esp-open-rtos/extras/sdio/sdio.c

450 lines
14 KiB
C
Raw Normal View History

/*
* Hardware SPI driver for MMC/SD/SDHC cards
*
* Part of esp-open-rtos
* Copyright (C) 2016 Ruslan V. Uss <unclerus@gmail.com>
* BSD Licensed as described in the file LICENSE
*/
#include <esp/gpio.h>
#include <esp/spi.h>
#include <espressif/esp_common.h>
#include "sdio.h"
#define BUS 1
#define BV(x) (1 << (x))
#define MS 1000
#define INIT_TIMEOUT_US (2000 * MS)
#define IO_TIMEOUT_US (500 * MS)
#define MAX_ERR_COUNT 0xff
#define R1_IDLE_STATE 0
#define R1_ERASE_RESET 1
#define R1_ILLEGAL_CMD 2
#define R1_CRC_ERR 3
#define R1_ERASE_SEQ_ERR 4
#define R1_ADDR_ERR 5
#define R1_PARAM_ERR 6
#define R1_BUSY 7
#define R2_LOCKED 8
#define R2_WPE_SKIP_LF 9
#define R2_ERROR 10
#define R2_CC_ERROR 11
#define R2_ECC_FAILED 12
#define R2_WP_VIOLATION 13
#define R2_ERASE_PARAM 14
#define R2_OUT_OF_RANGE 15
#define OCR_CCS 30
#define OCR_BUSY 31
#define OCR_SDHC (BV(OCR_CCS) | BV(OCR_BUSY))
#define TOKEN_SINGLE_TRAN 0xfe
#define TOKEN_MULTI_TRAN 0xfc
#define TOKEN_STOP_TRAN 0xfd
#define WRITE_RES_MASK 0x1f
#define WRITE_RES_OK 0x05
#define CMD0 0x00 // GO_IDLE_STATE - Resets the SD Memory Card
#define CMD1 0x01 // SEND_OP_COND - Sends host capacity support information
// and activates the card's initialization process.
#define CMD6 0x06 // SWITCH_FUNC - Checks switchable function (mode 0) and
// switches card function (mode 1).
#define CMD8 0x08 // SEND_IF_COND - Sends SD Memory Card interface condition
// that includes host supply voltage information and asks
// the accessed card whether card can operate in supplied
// voltage range.
#define CMD9 0x09 // SEND_CSD - Asks the selected card to send its
// card-specific data (CSD register)
#define CMD10 0x0a // SEND_CID - Asks the selected card to send its card
// identification (CID register)
#define CMD12 0x0c // STOP_TRANSMISSION - Forces the card to stop transmission
// in Multiple Block Read Operation
#define CMD13 0x0d // SEND_STATUS - Asks the selected card to send its
// status register.
#define CMD16 0x10 // SET_BLOCKLEN - Sets a block length (in bytes) for all
// following block commands (read and write) of a Standard
// Capacity Card. Block length of the read and write
// commands are fixed to 512 bytes in a High Capacity Card.
// The length of LOCK_UNLOCK command is set by this command
// in both capacity cards.
#define CMD17 0x11 // READ_SINGLE_BLOCK - Reads a block of the size selected
// by the SET_BLOCKLEN command.
#define CMD18 0x12 // READ_MULTIPLE_BLOCK - Continuously transfers data blocks
// from card to host until interrupted by a
// STOP_TRANSMISSION command.
#define CMD24 0x18 // WRITE_BLOCK - Writes a block of the size selected by the
// SET_BLOCKLEN command.
#define CMD25 0x19 // WRITE_MULTIPLE_BLOCK - Continuously writes blocks of
// data until Stop Tran token is sent (instead Start
// Block).
#define CMD27 0x1b // PROGRAM_CSD - Programming of the programmable bits of
// the CSD.
#define CMD28 0x1c // SET_WRITE_PROT
#define CMD29 0x1d // CLR_WRITE_PROT
#define CMD32 0x20 // ERASE_WR_BLK_START - Sets the address of the first block
// to be erased.
#define CMD33 0x21 // ERASE_WR_BLK_END - Sets the address of the last block of
// the continuous range to be erased.
