first commit and add gitignore, README.md

This commit is contained in:
ChesterTseng 2016-06-04 19:09:35 +08:00
commit 760756ba2c
1861 changed files with 709236 additions and 0 deletions

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,10 @@
<?xml version="1.0" encoding="iso-8859-1"?>
<workspace>
<project>
<path>$WS_DIR$\Project.ewp</path>
</project>
<batchBuild/>
</workspace>

View file

@ -0,0 +1,203 @@
/*###ICF### Section handled by ICF editor, don't touch! ****/
/*-Editor annotation file-*/
/* IcfEditorFile="$TOOLKIT_DIR$\config\ide\IcfEditor\cortex_v1_0.xml" */
/*-Specials-*/
//define symbol __ICFEDIT_intvec_start__ = 0x00000000;
/*-Memory Regions-*/
define symbol __ICFEDIT_region_ROM_start__ = 0x00000000;
define symbol __ICFEDIT_region_ROM_end__ = 0x000FFFFF;
define symbol __ICFEDIT_region_TCM_start__ = 0x1FFF0000;
define symbol __ICFEDIT_region_TCM_end__ = 0x1FFFFFFF;
define symbol __ICFEDIT_region_ROM_USED_RAM_start__ = 0x10000000;
define symbol __ICFEDIT_region_ROM_USED_RAM_end__ = 0x10005FFF;
//define symbol __ICFEDIT_region_RECY_RAM_start__ = 0x10002090;
//define symbol __ICFEDIT_region_RECY_RAM_end__ = 0x100037FF;
define symbol __ICFEDIT_region_BD_RAM_start__ = 0x10006000;
define symbol __ICFEDIT_region_BD_RAM_end__ = 0x1006FFFF;
define symbol __ICFEDIT_region_SDRAM_RAM_start__ = 0x30000000;
define symbol __ICFEDIT_region_SDRAM_RAM_end__ = 0x301FFFFF;
/*-Sizes-*/
/*define symbol __ICFEDIT_size_cstack__ = 0x400;*/
/*define symbol __ICFEDIT_size_heap__ = 0x800;*/
/**** End of ICF editor section. ###ICF###*/
define memory mem with size = 4G;
define region ROM_region = mem:[from __ICFEDIT_region_ROM_start__ to __ICFEDIT_region_ROM_end__];
define region TCM_region = mem:[from __ICFEDIT_region_TCM_start__ to __ICFEDIT_region_TCM_end__];
define region ROM_USED_RAM_region = mem:[from __ICFEDIT_region_ROM_USED_RAM_start__ to __ICFEDIT_region_ROM_USED_RAM_end__];
//define region RECY_RAM_region = mem:[from __ICFEDIT_region_RECY_RAM_start__ to __ICFEDIT_region_RECY_RAM_end__];
define region BD_RAM_region = mem:[from __ICFEDIT_region_BD_RAM_start__ to __ICFEDIT_region_BD_RAM_end__];
define region SDRAM_RAM_region = mem:[from __ICFEDIT_region_SDRAM_RAM_start__ to __ICFEDIT_region_SDRAM_RAM_end__];
/*define block CSTACK with alignment = 8, size = __ICFEDIT_size_cstack__ { };*/
/*define block HEAP with alignment = 8, size = __ICFEDIT_size_heap__ { };*/
//initialize by copy { readwrite };
//initialize by copy with packing = none { section __DLIB_PERTHREAD }; // Required in a multi-threaded application
//do not initialize { section * };
//place at address mem:__ICFEDIT_intvec_start__ { readonly section .vectors_table };
/*place in RAM_region { readwrite, block CSTACK, block HEAP };*/
place in TCM_region { readwrite };
/****************************************
* ROM Section config *
****************************************/
keep { section .rom };
place at start of ROM_region { readonly, section .rom };
/****************************************
* BD RAM Section config *
****************************************/
keep { section .ram_dedecated_vector_table* };
define block .vector_table with fixed order{section .ram_dedecated_vector_table*};
keep { section .ram_user_define_irq_table* };
define block .user_vector_table with fixed order{section .ram_user_define_irq_table*};
keep { section .ram_user_define_data_table* };
define block .user_data_table with fixed order{section .ram_user_define_data_table*};
define block .rom.bss with fixed order{ section .hal.ram.bss* object hal_misc.o,
section .hal.ram.bss* object hal_pinmux.o,
section .hal.ram.bss* object diag.o,
section .hal.ram.bss* object rtl8195a_ssi_rom.o,
section .hal.ram.bss* object rtl8195a_gpio.o,
section .hal.ram.bss*,
section .timer2_7_vector_table.data*,
section .infra.ram.bss*,
section .mon.ram.bss*,
section .wlan_ram_map* object rom_wlan_ram_map.o,
section .wlan_ram_map*,
section .libc.ram.bss*,
};
keep { section .start.ram.data* };
define block .ram.start.table with fixed order{ section .start.ram.data* };
keep { section .image1.validate.rodata* };
keep { section .infra.ram.data* };
keep { section .timer.ram.data* };
keep { section .hal.ram.data* };
define block .ram_image1.data with fixed order{ section .image1.validate.rodata*,
section .infra.ram.data*,
section .timer.ram.data*,
section .cutb.ram.data*,
section .hal.ram.data* object rom.o, // for standard libaray __impure_data_ptr
section .cutc.ram.data*,
section .hal.ram.data*
};
define block .ram_image1.bss with fixed order{ //section .hal.flash.data*,
section .hal.sdrc.data*
};
define block .ram_image1.text with fixed order{ section .hal.ram.text*,
section .hal.sdrc.text*,
//section .text* object startup.o,
section .infra.ram.text*,
};
define block IMAGE1 with fixed order { section LOADER };
define block IMAGE1_DBG with fixed order { block .ram.start.table, block .ram_image1.data, block .ram_image1.bss, block .ram_image1.text };
place at start of ROM_USED_RAM_region { readwrite,
block .vector_table,
block .user_vector_table,
block .user_data_table,
block .rom.bss,
block IMAGE1
};
keep { section .image2.ram.data* };
define block .image2.start.table1 with fixed order{ section .image2.ram.data* };
keep { section .image2.validate.rodata*, section .custom.validate.rodata* };
define block .image2.start.table2 with fixed order{ section .image2.validate.rodata*, section .custom.validate.rodata* };
define block SHT$$PREINIT_ARRAY { preinit_array };
define block SHT$$INIT_ARRAY { init_array };
define block CPP_INIT with fixed order { block SHT$$PREINIT_ARRAY,
block SHT$$INIT_ARRAY };
define block .ram_image2.text with fixed order{ section .infra.ram.start*,
section .rodata*,
block CPP_INIT,
section .mon.ram.text*,
section .hal.flash.text*,
section .hal.gpio.text*,
section .text* object main.o,
section .text*,
section CODE,
section .otg.rom.text,
section Veneer object startup.o,
section __DLIB_PERTHREAD,
//section .mdns.text
};
define block .ram.data with fixed order{ section .data*,
section DATA,
section .ram.otg.data.a,
section .iar.init_table,
//section .mdns.data
};
define block IMAGE2 with fixed order { block .image2.start.table1, block .image2.start.table2, block .ram_image2.text, block .ram.data };
define block .ram.bss with fixed order{ section .bss*,
section .ssl_ram_map,
section .hal.flash.data*,
section .hal.gpio.data*,
section COMMON,
section .bdsram.data*,
section .bss* object heap_4.o
};
define block .bf_data with fixed order{ section .bfsram.data* };
define block .heap with fixed order{ section .heap* };
define block .stack_dummy with fixed order { section .stack };
place at start of BD_RAM_region { readwrite,
block IMAGE2,
//block IMAGE1_DBG,
block .ram.bss,
//block .bf_data,
};
//place at address mem:0x10052b00 { readwrite,
place at end of BD_RAM_region { readwrite,
block .bf_data,
};
define block SDRAM with fixed order{ section .sdram.text*,
section .sdram.data*,
section .mdns.text*,
section .mdns.data*
};
place at start of SDRAM_RAM_region { readwrite,
block SDRAM,
//block IMAGE1_DBG
};
/* TCM placement */
define overlay TCM_overlay { section .tcm.heap,
section .bss object mem.o,
section .bss object memp.o,
block .heap,
block .stack_dummy
};
/* dummy code placement */
define overlay TCM_overlay { block IMAGE1_DBG };
place at start of TCM_region { readwrite,
overlay TCM_overlay
};
define exported symbol __rom_bss_start__ = 0x10000300; // use in rom
define exported symbol __rom_bss_end__ = 0x10000bc8; // use in rom
define exported symbol __ram_start_table_start__= 0x10000bc8; // use in rom
define exported symbol __image1_validate_code__= 0x10000bdc; // needed by ram code
define exported symbol _rtl_impure_ptr = 0x10001c60; // for standard library

View file

@ -0,0 +1,23 @@
Example Description
This example describes how to use ADC.
1.Prepare a DC power supply to provide a adjustable voltage.
2.Connect anode to HDK board A3, and cathode to GND
3.Run the main function.
4.Will see result like below
AD1:00008049 = 1644 mv, AD2:00002a75 = 17 mv, AD3:00002a94 = 20 mv
NOTE:
1. For 8195AM EVB, A0 and A1 are hardware connected. A2 is also available.
For 8711AM EVB, A0 and A1 are not available. Only A2 is avaliable.
2. ADC need calibration to get correct voltage value by modifing OFFSET and GAIN_DIV.

View file

@ -0,0 +1,88 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "analogin_api.h"
#include <sys_api.h>
#define ADC_CALIBRATION 0
#define MBED_ADC_EXAMPLE_PIN_1 AD_1 // no pin out
#define MBED_ADC_EXAMPLE_PIN_2 AD_2 // HDK, A1
#define MBED_ADC_EXAMPLE_PIN_3 AD_3 // HDK, A2
#if defined (__ICCARM__)
analogin_t adc0;
analogin_t adc1;
analogin_t adc2;
#else
volatile analogin_t adc0;
volatile analogin_t adc1;
volatile analogin_t adc2;
#endif
void adc_delay(void)
{
int i;
for(i=0;i<1600000;i++)
asm(" nop");
}
uint16_t adcdat0 = 0;
uint16_t adcdat1 = 0;
uint16_t adcdat2 = 0;
int32_t v_mv0;
int32_t v_mv1;
int32_t v_mv2;
/*
* OFFSET: value of measuring at 0.000v, value(0.000v)
* GAIN_DIV: value(1.000v)-value(0.000v) or value(2.000v)-value(1.000v) or value(3.000v)-value(2.000v)
*
* MSB 12bit of value is valid, need to truncate LSB 4bit (0xABCD -> 0xABC). OFFSET and GAIN_DIV are truncated values.
*/
#define OFFSET 0x298
#define GAIN_DIV 0x34C
#define AD2MV(ad,offset,gain) (((ad/16)-offset)*1000/gain)
VOID
main (
VOID
)
{
uint16_t offset, gain;
analogin_init(&adc0, MBED_ADC_EXAMPLE_PIN_1); // no pinout on HDK board
analogin_init(&adc1, MBED_ADC_EXAMPLE_PIN_2);
analogin_init(&adc2, MBED_ADC_EXAMPLE_PIN_3);
#if ADC_CALIBRATION
sys_adc_calibration(0, &offset, &gain);
printf("ADC:offset = 0x%x, gain = 0x%x\n", offset, gain);
if((offset==0xFFFF) || (gain==0xFFFF))
#endif
{
offset = OFFSET;
gain = GAIN_DIV;
printf("ADC:offset = 0x%x, gain = 0x%x\n", offset, gain);
}
for (;;){
adcdat0 = analogin_read_u16(&adc0);
adcdat1 = analogin_read_u16(&adc1);
adcdat2 = analogin_read_u16(&adc2);
v_mv0 = AD2MV(adcdat0, offset, gain);
v_mv1 = AD2MV(adcdat1, offset, gain);
v_mv2 = AD2MV(adcdat2, offset, gain);
printf("AD0:%x = %d mv, AD1:%x = %d mv, AD2:%x = %d mv\n", adcdat0, v_mv0, adcdat1, v_mv1, adcdat2, v_mv2);
adc_delay();
}
analogin_deinit(&adc0);
analogin_deinit(&adc1);
analogin_deinit(&adc2);
}

View file

@ -0,0 +1,7 @@
Example Description
This example describes how to use CRYPTO function, it is based on cutomer requirement modified.
use Arduino board to test, and it will show at console

View file

@ -0,0 +1,408 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "FreeRTOS.h"
#include "task.h"
#include "device.h"
#include "serial_api.h"
#include "hal_crypto.h"
#include "main.h"
#include "diag.h"
#include <polarssl/aes.h>
#define STACKSIZE 2048
//static const u8 plaintext[] = "The quick brown fox jumps over the lazy dog";
//static const u8 md5_digest[] = "\x9e\x10\x7d\x9d\x37\x2b\xb6\x82"
// "\x6b\xd8\x1d\x35\x42\xa4\x19\xd6";
//static const u8 md5_key[] = "key";
static const char plaintext[] = "12345678901234567890123456789012345678901234567890123456789012" \
"345678901234567890";
static const char md5_digest[] = { 0x57, 0xED, 0xF4, 0xA2, 0x2B, 0xE3, 0xC9, 0x55,
0xAC, 0x49, 0xDA, 0x2E, 0x21, 0x07, 0xB6, 0x7A };
static const u8 md5_key[] = "key";
static unsigned char md5_test_buf[16][128] =
{
{ "" },
{ "a" },
{ "abc" },
{ "message digest" },
{ "abcdefghijklmnopqrstuvwxyz" },
{ "The quick brown fox jumps over the lazy dog" },
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" },
{ "12345678901234567890123456789012345678901234567890123456789012" \
"345678901234567890" },
{ "" },
{ "a" },
{ "abc" },
{ "message digest" },
{ "abcdefghijklmnopqrstuvwxyz" },
{ "The quick brown fox jumps over the lazy dog" },
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" },
{ "12345678901234567890123456789012345678901234567890123456789012" \
"345678901234567890" }
};
static const int md5_test_buflen[16] =
{
0, 1, 3, 14, 26, 43, 62, 80, 0, 1, 3, 14, 26, 43, 62, 80
};
static const unsigned char md5_test_sum[16][16] =
{
{ 0xD4, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04,
0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E },
{ 0x0C, 0xC1, 0x75, 0xB9, 0xC0, 0xF1, 0xB6, 0xA8,
0x31, 0xC3, 0x99, 0xE2, 0x69, 0x77, 0x26, 0x61 },
{ 0x90, 0x01, 0x50, 0x98, 0x3C, 0xD2, 0x4F, 0xB0,
0xD6, 0x96, 0x3F, 0x7D, 0x28, 0xE1, 0x7F, 0x72 },
{ 0xF9, 0x6B, 0x69, 0x7D, 0x7C, 0xB7, 0x93, 0x8D,
0x52, 0x5A, 0x2F, 0x31, 0xAA, 0xF1, 0x61, 0xD0 },
{ 0xC3, 0xFC, 0xD3, 0xD7, 0x61, 0x92, 0xE4, 0x00,
0x7D, 0xFB, 0x49, 0x6C, 0xCA, 0x67, 0xE1, 0x3B },
{"\x9e\x10\x7d\x9d\x37\x2b\xb6\x82"
"\x6b\xd8\x1d\x35\x42\xa4\x19\xd6"},
{ 0xD1, 0x74, 0xAB, 0x98, 0xD2, 0x77, 0xD9, 0xF5,
0xA5, 0x61, 0x1C, 0x2C, 0x9F, 0x41, 0x9D, 0x9F },
{ 0x57, 0xED, 0xF4, 0xA2, 0x2B, 0xE3, 0xC9, 0x55,
0xAC, 0x49, 0xDA, 0x2E, 0x21, 0x07, 0xB6, 0x7A },
{ 0xD4, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04,
0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E },
{ 0x0C, 0xC1, 0x75, 0xB9, 0xC0, 0xF1, 0xB6, 0xA8,
0x31, 0xC3, 0x99, 0xE2, 0x69, 0x77, 0x26, 0x61 },
{ 0x90, 0x01, 0x50, 0x98, 0x3C, 0xD2, 0x4F, 0xB0,
0xD6, 0x96, 0x3F, 0x7D, 0x28, 0xE1, 0x7F, 0x72 },
{ 0xF9, 0x6B, 0x69, 0x7D, 0x7C, 0xB7, 0x93, 0x8D,
0x52, 0x5A, 0x2F, 0x31, 0xAA, 0xF1, 0x61, 0xD0 },
{ 0xC3, 0xFC, 0xD3, 0xD7, 0x61, 0x92, 0xE4, 0x00,
0x7D, 0xFB, 0x49, 0x6C, 0xCA, 0x67, 0xE1, 0x3B },
{"\x9e\x10\x7d\x9d\x37\x2b\xb6\x82"
"\x6b\xd8\x1d\x35\x42\xa4\x19\xd6"},
{ 0xD1, 0x74, 0xAB, 0x98, 0xD2, 0x77, 0xD9, 0xF5,
0xA5, 0x61, 0x1C, 0x2C, 0x9F, 0x41, 0x9D, 0x9F },
{ 0x57, 0xED, 0xF4, 0xA2, 0x2B, 0xE3, 0xC9, 0x55,
0xAC, 0x49, 0xDA, 0x2E, 0x21, 0x07, 0xB6, 0x7A },
};
u8 digest[64];
u8 cipher_result[2048];
u8 test_result[1024];
serial_t sobj;
/*
*
*
* This test_md5 function is used to test hardware md5 functoinality
*/
void test_md5(void)
{
int i;
int ret;
u8 md5sum[16];
DiagPrintf("MD5 test\r\n");
ret = rtl_crypto_md5(plaintext, strlen(plaintext), (unsigned char *)&digest); // the length of MD5's digest is 16 bytes.
if ( rtl_memcmpb(digest, md5_digest, 16) == 0 ) {
DiagPrintf("MD5 test result is correct, ret=%d\r\n", ret);
} else {
DiagPrintf("MD5 test result is WRONG!!, ret=%d\r\n", ret);
}
for( i = 0; i < 16; i++ )
{
DiagPrintf( " MD5 test #%d: ", i + 1 );
ret = rtl_crypto_md5(md5_test_buf[i], md5_test_buflen[i], md5sum); // the length of MD5's digest is 16 bytes.
DiagPrintf(" MD5 ret=%d\n", ret);
if( rtl_memcmpb( md5sum, md5_test_sum[i], 16 ) != 0 )
{
DiagPrintf( "failed\n" );
memset(md5sum,0,16);
}
else{
DiagPrintf( "passed\n" );
memset(md5sum,0,16);}
}
}
//
// vector : AES CBC 128 bit :
// http://www.inconteam.com/software-development/41-encryption/55-aes-test-vectors#aes-cbc-128
//
//#ifdef __ICCARM__
//#pragma data_alignment = 4
//#elif defined (__GNUC__)
//__attribute__ ((aligned (4)))
//#endif
static const unsigned char aes_test_key[16] =
{
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c
} ;
//#ifdef __ICCARM__
//#pragma data_alignment = 4
//#elif defined (__GNUC__)
//__attribute__ ((aligned (4)))
//#endif
static const unsigned char aes_test_iv_1[16] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};
static const unsigned char aes_test_buf[16] =
{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
};
static const unsigned char aes_test_ecb_buf[160] =
{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a
};
static const unsigned char aes_test_res_128[16] =
{
0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46,
0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d
};
static const unsigned char aes_test_ecb_res_128[160] =
{
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97,
0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60,
0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97
};
/*
*
* THis test_aes_cbc function is use to directly test hardware aes cbc crypto functionality
*
*/
int test_aes_cbc(void)
{
const u8 *key, *pIv;
u32 keylen= 0;
u32 ivlen = 0;
u8 *message;
u32 msglen;
u8 *pResult;
int ret;
DiagPrintf("AES CBC test\r\n");
key = aes_test_key;
keylen = 16;
pIv = aes_test_iv_1;
ivlen = 16;
pResult = cipher_result;
message = (unsigned char *)aes_test_buf;
msglen = sizeof(aes_test_buf);
ret = rtl_crypto_aes_cbc_init(key,keylen);
if ( ret != 0 ) {
DiagPrintf("AES CBC init failed\r\n");
return ret;
}
ret = rtl_crypto_aes_cbc_encrypt(message, msglen, pIv, ivlen, pResult);
if ( ret != 0 ) {
DiagPrintf("AES CBC encrypt failed\r\n");
return ret;
}
if ( rtl_memcmpb(aes_test_res_128, pResult, msglen) == 0 ) {
DiagPrintf("AES CBC encrypt result success\r\n");
} else {
DiagPrintf("AES CBC encrypt result failed\r\n");
}
message = pResult;
ret = rtl_crypto_aes_cbc_decrypt(message, msglen, pIv, ivlen, pResult);
if ( ret != 0 ) {
DiagPrintf("AES CBC decrypt failed, ret=%d\r\n", ret);
return ret;
}
if ( rtl_memcmpb(aes_test_buf, pResult, msglen) == 0 ) {
DiagPrintf("AES CBC decrypt result success\r\n");
} else {
DiagPrintf("AES CBC decrypt result failed\r\n");
}
return 0;
}
/*
*
* THis test_aes_ecb function is use to directly test hardware ecb cbc crypto functionality
*
* The input parameter for ecb need to confirm iv is null and ivlen is 0
*/
int test_aes_ecb(void)
{
const u8 *key, *pIv;
u32 keylen= 0;
u32 ivlen = 0;
u8 *message;
u32 msglen;
u8 *pResult;
int ret;
DiagPrintf("AES ECB test\r\n");
key = aes_test_key;
keylen = 16;
pIv = NULL;
ivlen = 0;
pResult = cipher_result;
message = (unsigned char *)aes_test_ecb_buf;
msglen = sizeof(aes_test_buf);
//for(int i=0;i<msglen;i++)
//printf("\r\n first message[%d] = %p,",i,message[i]);
ret = rtl_crypto_aes_ecb_init(key,keylen);
if ( ret != 0 ) {
DiagPrintf("AES ECB init failed\r\n");
return ret;
}
ret = rtl_crypto_aes_ecb_encrypt(message, msglen, pIv, ivlen, pResult);
if ( ret != 0 ) {
DiagPrintf("AES ECB encrypt failed\r\n");
return ret;
}
if ( rtl_memcmpb(aes_test_ecb_res_128, pResult, msglen) == 0 )
{
DiagPrintf("AES ECB encrypt result success\r\n");
}
else {
DiagPrintf("AES ECB encrypt result failed\r\n");
}
message = pResult;
//for(int i=0;i<msglen;i++)
//printf("\r\n second message[%d] = %p,",i,message[i]);
ret = rtl_crypto_aes_ecb_decrypt(message, msglen, pIv, ivlen, pResult);
if ( ret != 0 ) {
DiagPrintf("AES ECB decrypt failed, ret=%d\r\n", ret);
return ret;
}
if ( rtl_memcmpb(aes_test_ecb_buf, pResult, msglen) == 0 )
{
DiagPrintf("AES ECB decrypt result success\r\n");
}
else {
DiagPrintf("AES ECB decrypt result failed\r\n");
}
//for(int i=0;i<msglen;i++)
//printf("\r\n last message[%d] = %p,",i,message[i]);
return 0;
}
void main(void)
{
// sample text
char rc;
//
int ret;
int loop=0;
u32 keylen= 0;
u32 ivlen = 0;
u8 *pResult;
u8 *message;
u32 *ResultLen;
u32 msglen = 0;
const u8 *key, *pIv;
key = aes_test_key;
keylen = 16;
pIv = aes_test_iv_1;
ivlen = 16;
//
message = (unsigned char *)aes_test_buf;
msglen = sizeof(aes_test_buf);
DiagPrintf("CRYPTO API Demo...\r\n");
if ( rtl_cryptoEngine_init() != 0 ) {
DiagPrintf("crypto engine init failed\r\n");
}
else
printf("init success\n");
pResult = test_result;
test_md5();
test_aes_cbc();
test_aes_ecb();
//aes_test(); //added api combined aes_cbc setkey and cryption into one function
}

