esp-open-rtos/examples/aws_iot/aws_iot.c

281 lines
8.4 KiB
C
Raw Normal View History

/*
* Derived from examples/mqtt_client/mqtt_client.c - added TLS1.2 support and some minor modifications.
*/
#include "espressif/esp_common.h"
#include "esp/uart.h"
#include <string.h>
#include <FreeRTOS.h>
#include <task.h>
#include <queue.h>
#include <ssid_config.h>
#include <espressif/esp_sta.h>
#include <espressif/esp_wifi.h>
#include <paho_mqtt_c/MQTTESP8266.h>
#include <paho_mqtt_c/MQTTClient.h>
// this must be ahead of any mbedtls header files so the local mbedtls/config.h can be properly referenced
#include "ssl_connection.h"
#define MQTT_PUB_TOPIC "esp8266/status"
#define MQTT_SUB_TOPIC "esp8266/control"
#define GPIO_LED 2
#define MQTT_PORT 8883
/* certs, key, and endpoint */
extern char *ca_cert, *client_endpoint, *client_cert, *client_key;
static int wifi_alive = 0;
static int ssl_reset;
static SSLConnection *ssl_conn;
static xQueueHandle publish_queue;
static void beat_task(void *pvParameters) {
char msg[16];
int count = 0;
while (1) {
if (!wifi_alive) {
vTaskDelay(1000 / portTICK_RATE_MS);
continue;
}
printf("Schedule to publish\r\n");
snprintf(msg, sizeof(msg), "%d", count);
if (xQueueSend(publish_queue, (void *) msg, 0) == pdFALSE) {
printf("Publish queue overflow\r\n");
}
vTaskDelay(10000 / portTICK_RATE_MS);
}
}
static void topic_received(mqtt_message_data_t *md) {
mqtt_message_t *message = md->message;
int i;
printf("Received: ");
for (i = 0; i < md->topic->lenstring.len; ++i)
printf("%c", md->topic->lenstring.data[i]);
printf(" = ");
for (i = 0; i < (int) message->payloadlen; ++i)
printf("%c", ((char *) (message->payload))[i]);
printf("\r\n");
if (!strncmp(message->payload, "on", 2)) {
printf("Turning on LED\r\n");
gpio_write(GPIO_LED, 0);
} else if (!strncmp(message->payload, "off", 3)) {
printf("Turning off LED\r\n");
gpio_write(GPIO_LED, 1);
}
}
static const char *get_my_id(void) {
// Use MAC address for Station as unique ID
static char my_id[13];
static bool my_id_done = false;
int8_t i;
uint8_t x;
if (my_id_done)
return my_id;
if (!sdk_wifi_get_macaddr(STATION_IF, (uint8_t *) my_id))
return NULL;
for (i = 5; i >= 0; --i) {
x = my_id[i] & 0x0F;
if (x > 9)
x += 7;
my_id[i * 2 + 1] = x + '0';
x = my_id[i] >> 4;
if (x > 9)
x += 7;
my_id[i * 2] = x + '0';
}
my_id[12] = '\0';
my_id_done = true;
return my_id;
}
static int mqtt_ssl_read(mqtt_network_t * n, unsigned char* buffer, int len,
int timeout_ms) {
int r = ssl_read(ssl_conn, buffer, len, timeout_ms);
if (r <= 0
&& (r != MBEDTLS_ERR_SSL_WANT_READ
&& r != MBEDTLS_ERR_SSL_WANT_WRITE
&& r != MBEDTLS_ERR_SSL_TIMEOUT)) {
printf("%s: TLS read error (%d), resetting\n\r", __func__, r);
ssl_reset = 1;
};
return r;
}
static int mqtt_ssl_write(mqtt_network_t* n, unsigned char* buffer, int len,
int timeout_ms) {
int r = ssl_write(ssl_conn, buffer, len, timeout_ms);
if (r <= 0
&& (r != MBEDTLS_ERR_SSL_WANT_READ
&& r != MBEDTLS_ERR_SSL_WANT_WRITE)) {
printf("%s: TLS write error (%d), resetting\n\r", __func__, r);
ssl_reset = 1;
}
return r;
}
static void mqtt_task(void *pvParameters) {
int ret = 0;
struct mqtt_network network;
mqtt_client_t client = mqtt_client_default;
char mqtt_client_id[20];
uint8_t mqtt_buf[100];
uint8_t mqtt_readbuf[100];
mqtt_packet_connect_data_t data = mqtt_packet_connect_data_initializer;
memset(mqtt_client_id, 0, sizeof(mqtt_client_id));
strcpy(mqtt_client_id, "ESP-");
strcat(mqtt_client_id, get_my_id());
ssl_conn = (SSLConnection *) malloc(sizeof(SSLConnection));
