/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #ifndef __OSDEP_SERVICE_H_ #define __OSDEP_SERVICE_H_ /* OS dep feature enable */ #define CONFIG_LITTLE_ENDIAN #if defined(CONFIG_PLATFORM_8195A) || defined(CONFIG_PLATFORM_8711B) #define CONFIG_PLATFORM_AMEBA_X #endif #if defined(CONFIG_PLATFORM_8195A) #define CONFIG_USE_TCM_HEAP 1 /* USE TCM HEAP */ #define USE_MUTEX_FOR_SPINLOCK 1 #endif #if defined(CONFIG_PLATFORM_AMEBA_X) #define CONFIG_MEM_MONITOR MEM_MONITOR_SIMPLE #else #define CONFIG_MEM_MONITOR MEM_MONITOR_LEAK #endif /* Define compilor specific symbol */ // // inline function // #if defined ( __ICCARM__ ) #define __inline__ inline #define __inline inline #define __inline_definition //In dialect C99, inline means that a function's definition is provided //only for inlining, and that there is another definition //(without inline) somewhere else in the program. //That means that this program is incomplete, because if //add isn't inlined (for example, when compiling without optimization), //then main will have an unresolved reference to that other definition. // Do not inline function is the function body is defined .c file and this // function will be called somewhere else, otherwise there is compile error #elif defined ( __CC_ARM ) #define __inline__ __inline //__linine__ is not supported in keil compilor, use __inline instead #define inline __inline #define __inline_definition // for dialect C99 #elif defined ( __GNUC__ ) #define __inline__ inline #define __inline inline #define __inline_definition inline #endif #include #include "platform_autoconf.h" #if defined( PLATFORM_FREERTOS) #include "freertos_service.h" #elif defined( PLATFORM_ECOS) #include "ecos/ecos_service.h" #endif #define RTW_MAX_DELAY 0xFFFFFFFF #define RTW_WAIT_FOREVER 0xFFFFFFFF struct timer_list { _timerHandle timer_hdl; unsigned long data; void (*function)(void *); }; typedef thread_return (*thread_func_t)(thread_context context); typedef void (*TIMER_FUN)(void *context); typedef int (*event_handler_t)(char *buf, int buf_len, int flags, void *user_data); #define CONFIG_THREAD_COMM_SEMA struct task_struct { const char *task_name; _thread_hdl_ task; /* I: workqueue thread */ #ifdef CONFIG_THREAD_COMM_SIGNAL const char *name; /* I: workqueue thread name */ u32 queue_num; /* total signal num */ u32 cur_queue_num; /* cur signal num should < queue_num */ #elif defined(CONFIG_THREAD_COMM_SEMA) _sema wakeup_sema; _sema terminate_sema; // _queue work_queue; //TODO #endif u32 blocked; u32 callback_running; }; typedef struct { _xqueue event_queue; struct task_struct thread; }rtw_worker_thread_t; typedef struct { event_handler_t function; char *buf; int buf_len; int flags; void *user_data; } rtw_event_message_t; struct worker_timer_entry { struct list_head list; _timerHandle timer_hdl; rtw_event_message_t message; rtw_worker_thread_t *worker_thread; u32 timeout; }; #ifdef CONFIG_THREAD_COMM_SIGNAL struct work_struct; typedef void (*work_func_t)(void *context); struct work_struct { _list list; u32 data; work_func_t func; void *context; struct task_struct *used_wq; }; struct delayed_work { struct work_struct work; struct timer_list timer; }; #endif #ifdef CONFIG_MEM_MONITOR //----- ------------------------------------------------------------------ // Memory Monitor //----- ------------------------------------------------------------------ #define