esp-open-rtos/extras/rboot-ota/rboot-api.c

375 lines
11 KiB
C
Raw Permalink Normal View History

//////////////////////////////////////////////////
// rBoot OTA and config API for ESP8266.
// Copyright 2015 Richard A Burton
// richardaburton@gmail.com
// See license.txt for license terms.
// OTA code based on SDK sample from Espressif.
//
// esp-open-rtos additions Copyright 2016 Angus Gratton
//////////////////////////////////////////////////
#include <rboot-api.h>
#include <string.h>
//#include <c_types.h>
//#include <spi_flash.h>
// detect rtos sdk (not ideal method!)
#ifdef IRAM_ATTR
#define os_free(s) vPortFree(s)
#define os_malloc(s) pvPortMalloc(s)
#else
#include <mem.h>
#endif
#ifdef RBOOT_INTEGRATION
#include <rboot-integration.h>
#endif
#include "rboot-api.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(BOOT_CONFIG_CHKSUM) || defined(BOOT_RTC_ENABLED)
// calculate checksum for block of data
// from start up to (but excluding) end
static uint8 calc_chksum(uint8 *start, uint8 *end) {
uint8 chksum = CHKSUM_INIT;
while(start < end) {
chksum ^= *start;
start++;
}
return chksum;
}
#endif
// get the rboot config
rboot_config ICACHE_FLASH_ATTR rboot_get_config(void) {
rboot_config conf;
spi_flash_read(BOOT_CONFIG_SECTOR * SECTOR_SIZE, (uint32*)&conf, sizeof(rboot_config));
return conf;
}
// write the rboot config
// preserves the contents of the rest of the sector,
// so the rest of the sector can be used to store user data
// updates checksum automatically (if enabled)
bool ICACHE_FLASH_ATTR rboot_set_config(rboot_config *conf) {
uint8 *buffer;
buffer = (uint8*)os_malloc(SECTOR_SIZE);
if (!buffer) {
//os_printf("No ram!\r\n");
return false;
}
#ifdef BOOT_CONFIG_CHKSUM
conf->chksum = calc_chksum((uint8*)conf, (uint8*)&conf->chksum);
#endif
spi_flash_read(BOOT_CONFIG_SECTOR * SECTOR_SIZE, (uint32*)((void*)buffer), SECTOR_SIZE);
memcpy(buffer, conf, sizeof(rboot_config));
vPortEnterCritical();
spi_flash_erase_sector(BOOT_CONFIG_SECTOR);
vPortExitCritical();
taskYIELD();
vPortEnterCritical();
//spi_flash_write(BOOT_CONFIG_SECTOR * SECTOR_SIZE, (uint32*)((void*)buffer), SECTOR_SIZE);
spi_flash_write(BOOT_CONFIG_SECTOR * SECTOR_SIZE, (uint32*)((void*)buffer), SECTOR_SIZE);
vPortExitCritical();
os_free(buffer);
return true;
}
// get current boot rom
uint8 ICACHE_FLASH_ATTR rboot_get_current_rom(void) {
rboot_config conf;
conf = rboot_get_config();
return conf.current_rom;
}
// set current boot rom
bool ICACHE_FLASH_ATTR rboot_set_current_rom(uint8 rom) {
rboot_config conf;
conf = rboot_get_config();
if (rom >= conf.count) return false;
conf.current_rom = rom;
return rboot_set_config(&conf);
}
// create the write status struct, based on supplied start address
rboot_write_status ICACHE_FLASH_ATTR rboot_write_init(uint32 start_addr) {
rboot_write_status status = {0};
status.start_addr = start_addr;
status.start_sector = start_addr / SECTOR_SIZE;
status.last_sector_erased = status.start_sector - 1;
//status.max_sector_count = 200;
//os_printf("init addr: 0x%08x\r\n", start_addr);
return status;
}
// function to do the actual writing to flash
// call repeatedly with more data (max len per write is the flash sector size (4k))
bool ICACHE_FLASH_ATTR rboot_write_flash(rboot_write_status *status, uint8 *data, uint16 len) {
bool ret = false;
uint8 *buffer;