View file

@ -0,0 +1,10 @@
Example Description
This example describes how to read/write efuse in user blocks.
There are three blocks, each block has 32 bytes.
Requirement Components:
None

View file

@ -0,0 +1,137 @@
#include "diag.h"
#include "hal_efuse.h"
void main(void)
{
// There are three blocks, each block has 32 bytes.
u8 CodeWordNum; // 0~3, 0: 1~8 bytes, 1: 9~16 bytes, 2: 17~24 bytes, 3: 25~32 bytes
u8 WordEnable; // 0x0~0xF, 4bits, 1 bit is for 2 bytes, Max: 8 bytes.
// bit0: 1,2 byte , bit1: 3,4 byte , bit2: 5,6 byte , bit3: 7,8 byte
u8 content[32]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
u8 i;
// Block 1
u8 text1_0[8] = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07};
u8 text1_1[8] = {0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F};
u8 text1_2[8] = {0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17};
u8 text1_3[8] = {0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F};
// Block 2
u8 text2_0[8] = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27};
u8 text2_1[8] = {0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F};
u8 text2_2[8] = {0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37};
u8 text2_3[8] = {0x38,0x39,0x3A,0x3B,0x3C,0x3D,0x3E,0x3F};
// Block 3
u8 text3_0[8] = {0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47};
u8 text3_1[8] = {0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F};
u8 text3_2[8] = {0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57};
u8 text3_3[8] = {0x58,0x59,0x5A,0x5B,0x5C,0x5D,0x5E,0x5F};
u8 bWriteBlock1 = 0;
u8 bWriteBlock2 = 0;
u8 bWriteBlock3 = 0;
DBG_8195A("\nefuse user block: Test Start\n");
//------------------------------------------------//
// efuse user block 1 //
//------------------------------------------------//
// write efuse user block 1
if(bWriteBlock1){
// write 1~8 bytes in block 1
CodeWordNum = 0;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant1(CodeWordNum, WordEnable, text1_0) == _SUCCESS);
DBG_8195A("write 1~8 bytes of block 1 success.\n");
// write 9~16 bytes in block 1
CodeWordNum = 1;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant1(CodeWordNum, WordEnable, text1_1) == _SUCCESS);
DBG_8195A("write 9~16 bytes of block 1 success.\n");
// write 17~24 bytes in block 1
CodeWordNum = 2;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant1(CodeWordNum, WordEnable, text1_2) == _SUCCESS);
DBG_8195A("write 17~24 bytes of block 1 success.\n");
// write 25~32 bytes in block 1
CodeWordNum = 3;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant1(CodeWordNum, WordEnable, text1_3) == _SUCCESS);
DBG_8195A("write 25~32 bytes of block 1 success.\n");
}
// read efuse user block 1, read 32 bytes once.
_memset(content, 0, 32);
ReadEfuseContant1(content);
DBG_8195A("efuse user block 1 :\n");
for(i=0; i<32; i++){
DBG_8195A("[%d]\t0x%02x\n", i+1, content[i]);
}
//------------------------------------------------//
// efuse user block 2 //
//------------------------------------------------//
// write efuse user block 2
if(bWriteBlock2){
// write 1~8 bytes in block 2
CodeWordNum = 0;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant2(CodeWordNum, WordEnable, text2_0) == _SUCCESS);
DBG_8195A("write 1~8 bytes of block 2 success.\n");
// write 9~16 bytes in block 2
CodeWordNum = 1;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant2(CodeWordNum, WordEnable, text2_1) == _SUCCESS);
DBG_8195A("write 9~16 bytes of block 2 success.\n");
// write 17~24 bytes in block 2
CodeWordNum = 2;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant2(CodeWordNum, WordEnable, text2_2) == _SUCCESS);
DBG_8195A("write 17~24 bytes of block 2 success.\n");
// write 25~32 bytes in block 2
CodeWordNum = 3;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant2(CodeWordNum, WordEnable, text2_3) == _SUCCESS);
DBG_8195A("write 25~32 bytes of block 2 success.\n");
}
// read efuse user block 2, read 32 bytes once.
_memset(content, 0, 32);
ReadEfuseContant2(content);
DBG_8195A("efuse user block 2 :\n");
for(i=0; i<32; i++){
DBG_8195A("[%d]\t0x%02x\n", i+1, content[i]);
}
//------------------------------------------------//
// efuse user block 3 //
//------------------------------------------------//
// write efuse user block 3
if(bWriteBlock3){
// write 1~8 bytes in block 3
CodeWordNum = 0;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant3(CodeWordNum, WordEnable, text3_0) == _SUCCESS);
DBG_8195A("write 1~8 bytes of block 3 success.\n");
// write 9~16 bytes in block 3
CodeWordNum = 1;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant3(CodeWordNum, WordEnable, text3_1) == _SUCCESS);
DBG_8195A("write 9~16 bytes of block 3 success.\n");
// write 17~24 bytes in block 3
CodeWordNum = 2;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant3(CodeWordNum, WordEnable, text3_2) == _SUCCESS);
DBG_8195A("write 17~24 bytes of block 3 success.\n");
// write 25~32 bytes in block 3
CodeWordNum = 3;
WordEnable = 0xF; // max: 8 bytes
if(WriteEfuseContant3(CodeWordNum, WordEnable, text3_3) == _SUCCESS);
DBG_8195A("write 25~32 bytes of block 3 success.\n");
}
// read efuse user block 3, read 32 bytes once.
_memset(content, 0, 32);
ReadEfuseContant3(content);
DBG_8195A("efuse user block 3 :\n");
for(i=0; i<32; i++){
DBG_8195A("[%d]\t0x%02x\n", i+1, content[i]);
}
DBG_8195A("efuse user block: Test Done\n");
for(;;);
}

View file

@ -0,0 +1,8 @@
Example Description
This example read a specific flash offset, modify it and re-read again.
Requirement Components:
None

View file

@ -0,0 +1,95 @@
#include "diag.h"
#include "main.h"
#include "objects.h"
#include "flash_api.h"
// Decide starting flash address for storing application data
// User should pick address carefully to avoid corrupting image section
#define FLASH_APP_BASE 0xFF000
void main(void)
{
flash_t flash;
uint32_t address = FLASH_APP_BASE;
#if 1
uint32_t val32_to_write = 0x13572468;
uint32_t val32_to_read;
int loop = 0;
int result = 0;
for(loop = 0; loop < 10; loop++)
{
flash_read_word(&flash, address, &val32_to_read);
DBG_8195A("Read Data 0x%x\n", val32_to_read);
flash_erase_sector(&flash, address);
flash_write_word(&flash, address, val32_to_write);
flash_read_word(&flash, address, &val32_to_read);
DBG_8195A("Read Data 0x%x\n", val32_to_read);
// verify result
result = (val32_to_write == val32_to_read) ? 1 : 0;
//printf("\r\nResult is %s\r\n", (result) ? "success" : "fail");
DBG_8195A("\r\nResult is %s\r\n", (result) ? "success" : "fail");
result = 0;
}
#else
int VERIFY_SIZE = 256;
int SECTOR_SIZE = 16;
uint8_t writedata[VERIFY_SIZE];
uint8_t readdata[VERIFY_SIZE];
uint8_t verifydata = 0;
int loop = 0;
int index = 0;
int sectorindex = 0;
int result = 0;
int resultsector = 0;
int testloop = 0;
for(testloop = 0; testloop < 1; testloop++){
address = FLASH_APP_BASE;
for(sectorindex = 0; sectorindex < 4080; sectorindex++){
result = 0;
//address += SECTOR_SIZE;
flash_erase_sector(&flash, address);
//DBG_8195A("Address = %x \n", address);
for(loop = 0; loop < SECTOR_SIZE; loop++){
for(index = 0; index < VERIFY_SIZE; index++)
{
writedata[index] = verifydata + index;
}
flash_stream_write(&flash, address, VERIFY_SIZE, &writedata);
flash_stream_read(&flash, address, VERIFY_SIZE, &readdata);
for(index = 0; index < VERIFY_SIZE; index++)
{
//DBG_8195A("Address = %x, Writedata = %x, Readdata = %x \n",address,writedata[index],readdata[index]);
if(readdata[index] != writedata[index]){
DBG_8195A("Error: Loop = %d, Address = %x, Writedata = %x, Readdata = %x \n",testloop,address,writedata[index],readdata[index]);
}
else{
result++;
//DBG_8195A(ANSI_COLOR_BLUE"Correct: Loop = %d, Address = %x, Writedata = %x, Readdata = %x \n"ANSI_COLOR_RESET,testloop,address,writedata[index],readdata[index]);
}
}
address += VERIFY_SIZE;
}
if(result == VERIFY_SIZE * SECTOR_SIZE){
//DBG_8195A("Sector %d Success \n", sectorindex);
resultsector++;
}
}
if(resultsector == 4079){
DBG_8195A("Test Loop %d Success \n", testloop);
}
resultsector = 0;
verifydata++;
}
//DBG_8195A("%d Sector Success \n", resultsector);
DBG_8195A("Test Done");
#endif
for(;;);
}

View file

@ -0,0 +1,158 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "diag.h"
#include "main.h"
#include "dma_api.h"
#if 1
//Multi-Block Example Demo
#define DMA_CPY_LEN 176
#define DMA_BLOCK_LENGTH 22
#define DMA_SRC_OFFSET 0
#define DMA_DST_OFFSET 0
#define BLOCK_NUM 8
gdma_t gdma;
uint8_t TestBuf1[DMA_CPY_LEN];
uint8_t TestBuf2[DMA_CPY_LEN];
volatile uint8_t dma_done;
struct BlockInfo{
u32 SrcAddr;
u32 DstAddr;
u32 BlockLength;
u32 SrcOffset;
u32 DstOffset;
};
void dma_done_handler(uint32_t id) {
DiagPrintf("DMA Copy Done!!\r\n");
dma_done = 1;
}
int main(void) {
int i = 0,err = 0;
struct BlockInfo block_info[BLOCK_NUM];
//Set how many blocks we want to transfer (16 at most)
gdma.gdma_obj.BlockNum = BLOCK_NUM;
//Initialize DMA multi-block mode setting
dma_memcpy_aggr_init(&gdma, dma_done_handler, (uint32_t) &gdma);
_memset(TestBuf1, 0,DMA_CPY_LEN);
for(i = 0; i < DMA_CPY_LEN; i++){
TestBuf1[i] = DMA_CPY_LEN - 1 - i;
}
_memset(TestBuf2, 0,DMA_CPY_LEN);
dma_done = 0;
for(i = 0; i < BLOCK_NUM; i++){
//User can decide the relation between SrcOffset/DstOffset,SrcAddr/DstAddr and Block length
// For example :
//block_info[i].SrcOffset = 0;
//block_info[i].DstOffset = 4;
//block_info[i].SrcAddr = &TestBuf1[ i * DMA_BLOCK_LENGTH] ;//SRC
//block_info[i].DstAddr = &TestBuf2[0] + (DMA_BLOCK_LENGTH + block_info[i].DstOffset )*i;//Dest
//block_info[i].BlockLength = DMA_BLOCK_LENGTH;
block_info[i].SrcOffset = 0;
block_info[i].DstOffset = 0;
block_info[i].SrcAddr = (uint32_t) &TestBuf1[ i * DMA_BLOCK_LENGTH] ;//SRC
block_info[i].DstAddr = (uint32_t) &TestBuf2[ i * DMA_BLOCK_LENGTH] ;//Dest
block_info[i].BlockLength = DMA_BLOCK_LENGTH;
//DiagPrintf("block_info[%d].SrcAddr = %x\r\n",i, block_info[i].SrcAddr);
//DiagPrintf("block_info[%d].DstAddr = %x\r\n",i, block_info[i].DstAddr);
//DiagPrintf("block_info[%d].BlockLength = %x\r\n",i, block_info[i].BlockLength);
//DiagPrintf("block_info[%d].SrcOffset = %x\r\n",i, block_info[i].SrcOffset);
//DiagPrintf("block_info[%d].DstOffset = %x\r\n",i, block_info[i].DstOffset);
}
dma_memcpy_aggr(&gdma, (PHAL_GDMA_BLOCK) &block_info);
while (dma_done == 0);
err = 0;
for (i=0;i<DMA_CPY_LEN;i++) {
//DiagPrintf("dma_done = %x\r\n", dma_done);
//DiagPrintf("TestBuf2[%d] = %x\r\n",i, TestBuf2[i]);
if (TestBuf2[i+DMA_DST_OFFSET] != TestBuf1[i+DMA_SRC_OFFSET]) {
DiagPrintf("DMA Copy Memory Compare Err, %d %x %x\r\n", i, TestBuf1[i+DMA_SRC_OFFSET], TestBuf2[i+DMA_DST_OFFSET]);
DiagPrintf("DMA done = %x\r\n", dma_done);
err = 1;
break;
}
}
if (!err) {
DiagPrintf("DMA Copy Memory Compare OK!! %x\r\n", TestBuf2[DMA_DST_OFFSET+DMA_CPY_LEN - 1]);
}
HalGdmaMemCpyDeInit(&(gdma.gdma_obj));
while(1);
return 0;
}
#else
//Single-Block Example Demo
#define DMA_CPY_LEN 256
#define DMA_SRC_OFFSET 0
#define DMA_DST_OFFSET 0
gdma_t gdma;
uint8_t TestBuf1[512];
uint8_t TestBuf2[512];
volatile uint8_t dma_done;
void dma_done_handler(uint32_t id) {
DiagPrintf("DMA Copy Done!!\r\n");
dma_done = 1;
}
int main(void) {
int i;
int err;
dma_memcpy_init(&gdma, dma_done_handler, (uint32_t)&gdma);
for (i=0;i< 512;i++) {
TestBuf1[i] = i;
}
_memset(TestBuf2, 0xff, 512);
dma_done = 0;
dma_memcpy(&gdma, TestBuf2+DMA_DST_OFFSET, TestBuf1+DMA_SRC_OFFSET, DMA_CPY_LEN);
while (dma_done == 0);
err = 0;
for (i=0;i<DMA_CPY_LEN;i++) {
if (TestBuf2[i+DMA_DST_OFFSET] != TestBuf1[i+DMA_SRC_OFFSET]) {
DiagPrintf("DMA Copy Memory Compare Err, %d %x %x\r\n", i, TestBuf1[i+DMA_SRC_OFFSET], TestBuf2[i+DMA_DST_OFFSET]);
err = 1;
break;
}
}
if (!err) {
DiagPrintf("DMA Copy Memory Compare OK!! %x\r\n", TestBuf2[DMA_DST_OFFSET+DMA_CPY_LEN]);
}
HalGdmaMemCpyDeInit(&(gdma.gdma_obj));
while(1);
return 0;
}
#endif

View file

@ -0,0 +1,14 @@
Example Description
This example describes how to use GPIO read/write by mbed api.
Requirement Components:
a LED
a push button
Pin name PC_4 and PC_5 map to GPIOC_4 and GPIOC_5:
- PC_4 as input with internal pull-high, connect a push button to this pin and ground.
- PC_5 as output, connect a LED to this pin and ground.
In this example, the LED is on when the push button is pressed.

View file

@ -0,0 +1,49 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "gpio_api.h" // mbed
#include "main.h"
#define GPIO_LED_PIN PC_5
#define GPIO_PUSHBT_PIN PC_4
/**
* @brief Main program.
* @param None
* @retval None
*/
//int main_app(IN u16 argc, IN u8 *argv[])
void main(void)
{
gpio_t gpio_led;
gpio_t gpio_btn;
// Init LED control pin
gpio_init(&gpio_led, GPIO_LED_PIN);
gpio_dir(&gpio_led, PIN_OUTPUT); // Direction: Output
gpio_mode(&gpio_led, PullNone); // No pull
// Initial Push Button pin
gpio_init(&gpio_btn, GPIO_PUSHBT_PIN);
gpio_dir(&gpio_btn, PIN_INPUT); // Direction: Input
gpio_mode(&gpio_btn, PullUp); // Pull-High
while(1){
if (gpio_read(&gpio_btn)) {
// turn off LED
gpio_write(&gpio_led, 0);
}
else {
// turn on LED
gpio_write(&gpio_led, 1);
}
}
}

View file

@ -0,0 +1,13 @@
Example Description
This example describes how to use GPIO read/write by mbed api.
Requirement Components:
a LED
a push button
Pin name PC_4 and PC_5 map to GPIOC_4 and GPIOC_5:
- PC_4 as input with internal pull-high, connect a push button to this pin and ground.
- PC_5 as output, connect a LED to this pin and ground.
In this example, push the button to trigger interrupt to turn on/off the LED.

