO_EN, mode != lis3dh_bypass);
struct lis3dh_reg_fifo_ctrl fifo_ctrl = {
.FTH = thresh,
.TR = trigger,
.FM = mode,
};
// write FIFO_CTRL register
if (!lis3dh_reg_write (dev, LIS3DH_REG_FIFO_CTRL, (uint8_t*)&fifo_ctrl, 1))
return false;
return true;
}
bool lis3dh_new_data (lis3dh_sensor_t* dev)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
if (dev->fifo_mode == lis3dh_bypass)
{
struct lis3dh_reg_status status;
if (!lis3dh_reg_read (dev, LIS3DH_REG_STATUS, (uint8_t*)&status, 1))
{
error_dev ("Could not get sensor status", __FUNCTION__, dev);
return false;
}
return status.ZYXDA;
}
else
{
struct lis3dh_reg_fifo_src fifo_src;
if (!lis3dh_reg_read (dev, LIS3DH_REG_FIFO_SRC, (uint8_t*)&fifo_src, 1))
{
error_dev ("Could not get fifo source register data", __FUNCTION__, dev);
return false;
}
return !fifo_src.EMPTY;
}
}
/**
* Scaling factors for the conversion of raw sensor data to floating point g
* values. Scaling factors are from mechanical characteristics in datasheet.
*
* scale/sensitivity resolution
* +-1g 1 mg/digit
* +-2g 2 mg/digit
* +-4g 4 mg/digit
* +-16g 12 mg/digit
*/
const static double LIS3DH_SCALES[4] = { 0.001, 0.002, 0.004, 0.012 };
bool lis3dh_get_float_data (lis3dh_sensor_t* dev, lis3dh_float_data_t* data)
{
if (!dev || !data) return false;
lis3dh_raw_data_t raw;
if (!lis3dh_get_raw_data (dev, &raw))
return false;
data->ax = LIS3DH_SCALES[dev->scale] * (raw.ax >> 4);
data->ay = LIS3DH_SCALES[dev->scale] * (raw.ay >> 4);
data->az = LIS3DH_SCALES[dev->scale] * (raw.az >> 4);
return true;
}
uint8_t lis3dh_get_float_data_fifo (lis3dh_sensor_t* dev, lis3dh_float_data_fifo_t data)
{
if (!dev || !data) return false;
lis3dh_raw_data_fifo_t raw;
uint8_t num = lis3dh_get_raw_data_fifo (dev, raw);
for (int i = 0; i < num; i++)
{
data[i].ax = LIS3DH_SCALES[dev->scale] * (raw[i].ax >> 4);
data[i].ay = LIS3DH_SCALES[dev->scale] * (raw[i].ay >> 4);
data[i].az = LIS3DH_SCALES[dev->scale] * (raw[i].az >> 4);
}
return num;
}
bool lis3dh_get_raw_data (lis3dh_sensor_t* dev, lis3dh_raw_data_t* raw)
{
if (!dev || !raw) return false;
dev->error_code = LIS3DH_OK;
// abort if not in bypass mode
if (dev->fifo_mode != lis3dh_bypass)
{
dev->error_code = LIS3DH_SENSOR_IN_BYPASS_MODE;
error_dev ("Sensor is in FIFO mode, use lis3dh_get_*_data_fifo to get data",
__FUNCTION__, dev);
return false;
}
// read raw data sample
if (!lis3dh_reg_read (dev, LIS3DH_REG_OUT_X_L, (uint8_t*)raw, 6))
{
error_dev ("Could not get raw data sample", __FUNCTION__, dev);
dev->error_code |= LIS3DH_GET_RAW_DATA_FAILED;
return false;
}
return true;
}
uint8_t lis3dh_get_raw_data_fifo (lis3dh_sensor_t* dev, lis3dh_raw_data_fifo_t raw)
{
if (!dev) return 0;
dev->error_code = LIS3DH_OK;
// in bypass mode, use lis3dh_get_raw_data to return one sample