MEM_MONITOR_SIMPLE 0x1 #define MEM_MONITOR_LEAK 0x2 #define MEM_MONITOR_FLAG_WIFI_DRV 0x1 #define MEM_MONITOR_FLAG_WPAS 0x2 #if CONFIG_MEM_MONITOR & MEM_MONITOR_LEAK struct mem_entry { struct list_head list; int size; void *ptr; }; #endif void init_mem_monitor(_list *pmem_table, int *used_num); void deinit_mem_monitor(_list *pmem_table, int *used_num); void add_mem_usage(_list *pmem_table, void *ptr, int size, int *used_num, int flag); void del_mem_usage(_list *pmem_table, void *ptr, int *used_num, int flag); int get_mem_usage(_list *pmem_table); #endif /*********************************** OSDEP API *****************************************/ u8* _rtw_vmalloc(u32 sz); u8* _rtw_zvmalloc(u32 sz); void _rtw_vmfree(u8 *pbuf, u32 sz); u8* _rtw_zmalloc(u32 sz); u8* _rtw_malloc(u32 sz); void _rtw_mfree(u8 *pbuf, u32 sz); #ifdef CONFIG_MEM_MONITOR u8* rtw_vmalloc(u32 sz); u8* rtw_zvmalloc(u32 sz); void rtw_vmfree(u8 *pbuf, u32 sz); u8* rtw_zmalloc(u32 sz); u8* rtw_malloc(u32 sz); void rtw_mfree(u8 *pbuf, u32 sz); #else #define rtw_vmalloc _rtw_vmalloc #define rtw_zvmalloc _rtw_zvmalloc #define rtw_vmfree _rtw_vmfree #define rtw_zmalloc _rtw_zmalloc #define rtw_malloc _rtw_malloc #define rtw_mfree _rtw_mfree #endif #define rtw_free(buf) rtw_mfree((u8 *)buf, 0) void* rtw_malloc2d(int h, int w, int size); void rtw_mfree2d(void *pbuf, int h, int w, int size); void rtw_memcpy(void* dst, void* src, u32 sz); int rtw_memcmp(void *dst, void *src, u32 sz); void rtw_memset(void *pbuf, int c, u32 sz); void rtw_init_listhead(_list *list); u32 rtw_is_list_empty(_list *phead); void rtw_list_insert_head(_list *plist, _list *phead); void rtw_list_insert_tail(_list *plist, _list *phead); void rtw_list_delete(_list *plist); void rtw_init_sema(_sema *sema, int init_val); void rtw_free_sema(_sema *sema); void rtw_up_sema(_sema *sema); void rtw_up_sema_from_isr(_sema *sema); u32 rtw_down_sema(_sema *sema); u32 rtw_down_timeout_sema(_sema *sema, u32 timeout); void rtw_mutex_init(_mutex *pmutex); void rtw_mutex_free(_mutex *pmutex); void rtw_mutex_put(_mutex *pmutex); void rtw_mutex_get(_mutex *pmutex); void rtw_enter_critical(_lock *plock, _irqL *pirqL); void rtw_exit_critical(_lock *plock, _irqL *pirqL); void rtw_enter_critical_bh(_lock *plock, _irqL *pirqL); void rtw_exit_critical_bh(_lock *plock, _irqL *pirqL); int rtw_enter_critical_mutex(_mutex *pmutex, _irqL *pirqL); void rtw_exit_critical_mutex(_mutex *pmutex, _irqL *pirqL); void rtw_spinlock_init(_lock *plock); void rtw_spinlock_free(_lock *plock); void rtw_spinlock_init(_lock *plock); void rtw_spinlock_free(_lock *plock); void rtw_spin_lock(_lock *plock); void rtw_spin_unlock(_lock *plock); void rtw_spinlock_irqsave(_lock *plock, _irqL *irqL); void rtw_spinunlock_irqsave(_lock *plock, _irqL *irqL); int rtw_init_xqueue( _xqueue* queue, const char* name, u32 message_size, u32 number_of_messages ); int rtw_push_to_xqueue( _xqueue* queue, void* message, u32 timeout_ms ); int rtw_pop_from_xqueue( _xqueue* queue, void* message, u32 timeout_ms ); int rtw_deinit_xqueue( _xqueue* queue ); void rtw_init_queue(_queue *pqueue); void rtw_deinit_queue(_queue *pqueue); u32 rtw_is_queue_empty(_queue *pqueue); u32 rtw_queue_empty(_queue *pqueue); u32 rtw_end_of_queue_search(_list *queue, _list *pelement); _list* rtw_get_queue_head(_queue *queue); u32 rtw_get_current_time(void); u32 rtw_systime_to_ms(u32 