View file

@ -0,0 +1,59 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "gpio_api.h" // mbed
#include "gpio_irq_api.h" // mbed
#include "diag.h"
#include "main.h"
#define GPIO_LED_PIN PC_5
#define GPIO_IRQ_PIN PC_4
int led_ctrl;
gpio_t gpio_led;
extern u32 ConfigDebugWarn;
void gpio_demo_irq_handler (uint32_t id, gpio_irq_event event)
{
gpio_t *gpio_led;
DBG_GPIO_WARN("%s==>\n", __FUNCTION__);
gpio_led = (gpio_t *)id;
led_ctrl = !led_ctrl;
gpio_write(gpio_led, led_ctrl);
}
/**
* @brief Main program.
* @param None
* @retval None
*/
void main(void)
{
gpio_irq_t gpio_btn;
// Init LED control pin
gpio_init(&gpio_led, GPIO_LED_PIN);
gpio_dir(&gpio_led, PIN_OUTPUT); // Direction: Output
gpio_mode(&gpio_led, PullNone); // No pull
// Initial Push Button pin as interrupt source
gpio_irq_init(&gpio_btn, GPIO_IRQ_PIN, gpio_demo_irq_handler, (uint32_t)(&gpio_led));
gpio_irq_set(&gpio_btn, IRQ_FALL, 1); // Falling Edge Trigger
gpio_irq_enable(&gpio_btn);
led_ctrl = 1;
gpio_write(&gpio_led, led_ctrl);
while(1);
}

View file

@ -0,0 +1,14 @@
Example Description
This example describes how to disable JTAG module and use GPIO pin to blink led.
Requirement Components:
a LED
a push button
PC_4 as input with internal pull-high, connect a push button to this pin and ground.
If button is not pressed while device boot up, then jtag module is turned off.
If button is pressed while device boot up, then we don't turn off jtag module.
PE_0 as output, connect a LED to this pin and ground.
If jatg module is turned off, then we blink led.

View file

@ -0,0 +1,56 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "gpio_api.h" // mbed
#include "sys_api.h" // for sys_jtag_off()
#include "main.h"
#define GPIO_JTAG_ENABLE_PIN PC_4
#define GPIO_LED_PIN PE_0
void main(void)
{
int i;
gpio_t gpio_jtag_enable;
gpio_t gpio_led;
gpio_init(&gpio_jtag_enable, GPIO_JTAG_ENABLE_PIN);
gpio_dir(&gpio_jtag_enable, PIN_INPUT);
gpio_mode(&gpio_jtag_enable, PullUp);
if (gpio_read(&gpio_jtag_enable) == 0)
{
// JTAG enable pin is disabled
sys_jtag_off();
printf("jtag off\r\n");
// Now you can use jtag pin for other gpio usage
// ex. use PE_0 to blink led
gpio_init(&gpio_led, GPIO_LED_PIN);
gpio_dir(&gpio_led, PIN_OUTPUT); // Direction: Output
gpio_mode(&gpio_led, PullNone); // No pull
while(1)
{
gpio_write(&gpio_led, 1);
for (i=0; i<10000000; i++) asm(" nop"); // simple delay
gpio_write(&gpio_led, 0);
for (i=0; i<10000000; i++) asm(" nop"); // simple delay
}
}
else
{
// JTAG enable pin is enabled
printf("jtag on\r\n");
}
for (;;);
}

View file

@ -0,0 +1,21 @@
Example Description
This example describes how to implement high/low level trigger on 1 gpio pin.
Pin name PC_4 and PC_5 map to GPIOC_4 and GPIOC_5:
Connect PC_4 and PC_5
- PC_4 as gpio input high/low level trigger.
- PC_5 as gpio output
In this example, PC_5 is signal source that change level to high and low periodically.
PC_4 setup to listen low level events in initial.
When PC_4 catch low level events, it disable the irq to avoid receiving duplicate events.
(NOTE: the level events will keep invoked if level keeps in same level)
Then PC_4 is configured to listen high level events and enable irq.
As PC_4 catches high level events, it changes back to listen low level events.
Thus PC_4 can handle both high/low level events.
In this example, you will see log that prints high/low level event periodically.

View file

@ -0,0 +1,73 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "gpio_irq_api.h" // mbed
#include "gpio_irq_ex_api.h"
#include "diag.h"
#include "main.h"
#define GPIO_IRQ_LEVEL_PIN PC_4
#define GPIO_SIGNAL_SOURCE PC_5
gpio_irq_t gpio_level;
int current_level = IRQ_LOW;
void gpio_level_irq_handler (uint32_t id, gpio_irq_event event)
{
uint32_t *level = (uint32_t *) id;
// Disable level irq because the irq will keep triggered when it keeps in same level.
gpio_irq_disable(&gpio_level);
// make some software de-bounce here if the signal source is not stable.
if (*level == IRQ_LOW )
{
printf("low level event\r\n");
// Change to listen to high level event
*level = IRQ_HIGH;
gpio_irq_set(&gpio_level, IRQ_HIGH, 1);
gpio_irq_enable(&gpio_level);
}
else if (*level == IRQ_HIGH)
{
printf("high level event\r\n");
// Change to listen to low level event
*level = IRQ_LOW;
gpio_irq_set(&gpio_level, IRQ_LOW, 1);
gpio_irq_enable(&gpio_level);
}
}
void main(void)
{
int i;
// configure level trigger handler
gpio_irq_init(&gpio_level, GPIO_IRQ_LEVEL_PIN, gpio_level_irq_handler, (uint32_t)(&current_level));
gpio_irq_set(&gpio_level, IRQ_LOW, 1);
gpio_irq_enable(&gpio_level);
// configure gpio as signal source for high/low level trigger
gpio_t gpio_src;
gpio_init(&gpio_src, GPIO_SIGNAL_SOURCE);
gpio_dir(&gpio_src, PIN_OUTPUT); // Direction: Output
gpio_mode(&gpio_src, PullNone);
while(1) {
gpio_write(&gpio_src, 1);
for (i=0; i<20000000; i++) asm("nop");
gpio_write(&gpio_src, 0);
for (i=0; i<20000000; i++) asm("nop");
}
}

View file

@ -0,0 +1,9 @@
Example Description
This example describes how to use GPIO Port read/write by mbed api.
Requirement Components:
8 LEDs
2 bords

View file

@ -0,0 +1,82 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "port_api.h" // mbed
#include "PortNames.h" // mbed
#include "main.h"
#define PORT_OUTPUT_TEST 1 //1: output test, 0: input test
#define LED_PATTERN_NUM 12
port_t port0;
const uint8_t led_pattern[LED_PATTERN_NUM]={0x81, 0x42, 0x24, 0x18, 0x00, 0x88, 0x44, 0x22, 0x11, 0xff, 0x00};
extern void wait_ms(u32);
/**
* @brief Main program.
* @param None
* @retval None
*/
#if PORT_OUTPUT_TEST
void main(void)
{
int i;
port_mode(&port0, PullNone);
// Only PortA or PortB is available now
port_init(&port0, PortA, 0xFF, PIN_OUTPUT);
while(1){
for (i=0;i<LED_PATTERN_NUM;i++) {
port_write(&port0, led_pattern[i]);
wait_ms(200);
}
}
}
#else
void main(void)
{
int i;
int value_new, value_tmp, value_old;
int stable;
port_mode(&port0, PullNone);
// Only PortA or PortB is available now
port_init(&port0, PortA, 0xFF, PIN_INPUT);
value_old = port_read(&port0);
while(1){
// De-bonse
value_new = port_read(&port0);
stable = 0;
while (stable < 3){
value_tmp = port_read(&port0);
if (value_new != value_tmp) {
value_new = value_tmp;
stable = 0;
}
else {
stable++;
}
}
if (value_old != value_new) {
DBG_8195A("0x%x\r\n", value_new);
value_old = value_new;
}
wait_ms(50);
}
}
#endif

View file

@ -0,0 +1,17 @@
Example Description
This example describes how to use general timer.
Requirement Components:
2 LED
Connect the two LED to port PC_0 and PC_1 respectivly.
Behavior:
The two LED will blink at different frequence.
Two timers are intialized in this example
(1) Periodic timer
(2) One shut timer

View file

@ -0,0 +1,71 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "gpio_api.h" // mbed
#include "timer_api.h"
#include "main.h"
#define GPIO_LED_PIN1 PC_0
#define GPIO_LED_PIN2 PC_1
/**
* @brief Main program.
* @param None
* @retval None
*/
//int main_app(IN u16 argc, IN u8 *argv[])
gtimer_t my_timer1;
gtimer_t my_timer2;
gpio_t gpio_led1;
gpio_t gpio_led2;
volatile uint32_t time2_expired=0;
void timer1_timeout_handler(uint32_t id)
{
gpio_t *gpio_led = (gpio_t *)id;
gpio_write(gpio_led, !gpio_read(gpio_led));
}
void timer2_timeout_handler(uint32_t id)
{
time2_expired = 1;
}
void main(void)
{
// Init LED control pin
gpio_init(&gpio_led1, GPIO_LED_PIN1);
gpio_dir(&gpio_led1, PIN_OUTPUT); // Direction: Output
gpio_mode(&gpio_led1, PullNone); // No pull
gpio_init(&gpio_led2, GPIO_LED_PIN2);
gpio_dir(&gpio_led2, PIN_OUTPUT); // Direction: Output
gpio_mode(&gpio_led2, PullNone); // No pull
// Initial a periodical timer
gtimer_init(&my_timer1, TIMER0);
gtimer_start_periodical(&my_timer1, 1000000, (void*)timer1_timeout_handler, (uint32_t)&gpio_led1);
// Initial a one-shout timer and re-trigger it in while loop
gtimer_init(&my_timer2, TIMER1);
time2_expired = 0;
gtimer_start_one_shout(&my_timer2, 500000, (void*)timer2_timeout_handler, NULL);
while(1){
if (time2_expired) {
gpio_write(&gpio_led2, !gpio_read(&gpio_led2));
time2_expired = 0;
gtimer_start_one_shout(&my_timer2, 500000, (void*)timer2_timeout_handler, NULL);
}
}
}

View file

@ -0,0 +1,9 @@
Example Description
This example describes how to use general timer API to implement a software RTC.
Behavior:
This example will print the time message to the log UART every 1 sec.

View file

@ -0,0 +1,126 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include <time.h>
#include "timer_api.h"
#include "main.h"
#define SW_RTC_TIMER_ID TIMER5
static gtimer_t sw_rtc;
static volatile struct tm rtc_timeinfo;
const static u8 dim[14] = {
31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28 };
static inline bool is_leap_year(unsigned int year)
{
return (!(year % 4) && (year % 100)) || !(year % 400);
}
static u8 days_in_month (u8 month, u8 year)
{
u8 ret = dim [ month - 1 ];
if (ret == 0)
ret = is_leap_year (year) ? 29 : 28;
return ret;
}
static void sw_rtc_tick_handler(uint32_t id)
{
if(++rtc_timeinfo.tm_sec > 59) { // Increment seconds, check for overflow
rtc_timeinfo.tm_sec = 0; // Reset seconds
if(++rtc_timeinfo.tm_min > 59) { // Increment minutes, check for overflow
rtc_timeinfo.tm_min = 0; // Reset minutes
if(++rtc_timeinfo.tm_hour > 23) { // Increment hours, check for overflow
rtc_timeinfo.tm_hour = 0; // Reset hours
++rtc_timeinfo.tm_yday; // Increment day of year
if(++rtc_timeinfo.tm_wday > 6) // Increment day of week, check for overflow
rtc_timeinfo.tm_wday = 0; // Reset day of week
// Increment day of month, check for overflow
if(++rtc_timeinfo.tm_mday >
days_in_month(rtc_timeinfo.tm_mon, rtc_timeinfo.tm_year)) {
rtc_timeinfo.tm_mday = 1; // Reset day of month
if(++rtc_timeinfo.tm_mon > 11) { // Increment month, check for overflow
rtc_timeinfo.tm_mon = 0; // Reset month
rtc_timeinfo.tm_yday = 0; // Reset day of year
++rtc_timeinfo.tm_year; // Increment year
} // - year
} // - month
} // - day
} // - hour
}
}
static void rtc_init(void)
{
// Initial a periodical timer
gtimer_init(&sw_rtc, SW_RTC_TIMER_ID);
// Tick every 1 sec
gtimer_start_periodical(&sw_rtc, 1000000, (void*)sw_rtc_tick_handler, (uint32_t)&sw_rtc);
}
static void rtc_deinit(void)
{
gtimer_stop(&sw_rtc);
gtimer_deinit(&sw_rtc);
}
static void rtc_set_time(uint32_t year, uint8_t mon, uint8_t mday, uint8_t wday,
uint8_t hour, uint8_t min, uint8_t sec)
{
int i;
gtimer_stop(&sw_rtc);
rtc_timeinfo.tm_sec = sec;
rtc_timeinfo.tm_min = min;
rtc_timeinfo.tm_hour = hour;
rtc_timeinfo.tm_mday = mday-1;
rtc_timeinfo.tm_wday = wday-1;
rtc_timeinfo.tm_yday = 0;
for (i=0;i<(mon-1);i++) {
rtc_timeinfo.tm_yday += days_in_month(i,year);
}
rtc_timeinfo.tm_yday += (mday-1);
rtc_timeinfo.tm_mon = mon-1;
rtc_timeinfo.tm_year = year;
gtimer_start(&sw_rtc);
}
static void rtc_read_time(struct tm *timeinfo)
{
_memcpy((void*)timeinfo, (void*)&rtc_timeinfo, sizeof(struct tm));
timeinfo->tm_mon++;
timeinfo->tm_mday++;
timeinfo->tm_wday++;
timeinfo->tm_yday++;
}
void main(void)
{
struct tm timeinfo;
rtc_init();
// Give RTC a initial value: 2015/4/15 (Wed) 12:00:00
rtc_set_time(2015, 4, 15, 3, 12, 0, 0);
while (1) {
rtc_read_time(&timeinfo);
DBG_8195A("%d-%d-%d[%d] %d:%d:%d\r\n", timeinfo.tm_year, timeinfo.tm_mon, timeinfo.tm_mday,
timeinfo.tm_wday, timeinfo.tm_hour, timeinfo.tm_min, timeinfo.tm_sec);
wait_ms(1000);
}
rtc_deinit();
}

View file

@ -0,0 +1,13 @@
Example Description
This example describes how to use i2c by using mbed api
work with arduino extended board, which has SHTC1 temperature and humidity
sensor
Connect
- I2C3 SDA (PB_3) to extended board's SDA
- I2C3 SCL (PB_2) to extended board's SCL

View file

@ -0,0 +1,209 @@
#include "device.h"
#include "PinNames.h"
#include "basic_types.h"
#include "diag.h"
#include "osdep_api.h"
#include "i2c_api.h"
#include "pinmap.h"
#include "rtl_lib.h"
#define NO_ERROR 0x00
#define ACK_ERROR 0x01
#define CHECKSUM_ERROR 0x02
#define NULL_ERROR 0x03
#define MBED_I2C_MTR_SDA PB_3
#define MBED_I2C_MTR_SCL PB_2
#define MBED_I2C_SLAVE_ADDR0 0x70
#define POLYNOMIAL 0x131 // P(x) = x^8 + x^5 + x^4 + 1 = 100110001
#define MBED_I2C_BUS_CLK 100000 //hz
#define I2C_DATA_MAX_LENGTH 16
uint8_t i2cdata_write[I2C_DATA_MAX_LENGTH];
uint8_t i2cdata_read[I2C_DATA_MAX_LENGTH];
int i2cdata_read_pos;
volatile i2c_t i2cmaster;
// Sensor Commands
#define READ_ID 0xEFC8 // command: read ID register
#define SOFT_RESET 0x805D // soft resetSample Code for SHTC1
#define MEAS_T_RH_POLLING 0x7866 // meas. read T first, clock stretching disabled
#define MEAS_T_RH_CLOCKSTR 0x7CA2 // meas. read T first, clock stretching enabled
#define MEAS_RH_T_POLLING 0x58E0 // meas. read RH first, clock stretching disabled
#define MEAS_RH_T_CLOCKSTR 0x5C24 // meas. read RH first, clock stretching enabled
static int SHTC1_GetID(uint16_t *id);
static void SHTC1_WriteCommand(uint16_t cmd);
static int SHTC1_Read2BytesAndCrc(uint16_t *data);
static int SHTC1_CheckCrc(uint8_t data[], uint8_t nbrOfBytes, uint8_t checksum);
static float SHTC1_CalcTemperature(uint16_t rawValue);
static float SHTC1_CalcHumidity(uint16_t rawValue);
int SHTC1_Init(uint16_t *pID)
{
int error = NO_ERROR;
DiagPrintf("SHTC1_Init \r\n");
i2c_init((i2c_t*)&i2cmaster, MBED_I2C_MTR_SDA ,MBED_I2C_MTR_SCL);
i2c_frequency((i2c_t*)&i2cmaster,MBED_I2C_BUS_CLK);
if (pID == NULL ) return NULL_ERROR;
error = SHTC1_GetID(pID);
return error;
}
static int SHTC1_GetID(uint16_t *id)
{
int error = NO_ERROR;
uint8_t bytes[2];
uint8_t checksum;
SHTC1_WriteCommand(READ_ID);
i2c_read((i2c_t*)&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[0], 3, 1);
i2cdata_read_pos = 0;
error = SHTC1_Read2BytesAndCrc(id);
return error;
}
static int SHTC1_Read2BytesAndCrc(uint16_t *data)
{
int error;
int readed;
uint8_t bytes[2];
uint8_t checksum;
bytes[0] = i2cdata_read[i2cdata_read_pos++];
bytes[1] = i2cdata_read[i2cdata_read_pos++];
checksum = i2cdata_read[i2cdata_read_pos++];
error = SHTC1_CheckCrc(bytes, 2, checksum);
*data = (bytes[0] << 8) | bytes[1];
return error;
}
static int SHTC1_CheckCrc(uint8_t data[], uint8_t nbrOfBytes, uint8_t checksum)
{
uint8_t bit; // bit mask
uint8_t crc = 0xFF; // calculated checksum
uint8_t byteCtr; // byte counter
// calculates 8-Bit checksum with given polynomial
for(byteCtr = 0; byteCtr < nbrOfBytes; byteCtr++)
{
crc ^= (data[byteCtr]);
for(bit = 8; bit > 0; --bit)
{
if(crc & 0x80) crc = (crc << 1) ^ POLYNOMIAL;
else crc = (crc << 1);
}
}
// verify checksum
if(crc != checksum) return CHECKSUM_ERROR;
else return NO_ERROR;
}
static void SHTC1_WriteCommand(uint16_t cmd)
{
int writebytes;
i2cdata_write[0] = (uint8_t)(cmd >>8);
i2cdata_write[1] = (uint8_t)(cmd&0xFF);
i2c_write((i2c_t*)&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdata_write[0], 2, 1);
}
static float SHTC1_CalcTemperature(uint16_t rawValue)
{
return 175.0 * (float)rawValue / 65536.0 - 45.0;
}
static float SHTC1_CalcHumidity(uint16_t rawValue)
{
return 100.0 * (float)rawValue / 65536.0;
}
int SHTC1_GetTempAndHumi(float *temp, float *humi)
{
int error;
uint16_t rawValueTemp;
uint16_t rawValueHumi;
SHTC1_WriteCommand(MEAS_T_RH_CLOCKSTR);
//Wire1.requestFrom(I2C_ADR_SHTC1, 6);
i2c_read((i2c_t*)&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[0], 6, 1);
i2cdata_read_pos = 0;
error = NO_ERROR;
error |= SHTC1_Read2BytesAndCrc(&rawValueTemp);
error |= SHTC1_Read2BytesAndCrc(&rawValueHumi);
//diag_printf("raw temp=0x%x, raw humidity=0x%x, error=%d\n",
// rawValueTemp, rawValueHumi, error);
if ( error == NO_ERROR ) {
*temp = SHTC1_CalcTemperature(rawValueTemp);
*humi = SHTC1_CalcHumidity(rawValueHumi);
}
return error;
}
void main(void)
{
gpio_t gpio_led;
int led_status;
int i2clocalcnt;
int error;
uint16_t shtc1_id;
float temperature = 1.123f;
float humidity = 2.456f;
DBG_8195A("sleep 10 sec. to wait for UART console\n");
Mdelay(10000);
DBG_8195A("start i2c example - SHTC1\n");
error = SHTC1_Init(&shtc1_id);
if ( error == NO_ERROR ) {
DiagPrintf("SHTC1 init ok, id=0x%x\r\n", shtc1_id);
} else {
DiagPrintf("SHTC1 init FAILED! \r\n");
for(;;);
}
while(1){
error = SHTC1_GetTempAndHumi(&temperature, &humidity);
rtl_printf("temp=%f, humidity=%f, error=%d\n",
temperature, humidity, error);
Mdelay(1000);
}
}

View file

@ -0,0 +1,14 @@
Example Description
This example describes how to use i2c by using mbed api
1.Connect LOG-UART connector to PC
2.Connect
- I2C3 SDA (PB_3) to I2C1 SDA (PC_4) pin,
- I2C3 SCL (PB_2) to I2C1 SCL (PC_5) pin.
3.Run the main function.
4.Get the Master and Slave Data.