#define CMD38 0x26 // ERASE - Erases all previously selected blocks.
#define CMD55 0x37 // APP_CMD - Defines to the card that the next command is
// an application specific command rather than a standard
// command.
#define CMD58 0x3a // READ_OCR - Reads the OCR register of a card.
#define CMD59 0x3b // CRC_ON_OFF - Turns the CRC option on or off.
#define ACMD23 0x17 // SET_WR_BLK_ERASE_COUNT - Sets the number of write blocks
// to be pre-erased before writing
#define ACMD41 0x29 // SD_SEND_OP_COMD - Sends host capacity support information
// and activates the card's initialization process
static uint8_t crc7(const uint8_t* data, uint8_t n)
{
uint8_t crc = 0;
for (uint8_t i = 0; i < n; i++)
{
uint8_t d = data[i];
for (uint8_t j = 0; j < 8; j++)
{
crc <<= 1;
if ((d & 0x80) ^ (crc & 0x80))
crc ^= 0x09;
d <<= 1;
}
}
return (crc << 1) | 1;
}
static uint16_t crc_ccitt(const uint8_t *data, size_t n)
{
uint16_t crc = 0;
for (size_t i = 0; i < n; i++)
{
crc = (uint8_t)(crc >> 8) | (crc << 8);
crc ^= data[i];
crc ^= (uint8_t)(crc & 0xff) >> 4;
crc ^= crc << 12;
crc ^= (crc & 0xff) << 5;
}
return crc;
}
#define spi_cs_low(card) do { gpio_write(card->cs_pin, false); } while(0)
#define spi_cs_high(card) do { gpio_write(card->cs_pin, true); } while(0)
#define spi_read_byte() (spi_transfer_8(BUS, 0xff))
#define spi_read_word() (((uint16_t)spi_read_byte() << 8) | spi_read_byte())
#define spi_read_dword() (((uint32_t)spi_read_byte() << 24) | ((uint32_t)spi_read_byte() << 16) | ((uint32_t)spi_read_byte() << 8) | spi_read_byte())
#define spi_skip_word() do { spi_read_byte(); spi_read_byte(); } while(0)
#define spi_skip_dword() do { spi_read_byte(); spi_read_byte(); spi_read_byte(); spi_read_byte(); } while(0)
inline static uint16_t spi_write_word(uint16_t word)
{
return (spi_transfer_8(BUS, word >> 8) << 8) | spi_transfer_8(BUS, word);
}
inline static void spi_read_bytes(uint8_t *dst, size_t size)
{
for (uint8_t *offs = dst; offs < dst + size; offs ++)
*offs = spi_read_byte();
}
static bool wait()
{
uint32_t stop = sdk_system_get_time() + IO_TIMEOUT_US;
while (spi_read_byte() != 0xff)
if (sdk_system_get_time() >= stop)
return false;
return true;
}
static uint8_t command(sdio_card_t *card, uint8_t cmd, uint32_t arg)
{
uint8_t buf[6] = {
cmd | 0x40,
arg >> 24,
arg >> 16,
arg >> 8,
arg
};
if (card->crc_enabled)
buf[5] = crc7(buf, 5);
else
buf[5] = cmd == CMD0 ? 0x95 : 0x87;
spi_cs_low(card);
wait();
spi_transfer(BUS, buf, NULL, 6, SPI_8BIT);
// R1b response
if (cmd == CMD12 || cmd == CMD28 || cmd == CMD29)
spi_read_byte();
uint8_t res;
for (uint8_t i = 0; i < MAX_ERR_COUNT; i ++)
{
res = spi_read_byte();
if (!(res & BV(R1_BUSY)))
break;
}
return res;
}
inline static uint8_t app_command(sdio_card_t *card, uint8_t cmd, uint32_t arg)
{
command(card, CMD55, 0);
return command(card, cmd, arg);
}
inline static sdio_error_t set_error(sdio_card_t *card, sdio_error_t err)