if (dev->fifo_mode == lis3dh_bypass)
return lis3dh_get_raw_data (dev, raw) ? 1 : 0;
struct lis3dh_reg_fifo_src fifo_src;
// read FIFO state
if (!lis3dh_reg_read (dev, LIS3DH_REG_FIFO_SRC, (uint8_t*)&fifo_src, 1))
{
error_dev ("Could not get fifo source register data", __FUNCTION__, dev);
return 0;
}
// if nothing is in the FIFO, just return with 0
if (fifo_src.EMPTY)
return 0;
uint8_t samples = fifo_src.FFS + (fifo_src.OVRN_FIFO ? 1 : 0);
// read samples from FIFO
for (int i = 0; i < samples; i++)
if (!lis3dh_reg_read (dev, LIS3DH_REG_OUT_X_L, (uint8_t*)&raw[i], 6))
{
error_dev ("Could not get raw data samples", __FUNCTION__, dev);
dev->error_code |= LIS3DH_GET_RAW_DATA_FIFO_FAILED;
return i;
}
lis3dh_reg_read (dev, LIS3DH_REG_FIFO_SRC, (uint8_t*)&fifo_src, 1);
// if FFS is not 0 after all samples read, ODR is higher than fetching rate
if (fifo_src.FFS)
{
dev->error_code = LIS3DH_ODR_TOO_HIGH;
error_dev ("New samples stored in FIFO while reading, "
"output data rate (ODR) too high", __FUNCTION__, dev);
return 0;
}
if (dev->fifo_mode == lis3dh_fifo && samples == 32)
{
// clean FIFO (see app note)
lis3dh_update_reg (dev, LIS3DH_REG_FIFO_CTRL, lis3dh_reg_fifo_ctrl, FM, lis3dh_bypass);
lis3dh_update_reg (dev, LIS3DH_REG_FIFO_CTRL, lis3dh_reg_fifo_ctrl, FM, lis3dh_fifo);
}
return samples;
}
bool lis3dh_enable_int (lis3dh_sensor_t* dev,
lis3dh_int_type_t type,
lis3dh_int_signal_t signal, bool value)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
struct lis3dh_reg_ctrl3 ctrl3;
struct lis3dh_reg_ctrl6 ctrl6;
uint8_t* reg = NULL;
uint8_t addr;
// determine the addr of the register to change
if (type == lis3dh_int_data_ready ||
type == lis3dh_int_fifo_watermark ||
type == lis3dh_int_fifo_overrun)
{
reg = (uint8_t*)&ctrl3;
addr = LIS3DH_REG_CTRL3;
}
else if (signal == lis3dh_int1_signal)
{
reg = (uint8_t*)&ctrl3;
addr = LIS3DH_REG_CTRL3;
}
else
{
reg = (uint8_t*)&ctrl6;
addr = LIS3DH_REG_CTRL6;
}
// read the register
if (!lis3dh_reg_read (dev, addr, reg, 1))
{
error_dev ("Could not read interrupt control registers", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CONFIG_INT_FAILED;
return false;
}
// change the register
switch (type)
{
case lis3dh_int_data_ready: ctrl3.IT_DRDY1 = value;
break;
case lis3dh_int_fifo_watermark: ctrl3.I1_WTM1 = value;
break;
case lis3dh_int_fifo_overrun: ctrl3.I1_OVERRUN = value;
break;
case lis3dh_int_event1: if (signal == lis3dh_int1_signal)
ctrl3.I1_AOI1 = value;
else
ctrl6.I2_AOI1 = value;
break;
case lis3dh_int_event2: if (signal == lis3dh_int1_signal)
ctrl3.I1_AOI2 = value;
else
ctrl6.I2_AOI2 = value;
break;
case lis3dh_int_click: if (signal == lis3dh_int1_signal)
ctrl3.I1_CLICK = value;
else
ctrl6.I2_CLICK = value;
break;
default: dev->error_code = LIS3DH_WRONG_INT_TYPE;