View file

@ -0,0 +1,112 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "PinNames.h"
#include "basic_types.h"
#include "diag.h"
#include <osdep_api.h>
#include "i2c_api.h"
#include "pinmap.h"
#include "ex_api.h"
#define I2C_SINGLE_BOARD
#ifndef I2C_SINGLE_BOARD
#define I2C_DUAL_BOARD
#endif
#ifdef I2C_SINGLE_BOARD
#define I2C_MASTER_DEVICE
#define I2C_SLAVE_DEVICE
#endif
#ifdef I2C_DUAL_BOARD
#define I2C_MASTER_DEVICE
#ifndef I2C_MASTER_DEVICE
#define I2C_SLAVE_DEVICE
#endif
#endif
#define MBED_I2C_MTR_SDA PB_3
#define MBED_I2C_MTR_SCL PB_2
#define MBED_I2C_SLV_SDA PC_4
#define MBED_I2C_SLV_SCL PC_5
#define MBED_I2C_SLAVE_ADDR0 0xAA
#define MBED_I2C_BUS_CLK 100000 //hz
#define I2C_DATA_LENGTH 125
char i2cdatasrc[I2C_DATA_LENGTH];
char i2cdatadst[I2C_DATA_LENGTH];
#if defined (__ICCARM__)
i2c_t i2cmaster;
i2c_t i2cslave;
#else
volatile i2c_t i2cmaster;
volatile i2c_t i2cslave;
#endif
void i2c_callback(void *userdata)
{
int i2clocalcnt;
int result = 0;
DBG_8195A("show slave received data>>>\n");
for (i2clocalcnt = 0; i2clocalcnt < I2C_DATA_LENGTH; i2clocalcnt+=2) {
DBG_8195A("i2c data: %02x \t %02x\n",i2cdatadst[i2clocalcnt],i2cdatadst[i2clocalcnt+1]);
}
// verify result
result = 1;
for (i2clocalcnt = 0; i2clocalcnt < I2C_DATA_LENGTH; i2clocalcnt++) {
if (i2cdatasrc[i2clocalcnt] != i2cdatadst[i2clocalcnt]) {
result = 0;
break;
}
}
DBG_8195A("\r\nResult is %s\r\n", (result) ? "success" : "fail");
}
void main(void)
{
int i2clocalcnt;
int result = 0;
// prepare for transmission
_memset(&i2cdatasrc[0], 0x00, I2C_DATA_LENGTH);
_memset(&i2cdatadst[0], 0x00, I2C_DATA_LENGTH);
for (i2clocalcnt=0; i2clocalcnt < I2C_DATA_LENGTH; i2clocalcnt++){
i2cdatasrc[i2clocalcnt] = i2clocalcnt+1;
}
#ifdef I2C_MASTER_DEVICE
i2c_init(&i2cmaster, MBED_I2C_MTR_SDA ,MBED_I2C_MTR_SCL);
i2c_frequency(&i2cmaster,MBED_I2C_BUS_CLK);
#endif
#ifdef I2C_SLAVE_DEVICE
i2c_init(&i2cslave, MBED_I2C_SLV_SDA ,MBED_I2C_SLV_SCL);
i2c_frequency(&i2cslave,MBED_I2C_BUS_CLK);
i2c_slave_address(&i2cslave, 0, MBED_I2C_SLAVE_ADDR0, 0xFF);
i2c_slave_mode(&i2cslave, 1);
i2c_set_user_callback(&i2cslave, I2C_RX_COMPLETE, i2c_callback);
DBG_8195A("slave read\n");
i2c_slave_read(&i2cslave, &i2cdatadst[0], I2C_DATA_LENGTH);
#endif
#ifdef I2C_MASTER_DEVICE
DBG_8195A("master write...\n");
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[0], I2C_DATA_LENGTH, 1);
#endif
while(1){;}
}

View file

@ -0,0 +1,7 @@
Example Description
this example is use to measure atmos
work with arduino extended board, which has pressure sensor
the terminal will feedback real pressure value which is represented in Pa

View file

@ -0,0 +1,183 @@
#include "device.h"
#include "PinNames.h"
#include "basic_types.h"
#include "diag.h"
#include "osdep_api.h"
#include "i2c_api.h"
#include "pinmap.h"
//#include "rtl_lib.h"
#include "main.h"
#define MBED_I2C_MTR_SDA PB_3
#define MBED_I2C_MTR_SCL PB_2
#define MBED_I2C_INTB PA_5
#define MBED_I2C_SLAVE_ADDR0 0x5D
#define MBED_I2C_BUS_CLK 40000 //hz
#define I2C_DATA_MAX_LENGTH 20
#define malloc pvPortMalloc
#define free vPortFree
uint8_t i2cdata_write[I2C_DATA_MAX_LENGTH];
uint8_t i2cdata_read[I2C_DATA_MAX_LENGTH];
uint16_t cmd;
i2c_t i2cmaster;
int count = 0;
//sensor command
#define SENSOR_START 0x20A0
#define FIFO 0x2E41
#define REBOOT 0x2110
#define READ 0x2101
#define BYPASS 0x2E00
char i2cdatasrc[9] = {0x27, 0x28, 0x29, 0x2A};
//char i2cdatasrc[7] = {0x40, 0x48, 0x50, 0x27, 0x28, 0x29, 0x2A};
static void ePL_WriteCommand(uint16_t cmd)
{
i2cdata_write[0] = (uint8_t)(cmd >>8);
i2cdata_write[1] = (uint8_t)(cmd&0xFF);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdata_write[0], 2, 1);
}
/*
struct node
{
int info;
struct node *ptr;
}*front,*rear,*temp,*front1;
*/
//int frontelement();
//void enq(int data);
//void deq();
/*
void enq(int data)
{
if (rear == NULL)
{
rear = (struct node *)malloc(1*sizeof(struct node));
if(rear == NULL)
{
printf("\n\rmalloc rear failed!\n");
return;
}
rear->ptr = NULL;
rear->info = data;
front = rear;
//printf("front info: %d\n", front->info);
}
else
{
temp=(struct node *)malloc(1*sizeof(struct node));
rear->ptr = temp;
temp->info = data;
temp->ptr = NULL;
rear = temp;
//printf("rear info: %d\n", rear->info);
}
count++;
}
void deq()
{
front1 = front;
//printf("front info before deq: %d\n", front->info);
if (front1 == NULL)
{
printf("Error: Trying to display elements from empty queue\n");
return;
}
else
{
if (front1->ptr != NULL)
{
front1 = front1->ptr;
//printf("\nDequed value : %d\n", front->info);
free(front);
front = front1;
}
else
{
//printf("\nDequed value : %d\n", front->info);
free(front);
front = NULL;
rear = NULL;
}
count--;
}
}
*/
void main(void)
{
int result;
int i, data;
int temprature;
int flag = 0;
int sum = 0;
int average = 0;
struct node *output;
char intertupt;
DiagPrintf("Sensor_Init \r\n");
//for(i=0; i<16; i++)
//printf("ouput before: %d\n", i2cdata_read[i]);
i2c_init(&i2cmaster, MBED_I2C_MTR_SDA ,MBED_I2C_MTR_SCL);
i2c_frequency(&i2cmaster,MBED_I2C_BUS_CLK);
ePL_WriteCommand(SENSOR_START);
ePL_WriteCommand(REBOOT);
//ePL_WriteCommand(BYPASS);
while(1){
//i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[3], 1, 1);
//i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[3], 2, 1);
//printf("Status Reg: %d\n", i2cdata_read[3]);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[1], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[1], 2, 1);
//printf("--------pressure output LSB: %d\n", i2cdata_read[4]);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[2], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[2], 2, 1);
//printf("--------pressure output MID: %d\n", i2cdata_read[5]);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[3], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[3], 2, 1);
//printf("--------pressure output MSB: %d\n", i2cdata_read[6]);
Mdelay(2000);
data = (i2cdata_read[3]*256*256*100+i2cdata_read[2]*256*100+i2cdata_read[1]*100)/4128;
printf("pressure: %dPa\n", data);
/*
if(count == 20)
{
deq();
}
enq(data);
output = front;
sum = front->info;
while(output->ptr != NULL)
{
output = output->ptr;
sum = sum + output->info;
}
//printf("------count = %d---------\n", count);
average = sum / count;
//printf("---final output: %d---\n", average);
*/
}
Mdelay(1000);
}

View file

@ -0,0 +1,77 @@
/*******************************************************************************
HRM.h - Definition header
*******************************************************************************/
#ifndef HRM_H
#define HRM_H
#include <stdint.h>
//------------------------------------------------------
#define HR_SAMPLE_RATE 25// Hz
#define HR_INTEG_MIN HR_INTEG_40
#define HR_INTEG_BASE HR_INTEG_250
#define HR_INTEG_MAX HR_INTEG_250
#define HR_TH_HIGH 63000
#define HR_TH_LOW 30000
//------------------------------------------------------
// HRM I2C address & register sub-addresses
#define HR_SLAVE_ADDRESS 0x82
#define HR_FILTER_1 0<<5
#define HR_FILTER_2 1<<5
#define HR_FILTER_4 2<<5
#define HR_FILTER_8 3<<5
#define HR_FILTER_16 4<<5
#define HR_FILTER_32 5<<5
#define HR_FILTER_64 6<<5
#define HR_FILTER_128 7<<5
#define HR_MODE_HR 1<<4
#define HR_MODE_HRS 9<<4
#define HR_GAIN_MID 1
#define HR_GAIN_LOW 3
#define HR_INTEG_20 5
#define HR_INTEG_25 6
#define HR_INTEG_30 7
#define HR_INTEG_40 8
#define HR_INTEG_55 9
#define HR_INTEG_70 10
#define HR_INTEG_90 11
#define HR_INTEG_110 12
#define HR_INTEG_150 13
#define HR_INTEG_200 14
#define HR_INTEG_250 15
#define HR_INTEG_350 16
#define HR_INTEG_450 17
#define HR_INTEG_550 18
#define HR_OSR_64 0<<2
#define HR_OSR_256 1<<2
#define HR_OSR_1024 2<<2
#define HR_OSR_2048 3<<2
#define HR_RESETN_RESET 0<<2
#define HR_RESETN_RUN 1<<2
#define HR_PDRIVE_70MA 0<<4
#define HR_PDRIVE_35MA 1<<4
#define HR_PDRIVE_200MA 2<<4
#define HR_PDRIVE_100MA 3<<4
#define HR_INT_FRAME 1<<2
#define HR_INT_DISABLED 2<<2
#define HR_IR_DISABLE 0<<7
#define HR_IR_ENABLE 1<<7
//------------------------------------------------------
// Declarations
void init_hrm(void);
uint16_t read_hrm(void);
#endif /* HRM_H */

View file

@ -0,0 +1,39 @@
/*
* heart_interface.h
*
* Created on: 2014/4/29
* Author: 01004
*/
#ifndef HEART_INTERFACE_H_
#define HEART_INTERFACE_H_
#define MIN_HEART_RATE 48
#define MAX_HEART_RATE 180
extern int g_heartrate;
typedef void (*hr_callback)(int);
/*
* If there is no g-sensor, fill x, y, z in 0.
*/
void add_PPG_XYZ(int ppg, short xx, short yy, short zz);
/*
* A callback to handle heartrate events.
*/
void register_callback(hr_callback callback);
/*
* Ex: report_period = 25.
* it means report a heart rate every 25 samples.
*/
void start(int report_period);
void reset(void);
void stop(void);
#endif /* HEART_INTERFACE_H_ */

View file

@ -0,0 +1,16 @@
Example Description
this example is use to measure heart rate of human
Requirement Components:
extend board
work with arduino extended board, which has heart rate sensor
during the measurement, user has to lie his pulp on the sensor and do not rock the sensor
the test code will return back the heart rate
Build code
1. Please be sure to copy inc\heart_interface.h, inc\HRM_2197.h
2. Include hr_library.a in IAR project. Add hr_library.a into folder "lib" in IAR project.

View file

@ -0,0 +1,162 @@
/*******************************************************************************
* HRM.c - Eminent Heart Rate Module (HRM) routines via I2C
*******************************************************************************/
#include "HRM_2197.h"
#include <stdio.h>
#include <time.h>
//#include <windows.h>
#include "heart_interface.h"
#include "device.h"
#include "PinNames.h"
#include "basic_types.h"
#include "diag.h"
#include "osdep_api.h"
#include "i2c_api.h"
#include "pinmap.h"
//#include "rtl_lib.h"
#include "gpio_api.h" // mbed
#include "main.h"
#define MBED_I2C_SLAVE_ADDR0 0x41
#define HR_MODE 0x001b
#define LED_ENABLE 0x3081
#define FRAME_ENABLE 0x4804
#define CHIP_RESET 0x4000
#define CHIP_RUN 0x4004
#define DATA_LOCK 0x4005
#define DATA_UNLOCK 0x4004
#define I2C_DATA_MAX_LENGTH 20
#define CLOCK_SET 0x3800
#define MBED_I2C_MTR_SDA PB_3
#define MBED_I2C_MTR_SCL PB_2
#define MBED_I2C_INTB PA_5
#define MBED_I2C_BUS_CLK 100000 //hz
uint8_t i2cdata_write[I2C_DATA_MAX_LENGTH];
uint8_t i2cdata_read[I2C_DATA_MAX_LENGTH];
uint16_t cmd;
i2c_t i2cmaster;
uint8_t integ_time = HR_INTEG_MIN;
int integ_time_array[] = { 4, 6, 8, 10, 15, 20, 25, 30, 40, 55, 70, 90, 110, 150, 200, 250, 350, 450, 550 };
//Step1. define the callback to handle event of heart rate update
/*******************************************************************************
* report heart rate every 1 second
*******************************************************************************/
void on_heartrate_update(int heartrate) {
printf("heart rate %d\n", heartrate);
//fflush(stdout);
}
char i2cdatasrc[3] = {0x68, 0x90, 0x98};
static void ePL_WriteCommand(uint16_t cmd)
{
i2cdata_write[0] = (uint8_t)(cmd >>8);
i2cdata_write[1] = (uint8_t)(cmd&0xFF);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdata_write[0], 2, 1);
}
uint16_t read_hrm(void) {
uint32_t raw, normalized_raw;
int integ_time_changed = 0;
ePL_WriteCommand(DATA_LOCK);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[1], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[1], 2, 1);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[2], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[2], 2, 1);
raw = i2cdata_read[1];
raw |= (uint16_t) i2cdata_read[2] << 8;
normalized_raw = raw >> 4;
normalized_raw = normalized_raw * integ_time_array[HR_INTEG_BASE];
normalized_raw = normalized_raw / integ_time_array[integ_time];
if (raw > HR_TH_HIGH && integ_time > HR_INTEG_MIN) {
integ_time -= 1;
integ_time_changed = 1;
} else if (raw < HR_TH_LOW && integ_time < HR_INTEG_MAX) {
integ_time += 1;
integ_time_changed = 1;
}
if (integ_time_changed == 1) {
ePL_WriteCommand(((0x01<<3)<<8) | ( HR_FILTER_4 | integ_time));
ePL_WriteCommand(((0x08<<3)<<8) | ( HR_RESETN_RESET));
}
ePL_WriteCommand(((0x08<<3)<<8) | ( HR_RESETN_RUN));
return normalized_raw;
}
/*******************************************************************************
* main function to read data, input to library,
* and calculate heart rate
*******************************************************************************/
void main(void) {
int i, length;
int *data;
uint16_t result;
data = (int*) calloc(3000, sizeof(int));
//load_ppg_signal(data, &length); //Load Test Data From File
i2c_init(&i2cmaster, MBED_I2C_MTR_SDA ,MBED_I2C_MTR_SCL);
i2c_frequency(&i2cmaster,MBED_I2C_BUS_CLK);
//Step2. delegate the event of heart rate update
register_callback(on_heartrate_update);
//Step3. Set the data length of heart rate calculation= 2^9 = 512
ePL_WriteCommand(((0x00<<3)<<8) | ( HR_MODE_HRS | HR_OSR_1024 | HR_GAIN_MID));
ePL_WriteCommand(((0x01<<3)<<8) | ( HR_FILTER_4 | integ_time));
ePL_WriteCommand(((0x09<<3)<<8) | ( HR_PDRIVE_70MA));
ePL_WriteCommand(((0x06<<3)<<8) | ( HR_IR_ENABLE | HR_INT_FRAME));
ePL_WriteCommand(((0x08<<3)<<8) | ( HR_RESETN_RESET));
while(1) {
//Step4. Add ppg data continuously, and the Lib will return the Heart Rate 1 time/sec
result = read_hrm();
if(result>100)
add_PPG_XYZ(result, 0, 0, 0);
Mdelay(40); //Simulate the ppg input time interval = 40ms
}
//Step5. Stop
stop();
free(data);
}
/*******************************************************************************
* initialize ic parameters
*******************************************************************************/
/*******************************************************************************
* read rawdata
*******************************************************************************/

View file

@ -0,0 +1,11 @@
Example Description
This example describes how to use proximity sensor to detect lightness
Requirement Components:
extend board
work with arduino extended board, which has proximity sensor
when the proximity sensor is in ALS mode (detect lightness), it will keep polling lightness output.

View file

@ -0,0 +1,108 @@
#include "device.h"
#include "PinNames.h"
#include "basic_types.h"
#include "diag.h"
#include "osdep_api.h"
#include "i2c_api.h"
#include "pinmap.h"
//#include "rtl_lib.h"
#include "main.h"
#define MBED_I2C_MTR_SDA PB_3
#define MBED_I2C_MTR_SCL PB_2
#define MBED_I2C_INTB PA_5
#define MBED_I2C_SLAVE_ADDR0 0x49
#define MBED_I2C_BUS_CLK 100000 //hz
#define I2C_DATA_MAX_LENGTH 20
uint8_t i2cdata_write[I2C_DATA_MAX_LENGTH];
uint8_t i2cdata_read[I2C_DATA_MAX_LENGTH];
uint16_t cmd;
i2c_t i2cmaster;
//sensor command
#define WAKE_UP 0x1102
#define CHIP_REFRESH1 0xFD8E
#define CHIP_REFRESH2 0xFE22
#define CHIP_REFRESH3 0xFE02
#define CHIP_REFRESH4 0xFD00
#define PS_MODE 0x0002
#define ALS_MODE 0x0001
#define POWER_UP 0x1102
#define CHIP_RESET 0x1100
#define CHANGE_TIME 0x0851
#define SETTING_1 0x0F19
#define SETTING_2 0x0D10
#define INT 0x3022
char i2cdatasrc[5] = {0x1B, 0x15, 0x16, 0x80, 0x88};
static void ePL_WriteCommand(uint16_t cmd)
{
i2cdata_write[0] = (uint8_t)(cmd >>8);
i2cdata_write[1] = (uint8_t)(cmd&0xFF);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdata_write[0], 2, 1);
}
void main(void)
{
int result;
int i;
int light = 0;
int flag = 0;
char intertupt;
DiagPrintf("Sensor_Init \r\n");
i2c_init(&i2cmaster, MBED_I2C_MTR_SDA ,MBED_I2C_MTR_SCL);
i2c_frequency(&i2cmaster,MBED_I2C_BUS_CLK);
ePL_WriteCommand(WAKE_UP);
ePL_WriteCommand(CHIP_REFRESH1);
ePL_WriteCommand(CHIP_REFRESH2);
ePL_WriteCommand(CHIP_REFRESH3);
ePL_WriteCommand(CHIP_REFRESH4);
ePL_WriteCommand(ALS_MODE);
//ePL_WriteCommand(SETTING_1);
//ePL_WriteCommand(SETTING_2);
ePL_WriteCommand(CHIP_RESET);
ePL_WriteCommand(POWER_UP);
Mdelay(240);
while(1){
//ePL_WriteCommand(DATA_LOCK);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[0], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[0], 2, 1);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[1], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[1], 2, 1);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[2], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[2], 2, 1);
// printf("ALS LOW: %d\n", i2cdata_read[1]);
//printf("ALS HIGH: %d\n", i2cdata_read[2]);
light = i2cdata_read[1] + i2cdata_read[2] * 256;
printf("lightness: %d\n", light);
//flag = (i2cdata_read[0] & 8)? 1:0;
//int ret = (i2cdata_read[0] & 4)? 1:0;
//printf("flag: %d\n", flag);
//printf("ret: %d\n", ret);
//ePL_WriteCommand(POWER_UP);
Mdelay(1000);
}
}

View file

@ -0,0 +1,12 @@
Example Description
This example describes how to use proximity sensor to detect distance
Requirement Components:
extend board
work with arduino extended board, which has proximity sensor
When the proximity sensor is in PS mode (detect distance), if the object is close to the sensor, a near message will print out. Otherwise a far message will print out.