int32 lastsect;
if (data == NULL || len == 0) {
return true;
}
// get a buffer
buffer = (uint8 *)os_malloc(len + status->extra_count);
if (!buffer) {
//os_printf("No ram!\r\n");
return false;
}
// copy in any remaining bytes from last chunk
memcpy(buffer, status->extra_bytes, status->extra_count);
// copy in new data
memcpy(buffer + status->extra_count, data, len);
// calculate length, must be multiple of 4
// save any remaining bytes for next go
len += status->extra_count;
status->extra_count = len % 4;
len -= status->extra_count;
memcpy(status->extra_bytes, buffer + len, status->extra_count);
// check data will fit
//if (status->start_addr + len < (status->start_sector + status->max_sector_count) * SECTOR_SIZE) {
// erase any additional sectors needed by this chunk
lastsect = ((status->start_addr + len) - 1) / SECTOR_SIZE;
while (lastsect > status->last_sector_erased) {
status->last_sector_erased++;
spi_flash_erase_sector(status->last_sector_erased);
}
// write current chunk
//os_printf("write addr: 0x%08x, len: 0x%04x\r\n", status->start_addr, len);
if (spi_flash_write(status->start_addr, (uint32 *)((void*)buffer), len) == SPI_FLASH_RESULT_OK) {
ret = true;
status->start_addr += len;
}
//}
os_free(buffer);
return ret;
}
#ifdef BOOT_RTC_ENABLED
bool ICACHE_FLASH_ATTR rboot_get_rtc_data(rboot_rtc_data *rtc) {
if (system_rtc_mem_read(RBOOT_RTC_ADDR, rtc, sizeof(rboot_rtc_data))) {
return (rtc->chksum == calc_chksum((uint8*)rtc, (uint8*)&rtc->chksum));
}
return false;
}
bool ICACHE_FLASH_ATTR rboot_set_rtc_data(rboot_rtc_data *rtc) {
// calculate checksum
rtc->chksum = calc_chksum((uint8*)rtc, (uint8*)&rtc->chksum);
return system_rtc_mem_write(RBOOT_RTC_ADDR, rtc, sizeof(rboot_rtc_data));
}
bool ICACHE_FLASH_ATTR rboot_set_temp_rom(uint8 rom) {
rboot_rtc_data rtc;
// invalid data in rtc?
if (!rboot_get_rtc_data(&rtc)) {
// set basics
rtc.magic = RBOOT_RTC_MAGIC;
rtc.last_mode = MODE_STANDARD;
rtc.last_rom = 0;
}
// set next boot to temp mode with specified rom
rtc.next_mode = MODE_TEMP_ROM;
rtc.temp_rom = rom;
return rboot_set_rtc_data(&rtc);
}
bool ICACHE_FLASH_ATTR rboot_get_last_boot_rom(uint8 *rom) {
rboot_rtc_data rtc;
if (rboot_get_rtc_data(&rtc)) {
*rom = rtc.last_rom;
return true;
}
return false;
}
bool ICACHE_FLASH_ATTR rboot_get_last_boot_mode(uint8 *mode) {
rboot_rtc_data rtc;
if (rboot_get_rtc_data(&rtc)) {
*mode = rtc.last_mode;
return true;
}
return false;
}
#endif
/* NOTE: Functions below here were added for esp-open-rtos only */
uint32_t rboot_get_slot_offset(uint8_t slot) {
rboot_config conf;
conf = rboot_get_config();
if (slot >= conf.count) return (uint32_t)-1;
return conf.roms[slot];
}
/* Structures for parsing the rboot OTA image format */
typedef struct __attribute__((packed)) {
uint8_t magic;
uint8_t section_count;
uint8_t val[2]; /* flash size & speed when placed @ offset 0, I thik ignored otherwise */
uint32_t entrypoint;
} image_header_t;
typedef struct __attribute__((packed)) {
uint32_t load_addr;
uint32_t length;
} section_header_t;
#define ROM_MAGIC_OLD 0xe9
#define ROM_MAGIC_NEW 0xea
bool rboot_verify_image(uint32_t initial_offset, uint32_t *image_length, const char **error_message)
{
uint32_t offset = initial_offset;
char *error = NULL;
RBOOT_DEBUG("rboot_verify_image: verifying image at 0x%08x\n", initial_offset);