error_dev ("Wrong interrupt type", __FUNCTION__, dev);
return false;
}
if (!lis3dh_reg_write (dev, addr, reg, 1))
{
error_dev ("Could not enable/disable interrupt", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CONFIG_INT_FAILED;
return false;
}
return true;
}
bool lis3dh_get_int_data_source (lis3dh_sensor_t* dev,
lis3dh_int_data_source_t* source)
{
if (!dev || !source) return false;
dev->error_code = LIS3DH_OK;
struct lis3dh_reg_ctrl3 ctrl3;
struct lis3dh_reg_status status;
struct lis3dh_reg_fifo_src fifo_src;
if (!lis3dh_reg_read (dev, LIS3DH_REG_CTRL3 , (uint8_t*)&ctrl3 , 1) ||
!lis3dh_reg_read (dev, LIS3DH_REG_STATUS , (uint8_t*)&status , 1) ||
!lis3dh_reg_read (dev, LIS3DH_REG_FIFO_SRC, (uint8_t*)&fifo_src, 1))
{
error_dev ("Could not read source of interrupt INT2 from sensor", __FUNCTION__, dev);
dev->error_code |= LIS3DH_INT_SOURCE_FAILED;
return false;
}
source->data_ready = status.ZYXDA & ctrl3.IT_DRDY1;
source->fifo_watermark = fifo_src.WTM & ctrl3.I1_WTM1;
source->fifo_overrun = fifo_src.OVRN_FIFO & ctrl3.I1_OVERRUN;
return true;
}
bool lis3dh_set_int_event_config (lis3dh_sensor_t* dev,
lis3dh_int_event_config_t* config,
lis3dh_int_event_gen_t gen)
{
if (!dev || !config) return false;
dev->error_code = LIS3DH_OK;
struct lis3dh_reg_intx_cfg intx_cfg;
intx_cfg.XLIE = config->x_low_enabled;
intx_cfg.XHIE = config->x_high_enabled;
intx_cfg.YLIE = config->y_low_enabled;
intx_cfg.YHIE = config->y_high_enabled;
intx_cfg.ZLIE = config->z_low_enabled;
intx_cfg.ZHIE = config->z_high_enabled;
bool d4d_int = false;
switch (config->mode)
{
case lis3dh_wake_up : intx_cfg.AOI = 0; intx_cfg.SIXD = 0; break;
case lis3dh_free_fall : intx_cfg.AOI = 1; intx_cfg.SIXD = 0; break;
case lis3dh_4d_movement : d4d_int = true;
case lis3dh_6d_movement : intx_cfg.AOI = 0; intx_cfg.SIXD = 1; break;
case lis3dh_4d_position : d4d_int = true;
case lis3dh_6d_position : intx_cfg.AOI = 1; intx_cfg.SIXD = 1; break;
}
uint8_t intx_cfg_addr = (gen == lis3dh_int_event1_gen) ? LIS3DH_REG_INT1_CFG : LIS3DH_REG_INT2_CFG;
uint8_t intx_ths_addr = (gen == lis3dh_int_event1_gen) ? LIS3DH_REG_INT1_THS : LIS3DH_REG_INT2_THS;
uint8_t intx_dur_addr = (gen == lis3dh_int_event1_gen) ? LIS3DH_REG_INT1_DUR : LIS3DH_REG_INT2_DUR;
if (// write the thresholds to registers IG_THS_*
!lis3dh_reg_write (dev, intx_ths_addr, &config->threshold, 1) ||
// write duration configuration to IG_DURATION
!lis3dh_reg_write (dev, intx_dur_addr, &config->duration, 1) ||
// write INT1 configuration to IG_CFG
!lis3dh_reg_write (dev, intx_cfg_addr, (uint8_t*)&intx_cfg, 1))
{
error_dev ("Could not configure interrupt INT1", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CONFIG_INT_FAILED;
return false;
}
if (gen == lis3dh_int_event1_gen)
{
lis3dh_update_reg (dev, LIS3DH_REG_CTRL5, lis3dh_reg_ctrl5, LIR_INT1, config->latch);