View file

@ -0,0 +1,115 @@
#include "device.h"
#include "PinNames.h"
#include "basic_types.h"
#include "diag.h"
#include "osdep_api.h"
#include "i2c_api.h"
#include "pinmap.h"
//#include "rtl_lib.h"
#include "main.h"
#define MBED_I2C_MTR_SDA PB_3
#define MBED_I2C_MTR_SCL PB_2
#define MBED_I2C_INTB PA_5
#define MBED_I2C_SLAVE_ADDR0 0x49
#define MBED_I2C_BUS_CLK 100000 //hz
#define I2C_DATA_MAX_LENGTH 20
uint8_t i2cdata_write[I2C_DATA_MAX_LENGTH];
uint8_t i2cdata_read[I2C_DATA_MAX_LENGTH];
uint16_t cmd;
i2c_t i2cmaster;
//sensor command
#define WAKE_UP 0x1102
#define CHIP_REFRESH1 0xFD8E
#define CHIP_REFRESH2 0xFE22
#define CHIP_REFRESH3 0xFE02
#define CHIP_REFRESH4 0xFD00
#define PS_MODE 0x0002
#define ALS1_MODE 0x0072
#define ALS2_MODE 0x503E
#define ALS3_MODE 0x583E
#define POWER_UP 0x1102
#define CHIP_RESET 0x1100
#define CHANGE_TIME 0x0851
#define SETTING_1 0x0F19
#define SETTING_2 0x0D10
#define INT 0x3022
char i2cdatasrc[5] = {0x1B, 0x1E, 0x1F, 0x80, 0x88};
static void ePL_WriteCommand(uint16_t cmd)
{
i2cdata_write[0] = (uint8_t)(cmd >>8);
i2cdata_write[1] = (uint8_t)(cmd&0xFF);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdata_write[0], 2, 1);
}
void main(void)
{
int result;
int i;
int flag = 0;
char intertupt;
DiagPrintf("Sensor_Init \r\n");
i2c_init(&i2cmaster, MBED_I2C_MTR_SDA ,MBED_I2C_MTR_SCL);
i2c_frequency(&i2cmaster,MBED_I2C_BUS_CLK);
ePL_WriteCommand(WAKE_UP);
ePL_WriteCommand(CHIP_REFRESH1);
ePL_WriteCommand(CHIP_REFRESH2);
ePL_WriteCommand(CHIP_REFRESH3);
ePL_WriteCommand(CHIP_REFRESH4);
ePL_WriteCommand(PS_MODE);
ePL_WriteCommand(SETTING_1);
ePL_WriteCommand(SETTING_2);
ePL_WriteCommand(CHIP_RESET);
ePL_WriteCommand(POWER_UP);
Mdelay(240);
while(1){
//ePL_WriteCommand(DATA_LOCK);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[0], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[0], 2, 1);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[1], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[1], 2, 1);
i2c_write(&i2cmaster, MBED_I2C_SLAVE_ADDR0, &i2cdatasrc[2], 1, 1);
i2c_read(&i2cmaster, MBED_I2C_SLAVE_ADDR0, (char*)&i2cdata_read[2], 2, 1);
//printf("PS LOW: %d\n", i2cdata_read[1]);
//printf("PS HIGH: %d\n", i2cdata_read[2]);
flag = (i2cdata_read[0] & 8)? 1:0;
int ret = (i2cdata_read[0] & 4)? 1:0;
//printf("flag: %d\n", flag);
//printf("ret: %d\n", ret);
if(flag){
printf("the object is far\n");
}
else
{
printf("the object is near\n");
}
//ePL_WriteCommand(POWER_UP);
Mdelay(1000);
}
}

View file

@ -0,0 +1,10 @@
Example Description
This example describes how to use i2s by using mbed extend api
1.Plug ALC5651 shield to Ameba HDK
2.Run the main function.
3.Plug earphone to Green phone jack

View file

@ -0,0 +1,183 @@
#include <stdio.h>
#include "PinNames.h"
#include "basic_types.h"
#include "diag.h"
#include <osdep_api.h>
#include "i2c_api.h"
#include "pinmap.h"
//#define I2C_MTR_SDA PC_4//PB_3
//#define I2C_MTR_SCL PC_5//PB_2
#define I2C_MTR_SDA PB_3
#define I2C_MTR_SCL PB_2
#define I2C_BUS_CLK 100000 //hz
#define I2C_ALC5651_ADDR (0x34/2)
#define RT5651_PRIV_INDEX 0x6a
#define RT5651_PRIV_DATA 0x6c
#if defined (__ICCARM__)
i2c_t alc5651_i2c;
#else
volatile i2c_t alc5651_i2c;
#define printf DBG_8195A
#endif
static void alc5651_delay(void)
{
int i;
i=10000;
while (i) {
i--;
asm volatile ("nop\n\t");
}
}
void alc5651_reg_write(unsigned int reg, unsigned int value)
{
char buf[4];
buf[0] = (char)reg;
buf[1] = (char)(value>>8);
buf[2] = (char)(value&0xff);
i2c_write(&alc5651_i2c, I2C_ALC5651_ADDR, &buf[0], 3, 1);
alc5651_delay();
}
void alc5651_reg_read(unsigned int reg, unsigned int *value)
{
int tmp;
char *buf = (char*)&tmp;
buf[0] = (char)reg;
i2c_write(&alc5651_i2c, I2C_ALC5651_ADDR, &buf[0], 1, 1);
alc5651_delay();
buf[0] = 0xaa;
buf[1] = 0xaa;
i2c_read(&alc5651_i2c, I2C_ALC5651_ADDR, &buf[0], 2, 1);
alc5651_delay();
*value= ((buf[0]&0xFF)<<8)|(buf[1]&0xFF);
}
void alc5651_index_write(unsigned int reg, unsigned int value)
{
alc5651_reg_write(RT5651_PRIV_INDEX, reg);
alc5651_reg_write(RT5651_PRIV_DATA, value);
}
void alc5651_index_read(unsigned int reg, unsigned int *value)
{
alc5651_reg_write(RT5651_PRIV_INDEX, reg);
alc5651_reg_read(RT5651_PRIV_DATA, value);
}
void alc5651_reg_dump(void)
{
int i;
unsigned int value;
printf("alc5651 codec reg dump\n\r");
printf("------------------------\n\r");
for(i=0;i<=0xff;i++){
alc5651_reg_read(i, &value);
printf("%02x : %04x\n\r", i, (unsigned short)value);
}
printf("------------------------\n\r");
}
void alc5651_index_dump(void)
{
int i;
unsigned int value;
printf("alc5651 codec index dump\n\r");
printf("------------------------\n\r");
for(i=0;i<=0xff;i++){
alc5651_index_read(i, &value);
printf("%02x : %04x\n\r", i, (unsigned short)value);
}
printf("------------------------\n\r");
}
void alc5651_init(void)
{
i2c_init(&alc5651_i2c, I2C_MTR_SDA, I2C_MTR_SCL);
i2c_frequency(&alc5651_i2c, I2C_BUS_CLK);
}
void alc5651_set_word_len(int len_idx) // interface2
{
// 0: 16 1: 20 2: 24 3: 8
unsigned int val;
alc5651_reg_read(0x71,&val);
val &= (~(0x3<<2));
val |= (len_idx<<2);
alc5651_reg_write(0x71,val);
alc5651_reg_read(0x70,&val);
val &= (~(0x3<<2));
val |= (len_idx<<2);
alc5651_reg_write(0x70,val);
}
void alc5651_init_interface1(void)
{
alc5651_reg_write(0x00,0x0021);
alc5651_reg_write(0x63,0xE8FE);
alc5651_reg_write(0x61,0x5800);
alc5651_reg_write(0x62,0x0C00);
alc5651_reg_write(0x73,0x0000);
alc5651_reg_write(0x2A,0x4242);
alc5651_reg_write(0x45,0x2000);
alc5651_reg_write(0x02,0x4848);
alc5651_reg_write(0x8E,0x0019);
alc5651_reg_write(0x8F,0x3100);
alc5651_reg_write(0x91,0x0E00);
alc5651_index_write(0x3D,0x3E00);
alc5651_reg_write(0xFA,0x0011);
alc5651_reg_write(0x83,0x0800);
alc5651_reg_write(0x84,0xA000);
alc5651_reg_write(0xFA,0x0C11);
alc5651_reg_write(0x64,0x4010);
alc5651_reg_write(0x65,0x0C00);
alc5651_reg_write(0x61,0x5806);
alc5651_reg_write(0x62,0xCC00);
alc5651_reg_write(0x3C,0x004F);
alc5651_reg_write(0x3E,0x004F);
alc5651_reg_write(0x27,0x3820);
alc5651_reg_write(0x77,0x0000);
}
void alc5651_init_interface2(void)
{
alc5651_reg_write(0x00,0x0021);
alc5651_reg_write(0x63,0xE8FE);
alc5651_reg_write(0x61,0x5800);
alc5651_reg_write(0x62,0x0C00);
alc5651_reg_write(0x73,0x0000);
alc5651_reg_write(0x2A,0x4242);
alc5651_reg_write(0x45,0x2000);
alc5651_reg_write(0x02,0x4848);
alc5651_reg_write(0x8E,0x0019);
alc5651_reg_write(0x8F,0x3100);
alc5651_reg_write(0x91,0x0E00);
alc5651_index_write(0x3D,0x3E00);
alc5651_reg_write(0xFA,0x0011);
alc5651_reg_write(0x83,0x0800);
alc5651_reg_write(0x84,0xA000);
alc5651_reg_write(0xFA,0x0C11);
alc5651_reg_write(0x64,0x4010);
alc5651_reg_write(0x65,0x0C00);
alc5651_reg_write(0x61,0x5806);
alc5651_reg_write(0x62,0xCC00);
alc5651_reg_write(0x3C,0x004F);
alc5651_reg_write(0x3E,0x004F);
alc5651_reg_write(0x28,0x3030);
alc5651_reg_write(0x2F,0x0080);
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,326 @@
#include "FreeRTOS.h"
#include "task.h"
#include "diag.h"
#include "main.h"
#include "i2s_api.h"
/**
* @brief Main program.
* @param None
* @retval None
*/
#include "alc5651.c"
/*
extern void alc5651_init(void);
extern void alc5651_init_interface2(void);
extern void alc5651_reg_dump(void);
extern void alc5651_index_dump(void);
extern void alc5651_set_word_len(int len_idx);
*/
i2s_t i2s_obj;
#define I2S_DMA_PAGE_SIZE 768 // 2 ~ 4096
#define I2S_DMA_PAGE_NUM 4 // Vaild number is 2~4
u8 i2s_tx_buf[I2S_DMA_PAGE_SIZE*I2S_DMA_PAGE_NUM];
u8 i2s_rx_buf[I2S_DMA_PAGE_SIZE*I2S_DMA_PAGE_NUM];
#define SAMPLE_FILE
#define SAMPLE_FILE_RATE 44100
#define SAMPLE_FILE_CHNUM 2
#define I2S_SCLK_PIN PC_1
#define I2S_WS_PIN PC_0
#define I2S_SD_PIN PC_2
#if defined(SAMPLE_FILE)
// no sample
// SR_96KHZ,
// SR_7p35KHZ,
// SR_29p4KHZ,
// SR_88p2KHZ
#if SAMPLE_FILE_RATE==8000
#if SAMPLE_FILE_CHNUM==2
#include "birds_8000_2ch_16b.c"
#undef SAMPLE_FILE_RATE
#define SAMPLE_FILE_RATE SR_8KHZ
#endif
#elif SAMPLE_FILE_RATE==11025
#if SAMPLE_FILE_CHNUM==2
#include "birds_11025_2ch_16b.c"
#undef SAMPLE_FILE_RATE
#define SAMPLE_FILE_RATE SR_11p02KHZ
#endif
#elif SAMPLE_FILE_RATE==16000
#if SAMPLE_FILE_CHNUM==2
#include "birds_16000_2ch_16b.c"
#undef SAMPLE_FILE_RATE
#define SAMPLE_FILE_RATE SR_16KHZ
#endif
#elif SAMPLE_FILE_RATE==22050
#if SAMPLE_FILE_CHNUM==2
#include "birds_22050_2ch_16b.c"
#undef SAMPLE_FILE_RATE
#define SAMPLE_FILE_RATE SR_22p05KHZ
#endif
#elif SAMPLE_FILE_RATE==24000
#if SAMPLE_FILE_CHNUM==2
#include "birds_24000_2ch_16b.c"
#undef SAMPLE_FILE_RATE
#define SAMPLE_FILE_RATE SR_24KHZ
#endif
#elif SAMPLE_FILE_RATE==32000
#if SAMPLE_FILE_CHNUM==2
#include "birds_32000_2ch_16b.c"
#undef SAMPLE_FILE_RATE
#define SAMPLE_FILE_RATE SR_32KHZ
#endif
#elif SAMPLE_FILE_RATE==44100
#if SAMPLE_FILE_CHNUM==2
#include "birds_44100_2ch_16b.c"
#undef SAMPLE_FILE_RATE
#define SAMPLE_FILE_RATE SR_44p1KHZ
#endif
#elif SAMPLE_FILE_RATE==48000
#if SAMPLE_FILE_CHNUM==2
#include "birds_48000_2ch_16b.c"
#undef SAMPLE_FILE_RATE
#define SAMPLE_FILE_RATE SR_48KHZ
#endif
#endif
#if SAMPLE_FILE_CHNUM==2
#undef SAMPLE_FILE_CHNUM
#define SAMPLE_FILE_CHNUM CH_STEREO
#endif
int curr_cnt=0;
#else
short test_sine16[16]={0, 12539/4, 23170/4, 30273/4, 32767/4, 30273/4, 23170/4, 12539/4,
0, -12539/4, -23170/4, -30273/4, -32767/4, -30273/4, -23170/4, -12539/4};
int test_sine24[16]={0, 12539*256/4, 23170*256/4, 30273*256/4, 32767*256/4, 30273*256/4, 23170*256/4, 12539*256/4,
0, -12539*256/4, -23170*256/4, -30273*256/4, -32767*256/4, -30273*256/4, -23170*256/4, -12539*256/4};
extern void wait_ms(u32);
#include <math.h>
short remap_level_to_signed_16_bit(float val)
{
val*=32767;
if(val>32767) val=32767;
if(val<-32768) val=-32768;
return val;
}
void generate_freq_16bit(short *buffer, int count, float freq, float sampling_rate)
{
int pos; // sample number we're on
for (pos = 0; pos < count; pos++) {
float a = 2 * 3.14159f * freq * pos / sampling_rate;
// convert from [-1.0,1.0] to [-32767,32767]:
buffer[pos] = remap_level_to_signed_16_bit(a);
}
}
void gen_sound_sample16(short *buf, int buf_size, int channel_num)
{
int i;
for (i = 0 ; i < buf_size ; i+=channel_num){
buf[i] = test_sine16[(i/channel_num)%16];
if(channel_num>=2)
buf[i+1] = test_sine16[(i/channel_num)%16];
}
}
void gen_sound_sample24(int *buf, int buf_size, int channel_num)
{
int i;
for (i = 0 ; i < buf_size ; i+=channel_num){
buf[i] = test_sine24[(i/channel_num)%16]&0xFFFFFF;
if(channel_num>=2)
//buf[i+1] = test_sine24[(i/channel_num)%16]&0xFFFFFF;
buf[i+1] = test_sine24[(i/channel_num)%16]&0xFFFFFF;
}
}
#if 0
void test_delay(int sec)
{
for(int i=0;i<166*1000*100*sec;i++)
asm(" nop");
}
#endif
int test_rate_list[12] = {
SR_8KHZ,
SR_16KHZ,
SR_24KHZ,
SR_32KHZ,
SR_48KHZ,
SR_96KHZ,
SR_7p35KHZ,
SR_11p02KHZ,
SR_22p05KHZ,
SR_29p4KHZ,
SR_44p1KHZ,
SR_88p2KHZ
};
#endif
void test_tx_complete(void *data, char *pbuf)
{
int *ptx_buf;
i2s_t *obj = (i2s_t *)data;
static u32 count=0;
//DBG_8195A_I2S_LVL(VERI_I2S_LVL, "I2S%d %s\n",pI2SDemoHnd->DevNum,__func__);
count++;
if ((count&1023) == 1023)
{
DBG_8195A_I2S_LVL(VERI_I2S_LVL, ",\n");
}
ptx_buf = i2s_get_tx_page(obj);
//ptx_buf = (int*)pbuf;
#if defined(SAMPLE_FILE)
_memcpy((void*)ptx_buf, (void*)&sample[curr_cnt], I2S_DMA_PAGE_SIZE);
curr_cnt+=(I2S_DMA_PAGE_SIZE/sizeof(short));
if(curr_cnt >= sample_size*(obj->channel_num==CH_MONO?1:2)) {
curr_cnt = 0;
}
#else
if(obj->word_length == WL_16b){
gen_sound_sample16((short*)ptx_buf, I2S_DMA_PAGE_SIZE/sizeof(short), obj->channel_num==CH_MONO?1:2);
}else{
gen_sound_sample24((int*)ptx_buf, I2S_DMA_PAGE_SIZE/sizeof(int), obj->channel_num==CH_MONO?1:2);
}
#endif
i2s_send_page(obj, (uint32_t*)ptx_buf);
}
void test_rx_complete(void *data, char* pbuf)
{
i2s_t *obj = (i2s_t *)data;
int *ptx_buf;
static u32 count=0;
count++;
if ((count&1023) == 1023)
{
DBG_8195A_I2S_LVL(VERI_I2S_LVL, ".\n");
}
ptx_buf = i2s_get_tx_page(obj);
_memcpy((void*)ptx_buf, (void*)pbuf, I2S_DMA_PAGE_SIZE);
i2s_recv_page(obj); // submit a new page for receive
i2s_send_page(obj, (uint32_t*)ptx_buf); // loopback
}
void main(void)
{
int *ptx_buf;
int i,j;
alc5651_init();
alc5651_init_interface2(); // connect to ALC interface 2
// dump register
//alc5651_reg_dump();
//alc5651_index_dump();
// I2S init
i2s_obj.channel_num = CH_MONO;//CH_STEREO;
i2s_obj.sampling_rate = SR_44p1KHZ;
i2s_obj.word_length = WL_16b;
i2s_obj.direction = I2S_DIR_TXRX;
i2s_init(&i2s_obj, I2S_SCLK_PIN, I2S_WS_PIN, I2S_SD_PIN);
i2s_set_dma_buffer(&i2s_obj, (char*)i2s_tx_buf, (char*)i2s_rx_buf, \
I2S_DMA_PAGE_NUM, I2S_DMA_PAGE_SIZE);
i2s_tx_irq_handler(&i2s_obj, (i2s_irq_handler)test_tx_complete, (uint32_t)&i2s_obj);
i2s_rx_irq_handler(&i2s_obj, (i2s_irq_handler)test_rx_complete, (uint32_t)&i2s_obj);
#if defined(SAMPLE_FILE)
i2s_set_param(&i2s_obj,SAMPLE_FILE_CHNUM,SAMPLE_FILE_RATE,WL_16b);
for (i=0;i<I2S_DMA_PAGE_NUM;i++) {
ptx_buf = i2s_get_tx_page(&i2s_obj);
if (ptx_buf) {
_memcpy((void*)ptx_buf, (void*)&sample[curr_cnt], I2S_DMA_PAGE_SIZE);
i2s_send_page(&i2s_obj, (uint32_t*)ptx_buf);
curr_cnt+=(I2S_DMA_PAGE_SIZE/sizeof(short));
if(curr_cnt >= sample_size*(i2s_obj.channel_num==CH_MONO?1:2)) {
curr_cnt = 0;
}
}
}
#else
// output freq, @ sampling rate
// 6kHz @ 96kHz
// 3kHz @ 48kHz
// 2kHz @ 32kHz
// 1.5kHz @ 24kHz
// 1kHz @ 16kHz
// 500Hz @ 8kHz
// 5512.5 Hz @ 88200Hz
// 2756.25 Hz @ 44100Hz
// 1837.5 Hz @ 29400Hz
// 1378.125 Hz @ 22050Hz
// 459.375 Hz @ 7350Hz
// Stereo, 16bit
for(i=0;i<12;i++){
i2s_set_param(&i2s_obj,CH_STEREO,test_rate_list[i],WL_16b);
// Start with fill all pages of DMA buffer
for (j=0;j<I2S_DMA_PAGE_NUM;j++) {
ptx_buf = i2s_get_tx_page(&i2s_obj);
if (ptx_buf) {
gen_sound_sample16((short*)ptx_buf, I2S_DMA_PAGE_SIZE/sizeof(short), 2);
i2s_send_page(&i2s_obj, (uint32_t*)ptx_buf);
}
}
wait_ms(5000); // delay 5 sec.
}
// Mono, 16bit
for(i=0;i<12;i++){
i2s_set_param(&i2s_obj,CH_MONO,test_rate_list[i],WL_16b);
for (j=0;j<I2S_DMA_PAGE_NUM;j++) {
ptx_buf = i2s_get_tx_page(&i2s_obj);
if (ptx_buf) {
gen_sound_sample16((short*)ptx_buf, I2S_DMA_PAGE_SIZE/sizeof(short), 1);
i2s_send_page(&i2s_obj, (uint32_t*)ptx_buf);
}
}
wait_ms(5000); // delay 5 sec.
}
// i2s_deinit(&i2s_obj);
i2s_disable(&i2s_obj);
alc5651_set_word_len(2);
alc5651_reg_dump();
i2s_enable(&i2s_obj);
// Stereo, 24bit
for(i=0;i<12;i++){
i2s_set_param(&i2s_obj,CH_STEREO,test_rate_list[i],WL_24b);
for (j=0;j<I2S_DMA_PAGE_NUM;j++) {
ptx_buf = i2s_get_tx_page(&i2s_obj);
if (ptx_buf) {
gen_sound_sample24((int*)ptx_buf, I2S_DMA_PAGE_SIZE/sizeof(int), 2);
i2s_send_page(&i2s_obj, (uint32_t*)ptx_buf);
}
}
wait_ms(5000); // delay 5 sec.
}
// Not Support Mono, 24bit
i2s_deinit(&i2s_obj);
#endif
while(1);
}