if(offset % 4) {
error = "Unaligned flash offset";
goto fail;
}
/* sanity limit on how far we can read */
uint32_t end_limit = offset + 0x100000;
image_header_t image_header __attribute__((aligned(4)));
if(sdk_spi_flash_read(offset, &image_header, sizeof(image_header_t))) {
error = "Flash fail";
goto fail;
}
offset += sizeof(image_header_t);
if(image_header.magic != ROM_MAGIC_OLD && image_header.magic != ROM_MAGIC_NEW) {
error = "Missing initial magic";
goto fail;
}
bool is_new_header = (image_header.magic == ROM_MAGIC_NEW); /* a v1.2/rboot header, so expect a v1.1 header after the initial section */
int remaining_sections = image_header.section_count;
uint8_t checksum = CHKSUM_INIT;
while(remaining_sections > 0 && offset < end_limit)
{
/* read section header */
section_header_t header __attribute__((aligned(4)));
if(sdk_spi_flash_read(offset, &header, sizeof(section_header_t))) {
error = "Flash fail";
goto fail;
}
RBOOT_DEBUG("Found section @ 0x%08x (abs 0x%08x) length %d load 0x%08x\n", offset-initial_offset, offset, header.length, header.load_addr);
offset += sizeof(section_header_t);
if(header.length+offset > end_limit) {
break; /* sanity check: will reading section take us off end of expected flashregion? */
}
if(header.length % 4) {
error = "Header length not modulo 4";
goto fail;
}
if(!is_new_header) {
/* Add individual data of the section to the checksum. */
char chunk[16] __attribute__((aligned(4)));
for(int i = 0; i < header.length; i++) {
if(i % sizeof(chunk) == 0)
sdk_spi_flash_read(offset+i, (uint32_t *)chunk, sizeof(chunk));
checksum ^= chunk[i % sizeof(chunk)];
}
}
offset += header.length;
/* pad section to 4 byte align */
offset = (offset+3) & ~3;
remaining_sections--;
if(is_new_header) {
/* pad to a 16 byte offset */
offset = (offset+15) & ~15;
/* expect a v1.1 header here at start of "real" sections */
sdk_spi_flash_read(offset, (uint32_t *)&image_header, sizeof(image_header_t));
offset += sizeof(image_header_t);
if(image_header.magic != ROM_MAGIC_OLD) {
error = "Bad second magic";
goto fail;
}
remaining_sections = image_header.section_count;
is_new_header = false;
}
}
if(remaining_sections > 0) {
error = "Image truncated";
goto fail;
}
/* add a byte for the image checksum (actually comes after the padding) */
offset++;
/* pad the image length to a 16 byte boundary */
offset = (offset+15) & ~15;
uint32_t read_checksum;
sdk_spi_flash_read(offset-1, &read_checksum, 1);
if((uint8_t)read_checksum != checksum) {
error = "Invalid checksum";
goto fail;
}
RBOOT_DEBUG("rboot_verify_image: verified expected 0x%08x bytes.\n", offset - initial_offset);
if(image_length)
*image_length = offset - initial_offset;
return true;
fail:
if(error_message)
*error_message = error;
if(error) {
printf("%s: %s\n", __func__, error);
}
if(image_length)
*image_length = offset - initial_offset;
return false;
}
bool rboot_digest_image(uint32_t offset, uint32_t image_length, rboot_digest_update_fn update_fn, void *update_ctx)
{
uint8_t buf[32] __attribute__((aligned(4)));
for(int i = 0; i < image_length; i += sizeof(buf)) {
if(sdk_spi_flash_read(offset+i, buf, sizeof(buf)))
return false;
uint32_t digest_len = sizeof(buf);
if(i + digest_len > image_length)
digest_len = image_length - i;
update_fn(update_ctx, buf, digest_len);
}
return true;
}
#ifdef __cplusplus
}
#endif