{
card->error = err;
spi_cs_high(card);
return err;
}
static sdio_error_t read_data(sdio_card_t *card, uint8_t *dst, size_t size)
{
uint32_t timeout = sdk_system_get_time() + IO_TIMEOUT_US;
while (true)
{
if (sdk_system_get_time() >= timeout)
return set_error(card, SDIO_ERR_TIMEOUT);
uint8_t b = spi_read_byte();
if (b == TOKEN_SINGLE_TRAN)
break;
if (b != 0xff)
return set_error(card, SDIO_ERR_IO);
}
spi_read_bytes(dst, size);
uint16_t crc = spi_read_word();
if (card->crc_enabled && crc_ccitt(dst, size) != crc)
return set_error(card, SDIO_ERR_CRC);
return SDIO_ERR_NONE;
}
static sdio_error_t read_register(sdio_card_t *card, uint8_t cmd, void *dst)
{
if (command(card, cmd, 0))
return set_error(card, SDIO_ERR_IO);
return read_data(card, dst, 16);
}
static sdio_error_t write_data_block(sdio_card_t *card, uint8_t token, uint8_t *src)
{
if (!wait())
return set_error(card, SDIO_ERR_TIMEOUT);
spi_transfer_8(BUS, token);
spi_transfer(BUS, src, NULL, SDIO_BLOCK_SIZE, SPI_8BIT);
spi_write_word(card->crc_enabled ? crc_ccitt(src, SDIO_BLOCK_SIZE) : 0xffff);
if ((spi_read_byte() & WRITE_RES_MASK) != WRITE_RES_OK)
return set_error(card, SDIO_ERR_IO);
return SDIO_ERR_NONE;
}
sdio_error_t sdio_init(sdio_card_t *card, uint8_t cs_pin, uint32_t high_freq_divider)
{
card->cs_pin = cs_pin;
card->type = SDIO_TYPE_UNKNOWN;
// setup SPI at 125kHz
spi_settings_t s = {
.mode = SPI_MODE0,
.freq_divider = SPI_FREQ_DIV_125K,
.msb = true,
.endianness = SPI_LITTLE_ENDIAN,
.minimal_pins = true
};
spi_set_settings(BUS, &s);
gpio_enable(card->cs_pin, GPIO_OUTPUT);
uint32_t timeout = sdk_system_get_time() + INIT_TIMEOUT_US;
spi_cs_low(card);
spi_cs_high(card);
for (uint8_t i = 0; i < 10; i++)
spi_read_byte();
// Set card to the SPI idle mode
while (command(card, CMD0, 0) != BV(R1_IDLE_STATE))
{
if (sdk_system_get_time() >= timeout)
return set_error(card, SDIO_ERR_TIMEOUT);
}
// Enable CRC
card->crc_enabled = command(card, CMD59, 1) == BV(R1_IDLE_STATE);
// Get card type
while (true)
{
if (command(card, CMD8, 0x1aa) & BV(R1_ILLEGAL_CMD))
{
card->type = SDIO_TYPE_SD1;
break;
}
if ((spi_read_dword() & 0xff) == 0xaa)
{
card->type = SDIO_TYPE_SD2;
break;
}
if (sdk_system_get_time() >= timeout)
return set_error(card, SDIO_ERR_TIMEOUT);
}
if (card->type == SDIO_TYPE_SD1)
{
// SD1 or MMC3
if (app_command(card, ACMD41, 0) > 1)
{
card->type = SDIO_TYPE_MMC;
while (command(card, CMD1, 0))
if (sdk_system_get_time() >= timeout)
return set_error(card, SDIO_ERR_TIMEOUT);
}
else
{
while (app_command(card, ACMD41, 0))
if (sdk_system_get_time() >= timeout)
return set_error(card, SDIO_ERR_TIMEOUT);
}
if (command(card, CMD16, SDIO_BLOCK_SIZE))
return set_error(card, SDIO_ERR_UNSUPPORTED);
}
else
{
// SD2 or SDHC
while (app_command(card, ACMD41, BV(30)) != 0)
if (sdk_system_get_time() >= timeout)
return set_error(card, SDIO_ERR_TIMEOUT);
}
// read OCR
if (command(card, CMD58, 0))