View file

@ -0,0 +1,15 @@
Example Description
This example describes how to use i2s by using mbed extend api
Use TXRX mode to archive software bypass mode
NOTE: RX need clock generated by TX. This mode can do TX/RX in the same time.
1.Plug ALC5651 shield to Ameba HDK
2.Run the main function.
3.Plug earphone to Green phone jack
4.Plug audio source to Red phone jack

View file

@ -0,0 +1,183 @@
#include <stdio.h>
#include "PinNames.h"
#include "basic_types.h"
#include "diag.h"
#include <osdep_api.h>
#include "i2c_api.h"
#include "pinmap.h"
//#define I2C_MTR_SDA PC_4//PB_3
//#define I2C_MTR_SCL PC_5//PB_2
#define I2C_MTR_SDA PB_3
#define I2C_MTR_SCL PB_2
#define I2C_BUS_CLK 100000 //hz
#define I2C_ALC5651_ADDR (0x34/2)
#define RT5651_PRIV_INDEX 0x6a
#define RT5651_PRIV_DATA 0x6c
#if defined (__ICCARM__)
i2c_t alc5651_i2c;
#else
volatile i2c_t alc5651_i2c;
#define printf DBG_8195A
#endif
static void alc5651_delay(void)
{
int i;
i=10000;
while (i) {
i--;
asm volatile ("nop\n\t");
}
}
void alc5651_reg_write(unsigned int reg, unsigned int value)
{
char buf[4];
buf[0] = (char)reg;
buf[1] = (char)(value>>8);
buf[2] = (char)(value&0xff);
i2c_write(&alc5651_i2c, I2C_ALC5651_ADDR, &buf[0], 3, 1);
alc5651_delay();
}
void alc5651_reg_read(unsigned int reg, unsigned int *value)
{
int tmp;
char *buf = (char*)&tmp;
buf[0] = (char)reg;
i2c_write(&alc5651_i2c, I2C_ALC5651_ADDR, &buf[0], 1, 1);
alc5651_delay();
buf[0] = 0xaa;
buf[1] = 0xaa;
i2c_read(&alc5651_i2c, I2C_ALC5651_ADDR, &buf[0], 2, 1);
alc5651_delay();
*value= ((buf[0]&0xFF)<<8)|(buf[1]&0xFF);
}
void alc5651_index_write(unsigned int reg, unsigned int value)
{
alc5651_reg_write(RT5651_PRIV_INDEX, reg);
alc5651_reg_write(RT5651_PRIV_DATA, value);
}
void alc5651_index_read(unsigned int reg, unsigned int *value)
{
alc5651_reg_write(RT5651_PRIV_INDEX, reg);
alc5651_reg_read(RT5651_PRIV_DATA, value);
}
void alc5651_reg_dump(void)
{
int i;
unsigned int value;
printf("alc5651 codec reg dump\n\r");
printf("------------------------\n\r");
for(i=0;i<=0xff;i++){
alc5651_reg_read(i, &value);
printf("%02x : %04x\n\r", i, (unsigned short)value);
}
printf("------------------------\n\r");
}
void alc5651_index_dump(void)
{
int i;
unsigned int value;
printf("alc5651 codec index dump\n\r");
printf("------------------------\n\r");
for(i=0;i<=0xff;i++){
alc5651_index_read(i, &value);
printf("%02x : %04x\n\r", i, (unsigned short)value);
}
printf("------------------------\n\r");
}
void alc5651_init(void)
{
i2c_init(&alc5651_i2c, I2C_MTR_SDA, I2C_MTR_SCL);
i2c_frequency(&alc5651_i2c, I2C_BUS_CLK);
}
void alc5651_set_word_len(int len_idx) // interface2
{
// 0: 16 1: 20 2: 24 3: 8
unsigned int val;
alc5651_reg_read(0x71,&val);
val &= (~(0x3<<2));
val |= (len_idx<<2);
alc5651_reg_write(0x71,val);
alc5651_reg_read(0x70,&val);
val &= (~(0x3<<2));
val |= (len_idx<<2);
alc5651_reg_write(0x70,val);
}
void alc5651_init_interface1(void)
{
alc5651_reg_write(0x00,0x0021);
alc5651_reg_write(0x63,0xE8FE);
alc5651_reg_write(0x61,0x5800);
alc5651_reg_write(0x62,0x0C00);
alc5651_reg_write(0x73,0x0000);
alc5651_reg_write(0x2A,0x4242);
alc5651_reg_write(0x45,0x2000);
alc5651_reg_write(0x02,0x4848);
alc5651_reg_write(0x8E,0x0019);
alc5651_reg_write(0x8F,0x3100);
alc5651_reg_write(0x91,0x0E00);
alc5651_index_write(0x3D,0x3E00);
alc5651_reg_write(0xFA,0x0011);
alc5651_reg_write(0x83,0x0800);
alc5651_reg_write(0x84,0xA000);
alc5651_reg_write(0xFA,0x0C11);
alc5651_reg_write(0x64,0x4010);
alc5651_reg_write(0x65,0x0C00);
alc5651_reg_write(0x61,0x5806);
alc5651_reg_write(0x62,0xCC00);
alc5651_reg_write(0x3C,0x004F);
alc5651_reg_write(0x3E,0x004F);
alc5651_reg_write(0x27,0x3820);
alc5651_reg_write(0x77,0x0000);
}
void alc5651_init_interface2(void)
{
alc5651_reg_write(0x00,0x0021);
alc5651_reg_write(0x63,0xE8FE);
alc5651_reg_write(0x61,0x5800);
alc5651_reg_write(0x62,0x0C00);
alc5651_reg_write(0x73,0x0000);
alc5651_reg_write(0x2A,0x4242);
alc5651_reg_write(0x45,0x2000);
alc5651_reg_write(0x02,0x4848);
alc5651_reg_write(0x8E,0x0019);
alc5651_reg_write(0x8F,0x3100);
alc5651_reg_write(0x91,0x0E00);
alc5651_index_write(0x3D,0x3E00);
alc5651_reg_write(0xFA,0x0011);
alc5651_reg_write(0x83,0x0800);
alc5651_reg_write(0x84,0xA000);
alc5651_reg_write(0xFA,0x0C11);
alc5651_reg_write(0x64,0x4010);
alc5651_reg_write(0x65,0x0C00);
alc5651_reg_write(0x61,0x5806);
alc5651_reg_write(0x62,0xCC00);
alc5651_reg_write(0x3C,0x004F);
alc5651_reg_write(0x3E,0x004F);
alc5651_reg_write(0x28,0x3030);
alc5651_reg_write(0x2F,0x0080);
}

View file

@ -0,0 +1,80 @@
/* This is software bypass example */
#include "FreeRTOS.h"
#include "task.h"
#include "diag.h"
#include "main.h"
#include "i2s_api.h"
/**
* @brief Main program.
* @param None
* @retval None
*/
#include "alc5651.c"
i2s_t i2s_obj;
#define I2S_DMA_PAGE_SIZE 768 // 2 ~ 4096
#define I2S_DMA_PAGE_NUM 4 // Vaild number is 2~4
u8 i2s_tx_buf[I2S_DMA_PAGE_SIZE*I2S_DMA_PAGE_NUM];
u8 i2s_rx_buf[I2S_DMA_PAGE_SIZE*I2S_DMA_PAGE_NUM];
#define I2S_SCLK_PIN PC_1
#define I2S_WS_PIN PC_0
#define I2S_SD_PIN PC_2
void test_tx_complete(void *data, char *pbuf)
{
return ;
}
void test_rx_complete(void *data, char* pbuf)
{
i2s_t *obj = (i2s_t *)data;
int *ptx_buf;
static u32 count=0;
count++;
if ((count&1023) == 1023)
{
DBG_8195A_I2S_LVL(VERI_I2S_LVL, ".\n");
}
ptx_buf = i2s_get_tx_page(obj);
_memcpy((void*)ptx_buf, (void*)pbuf, I2S_DMA_PAGE_SIZE);
i2s_send_page(obj, (uint32_t*)ptx_buf); // loopback
i2s_recv_page(obj); // submit a new page for receive
}
void main(void)
{
int *ptx_buf;
int i,j;
alc5651_init();
alc5651_init_interface2(); // connect to ALC interface 2
// dump register
//alc5651_reg_dump();
//alc5651_index_dump();
// I2S init
i2s_obj.channel_num = CH_STEREO;
i2s_obj.sampling_rate = SR_44p1KHZ;
i2s_obj.word_length = WL_16b;
i2s_obj.direction = I2S_DIR_TXRX;
i2s_init(&i2s_obj, I2S_SCLK_PIN, I2S_WS_PIN, I2S_SD_PIN);
i2s_set_dma_buffer(&i2s_obj, (char*)i2s_tx_buf, (char*)i2s_rx_buf, \
I2S_DMA_PAGE_NUM, I2S_DMA_PAGE_SIZE);
i2s_tx_irq_handler(&i2s_obj, (i2s_irq_handler)test_tx_complete, (uint32_t)&i2s_obj);
i2s_rx_irq_handler(&i2s_obj, (i2s_irq_handler)test_rx_complete, (uint32_t)&i2s_obj);
/* rx need clock, let tx out first */
i2s_send_page(&i2s_obj, (uint32_t*)i2s_get_tx_page(&i2s_obj));
i2s_recv_page(&i2s_obj);
while(1);
}

View file

@ -0,0 +1,15 @@
Example Description
This example describes how to use i2s by using mbed extend api
Using TX only and RX only mode.
RX will fill buffer until full then switching to TX only mode to play buffer content.
1.Plug ALC5651 shield to Ameba HDK
2.Run the main function.
3.Plug earphone to Green phone jack
4.Plug audio source to Red phone jack

View file

@ -0,0 +1,183 @@
#include <stdio.h>
#include "PinNames.h"
#include "basic_types.h"
#include "diag.h"
#include <osdep_api.h>
#include "i2c_api.h"
#include "pinmap.h"
//#define I2C_MTR_SDA PC_4//PB_3
//#define I2C_MTR_SCL PC_5//PB_2
#define I2C_MTR_SDA PB_3
#define I2C_MTR_SCL PB_2
#define I2C_BUS_CLK 100000 //hz
#define I2C_ALC5651_ADDR (0x34/2)
#define RT5651_PRIV_INDEX 0x6a
#define RT5651_PRIV_DATA 0x6c
#if defined (__ICCARM__)
i2c_t alc5651_i2c;
#else
volatile i2c_t alc5651_i2c;
#define printf DBG_8195A
#endif
static void alc5651_delay(void)
{
int i;
i=10000;
while (i) {
i--;
asm volatile ("nop\n\t");
}
}
void alc5651_reg_write(unsigned int reg, unsigned int value)
{
char buf[4];
buf[0] = (char)reg;
buf[1] = (char)(value>>8);
buf[2] = (char)(value&0xff);
i2c_write(&alc5651_i2c, I2C_ALC5651_ADDR, &buf[0], 3, 1);
alc5651_delay();
}
void alc5651_reg_read(unsigned int reg, unsigned int *value)
{
int tmp;
char *buf = (char*)&tmp;
buf[0] = (char)reg;
i2c_write(&alc5651_i2c, I2C_ALC5651_ADDR, &buf[0], 1, 1);
alc5651_delay();
buf[0] = 0xaa;
buf[1] = 0xaa;
i2c_read(&alc5651_i2c, I2C_ALC5651_ADDR, &buf[0], 2, 1);
alc5651_delay();
*value= ((buf[0]&0xFF)<<8)|(buf[1]&0xFF);
}
void alc5651_index_write(unsigned int reg, unsigned int value)
{
alc5651_reg_write(RT5651_PRIV_INDEX, reg);
alc5651_reg_write(RT5651_PRIV_DATA, value);
}
void alc5651_index_read(unsigned int reg, unsigned int *value)
{
alc5651_reg_write(RT5651_PRIV_INDEX, reg);
alc5651_reg_read(RT5651_PRIV_DATA, value);
}
void alc5651_reg_dump(void)
{
int i;
unsigned int value;
printf("alc5651 codec reg dump\n\r");
printf("------------------------\n\r");
for(i=0;i<=0xff;i++){
alc5651_reg_read(i, &value);
printf("%02x : %04x\n\r", i, (unsigned short)value);
}
printf("------------------------\n\r");
}
void alc5651_index_dump(void)
{
int i;
unsigned int value;
printf("alc5651 codec index dump\n\r");
printf("------------------------\n\r");
for(i=0;i<=0xff;i++){
alc5651_index_read(i, &value);
printf("%02x : %04x\n\r", i, (unsigned short)value);
}
printf("------------------------\n\r");
}
void alc5651_init(void)
{
i2c_init(&alc5651_i2c, I2C_MTR_SDA, I2C_MTR_SCL);
i2c_frequency(&alc5651_i2c, I2C_BUS_CLK);
}
void alc5651_set_word_len(int len_idx) // interface2
{
// 0: 16 1: 20 2: 24 3: 8
unsigned int val;
alc5651_reg_read(0x71,&val);
val &= (~(0x3<<2));
val |= (len_idx<<2);
alc5651_reg_write(0x71,val);
alc5651_reg_read(0x70,&val);
val &= (~(0x3<<2));
val |= (len_idx<<2);
alc5651_reg_write(0x70,val);
}
void alc5651_init_interface1(void)
{
alc5651_reg_write(0x00,0x0021);
alc5651_reg_write(0x63,0xE8FE);
alc5651_reg_write(0x61,0x5800);
alc5651_reg_write(0x62,0x0C00);
alc5651_reg_write(0x73,0x0000);
alc5651_reg_write(0x2A,0x4242);
alc5651_reg_write(0x45,0x2000);
alc5651_reg_write(0x02,0x4848);
alc5651_reg_write(0x8E,0x0019);
alc5651_reg_write(0x8F,0x3100);
alc5651_reg_write(0x91,0x0E00);
alc5651_index_write(0x3D,0x3E00);
alc5651_reg_write(0xFA,0x0011);
alc5651_reg_write(0x83,0x0800);
alc5651_reg_write(0x84,0xA000);
alc5651_reg_write(0xFA,0x0C11);
alc5651_reg_write(0x64,0x4010);
alc5651_reg_write(0x65,0x0C00);
alc5651_reg_write(0x61,0x5806);
alc5651_reg_write(0x62,0xCC00);
alc5651_reg_write(0x3C,0x004F);
alc5651_reg_write(0x3E,0x004F);
alc5651_reg_write(0x27,0x3820);
alc5651_reg_write(0x77,0x0000);
}
void alc5651_init_interface2(void)
{
alc5651_reg_write(0x00,0x0021);
alc5651_reg_write(0x63,0xE8FE);
alc5651_reg_write(0x61,0x5800);
alc5651_reg_write(0x62,0x0C00);
alc5651_reg_write(0x73,0x0000);
alc5651_reg_write(0x2A,0x4242);
alc5651_reg_write(0x45,0x2000);
alc5651_reg_write(0x02,0x4848);
alc5651_reg_write(0x8E,0x0019);
alc5651_reg_write(0x8F,0x3100);
alc5651_reg_write(0x91,0x0E00);
alc5651_index_write(0x3D,0x3E00);
alc5651_reg_write(0xFA,0x0011);
alc5651_reg_write(0x83,0x0800);
alc5651_reg_write(0x84,0xA000);
alc5651_reg_write(0xFA,0x0C11);
alc5651_reg_write(0x64,0x4010);
alc5651_reg_write(0x65,0x0C00);
alc5651_reg_write(0x61,0x5806);
alc5651_reg_write(0x62,0xCC00);
alc5651_reg_write(0x3C,0x004F);
alc5651_reg_write(0x3E,0x004F);
alc5651_reg_write(0x28,0x3030);
alc5651_reg_write(0x2F,0x0080);
}

View file

@ -0,0 +1,94 @@
/* This is RX only and TX only example */
#include "FreeRTOS.h"
#include "task.h"
#include "diag.h"
#include "main.h"
#include "i2s_api.h"
/**
* @brief Main program.
* @param None
* @retval None
*/
#include "alc5651.c"
i2s_t i2s_obj;
#define I2S_DMA_PAGE_SIZE 768 // 2 ~ 4096
#define I2S_DMA_PAGE_NUM 4 // Vaild number is 2~4
u8 i2s_tx_buf[I2S_DMA_PAGE_SIZE*I2S_DMA_PAGE_NUM];
u8 i2s_rx_buf[I2S_DMA_PAGE_SIZE*I2S_DMA_PAGE_NUM];
#define RECV_PAGE_NUM 50
u8 recv_buf[I2S_DMA_PAGE_SIZE*RECV_PAGE_NUM];
#define I2S_SCLK_PIN PC_1
#define I2S_WS_PIN PC_0
#define I2S_SD_PIN PC_2
u32 count = 0;
void test_tx_complete(void *data, char *pbuf)
{
i2s_t *obj = (i2s_t *)data;
int *ptx_buf;
if(count < RECV_PAGE_NUM){
ptx_buf = i2s_get_tx_page(obj);
_memcpy((void*)ptx_buf, (void*)&recv_buf[I2S_DMA_PAGE_SIZE*count], I2S_DMA_PAGE_SIZE);
i2s_send_page(obj, (uint32_t*)ptx_buf);
count++;
}else{
count = 0;
i2s_set_direction(obj, I2S_DIR_RX);
i2s_recv_page(obj);
}
}
void test_rx_complete(void *data, char* pbuf)
{
i2s_t *obj = (i2s_t *)data;
int *ptx_buf;
if(count < RECV_PAGE_NUM){
_memcpy((void*)&recv_buf[I2S_DMA_PAGE_SIZE*count], (void*)pbuf, I2S_DMA_PAGE_SIZE);
count++;
i2s_recv_page(obj);
}else{
count = 1;
i2s_set_direction(obj, I2S_DIR_TX);
ptx_buf = i2s_get_tx_page(obj);
_memcpy((void*)ptx_buf, (void*)recv_buf, I2S_DMA_PAGE_SIZE);
i2s_send_page(obj, (uint32_t*)ptx_buf); // loopback
}
}
void main(void)
{
int *ptx_buf;
int i,j;
alc5651_init();
alc5651_init_interface2(); // connect to ALC interface 2
// dump register
//alc5651_reg_dump();
//alc5651_index_dump();
// I2S init
i2s_obj.channel_num = CH_MONO;
i2s_obj.sampling_rate = SR_16KHZ;
i2s_obj.word_length = WL_16b;
i2s_obj.direction = I2S_DIR_RX;
i2s_init(&i2s_obj, I2S_SCLK_PIN, I2S_WS_PIN, I2S_SD_PIN);
i2s_set_dma_buffer(&i2s_obj, (char*)i2s_tx_buf, (char*)i2s_rx_buf, \
I2S_DMA_PAGE_NUM, I2S_DMA_PAGE_SIZE);
i2s_tx_irq_handler(&i2s_obj, (i2s_irq_handler)test_tx_complete, (uint32_t)&i2s_obj);
i2s_rx_irq_handler(&i2s_obj, (i2s_irq_handler)test_rx_complete, (uint32_t)&i2s_obj);
i2s_recv_page(&i2s_obj);
while(1);
}

View file

@ -0,0 +1,28 @@
Example Description
This example describes how to use nfc interface.
Requirement Components:
1. nfc reader.
Ex. Smart phone which has NFC reader. In Android, you can use below app
NFC Tag reader
https://play.google.com/store/apps/details?id=com.nxp.taginfolite
NFC Tag reader & writer
https://play.google.com/store/apps/details?id=com.wakdev.wdnfc
NFC tag writer
https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter
2. Connect NFC antenna.
By default the NFC antenna is provided but not connected.
You can choose your desired antenna and weld it on the board
Verification Steps:
(a) Open nfc reader app, Tap phone on NFC antenna, then the ndef message content is text "HELLO WORLD!"
(b) Open nfc writer app, write something to the tag. (Ex. text message "abcdefg")
It'll also dump raw data on the log.
(c) Open nfc reader app, tap phone on NFC antenna, and check if the conten is exactly the same as previous move.