lis3dh_update_reg (dev, LIS3DH_REG_CTRL5, lis3dh_reg_ctrl5, D4D_INT1, d4d_int);
}
else
{
lis3dh_update_reg (dev, LIS3DH_REG_CTRL5, lis3dh_reg_ctrl5, LIR_INT2, config->latch);
lis3dh_update_reg (dev, LIS3DH_REG_CTRL5, lis3dh_reg_ctrl5, D4D_INT2, d4d_int);
}
return true;
}
bool lis3dh_get_int_event_config (lis3dh_sensor_t* dev,
lis3dh_int_event_config_t* config,
lis3dh_int_event_gen_t gen)
{
if (!dev || !config) return false;
dev->error_code = LIS3DH_OK;
uint8_t intx_cfg_addr = (gen == lis3dh_int_event1_gen) ? LIS3DH_REG_INT1_CFG : LIS3DH_REG_INT2_CFG;
uint8_t intx_ths_addr = (gen == lis3dh_int_event1_gen) ? LIS3DH_REG_INT1_THS : LIS3DH_REG_INT2_THS;
uint8_t intx_dur_addr = (gen == lis3dh_int_event1_gen) ? LIS3DH_REG_INT1_DUR : LIS3DH_REG_INT2_DUR;
struct lis3dh_reg_intx_cfg intx_cfg;
struct lis3dh_reg_ctrl5 ctrl5;
if (!lis3dh_reg_read (dev, intx_cfg_addr, (uint8_t*)&intx_cfg, 1) ||
!lis3dh_reg_read (dev, intx_ths_addr, (uint8_t*)&config->threshold, 1) ||
!lis3dh_reg_read (dev, intx_dur_addr, (uint8_t*)&config->duration, 1) ||
!lis3dh_reg_read (dev, LIS3DH_REG_CTRL5, (uint8_t*)&ctrl5, 1))
{
error_dev ("Could not read interrupt configuration from sensor", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CONFIG_INT_FAILED;
return false;
}
config->x_low_enabled = intx_cfg.XLIE;
config->x_high_enabled = intx_cfg.XHIE;
config->y_low_enabled = intx_cfg.YLIE;
config->y_high_enabled = intx_cfg.YHIE;
config->z_low_enabled = intx_cfg.ZLIE;
config->z_high_enabled = intx_cfg.ZHIE;
bool d4d_int = false;
if (gen == lis3dh_int_event1_gen)
{
config->latch = ctrl5.LIR_INT1;
d4d_int = ctrl5.D4D_INT1;
}
else
{
config->latch = ctrl5.LIR_INT2;
d4d_int = ctrl5.D4D_INT2;
}
if (intx_cfg.AOI)
{
if (intx_cfg.SIXD && d4d_int)
config->mode = lis3dh_4d_position;
else if (intx_cfg.SIXD && !d4d_int)
config->mode = lis3dh_6d_position;
else
config->mode = lis3dh_free_fall;
}
else
{
if (intx_cfg.SIXD && d4d_int)
config->mode = lis3dh_4d_movement;
else if (intx_cfg.SIXD && !d4d_int)
config->mode = lis3dh_6d_movement;
else
config->mode = lis3dh_wake_up;
}
return true;
}
bool lis3dh_get_int_event_source (lis3dh_sensor_t* dev,
lis3dh_int_event_source_t* source,
lis3dh_int_event_gen_t gen)
{
if (!dev || !source) return false;
dev->error_code = LIS3DH_OK;
struct lis3dh_reg_intx_cfg intx_cfg;
struct lis3dh_reg_intx_src intx_src;
uint8_t intx_cfg_addr = (gen == lis3dh_int_event1_gen) ? LIS3DH_REG_INT1_CFG : LIS3DH_REG_INT2_CFG;
uint8_t intx_src_addr = (gen == lis3dh_int_event1_gen) ? LIS3DH_REG_INT1_SRC : LIS3DH_REG_INT2_SRC;
if (!lis3dh_reg_read (dev, intx_src_addr, (uint8_t*)&intx_src, 1) ||
!lis3dh_reg_read (dev, intx_cfg_addr, (uint8_t*)&intx_cfg, 1))
{
error_dev ("Could not read source of interrupt INT1/INT2 from sensor", __FUNCTION__, dev);