systime); u32 rtw_systime_to_sec(u32 systime); u32 rtw_ms_to_systime(u32 ms); u32 rtw_sec_to_systime(u32 sec); s32 rtw_get_passing_time_ms(u32 start); s32 rtw_get_time_interval_ms(u32 start, u32 end); void rtw_msleep_os(int ms); void rtw_usleep_os(int us); u32 rtw_atoi(u8* s); void rtw_mdelay_os(int ms); void rtw_udelay_os(int us); void rtw_yield_os(void); void rtw_init_timer(_timer *ptimer, void *adapter, TIMER_FUN pfunc,void* cntx, const char *name); void rtw_set_timer(_timer *ptimer,u32 delay_time); u8 rtw_cancel_timer(_timer *ptimer); void rtw_del_timer(_timer *ptimer); //Atomic integer operations void ATOMIC_SET(ATOMIC_T *v, int i); int ATOMIC_READ(ATOMIC_T *v); void ATOMIC_ADD(ATOMIC_T *v, int i); void ATOMIC_SUB(ATOMIC_T *v, int i); void ATOMIC_INC(ATOMIC_T *v); void ATOMIC_DEC(ATOMIC_T *v); int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i); int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i); int ATOMIC_INC_RETURN(ATOMIC_T *v); int ATOMIC_DEC_RETURN(ATOMIC_T *v); int ATOMIC_DEC_AND_TEST(ATOMIC_T *v); u64 rtw_modular64(u64 x, u64 y); int rtw_get_random_bytes(void* dst, u32 size); u32 rtw_getFreeHeapSize(void); void flush_signals_thread(void); void rtw_acquire_wakelock(void); void rtw_release_wakelock(void); /*********************************** Thread related *****************************************/ int rtw_create_task(struct task_struct *task, const char *name, u32 stack_size, u32 priority, thread_func_t func, void *thctx); void rtw_delete_task(struct task_struct * task); void rtw_wakeup_task(struct task_struct *task); int rtw_create_worker_thread( rtw_worker_thread_t* worker_thread, u8 priority, u32 stack_size, u32 event_queue_size ); int rtw_delete_worker_thread( rtw_worker_thread_t* worker_thread ); #if 0 //TODO void rtw_init_delayed_work(struct delayed_work *dwork, work_func_t func, const char *name); void rtw_deinit_delayed_work(struct delayed_work *dwork); int rtw_queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, u32 delay, void* context); BOOLEAN rtw_cancel_delayed_work(struct delayed_work *dwork); #endif void rtw_thread_enter(char *name); void rtw_thread_exit(void); #ifdef PLATFORM_LINUX #define rtw_warn_on(condition) WARN_ON(condition) #else #define rtw_warn_on(condition) do {} while (0) #endif /*********************************** Timer related *****************************************/ _timerHandle rtw_timerCreate( const signed char *pcTimerName, osdepTickType xTimerPeriodInTicks, u32 uxAutoReload, void * pvTimerID, TIMER_FUN pxCallbackFunction ); u32 rtw_timerDelete( _timerHandle xTimer, osdepTickType xBlockTime ); u32 rtw_timerIsTimerActive( _timerHandle xTimer ); u32 rtw_timerStop( _timerHandle xTimer, osdepTickType xBlockTime ); u32 rtw_timerChangePeriod( _timerHandle xTimer, osdepTickType xNewPeriod, osdepTickType xBlockTime ); /*********************************** OSDEP API end *****************************************/ #define LIST_CONTAINOR(ptr, type, member) \ ((type *)((char *)(ptr)-(SIZE_T)((char *)&((type *)ptr)->member - (char *)ptr))) #define time_after(a,b) ((long)(b) - (long)(a) < 0) #define time_before(a,b) time_after(b,a) #define time_after_eq(a,b) ((long)(a) - (long)(b) >= 0) #define time_before_eq(a,b) time_after_eq(b,a) #define _RND(sz, r) ((((sz)+((r)-1))/(r))*(r)) #define RND4(x) (((x >> 2) + (((x & 3) == 0) ? 