View file

@ -0,0 +1,214 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "cmsis_os.h"
#include "diag.h"
#include "main.h"
#include "nfc_api.h"
#include "flash_api.h"
#define NFC_RESTORE_DEFAULT (0)
#define NFC_MAX_PAGE_NUM 36
nfctag_t nfctag;
unsigned int nfc_tag_content[NFC_MAX_PAGE_NUM];
unsigned char nfc_tag_dirty[NFC_MAX_PAGE_NUM];
#define RTK_NFC_UID 0x58
unsigned char nfc_default_uid[7] = {
RTK_NFC_UID, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06
};
osThreadId nfc_tid = 0;
#define FLASH_APP_NFC_BASE 0x85000
flash_t flash_nfc;
void nfc_event_listener(void *arg, unsigned int event) {
switch(event) {
case NFC_EV_READER_PRESENT:
DiagPrintf("NFC_EV_READER_PRESENT\r\n");
break;
case NFC_EV_READ:
DiagPrintf("NFC_EV_READ\r\n");
break;
case NFC_EV_WRITE:
DiagPrintf("NFC_EV_WRITE\r\n");
break;
case NFC_EV_ERR:
DiagPrintf("NFC_EV_ERR\r\n");
break;
case NFC_EV_CACHE_READ:
DiagPrintf("NFC_EV_CACHE_READ\r\n");
break;
}
}
/**
* This callback function is called several times if tag is being written multiple pages.
* DO NOT put heavy task here otherwise it will block tag write and cause timeout failure.
**/
void nfc_write_listener(void *arg, unsigned int page, unsigned int pgdat) {
nfc_tag_content[page] = pgdat;
nfc_tag_dirty[page] = 1;
if (nfc_tid) {
osSignalSet(nfc_tid, NFC_EV_WRITE);
}
}
int is_valid_nfc_uid() {
int valid_content = 1;
unsigned char uid[7];
unsigned char bcc[2];
uid[0] = (unsigned char)((nfc_tag_content[0] & 0x000000FF) >> 0);
uid[1] = (unsigned char)((nfc_tag_content[0] & 0x0000FF00) >> 8);
uid[2] = (unsigned char)((nfc_tag_content[0] & 0x00FF0000) >> 16);
bcc[0] = (unsigned char)((nfc_tag_content[0] & 0xFF000000) >> 24);
uid[3] = (unsigned char)((nfc_tag_content[1] & 0x000000FF) >> 0);
uid[4] = (unsigned char)((nfc_tag_content[1] & 0x0000FF00) >> 8);
uid[5] = (unsigned char)((nfc_tag_content[1] & 0x00FF0000) >> 16);
uid[6] = (unsigned char)((nfc_tag_content[1] & 0xFF000000) >> 24);
bcc[1] = (unsigned char)((nfc_tag_content[2] & 0x000000FF) >> 0);
// verify Block Check Character
if (bcc[0] != (0x88 ^ uid[0] ^ uid[1] ^ uid[2])) {
valid_content = 0;
}
if (bcc[1] != (uid[3] ^ uid[4] ^ uid[5] ^ uid[6])) {
valid_content = 0;
}
return valid_content;
}
unsigned int generate_default_tag_content() {
unsigned int page_size = 0;
memset(nfc_tag_content, 0, NFC_MAX_PAGE_NUM * sizeof(unsigned int));
// calculate Block Check Character
unsigned char bcc[2];
bcc[0] = 0x88 ^ nfc_default_uid[0] ^ nfc_default_uid[1] ^ nfc_default_uid[2];
bcc[1] = nfc_default_uid[3] ^ nfc_default_uid[4] ^ nfc_default_uid[5] ^ nfc_default_uid[6];
// generate header
nfc_tag_content[page_size++] = ((unsigned int)nfc_default_uid[0]) << 0 |
((unsigned int)nfc_default_uid[1]) << 8 |
((unsigned int)nfc_default_uid[2]) << 16 |
((unsigned int) bcc[0]) << 24;
nfc_tag_content[page_size++] = ((unsigned int)nfc_default_uid[3]) << 0 |
((unsigned int)nfc_default_uid[4]) << 8 |
((unsigned int)nfc_default_uid[5]) << 16 |
((unsigned int)nfc_default_uid[6]) << 24;
nfc_tag_content[page_size++] = ((unsigned int) bcc[1]) << 0;
nfc_tag_content[page_size++] = 0x001211E1;
// Init tag content as NDEF will-known text message "HELLO WORLD!" in little endian
nfc_tag_content[page_size++] = 0x01d11303;
nfc_tag_content[page_size++] = 0x6502540f;
nfc_tag_content[page_size++] = 0x4c45486e;
nfc_tag_content[page_size++] = 0x57204f4c;
nfc_tag_content[page_size++] = 0x444c524f;
nfc_tag_content[page_size++] = 0x0000fe21;
return page_size;
}
void nfc_load_tag_content_from_flash() {
int i, address, page_size;
memset(nfc_tag_content, 0, NFC_MAX_PAGE_NUM * sizeof(unsigned int));
memset(nfc_tag_dirty, 0, NFC_MAX_PAGE_NUM);
for (i = 0, address = FLASH_APP_NFC_BASE; i < NFC_MAX_PAGE_NUM; i++, address+=4) {
flash_read_word(&flash_nfc, address, &nfc_tag_content[i]);
}
if (!is_valid_nfc_uid() || NFC_RESTORE_DEFAULT) {
DiagPrintf("Invalid tag content, restore to default value\r\n");
page_size = generate_default_tag_content();
// update to flash
flash_erase_sector(&flash_nfc, FLASH_APP_NFC_BASE);
for (i = 0, address = FLASH_APP_NFC_BASE; i < page_size; i++, address += 4) {
flash_write_word(&flash_nfc, address, nfc_tag_content[i]);
}
}
}
void nfc_store_tag_content_to_flash() {
int i, address;
int modified_page_count;
// dump the modified tag content
modified_page_count = 4; // 4 for tag header
for (i = 4; i < NFC_MAX_PAGE_NUM && nfc_tag_dirty[i]; i++) {
modified_page_count++;
DiagPrintf("page:%02d data:%08x\r\n", i, nfc_tag_content[i]);
}
flash_erase_sector(&flash_nfc, FLASH_APP_NFC_BASE);
for (i = 0, address = FLASH_APP_NFC_BASE; i < modified_page_count; i++, address += 4) {
flash_write_word(&flash_nfc, address, nfc_tag_content[i]);
}
}
void nfc_task(void const *arg) {
int i;
osEvent evt;
nfc_load_tag_content_from_flash();
nfc_init(&nfctag, nfc_tag_content);
nfc_event(&nfctag, nfc_event_listener, NULL, 0xFF);
nfc_write(&nfctag, nfc_write_listener, NULL);
osSignalClear(nfc_tid, NFC_EV_WRITE);
while(1) {
evt = osSignalWait (0, 0xFFFFFFFF); // wait for any signal with max timeout
if (evt.status == osEventSignal && (evt.value.signals & NFC_EV_WRITE)) {
osDelay(300);
nfc_store_tag_content_to_flash();
memset(nfc_tag_dirty, 0, NFC_MAX_PAGE_NUM);
osSignalClear(nfc_tid, NFC_EV_WRITE);
}
}
}
/**
* @brief Main program.
* @param None
* @retval None
*/
void main(void)
{
osThreadDef(nfc_task, osPriorityRealtime, 1, 1024);
nfc_tid = osThreadCreate (osThread (nfc_task), NULL);
DBG_INFO_MSG_OFF(_DBG_SPI_FLASH_);
//3 3)Enable Schedule, Start Kernel
#if defined(CONFIG_KERNEL) && !TASK_SCHEDULER_DISABLED
#ifdef PLATFORM_FREERTOS
vTaskStartScheduler();
#endif
#else
RtlConsolTaskRom(NULL);
#endif
while(1);
}

View file

@ -0,0 +1,18 @@
Example Description
This example describes how to use deep sleep api.
Requirement Components:
a LED
a push button
Pin name PC_4 and PC_5 map to GPIOC_4 and GPIOC_5:
- PC_4 as input with internal pull-high, connect a push button to this pin and ground.
- PC_5 as output, connect a LED to this pin and ground.
In this example, LED is turned on after device initialize.
User push the button to turn off LED and trigger device enter deep sleep mode for 10s.
If user press any key before sleep timeout, the system will resume.
LED is turned on again after device initialize.
It can be easily measure power consumption in normal mode and deep sleep mode before/after push the putton.

View file

@ -0,0 +1,110 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "gpio_api.h" // mbed
#include "gpio_irq_api.h" // mbed
#include "sleep_ex_api.h"
#include "sys_api.h"
#include "diag.h"
#include "main.h"
#define GPIO_LED_PIN PC_5
#define GPIO_IRQ_PIN PC_4
// deep sleep can only be waked up by GPIOB_1 and GTimer
#define GPIO_WAKE_PIN PB_1
// NOTICE: The pull condition may differnet on your board
PinName pull_down_list[] = {
PA_0, PA_1, PA_2, PA_3, PA_4, PA_5, PA_6, PA_7,
PB_0, PB_3, PB_4, PB_5, PB_6, PB_7,
PC_0, PC_1, PC_2, PC_3, PC_4, PC_5, PC_6, PC_7, PC_8, PC_9,
PD_0, PD_1, PD_2, PD_3, PD_4, PD_5, PD_6, PD_7, PD_8, PD_9,
PE_0, PE_1, PE_2, PE_3, PE_4, PE_5, PE_6, PE_7, PE_8, PE_9, PE_A,
PF_1, PF_2, PF_3, PF_4, PF_5
};
// NOTICE: The pull condition may differnet on your board
PinName pull_up_list[] = {
PB_2,
PF_0,
PG_0, PG_1, PG_2, PG_3, PG_4, PG_5, PG_6, PG_7,
PH_0, PH_1, PH_2, PH_3, PH_4, PH_5, PH_6, PH_7,
PI_0, PI_1, PI_2, PI_3, PI_4, PI_5, PI_6, PI_7,
PJ_0, PJ_1, PJ_2, PJ_3, PJ_4, PJ_5, PJ_6,
PK_0, PK_1, PK_2, PK_3, PK_4, PK_5, PK_6
};
void gpio_pull_control()
{
int i;
gpio_t gpio_obj;
for (i=0; i < sizeof(pull_down_list) / sizeof(pull_down_list[0]); i++) {
gpio_init(&gpio_obj, pull_down_list[i]);
gpio_dir(&gpio_obj, PIN_INPUT);
gpio_mode(&gpio_obj, PullDown);
}
for (i=0; i < sizeof(pull_up_list) / sizeof(pull_up_list[0]); i++) {
gpio_init(&gpio_obj, pull_up_list[i]);
gpio_dir(&gpio_obj, PIN_INPUT);
gpio_mode(&gpio_obj, PullUp);
}
}
void gpio_demo_irq_handler (uint32_t id, gpio_irq_event event)
{
gpio_t *gpio_led;
gpio_led = (gpio_t *)id;
printf("Enter deep sleep...Wait 10s or give rising edge at PB_1 to wakeup system.\r\n\r\n");
// turn off led
gpio_write(gpio_led, 0);
// turn off log uart
sys_log_uart_off();
// initialize wakeup pin at PB_1
gpio_t gpio_wake;
gpio_init(&gpio_wake, GPIO_WAKE_PIN);
gpio_dir(&gpio_wake, PIN_INPUT);
gpio_mode(&gpio_wake, PullDown);
// Please note that the pull control is different in different board
// This example is a sample code for RTL Ameba Dev Board
gpio_pull_control();
// enter deep sleep
deepsleep_ex(DSLEEP_WAKEUP_BY_GPIO | DSLEEP_WAKEUP_BY_TIMER, 10000);
}
void main(void)
{
gpio_t gpio_led;
gpio_irq_t gpio_btn;
// Init LED control pin
gpio_init(&gpio_led, GPIO_LED_PIN);
gpio_dir(&gpio_led, PIN_OUTPUT); // Direction: Output
gpio_mode(&gpio_led, PullNone); // No pull
// Initial Push Button pin as interrupt source
gpio_irq_init(&gpio_btn, GPIO_IRQ_PIN, gpio_demo_irq_handler, (uint32_t)(&gpio_led));
gpio_irq_set(&gpio_btn, IRQ_FALL, 1); // Falling Edge Trigger
gpio_irq_enable(&gpio_btn);
// led on means system is in run mode
gpio_write(&gpio_led, 1);
printf("\r\nPush button at PC_4 to enter deep sleep\r\n");
while(1);
}

View file

@ -0,0 +1,18 @@
Example Description
This example describes how to use deep standby api.
Requirement Components:
a LED
a push button
Pin name PA_5 and PC_5 map to GPIOA_5 and GPIOC_5:
- PA_5 as input, connect a push button to this pin and 3v3.
- PC_5 as output, connect a LED to this pin and ground.
In this example, LED is turned on after device initialize.
User push the button to turn off LED and trigger device enter deep standby mode for 10s.
If user press button before sleep timeout, the system will resume.
LED is turned on again after device initialize.
It can be easily measure power consumption in normal mode and deep standby mode before/after push the putton.

View file

@ -0,0 +1,104 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "gpio_api.h" // mbed
#include "sleep_ex_api.h"
#include "diag.h"
#include "main.h"
#define GPIO_LED_PIN PC_5
#define GPIO_PUSHBT_PIN PA_5
// NOTICE: The pull condition may differnet on your board
PinName pull_down_list[] = {
PA_0, PA_1, PA_2, PA_3, PA_4, PA_5, PA_6, PA_7,
PB_0, PB_1, PB_3, PB_4, PB_5, PB_6, PB_7,
PC_0, PC_1, PC_2, PC_3, PC_4, PC_5, PC_6, PC_7, PC_8, PC_9,
PD_0, PD_1, PD_2, PD_3, PD_4, PD_5, PD_6, PD_7, PD_8, PD_9,
PE_0, PE_1, PE_2, PE_3, PE_4, PE_5, PE_6, PE_7, PE_8, PE_9, PE_A,
PF_1, PF_2, PF_3, PF_4, PF_5
};
// NOTICE: The pull condition may differnet on your board
PinName pull_up_list[] = {
PB_2,
PF_0,
PG_0, PG_1, PG_2, PG_3, PG_4, PG_5, PG_6, PG_7,
PH_0, PH_1, PH_2, PH_3, PH_4, PH_5, PH_6, PH_7,
PI_0, PI_1, PI_2, PI_3, PI_4, PI_5, PI_6, PI_7,
PJ_0, PJ_1, PJ_2, PJ_3, PJ_4, PJ_5, PJ_6,
PK_0, PK_1, PK_2, PK_3, PK_4, PK_5, PK_6
};
void gpio_pull_control()
{
int i;
gpio_t gpio_obj;
for (i=0; i < sizeof(pull_down_list) / sizeof(pull_down_list[0]); i++) {
gpio_init(&gpio_obj, pull_down_list[i]);
gpio_dir(&gpio_obj, PIN_INPUT);
gpio_mode(&gpio_obj, PullDown);
}
for (i=0; i < sizeof(pull_up_list) / sizeof(pull_up_list[0]); i++) {
gpio_init(&gpio_obj, pull_up_list[i]);
gpio_dir(&gpio_obj, PIN_INPUT);
gpio_mode(&gpio_obj, PullUp);
}
}
/**
* @brief Main program.
* @param None
* @retval None
*/
void main(void)
{
gpio_t gpio_led, gpio_btn;
int old_btn_state, new_btn_state;
DBG_INFO_MSG_OFF(_DBG_GPIO_);
// Init LED control pin
gpio_init(&gpio_led, GPIO_LED_PIN);
gpio_dir(&gpio_led, PIN_OUTPUT); // Direction: Output
gpio_mode(&gpio_led, PullNone); // No pull
// Initial Push Button pin
gpio_init(&gpio_btn, GPIO_PUSHBT_PIN);
gpio_dir(&gpio_btn, PIN_INPUT); // Direction: Input
gpio_mode(&gpio_btn, PullDown);
old_btn_state = new_btn_state = 0;
gpio_write(&gpio_led, 1);
DiagPrintf("Push button to sleep...\r\n");
while(1){
new_btn_state = gpio_read(&gpio_btn);
if (old_btn_state == 1 && new_btn_state == 0) {
gpio_write(&gpio_led, 0);
// Please note that the pull control is different in different board
// This example is a sample code for RTL Ameba Dev Board
gpio_pull_control();
DiagPrintf("Sleep 8s... (Or wakeup by pushing button)\r\n");
standby_wakeup_event_add(STANDBY_WAKEUP_BY_STIMER, 8000, 0);
standby_wakeup_event_add(STANDBY_WAKEUP_BY_PA5, 0, 1);
deepstandby_ex();
DiagPrintf("This line should not be printed\r\n");
}
old_btn_state = new_btn_state;
}
}

View file

@ -0,0 +1,18 @@
Example Description
This example describes how to use sleep api.
Requirement Components:
a LED
a push button
Pin name PC_4 and PC_5 map to GPIOC_4 and GPIOC_5:
- PC_4 as input with internal pull-high, connect a push button to this pin and ground.
- PC_5 as output, connect a LED to this pin and ground.
In this example, LED is turned on after device initialize.
User push the button to turn off LED and trigger device enter sleep mode for 10s.
If user push button before sleep timeout, the system will resume.
LED is turned on again after system resume without restart PC.
It can be easily measure power consumption in normal mode and sleep mode before/after push the putton.

View file

@ -0,0 +1,81 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "gpio_api.h" // mbed
#include "gpio_irq_api.h" // mbed
#include "sleep_ex_api.h"
#include "sys_api.h"
#include "diag.h"
#include "main.h"
#define GPIO_LED_PIN PC_5
#define GPIO_IRQ_PIN PC_4
int led_ctrl = 0;
gpio_t gpio_led;
int put_to_sleep = 0;
void gpio_demo_irq_handler (uint32_t id, gpio_irq_event event)
{
gpio_t *gpio_led;
gpio_led = (gpio_t *)id;
if (led_ctrl == 1) {
led_ctrl = 0;
gpio_write(gpio_led, led_ctrl);
put_to_sleep = 1;
} else {
led_ctrl = 1;
gpio_write(gpio_led, led_ctrl);
}
}
/**
* @brief Main program.
* @param None
* @retval None
*/
void main(void)
{
gpio_irq_t gpio_btn;
DBG_INFO_MSG_OFF(_DBG_GPIO_);
// Init LED control pin
gpio_init(&gpio_led, GPIO_LED_PIN);
gpio_dir(&gpio_led, PIN_OUTPUT); // Direction: Output
gpio_mode(&gpio_led, PullNone); // No pull
// Initial Push Button pin as interrupt source
gpio_irq_init(&gpio_btn, GPIO_IRQ_PIN, gpio_demo_irq_handler, (uint32_t)(&gpio_led));
gpio_irq_set(&gpio_btn, IRQ_FALL, 1);
gpio_irq_enable(&gpio_btn);
led_ctrl = 1;
gpio_write(&gpio_led, led_ctrl);
DBG_8195A("Push button to enter sleep\r\n");
put_to_sleep = 0;
while(1) {
if (put_to_sleep) {
DBG_8195A("Sleep 8s or push button to resume system...\r\n");
sys_log_uart_off();
sleep_ex(SLP_GPIO | SLEEP_WAKEUP_BY_STIMER, 8000); // sleep_ex can't be put in irq handler
sys_log_uart_on();
DBG_8195A("System resume\r\n");
put_to_sleep = 0;
led_ctrl = 1;
gpio_write(&gpio_led, led_ctrl);
}
}
}

View file

@ -0,0 +1,31 @@
Example Description
This example describes how to use freertos tickless with uart interruptable interface
Requirement Components:
USBtoTTL adapter
Connect to PC
- Connect Ground: connect to GND pin via USBtoTTL adapter
- Use UART1
GPIOA_0 as UART1_RX connect to TX of USBtoTTL adapter
GPIOA_4 as UART1_TX connect to RX of USBtoTTL adapter
We also need connect GPIOC_1 as gpio interrupt which parallel with log uart rx pin.
In this example, freertos will enter/leave tickless automatically.
User can type continuous "Enter" in uart or log uart to wake system if system is in tickless.
System is keep awake until user type a command via uart.
There are some features in this example:
(1) We replace tickless' sleep function with system sleep api which save more power.
(2) Freertos enter tickless if the wakelock bit map is 0.
It means there is no function require system keep awake.
By default there is WAKELOCK_OS keep system awake.
So we need release this WAKELOCK_OS enable tickless mode.
(3) We configure uart rx as gpio interrupt mode. This make uart can wake system.
NOTICE: If you don't want loss any data from treating UART signal as GPIO interrupt,
you can set FREERTOS_PMU_TICKLESS_PLL_RESERVED to 1 in "platform_opt.h".
It will reserved PLL clock in tickless and UART can receive the whole data.
But it also cost more power consumption.