dev->error_code |= LIS3DH_INT_SOURCE_FAILED;
return false;
}
source->active = intx_src.IA;
source->x_low = intx_src.XL & intx_cfg.XLIE;
source->x_high = intx_src.XH & intx_cfg.XHIE;
source->y_low = intx_src.YL & intx_cfg.YLIE;
source->y_high = intx_src.YH & intx_cfg.YHIE;
source->z_low = intx_src.ZL & intx_cfg.ZLIE;
source->z_high = intx_src.ZH & intx_cfg.ZHIE;
return true;
}
bool lis3dh_set_int_click_config (lis3dh_sensor_t* dev,
lis3dh_int_click_config_t* config)
{
if (!dev || !config) return false;
dev->error_code = LIS3DH_OK;
struct lis3dh_reg_click_cfg click_cfg;
click_cfg.XS = config->x_single;
click_cfg.XD = config->x_double;
click_cfg.YS = config->y_single;
click_cfg.YD = config->y_double;
click_cfg.ZS = config->z_single;
click_cfg.ZD = config->z_double;
uint8_t click_ths = config->threshold | ((config->latch) ? 0x80 : 0x00);
if (!lis3dh_reg_write (dev, LIS3DH_REG_CLICK_CFG , (uint8_t*)&click_cfg, 1) ||
!lis3dh_reg_write (dev, LIS3DH_REG_CLICK_THS , (uint8_t*)&click_ths, 1) ||
!lis3dh_reg_write (dev, LIS3DH_REG_TIME_LIMIT , (uint8_t*)&config->time_limit, 1) ||
!lis3dh_reg_write (dev, LIS3DH_REG_TIME_LATENCY, (uint8_t*)&config->time_latency, 1) ||
!lis3dh_reg_write (dev, LIS3DH_REG_TIME_WINDOW , (uint8_t*)&config->time_window, 1))
{
error_dev ("Could not configure click detection interrupt", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CONFIG_CLICK_FAILED;
return false;
}
return true;
}
bool lis3dh_get_int_click_config (lis3dh_sensor_t* dev,
lis3dh_int_click_config_t* config)
{
if (!dev || !config) return false;
dev->error_code = LIS3DH_OK;
struct lis3dh_reg_click_cfg click_cfg;
uint8_t click_ths;
if (!lis3dh_reg_read (dev, LIS3DH_REG_CLICK_CFG , (uint8_t*)&click_cfg, 1) ||
!lis3dh_reg_read (dev, LIS3DH_REG_CLICK_THS , (uint8_t*)&click_ths, 1) ||
!lis3dh_reg_read (dev, LIS3DH_REG_TIME_LIMIT , (uint8_t*)&config->time_limit, 1) ||
!lis3dh_reg_read (dev, LIS3DH_REG_TIME_LATENCY, (uint8_t*)&config->time_latency, 1) ||
!lis3dh_reg_read (dev, LIS3DH_REG_TIME_WINDOW , (uint8_t*)&config->time_window, 1))
{
error_dev ("Could not configure click detection interrupt", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CONFIG_CLICK_FAILED;
return false;
}
config->x_single = click_cfg.XS;
config->x_double = click_cfg.XD;
config->y_single = click_cfg.YS;
config->y_double = click_cfg.YD;
config->z_single = click_cfg.ZS;
config->z_double = click_cfg.ZD;
config->threshold= click_ths & 0x7f;
config->latch = click_ths & 0x80;
return true;
}
bool lis3dh_get_int_click_source (lis3dh_sensor_t* dev,
lis3dh_int_click_source_t* source)
{
if (!dev || !source) return false;
dev->error_code = LIS3DH_OK;
if (!lis3dh_reg_read (dev, LIS3DH_REG_CLICK_SRC, (uint8_t*)source, 1))
{