return set_error(card, SDIO_ERR_IO);
card->ocr.data = spi_read_dword();
if (card->type == SDIO_TYPE_SD2 && (card->ocr.data & OCR_SDHC) == OCR_SDHC)
card->type = SDIO_TYPE_SDHC;
spi_set_frequency_div(BUS, high_freq_divider);
if (read_register(card, CMD10, &card->cid.data) != SDIO_ERR_NONE)
return card->error;
if (read_register(card, CMD9, &card->csd.data) != SDIO_ERR_NONE)
return card->error;
// Card size
if (card->csd.v1.csd_ver == 0)
card->sectors = (uint32_t)(((card->csd.v1.c_size_high << 10) | (card->csd.v1.c_size_mid << 2) | card->csd.v1.c_size_low) + 1)
<< (((card->csd.v1.c_size_mult_high << 1) | card->csd.v1.c_size_mult_low) + card->csd.v1.read_bl_len - 7);
else if (card->csd.v2.csd_ver == 1)
card->sectors = (((uint32_t)card->csd.v2.c_size_high << 16) + ((uint32_t)card->csd.v2.c_size_mid << 8) + card->csd.v2.c_size_low + 1) << 10;
else
return set_error(card, SDIO_ERR_UNSUPPORTED);
return set_error(card, SDIO_ERR_NONE);
}
sdio_error_t sdio_read_sectors(sdio_card_t *card, uint32_t sector, uint8_t *dst, uint32_t count)
{
if (!count)
return set_error(card, SDIO_ERR_IO);
if (card->type != SDIO_TYPE_SDHC)
sector <<= 9;
bool multi = count > 1;
if (command(card, multi ? CMD18 : CMD17, sector))
return set_error(card, SDIO_ERR_IO);
while (count--)
{
if (read_data(card, dst, SDIO_BLOCK_SIZE) != SDIO_ERR_NONE)
return card->error;
dst += SDIO_BLOCK_SIZE;
}
if (multi && command(card, CMD12, 0))
return set_error(card, SDIO_ERR_IO);
return set_error(card, SDIO_ERR_NONE);
}
sdio_error_t sdio_write_sectors(sdio_card_t *card, uint32_t sector, uint8_t *src, uint32_t count)
{
if (!count)
return set_error(card, SDIO_ERR_IO);
if (card->type != SDIO_TYPE_SDHC)
sector <<= 9;
if (count == 1)
{
// single block
if (command(card, CMD24, sector))
return set_error(card, SDIO_ERR_IO);
return set_error(card, write_data_block(card, TOKEN_SINGLE_TRAN, src));
}
// send pre-erase count
if ((card->type == SDIO_TYPE_SD1
|| card->type == SDIO_TYPE_SD2
|| card->type == SDIO_TYPE_SDHC)
&& app_command(card, ACMD23, count))
{
return set_error(card, SDIO_ERR_IO);
}
if (command(card, CMD25, sector))
return set_error(card, SDIO_ERR_IO);
while (count--)
{
if (write_data_block(card, TOKEN_MULTI_TRAN, src) != SDIO_ERR_NONE)
return card->error;
src += SDIO_BLOCK_SIZE;
}
spi_transfer_8(BUS, TOKEN_STOP_TRAN);
return set_error(card, SDIO_ERR_NONE);
}
sdio_error_t sdio_erase_sectors(sdio_card_t *card, uint32_t first, uint32_t last)
{
if (!card->csd.v1.erase_blk_en)
{
uint8_t mask = (card->csd.v1.sector_size_high << 1) | card->csd.v1.sector_size_low;
if ((first & mask) || ((last + 1) & mask))
return set_error(card, SDIO_ERR_UNSUPPORTED);
}
if (card->type != SDIO_TYPE_SDHC)
{
first <<= 9;
last <<= 9;
}
if (command(card, CMD32, first)
|| command(card, CMD33, last)
|| command(card, CMD38, 0))
{
return set_error(card, SDIO_ERR_IO);
}
return set_error(card, wait() ? SDIO_ERR_NONE : SDIO_ERR_TIMEOUT);
}