while (1) {
if (!wifi_alive) {
vTaskDelay(1000 / portTICK_RATE_MS);
continue;
}
printf("%s: started\n\r", __func__);
ssl_reset = 0;
ssl_init(ssl_conn);
ssl_conn->ca_cert_str = ca_cert;
ssl_conn->client_cert_str = client_cert;
ssl_conn->client_key_str = client_key;
mqtt_network_new(&network);
network.mqttread = mqtt_ssl_read;
network.mqttwrite = mqtt_ssl_write;
printf("%s: connecting to MQTT server %s ... ", __func__,
client_endpoint);
ret = ssl_connect(ssl_conn, client_endpoint, MQTT_PORT);
if (ret) {
printf("error: %d\n\r", ret);
ssl_destroy(ssl_conn);
continue;
}
printf("done\n\r");
mqtt_client_new(&client, &network, 5000, mqtt_buf, 100, mqtt_readbuf,
100);
data.willFlag = 0;
data.MQTTVersion = 4;
data.cleansession = 1;
data.clientID.cstring = mqtt_client_id;
data.username.cstring = NULL;
data.password.cstring = NULL;
data.keepAliveInterval = 1000;
printf("Send MQTT connect ... ");
ret = mqtt_connect(&client, &data);
if (ret) {
printf("error: %d\n\r", ret);
ssl_destroy(ssl_conn);
continue;
}
printf("done\r\n");
mqtt_subscribe(&client, MQTT_SUB_TOPIC, MQTT_QOS1, topic_received);
xQueueReset(publish_queue);
while (wifi_alive && !ssl_reset) {
char msg[64];
while (xQueueReceive(publish_queue, (void *) msg, 0) == pdTRUE) {
portTickType task_tick = xTaskGetTickCount();
uint32_t free_heap = xPortGetFreeHeapSize();
uint32_t free_stack = uxTaskGetStackHighWaterMark(NULL);
snprintf(msg, sizeof(msg), "%u: free heap %u, free stack %u",
task_tick, free_heap, free_stack * 4);
printf("Publishing: %s\r\n", msg);
mqtt_message_t message;
message.payload = msg;
message.payloadlen = strlen(msg);
message.dup = 0;
message.qos = MQTT_QOS1;
message.retained = 0;
ret = mqtt_publish(&client, MQTT_PUB_TOPIC, &message);
if (ret != MQTT_SUCCESS) {
printf("error while publishing message: %d\n", ret);
break;
}
}
ret = mqtt_yield(&client, 1000);
if (ret == MQTT_DISCONNECTED)
break;
}
printf("Connection dropped, request restart\n\r");
ssl_destroy(ssl_conn);
}
}
static void wifi_task(void *pvParameters) {
uint8_t status = 0;
uint8_t retries = 30;
struct sdk_station_config config = { .ssid = WIFI_SSID, .password =
WIFI_PASS, };
printf("%s: Connecting to WiFi\n\r", __func__);
sdk_wifi_set_opmode (STATION_MODE);
sdk_wifi_station_set_config(&config);
while (1) {
wifi_alive = 0;
while ((status != STATION_GOT_IP) && (retries)) {
status = sdk_wifi_station_get_connect_status();
printf("%s: status = %d\n\r", __func__, status);
if (status == STATION_WRONG_PASSWORD) {
printf("WiFi: wrong password\n\r");
break;
} else if (status == STATION_NO_AP_FOUND) {
printf("WiFi: AP not found\n\r");
break;
} else if (status == STATION_CONNECT_FAIL) {
printf("WiFi: connection failed\r\n");
break;
}
vTaskDelay(1000 / portTICK_RATE_MS);
--retries;
}
while ((status = sdk_wifi_station_get_connect_status())
== STATION_GOT_IP) {
if (wifi_alive == 0) {
printf("WiFi: Connected\n\r");
wifi_alive = 1;
}
vTaskDelay(500 / portTICK_RATE_MS);
}
wifi_alive = 0;
printf("WiFi: disconnected\n\r");
vTaskDelay(1000 / portTICK_RATE_MS);
}
}
void user_init(void) {
uart_set_baud(0, 115200);
printf("SDK version: %s, free heap %u\n", sdk_system_get_sdk_version(),
xPortGetFreeHeapSize());
gpio_enable(GPIO_LED, GPIO_OUTPUT);
gpio_write(GPIO_LED, 1);
publish_queue = xQueueCreate(3, 16);
2016-10-21 09:40:36 +00:00
xTaskCreate(&wifi_task, "wifi_task", 256, NULL, 2, NULL);
xTaskCreate(&beat_task, "beat_task", 256, NULL, 2, NULL);
xTaskCreate(&mqtt_task, "mqtt_task", 2048, NULL, 2, NULL);
}