error_dev ("Could not read source of click interrupt from sensor", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CLICK_SOURCE_FAILED;
return false;
}
return true;
}
bool lis3dh_config_int_signals (lis3dh_sensor_t* dev, lis3dh_int_signal_level_t level)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
lis3dh_update_reg (dev, LIS3DH_REG_CTRL6, lis3dh_reg_ctrl6, H_LACTIVE, level);
return true;
}
bool lis3dh_config_hpf (lis3dh_sensor_t* dev,
lis3dh_hpf_mode_t mode, uint8_t cutoff,
bool data, bool click, bool int1, bool int2)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
struct lis3dh_reg_ctrl2 reg;
reg.HPM = mode;
reg.HPCF = cutoff;
reg.FDS = data;
reg.HPCLICK = click;
reg.HPIS1 = int1;
reg.HPIS2 = int2;
if (!lis3dh_reg_write (dev, LIS3DH_REG_CTRL2, (uint8_t*)&reg, 1))
{
error_dev ("Could not configure high pass filter", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CONFIG_HPF_FAILED;
return false;
}
return true;
}
bool lis3dh_set_hpf_ref (lis3dh_sensor_t* dev, int8_t ref)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
if (!lis3dh_reg_write (dev, LIS3DH_REG_REFERENCE, (uint8_t*)&ref, 1))
{
error_dev ("Could not set high pass filter reference", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CONFIG_HPF_FAILED;
return false;
}
return true;
}
int8_t lis3dh_get_hpf_ref (lis3dh_sensor_t* dev)
{
if (!dev) return 0;
dev->error_code = LIS3DH_OK;
int8_t ref;
if (!lis3dh_reg_read (dev, LIS3DH_REG_REFERENCE, (uint8_t*)&ref, 1))
{
error_dev ("Could not get high pass filter reference", __FUNCTION__, dev);
dev->error_code |= LIS3DH_CONFIG_HPF_FAILED;
return 0;
}
return ref;
}
int8_t lis3dh_enable_adc (lis3dh_sensor_t* dev, bool adc, bool tmp)
{
if (!dev) return 0;
dev->error_code = LIS3DH_OK;
uint8_t reg = 0;
reg |= (adc) ? 0x80 : 0;
reg |= (tmp) ? 0x40 : 0;
return lis3dh_reg_write (dev, LIS3DH_REG_TEMP_CFG, (uint8_t*)&reg, 1);
}
bool lis3dh_get_adc (lis3dh_sensor_t* dev,
uint16_t* adc1, uint16_t* adc2, uint16_t* adc3)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
uint8_t data[6];
uint8_t temp_cfg;
struct lis3dh_reg_ctrl1 ctrl1;
if (!lis3dh_reg_read (dev, LIS3DH_REG_OUT_ADC1_L, data, 6) ||
!lis3dh_reg_read (dev, LIS3DH_REG_CTRL1, (uint8_t*)&ctrl1, 1) ||
!lis3dh_reg_read (dev, LIS3DH_REG_TEMP_CFG, &temp_cfg, 1))
{
error_dev ("Could not get adc data", __FUNCTION__, dev);
dev->error_code |= LIS3DH_GET_ADC_DATA_FAILED;
return false;
}
if (adc1) *adc1 = lsb_msb_to_type ( int16_t, data, 0) >> (ctrl1.LPen ? 8 : 6);
if (adc2) *adc2 = lsb_msb_to_type ( int16_t, data, 2) >> (ctrl1.LPen ? 8 : 6);
// temperature is always 8 bit
if (adc3 && temp_cfg & 0x40)
*adc3 = (lsb_msb_to_type ( int16_t, data, 4) >> 8) + 25;
else if (adc3)
*adc3 = lsb_msb_to_type ( int16_t, data, 4) >> (ctrl1.LPen ? 8 : 6);
return true;
}
/** Functions for internal use only */
