esp-open-rtos/extras/dht/dht.c

198 lines
6 KiB
C
Raw Normal View History

/*
* Part of esp-open-rtos
* Copyright (C) 2016 Jonathan Hartsuiker (https://github.com/jsuiker)
* BSD Licensed as described in the file LICENSE
*
*/
#include "dht.h"
#include "FreeRTOS.h"
#include "string.h"
#include "task.h"
#include "esp/gpio.h"
#include <espressif/esp_misc.h> // sdk_os_delay_us
// DHT timer precision in microseconds
#define DHT_TIMER_INTERVAL 2
#define DHT_DATA_BITS 40
// #define DEBUG_DHT
#ifdef DEBUG_DHT
#define debug(fmt, ...) printf("%s" fmt "\n", "dht: ", ## __VA_ARGS__);
#else
#define debug(fmt, ...) /* (do nothing) */
#endif
/*
* Note:
* A suitable pull-up resistor should be connected to the selected GPIO line
*
* __ ______ _______ ___________________________
* \ A / \ C / \ DHT duration_data_low / \
* \_______/ B \______/ D \__________________________/ DHT duration_data_high \__
*
*
* Initializing communications with the DHT requires four 'phases' as follows:
*
* Phase A - MCU pulls signal low for at least 18000 us
* Phase B - MCU allows signal to float back up and waits 20-40us for DHT to pull it low
* Phase C - DHT pulls signal low for ~80us
* Phase D - DHT lets signal float back up for ~80us
*
* After this, the DHT transmits its first bit by holding the signal low for 50us
* and then letting it float back high for a period of time that depends on the data bit.
* duration_data_high is shorter than 50us for a logic '0' and longer than 50us for logic '1'.
*
* There are a total of 40 data bits transmitted sequentially. These bits are read into a byte array
* of length 5. The first and third bytes are humidity (%) and temperature (C), respectively. Bytes 2 and 4
* are zero-filled and the fifth is a checksum such that:
*
* byte_5 == (byte_1 + byte_2 + byte_3 + btye_4) & 0xFF
*
*/
/**
* Wait specified time for pin to go to a specified state.
* If timeout is reached and pin doesn't go to a requested state
* false is returned.
* The elapsed time is returned in pointer 'duration' if it is not NULL.
*/
static bool dht_await_pin_state(uint8_t pin, uint32_t timeout,
bool expected_pin_state, uint32_t *duration)
{
for (uint32_t i = 0; i < timeout; i += DHT_TIMER_INTERVAL) {
// need to wait at least a single interval to prevent reading a jitter
sdk_os_delay_us(DHT_TIMER_INTERVAL);
if (gpio_read(pin) == expected_pin_state) {
if (duration) {
*duration = i;
}
return true;
}
}
return false;
}
/**
* Request data from DHT and read raw bit stream.
* The function call should be protected from task switching.
* Return false if error occurred.
*/
2019-07-21 21:21:27 +00:00
static inline bool dht_fetch_data(dht_sensor_type_t sensor_type, uint8_t pin, bool bits[DHT_DATA_BITS])
{
uint32_t low_duration;
uint32_t high_duration;
// Phase 'A' pulling signal low to initiate read sequence
gpio_write(pin, 0);
2019-07-21 21:21:27 +00:00
sdk_os_delay_us(sensor_type == DHT_TYPE_SI7021 ? 500 : 20000);
gpio_write(pin, 1);
// Step through Phase 'B', 40us
if (!dht_await_pin_state(pin, 40, false, NULL)) {
debug("Initialization error, problem in phase 'B'\n");
return false;
}
// Step through Phase 'C', 88us
if (!dht_await_pin_state(pin, 88, true, NULL)) {
debug("Initialization error, problem in phase 'C'\n");
return false;
}
// Step through Phase 'D', 88us
if (!dht_await_pin_state(pin, 88, false, NULL)) {
debug("Initialization error, problem in phase 'D'\n");
return false;
}
// Read in each of the 40 bits of data...
for (int i = 0; i < DHT_DATA_BITS; i++) {
if (!dht_await_pin_state(pin, 65, true, &low_duration)) {
debug("LOW bit timeout\n");
return false;
}
if (!dht_await_pin_state(pin, 75, false, &high_duration)) {
debug("HIGHT bit timeout\n");
return false;
}
bits[i] = high_duration > low_duration;
}
return true;
}
/**
* Pack two data bytes into single value and take into account sign bit.
*/
static inline int16_t dht_convert_data(dht_sensor_type_t sensor_type, uint8_t msb, uint8_t lsb)
{
int16_t data;
if (sensor_type == DHT_TYPE_DHT22) {
data = msb & 0x7F;
data <<= 8;
data |= lsb;
if (msb & BIT(7)) {
data = 0 - data; // convert it to negative
}
}
else if (sensor_type == DHT_TYPE_SI7021) {
data = msb * 256 + (lsb & ~0x3);
}
else {
data = msb * 10;
}
return data;
}
bool dht_read_data(dht_sensor_type_t sensor_type, uint8_t pin, int16_t *humidity, int16_t *temperature)
{
bool bits[DHT_DATA_BITS];
uint8_t data[DHT_DATA_BITS/8] = {0};
bool result;
gpio_enable(pin, GPIO_OUT_OPEN_DRAIN);
taskENTER_CRITICAL();
2019-07-21 21:21:27 +00:00
result = dht_fetch_data(sensor_type, pin, bits);
taskEXIT_CRITICAL();
if (!result) {
return false;
}
for (uint8_t i = 0; i < DHT_DATA_BITS; i++) {
// Read each bit into 'result' byte array...
data[i/8] <<= 1;
data[i/8] |= bits[i];
}
if (data[4] != ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
debug("Checksum failed, invalid data received from sensor\n");
return false;
}
*humidity = dht_convert_data(sensor_type, data[0], data[1]);
*temperature = dht_convert_data(sensor_type, data[2], data[3]);
debug("Sensor data: humidity=%d, temp=%d\n", *humidity, *temperature);
return true;
}
bool dht_read_float_data(dht_sensor_type_t sensor_type, uint8_t pin, float *humidity, float *temperature)
{
int16_t i_humidity, i_temp;
if (dht_read_data(sensor_type, pin, &i_humidity, &i_temp)) {
*humidity = (float)i_humidity / 10;
*temperature = (float)i_temp / 10;
return true;
}
return false;
}