0: 1)) << 2) __inline static u32 _RND4(u32 sz) { u32 val; val = ((sz >> 2) + ((sz & 3) ? 1: 0)) << 2; return val; } __inline static u32 _RND8(u32 sz) { u32 val; val = ((sz >> 3) + ((sz & 7) ? 1: 0)) << 3; return val; } __inline static u32 _RND128(u32 sz) { u32 val; val = ((sz >> 7) + ((sz & 127) ? 1: 0)) << 7; return val; } __inline static u32 _RND256(u32 sz) { u32 val; val = ((sz >> 8) + ((sz & 255) ? 1: 0)) << 8; return val; } __inline static u32 _RND512(u32 sz) { u32 val; val = ((sz >> 9) + ((sz & 511) ? 1: 0)) << 9; return val; } __inline static u32 bitshift(u32 bitmask) { u32 i; for (i = 0; i <= 31; i++) if (((bitmask>>i) & 0x1) == 1) break; return i; } /* Macros for handling unaligned memory accesses */ #define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1])) #define RTW_PUT_BE16(a, val) \ do { \ (a)[0] = ((u16) (val)) >> 8; \ (a)[1] = ((u16) (val)) & 0xff; \ } while (0) #define RTW_GET_LE16(a) ((u16) (((a)[1] << 8) | (a)[0])) #define RTW_PUT_LE16(a, val) \ do { \ (a)[1] = ((u16) (val)) >> 8; \ (a)[0] = ((u16) (val)) & 0xff; \ } while (0) #define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \ ((u32) (a)[2])) #define RTW_PUT_BE24(a, val) \ do { \ (a)[0] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[2] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_BE32(a) ((((u32) (a)[0]) << 24) | (((u32) (a)[1]) << 16) | \ (((u32) (a)[2]) << 8) | ((u32) (a)[3])) #define RTW_PUT_BE32(a, val) \ do { \ (a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[3] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_LE32(a) ((((u32) (a)[3]) << 24) | (((u32) (a)[2]) << 16) | \ (((u32) (a)[1]) << 8) | ((u32) (a)[0])) #define RTW_PUT_LE32(a, val) \ do { \ (a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \ (a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \ (a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \ (a)[0] = (u8) (((u32) (val)) & 0xff); \ } while (0) #define RTW_GET_BE64(a) ((((u64) (a)[0]) << 56) | (((u64) (a)[1]) << 48) | \ (((u64) (a)[2]) << 40) | (((u64) (a)[3]) << 32) | \ (((u64) (a)[4]) << 24) | (((u64) (a)[5]) << 16) | \ (((u64) (a)[6]) << 8) | ((u64) (a)[7])) #define RTW_PUT_BE64(a, val) \ do { \ (a)[0] = (u8) (((u64) (val)) >> 56); \ (a)[1] = (u8) (((u64) (val)) >> 48); \ (a)[2] = (u8) (((u64) (val)) >> 40); \ (a)[3] = (u8) (((u64) (val)) >> 32); \ (a)[4] = (u8) (((u64) (val)) >> 24); \ (a)[5] = (u8) (((u64) (val)) >> 16); \ (a)[6] = (u8) (((u64) (val)) >> 8); \ (a)[7] = (u8) (((u64) (val)) & 0xff); \ } while (0) #define RTW_GET_LE64(a) ((((u64) (a)[7]) << 56) | (((u64) (a)[6]) << 48) | \ (((u64) (a)[5]) << 40) | (((u64) (a)[4]) << 32) | \ (((u64) (a)[3]) << 24) | (((u64) (a)[2]) << 16) | \ (((u64) (a)[1]) << 8) | ((u64) (a)[0])) struct osdep_service_ops { u8* (*rtw_vmalloc)(u32 sz); u8* (*rtw_zvmalloc)(u32 sz); void (*rtw_vmfree)(u8 *pbuf, u32 sz); u8* (*rtw_malloc)(u32 sz); u8* (*rtw_zmalloc)(u32 sz); void (*rtw_mfree)(u8 *pbuf, u32 sz); void (*rtw_memcpy)(void* dst, void* src, u32 sz); int (*rtw_memcmp)(void *dst, void *src, u32 sz); void (*rtw_memset)(void *pbuf, int c, u32 sz); void (*rtw_init_sema)(_sema *sema, int init_val); void (*rtw_free_sema)(_sema *sema); void (*rtw_up_sema)(_sema *sema); void (*rtw_up_sema_from_isr)(_sema *sema); u32 (*rtw_down_timeout_sema)(_sema *sema, u32 timeout); void (*rtw_mutex_init)(_mutex *pmutex); void (*rtw_mutex_free)(_mutex *pmutex); void (*rtw_mutex_get)(_mutex *pmutex); void (*rtw_mutex_put)(_mutex *pmutex); void (*rtw_enter_critical)(_lock *plock, _irqL *pirqL); void (*rtw_exit_critical)(_lock *plock, _irqL *pirqL); void (*rtw_enter_critical_bh)(_lock *plock, _irqL *pirqL); void (*rtw_exit_critical_bh)(_lock *plock, _irqL *pirqL); int (*rtw_enter_critical_mutex)(_mutex *pmutex, _irqL *pirqL); void (*rtw_exit_critical_mutex)(_mutex *pmutex, _irqL *pirqL); void (*rtw_spinlock_init)(_lock *plock); void (*rtw_spinlock_free)(_lock *plock); void (*rtw_spin_lock)(_lock *plock); void (*rtw_spin_unlock)(_lock *plock); void (*rtw_spinlock_irqsave)(_lock *plock, _irqL *irqL); void (*rtw_spinunlock_irqsave)(_lock *plock, _irqL *irqL); int (*rtw_init_xqueue)( _xqueue* queue, const char* name, u32 message_size, u32 number_of_messages ); int (*rtw_push_to_xqueue)( _xqueue* queue, void* message, u32 timeout_ms ); int (*rtw_pop_from_xqueue)( _xqueue* queue, void* message, u32 timeout_ms ); int (*rtw_deinit_xqueue)( _xqueue* queue ); u32 (*rtw_get_current_time)(void); u32 (*rtw_systime_to_ms)(u32 systime); u32 (*rtw_systime_to_sec)(u32 systime); u32 (*rtw_ms_to_systime)(u32 ms); u32 (*rtw_sec_to_systime)(u32 sec); void (*rtw_msleep_os)(int ms); void (*rtw_usleep_os)(int us); void (*rtw_mdelay_os)(int ms); void (*rtw_udelay_os)(int us); void (*rtw_yield_os)(void); void (*rtw_init_timer)(_timer *ptimer, void *adapter, TIMER_FUN pfunc,void* cntx, const char *name); void (*rtw_set_timer)(_timer *ptimer,u32 delay_time); u8 (*rtw_cancel_timer)(_timer *ptimer); void (*rtw_del_timer)(_timer *ptimer); void (*ATOMIC_SET)(ATOMIC_T *v, int i); int (*ATOMIC_READ)(ATOMIC_T *v); void (*ATOMIC_ADD)(ATOMIC_T *v, int i); void (*ATOMIC_SUB)(ATOMIC_T *v, int i); void (*ATOMIC_INC)(ATOMIC_T *v); void (*ATOMIC_DEC)(ATOMIC_T *v); int (*ATOMIC_ADD_RETURN)(ATOMIC_T *v, int i); int (*ATOMIC_SUB_RETURN)(ATOMIC_T *v, int i); int (*ATOMIC_INC_RETURN)(ATOMIC_T *v); int (*ATOMIC_DEC_RETURN)(ATOMIC_T *v); u64 (*rtw_modular64)(u64 x, u64 y); int (*rtw_get_random_bytes)(void* dst, u32 size); u32 (*rtw_getFreeHeapSize)(void); int (*rtw_create_task)(struct task_struct *task, const char *name, u32 stack_size, u32 priority, thread_func_t func, void *thctx); void (*rtw_delete_task)(struct task_struct *task); void (*rtw_wakeup_task)(struct task_struct *task); #if 0 //TODO void (*rtw_init_delayed_work)(struct delayed_work *dwork, work_func_t func, const char *name); void (*rtw_deinit_delayed_work)(struct delayed_work *dwork); int (*rtw_queue_delayed_work)(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay, void* context); BOOLEAN (*rtw_cancel_delayed_work)(struct delayed_work *dwork); #endif void (*rtw_thread_enter)(char *name); void (*rtw_thread_exit)(void); _timerHandle (*rtw_timerCreate)( const signed char *pcTimerName, osdepTickType xTimerPeriodInTicks, u32 uxAutoReload, void * pvTimerID, TIMER_FUN pxCallbackFunction ); u32 (*rtw_timerDelete)( _timerHandle xTimer, osdepTickType xBlockTime ); u32 (*rtw_timerIsTimerActive)( _timerHandle xTimer ); u32 (*rtw_timerStop)( _timerHandle xTimer, osdepTickType xBlockTime ); u32 (*rtw_timerChangePeriod)( _timerHandle xTimer, osdepTickType xNewPeriod, osdepTickType xBlockTime ); void (*rtw_acquire_wakelock)(void); void (*rtw_release_wakelock)(void); }; /*********************************** OSDEP API end *****************************************/ #endif //#ifndef __OSDEP_SERVICE_H_