/**
* @brief Check the chip ID to test whether sensor is available
*/
static bool lis3dh_is_available (lis3dh_sensor_t* dev)
{
uint8_t chip_id;
if (!dev) return false;
dev->error_code = LIS3DH_OK;
if (!lis3dh_reg_read (dev, LIS3DH_REG_WHO_AM_I, &chip_id, 1))
return false;
if (chip_id != LIS3DH_CHIP_ID)
{
error_dev ("Chip id %02x is wrong, should be %02x.",
__FUNCTION__, dev, chip_id, LIS3DH_CHIP_ID);
dev->error_code = LIS3DH_WRONG_CHIP_ID;
return false;
}
return true;
}
static bool lis3dh_reset (lis3dh_sensor_t* dev)
{
if (!dev) return false;
dev->error_code = LIS3DH_OK;
uint8_t reg[8] = { 0 };
// initialize sensor completely including setting in power down mode
lis3dh_reg_write (dev, LIS3DH_REG_TEMP_CFG , reg, 8);
lis3dh_reg_write (dev, LIS3DH_REG_FIFO_CTRL, reg, 1);
lis3dh_reg_write (dev, LIS3DH_REG_INT1_CFG , reg, 1);
lis3dh_reg_write (dev, LIS3DH_REG_INT1_THS , reg, 2);
lis3dh_reg_write (dev, LIS3DH_REG_INT2_CFG , reg, 1);
lis3dh_reg_write (dev, LIS3DH_REG_INT2_THS , reg, 2);
lis3dh_reg_write (dev, LIS3DH_REG_CLICK_CFG, reg, 1);
lis3dh_reg_write (dev, LIS3DH_REG_CLICK_THS, reg, 4);
return true;
}
bool lis3dh_reg_read(lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len)
{
if (!dev || !data) return false;
return (dev->addr) ? lis3dh_i2c_read (dev, reg, data, len)
: lis3dh_spi_read (dev, reg, data, len);
}
bool lis3dh_reg_write(lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len)
{
if (!dev || !data) return false;
return (dev->addr) ? lis3dh_i2c_write (dev, reg, data, len)
: lis3dh_spi_write (dev, reg, data, len);
}
#define LIS3DH_SPI_BUF_SIZE 64 // SPI register data buffer size of ESP866
#define LIS3DH_SPI_READ_FLAG 0x80
#define LIS3DH_SPI_WRITE_FLAG 0x00
#define LIS3DH_SPI_AUTO_INC_FLAG 0x40
static bool lis3dh_spi_read(lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len)
{
if (!dev || !data) return false;
if (len >= LIS3DH_SPI_BUF_SIZE)
{
dev->error_code |= LIS3DH_SPI_BUFFER_OVERFLOW;
error_dev ("Error on read from SPI slave on bus 1. Tried to transfer "
"more than %d byte in one read operation.",
__FUNCTION__, dev, LIS3DH_SPI_BUF_SIZE);
return false;
}
uint8_t addr = (reg & 0x3f) | LIS3DH_SPI_READ_FLAG | LIS3DH_SPI_AUTO_INC_FLAG;
static uint8_t mosi[LIS3DH_SPI_BUF_SIZE];
static uint8_t miso[LIS3DH_SPI_BUF_SIZE];
memset (mosi, 0xff, LIS3DH_SPI_BUF_SIZE);
memset (miso, 0xff, LIS3DH_SPI_BUF_SIZE);
mosi[0] = addr;
if (!spi_transfer_pf (dev->bus, dev->cs, mosi, miso, len+1))
{
error_dev ("Could not read data from SPI", __FUNCTION__, dev);
dev->error_code |= LIS3DH_SPI_READ_FAILED;
return false;
}
// shift data one by left, first byte received while sending register address is invalid
for (int i=0; i < len; i++)
data[i] = miso[i+1];
#ifdef LIS3DH_DEBUG_LEVEL_2
printf("LIS3DH %s: read the following bytes from reg %02x: ", __FUNCTION__, reg);
for (int i=0; i < len; i++)
printf("%02x ", data[i]);
printf("\n");
#endif
return true;
}
static bool lis3dh_spi_write(lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len)
{
if (!dev || !data) return false;
uint8_t addr = (reg & 0x3f) | LIS3DH_SPI_WRITE_FLAG | LIS3DH_SPI_AUTO_INC_FLAG;
static uint8_t mosi[LIS3DH_SPI_BUF_SIZE];
if (len >= LIS3DH_SPI_BUF_SIZE)
{
dev->error_code |= LIS3DH_SPI_BUFFER_OVERFLOW;
error_dev ("Error on write to SPI slave on bus 1. Tried to transfer more"
"than %d byte in one write operation.",
__FUNCTION__, dev, LIS3DH_SPI_BUF_SIZE);
return false;
}
reg &= 0x7f;
// first byte in output is the register address
mosi[0] = addr;
// shift data one byte right, first byte in output is the register address
for (int i = 0; i < len; i++)
mosi[i+1] = data[i];
#ifdef LIS3DH_DEBUG_LEVEL_2
printf("LIS3DH %s: Write the following bytes to reg %02x: ", __FUNCTION__, reg);
for (int i = 1; i < len+1; i++)
printf("%02x ", mosi[i]);
printf("\n");
#endif
if (!spi_transfer_pf (dev->bus, dev->cs, mosi, NULL, len+1))
{
error_dev ("Could not write data to SPI.", __FUNCTION__, dev);
dev->error_code |= LIS3DH_SPI_WRITE_FAILED;
return false;
}
return true;
}
#define I2C_AUTO_INCREMENT (0x80)
static bool lis3dh_i2c_read(lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len)
{
if (!dev || !data) return false;
debug_dev ("Read %d byte from i2c slave register %02x.", __FUNCTION__, dev, len, reg);
if (len > 1)
reg |= I2C_AUTO_INCREMENT;
int result = i2c_slave_read(dev->bus, dev->addr, &reg, data, len);
if (result)
{
dev->error_code |= (result == -EBUSY) ? LIS3DH_I2C_BUSY : LIS3DH_I2C_READ_FAILED;
error_dev ("Error %d on read %d byte from I2C slave register %02x.",
__FUNCTION__, dev, result, len, reg);
return false;
}
# ifdef LIS3DH_DEBUG_LEVEL_2
printf("LIS3DH %s: Read following bytes: ", __FUNCTION__);
printf("%02x: ", reg & 0x7f);
for (int i=0; i < len; i++)
printf("%02x ", data[i]);
printf("\n");
# endif
return true;
}
static bool lis3dh_i2c_write(lis3dh_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len)
{
if (!dev || !data) return false;
debug_dev ("Write %d byte to i2c slave register %02x.", __FUNCTION__, dev, len, reg);
if (len > 1)
reg |= I2C_AUTO_INCREMENT;
int result = i2c_slave_write(dev->bus, dev->addr, &reg, data, len);
if (result)
{
dev->error_code |= (result == -EBUSY) ? LIS3DH_I2C_BUSY : LIS3DH_I2C_WRITE_FAILED;
error_dev ("Error %d on write %d byte to i2c slave register %02x.",
__FUNCTION__, dev, result, len, reg);
return false;
}
# ifdef LIS3DH_DEBUG_LEVEL_2
printf("LIS3DH %s: Wrote the following bytes: ", __FUNCTION__);
printf("%02x: ", reg & 0x7f);
for (int i=0; i < len; i++)
printf("%02x ", data[i]);
printf("\n");
# endif
return true;
}