View file

@ -0,0 +1,168 @@
#include "FreeRTOS.h"
#include "task.h"
#include "diag.h"
#include "main.h"
#include <example_entry.h>
#include "freertos_pmu.h"
#include "gpio_irq_api.h"
#include "serial_api.h"
// select uart tx/rx pin with gpio interrupt function
#define UART_TX PA_4
#define UART_RX PA_0
#define LOGUART_RX_WAKE PC_1
#define WAKELOCK_EXAMPLE WAKELOCK_USER_BASE
serial_t mysobj;
volatile char rc = 0;
extern void wlan_netowrk(void);
extern void console_init(void);
char cmdbuf[128];
int cmdbuf_index = 0;
void uart_irq_callback(uint32_t id, SerialIrq event)
{
serial_t *sobj = (void*)id;
if(event == RxIrq) {
acquire_wakelock(WAKELOCK_EXAMPLE);
rc = serial_getc(sobj);
if (rc == '\r' || rc == '\n') {
serial_putc(sobj, '\r');
serial_putc(sobj, '\n');
serial_putc(sobj, '#');
serial_putc(sobj, ' ');
if (cmdbuf_index != 0) {
/* NOTICE: If you don't want loss any data from treating UART signal as GPIO interrupt,
* you can set FREERTOS_PMU_TICKLESS_PLL_RESERVED to 1 in "platform_opt.h".
* It will reserved PLL clock in tickless and UART can receive the whole data.
* But it also cost more power consumption.
**/
// process command
printf("cmd(%d): %s\r\n", cmdbuf_index, cmdbuf);
// release wakelock and reset buf
cmdbuf_index = 0;
release_wakelock(WAKELOCK_EXAMPLE);
}
}
if (!(rc == '\r' || rc == '\n' )) {
// receive command
serial_putc(sobj, rc);
cmdbuf[cmdbuf_index] = rc;
cmdbuf_index++;
cmdbuf[cmdbuf_index] = '\0';
}
}
}
void gpio_uart_rx_irq_callback(uint32_t id, gpio_irq_event event)
{
acquire_wakelock(WAKELOCK_EXAMPLE);
}
void pre_sleep_process_callback(unsigned int expected_idle_time)
{
// For peripherals that need turned off before sleep, call disable or deinit peripheral here
}
void post_sleep_process_callback(unsigned int expected_idle_time)
{
// For peripherals that are turned off before sleep, call enable or init peripheral here
}
void config_uart()
{
// setup uart
serial_init(&mysobj, UART_TX, UART_RX);
serial_baud(&mysobj, 38400);
serial_format(&mysobj, 8, ParityNone, 1);
serial_irq_handler(&mysobj, uart_irq_callback, (uint32_t)&mysobj);
serial_irq_set(&mysobj, RxIrq, 1);
serial_irq_set(&mysobj, TxIrq, 1);
// config uart rx as gpio wakeup pin
gpio_irq_t gpio_rx_wake;
gpio_irq_init(&gpio_rx_wake, UART_RX, gpio_uart_rx_irq_callback, NULL);
gpio_irq_set(&gpio_rx_wake, IRQ_FALL, 1); // Falling Edge Trigger
gpio_irq_enable(&gpio_rx_wake);
}
void gpio_loguart_rx_irq_callback (uint32_t id, gpio_irq_event event)
{
/* WAKELOCK_LOGUART is also handled in log service.
* It is release after a complete command is sent.
**/
acquire_wakelock(WAKELOCK_LOGUART);
}
void config_loguart()
{
/* Log uart RX pin doesn't support gpio interrupt.
* To make log uart wake system, we can parallel log uart RX with another gpio interrupt pin.
*/
gpio_irq_t gpio_rx_wake;
gpio_irq_init(&gpio_rx_wake, LOGUART_RX_WAKE, gpio_loguart_rx_irq_callback, NULL);
gpio_irq_set(&gpio_rx_wake, IRQ_FALL, 1); // Falling Edge Trigger
gpio_irq_enable(&gpio_rx_wake);
}
/**
* @brief Main program.
* @param None
* @retval None
*/
void main(void)
{
if ( rtl_cryptoEngine_init() != 0 ) {
DiagPrintf("crypto engine init failed\r\n");
}
/* Initialize log uart and at command service */
console_init();
/* pre-processor of application example */
pre_example_entry();
/* wlan intialization */
#if defined(CONFIG_WIFI_NORMAL) && defined(CONFIG_NETWORK)
wlan_network();
#endif
// setup uart with capability of wakeup system
config_uart();
// setup log uart with capability of wakeup system
config_loguart();
// By default tickless is disabled because WAKELOCK_OS is locked.
// Release this wakelock to enable tickless
release_wakelock(WAKELOCK_OS);
// Register pre/post sleep callback. They are called when system automatically enter/leave sleep.
register_pre_sleep_callback(pre_sleep_process_callback);
register_post_sleep_callback(post_sleep_process_callback);
/* Execute application example */
example_entry();
/*Enable Schedule, Start Kernel*/
#if defined(CONFIG_KERNEL) && !TASK_SCHEDULER_DISABLED
#ifdef PLATFORM_FREERTOS
vTaskStartScheduler();
#endif
#else
RtlConsolTaskRom(NULL);
#endif
}

View file

@ -0,0 +1,10 @@
Example Description
This example describes how to use pwm buzzer on extend board
Requirement Components:
extend board, buzzer
Connect extend board to 2v0 dap board, and connect buzzer on the extend board's buzzer pin, then the buzzer would play sound from Do to higher Do.

View file

@ -0,0 +1,63 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "pwmout_api.h" // mbed
#include "main.h"
#include "os_support.h"
#define PWM_1 PC_0
#define PWM_2 PC_1
#define PWM_3 PC_2
#define PWM_4 PC_3
pwmout_t pwm_led[4];
PinName pwm_led_pin[4] = {PWM_1, PWM_2, PWM_3, PWM_4};
float period[8] = {1.0/523, 1.0/587, 1.0/659, 1.0/698, 1.0/784, 1.0/880, 1.0/988, 1.0/1047};
extern void RtlMsleepOS(u32 ms);
void pwm_delay(void)
{
for(int i=0;i<1000000;i++)
asm(" nop");
}
/**
* @brief Main program.
* @param None
* @retval None
*/
//int main_app(IN u16 argc, IN u8 *argv[])
void main(void)
{
int i;
pwmout_init(&pwm_led[3], pwm_led_pin[3]);
while (1) {
for(i=0; i<8; i++){
pwmout_period(&pwm_led[3], period[i]);
pwmout_pulsewidth(&pwm_led[3], period[i]/2);
Mdelay(1000);
}
// wait_ms(20);
// RtlMsleepOS(25);
pwm_delay();
}
}

View file

@ -0,0 +1,13 @@
Example Description
This example describes how to use pwm
Requirement Components:
1~4 LED
Connect LED to below PWM pins and ground, then the LED would gradually become brighter and then darker with different speed.
- connect a LED to PC_0 and ground
- connect a LED to PC_1 and ground
- connect a LED to PC_2 and ground
- connect a LED to PC_3 and ground

View file

@ -0,0 +1,94 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "pwmout_api.h" // mbed
#include "main.h"
#define PWM_1 PC_0
#define PWM_2 PC_1
#define PWM_3 PC_2
#define PWM_4 PC_3
#define PWM_PERIOD 20000
#define USE_FLOAT 0
#if USE_FLOAT
#define PWM_STEP (1.0/20.0)
float pwms[4]={0.0, 0.25, 0.5, 0.75};
float steps[4]={PWM_STEP, PWM_STEP, PWM_STEP, PWM_STEP};
#else
#define PWM_STEP (PWM_PERIOD/20)
int pwms[4]={0, PWM_PERIOD/4, PWM_PERIOD/2, PWM_PERIOD/4*3};
int steps[4]={PWM_STEP,PWM_STEP,PWM_STEP,PWM_STEP};
#endif
pwmout_t pwm_led[4];
PinName pwm_led_pin[4] = {PWM_1, PWM_2, PWM_3, PWM_4};
extern void RtlMsleepOS(u32 ms);
void pwm_delay(void)
{
for(int i=0;i<1000000;i++)
asm(" nop");
}
/**
* @brief Main program.
* @param None
* @retval None
*/
//int main_app(IN u16 argc, IN u8 *argv[])
void main(void)
{
int i;
for (i=0; i<4; i++) {
pwmout_init(&pwm_led[i], pwm_led_pin[i]);
pwmout_period_us(&pwm_led[i], PWM_PERIOD);
}
while (1) {
#if USE_FLOAT
for (i=0; i<4; i++) {
pwmout_write(&pwm_led[i], pwms[i]);
pwms[i] += steps[i];
if (pwms[i] >= 1.0) {
steps[i] = -PWM_STEP;
pwms[i] = 1.0;
}
if (pwms[i] <= 0.0) {
steps[i] = PWM_STEP;
pwms[i] = 0.0;
}
}
#else
for (i=0; i<4; i++) {
pwmout_pulsewidth_us(&pwm_led[i], pwms[i]);
pwms[i] += steps[i];
if (pwms[i] >= PWM_PERIOD) {
steps[i] = -PWM_STEP;
pwms[i] = PWM_PERIOD;
}
if (pwms[i] <= 0) {
steps[i] = PWM_STEP;
pwms[i] = 0;
}
}
#endif
// wait_ms(20);
// RtlMsleepOS(25);
pwm_delay();
}
}

View file

@ -0,0 +1,7 @@
Example Description
This example describes how to use the RTC API. The RTC function is implemented by a G-Timer.
Behavior:
This example will print out the time information every secand.

View file

@ -0,0 +1,34 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "rtc_api.h"
int main()
{
time_t seconds;
struct tm *timeinfo;
rtc_init();
rtc_write(1256729737); // Set RTC time to Wed, 28 Oct 2009 11:35:37
while(1) {
seconds = rtc_read();
timeinfo = localtime(&seconds);
DBG_8195A("Time as seconds since January 1, 1970 = %d\n", seconds);
DBG_8195A("Time as a basic string = %s", ctime(&seconds));
DBG_8195A("Time as a custom formatted string = %d-%d-%d %d:%d:%d ",
timeinfo->tm_year, timeinfo->tm_mon, timeinfo->tm_mday, timeinfo->tm_hour,
timeinfo->tm_min,timeinfo->tm_sec);
wait(1);
}
}

View file

@ -0,0 +1,23 @@
Example Description
This example describes how to use SPI read/write by mbed api.
The SPI Interface provides a "Serial Peripheral Interface" Master.
This interface can be used for communication with SPI slave devices,
such as FLASH memory, LCD screens and other modules or integrated circuits.
In this example, it use 2 sets of SPI. One is master, the other is slave.
By default it use SPI0 as slave, and use SPI2 as master.
So we connect them as below:
Connect SPI0_MOSI (PC_2) to SPI2_MOSI (PA_1)
Connect SPI0_MISO (PC_3) to SPI2_MISO (PA_0)
Connect SPI0_SCLK (PC_1) to SPI2_SCLK (PA_2)
Connect SPI0_CS (PC_0) to SPI2_CS (PA_4)
Because some GPIOA are used as SDIO purpose which has higher priority.
So we need pull high PA_7 when device boot up.
Connect PA_7 to 3V3
After boot up, the master will send data to slave and shows result on LOG_OUT.

View file

@ -0,0 +1,127 @@
/*
* Routines to access hardware
*
* Copyright (c) 2014 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "diag.h"
#include "main.h"
#include "spi_api.h"
#define FakeMbedAPI 1
// SPI0 (S0)
#define SPI0_MOSI PC_2
#define SPI0_MISO PC_3
#define SPI0_SCLK PC_1
#define SPI0_CS PC_0
// SPI1 (S1)
#define SPI1_MOSI PB_6
#define SPI1_MISO PB_7
#define SPI1_SCLK PB_5
#define SPI1_CS PB_4
#if 1
// SPI2 (S2) for DEV 3V0
// Please note that PA_7 need pull high before using GPIOA group
#define SPI2_MOSI PA_1
#define SPI2_MISO PA_0
#define SPI2_SCLK PA_2
#define SPI2_CS PA_4
#else
// SPI2 (S2)
#define SPI2_MOSI PD_2
#define SPI2_MISO PD_3
#define SPI2_SCLK PD_1
#define SPI2_CS PD_0
#endif
/**
* @brief Main program.
* @param None
* @retval None
*/
spi_t spi_master;
spi_t spi_slave;
void main(void)
{
#if FakeMbedAPI
/* SPI0 is as Slave */
//SPI0_IS_AS_SLAVE = 1;
spi_init(&spi_master, SPI2_MOSI, SPI2_MISO, SPI2_SCLK, SPI2_CS);
spi_format(&spi_master, 8, 0, 0);
spi_frequency(&spi_master, 200000);
spi_init(&spi_slave, SPI0_MOSI, SPI0_MISO, SPI0_SCLK, SPI0_CS);
spi_format(&spi_slave, 8, 0, 1);
int TestingTimes = 10;
int Counter = 0;
int TestData = 0;
int ReadData = 0;
int result = 1;
/**
* Master read/write, Slave read/write
*/
DBG_SSI_INFO("--------------------------------------------------------\n");
for(Counter = 0, TestData=0x01; Counter < TestingTimes; Counter++)
{
ReadData = spi_master_write(&spi_master, TestData);
DBG_SSI_INFO("Master write: %02X, read: %02X\n", TestData, ReadData);
if (TestData - 1 != ReadData) {
result = 0;
}
TestData++;
spi_slave_write(&spi_slave, TestData);
ReadData = spi_slave_read(&spi_slave);
DBG_SSI_INFO(ANSI_COLOR_CYAN"Slave write: %02X, read: %02X\n"ANSI_COLOR_RESET, TestData, ReadData);
if (TestData - 1 != ReadData) {
result = 0;
}
TestData++;
}
/**
* Master write, Slave read
*/
DBG_SSI_INFO("--------------------------------------------------------\n");
for(Counter = 0, TestData=0xFF; Counter < TestingTimes; Counter++)
{
spi_master_write(&spi_master, TestData);
ReadData = spi_slave_read(&spi_slave);
DBG_SSI_INFO("Master write: %02X\n", TestData);
DBG_SSI_INFO(ANSI_COLOR_CYAN"Slave read : %02X\n"ANSI_COLOR_RESET, ReadData);
if (TestData != ReadData) {
result = 0;
}
TestData--;
}
spi_free(&spi_master);
spi_free(&spi_slave);
DBG_SSI_INFO("SPI Demo finished.\n");
printf("\r\nResult is %s\r\n", (result) ? "success" : "fail");
for(;;);
#else // mbed SPI API emulation
#endif
}

View file

@ -0,0 +1,19 @@
Example Description
This example describes how to get data from pl7223 by SPI conneciton
The SPI Interface provides a "Serial Peripheral Interface" Master.
Hardware connection:
Connect SPI0_MOSI (PC_2) to PL7223 MOSI
Connect SPI0_MISO (PC_3) to PL7223 MISO
Connect SPI0_SCLK (PC_1) to PL7223 SCLK
Connect GPIOB_5 (PB_5) to PL7223 CS
Connect GPIOB_4 (PB_4) to PL7223 RESET
Connect GROUND together
Connect to LOG UART with configuration 38400 8bits, 1 stopbit, no parity
After boot up, the ameba will reset pl7223 into MCU mode and get data from pl7223.
After Gatherin and calculating, program will show information to UART.

View file

@ -0,0 +1,298 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include <stdio.h>
#include <math.h>
#include "device.h"
#include "main.h"
#include "spi_api.h"
#include "gpio_api.h"
// SPI0
#define SPI0_MOSI PC_2
#define SPI0_MISO PC_3
#define SPI0_SCLK PC_1
#define SPI0_CS PC_0
#define GPIO_RESET PB_4
#define GPIO_CS PB_5
//--------------------------------------------------------------------------------------------
#define READ_PL7223 0x4000
#define WRITE_PL7223 0x8000
#define DSPSTATUS_PL7223 0xF000
#define DUM_PL7223 0x00 //Dummy Data
unsigned char SPDAT; // simulate example code
unsigned char DSP_STATUS=0;
unsigned char Read_Data_PL7223[146]; // Read_Data; 256Bytes=1Page
unsigned char Write_Data_PL7223[146]; // Write_Data; 256Bytes=1Page
unsigned char Cmd_RD=0;
long EE_Temp = 0;
float VA_rms=0;
float IA_rms=0;
float PA=0;
float SA=0;
float QA=0;
float PF_A=0;
float Theta_A=0;
float Frequency=0;
int Sample_cnt0=0;
int ZCC_cnt=0;
int ZCC_Start=0;
int ZCC_Stop=0;
void Initial_SPI_PL7223(void);
void SPI_PL7223_SEND(unsigned char);
void SPI__PL7223_Read_Status(void);
void SPI_PL7223_DELY(int);
void SPI_PL7223_Reset(void);
void SPI_PL7223_Read(unsigned char*, unsigned int, unsigned int);
void SPI_PL7223_Write(unsigned char*, unsigned int, unsigned int);
void SPI_PL7223_Masurement(void);
void SPI_PL7223_RelayControl(int);
static spi_t spi0_master;
static gpio_t gpio_reset;
static gpio_t gpio_cs;
/**
* @brief Main program.
* @param None
* @retval None
*/
void main(void)
{
gpio_init(&gpio_reset, GPIO_RESET);
gpio_mode(&gpio_reset, PullUp);
gpio_dir(&gpio_reset, PIN_OUTPUT);
gpio_init(&gpio_cs, GPIO_CS);
gpio_mode(&gpio_cs, PullUp);
gpio_dir(&gpio_cs, PIN_OUTPUT);
spi_init(&spi0_master, SPI0_MOSI, SPI0_MISO, SPI0_SCLK, SPI0_CS);
spi_format(&spi0_master, 8, 3, 0);
spi_frequency(&spi0_master, 800000);
do
{
SPI_PL7223_Reset();
SPI_PL7223_Read(&Read_Data_PL7223[0],0x3860,1);//DSP version :20130322 ver02, 0x3860=0x04
//DSP version :20141009 ver01, 0x3860=0x03
}while( ((Read_Data_PL7223[0]) != 0x04) && ((Read_Data_PL7223[0]) != 0x03) );
SPI_PL7223_DELY(120000);
SPI_PL7223_RelayControl(0); // OFF
SPI_PL7223_DELY(120000);
do{
// As below is read DSP buffer process every time (144 byte)
SPI__PL7223_Read_Status();
SPI_PL7223_Read(&Read_Data_PL7223[0],0x3000,144); // 0x3000~0x308F //144 byte
SPI_PL7223_Read(&Read_Data_PL7223[144],0x3809,2); // Sample_cnt0
SPI_PL7223_Masurement();
SPI_PL7223_DELY(600000);
SPI_PL7223_RelayControl(1); // ON
SPI_PL7223_DELY(120000);
SPI__PL7223_Read_Status();
SPI_PL7223_Read(&Read_Data_PL7223[0],0x3000,144); // 0x3000~0x308F //144 byte
SPI_PL7223_Read(&Read_Data_PL7223[144],0x3809,2); // Sample_cnt0
SPI_PL7223_Masurement();
SPI_PL7223_DELY(600000);
SPI_PL7223_RelayControl(0); // OFF
SPI_PL7223_DELY(120000);
}while(1);
}
//--------------------------------------------------------------------------------------------//
void SPI_PL7223_RelayControl(int sw)
{
#define RELAY_MASK (1<<5)
SPI_PL7223_Read(&Read_Data_PL7223[0],0x380F,1);
if(!sw)
Read_Data_PL7223[0] &= (~RELAY_MASK);
else
Read_Data_PL7223[0] |= RELAY_MASK;
SPI_PL7223_Write(&Read_Data_PL7223[0],0x380F,1);
}
//--------------------------------------------------------------------------------------------//
void SPI_PL7223_Reset(void)
{
gpio_write(&gpio_cs, 0);
SPI_PL7223_DELY(500); //need delay 10ms
gpio_write(&gpio_reset, 1);
SPI_PL7223_DELY(500); //need delay 10ms
gpio_write(&gpio_reset, 0);
SPI_PL7223_DELY(500); //need delay 10ms
gpio_write(&gpio_reset, 1);
SPI_PL7223_DELY(500); //need delay 10ms
gpio_write(&gpio_cs, 1);
SPI_PL7223_DELY(300);
}
//--------------------------------------------------------------------------------------------//
void SPI__PL7223_Read_Status(void)
{
gpio_write(&gpio_cs, 0);
SPI_PL7223_SEND((unsigned char)(DSPSTATUS_PL7223 >> 8)& 0xFF); // RDSR command
SPI_PL7223_SEND((unsigned char)(DSPSTATUS_PL7223& 0x00FF)); // RDSR command
//check DSP flag state (byte)
do
{
SPI_PL7223_SEND(DUM_PL7223);
DSP_STATUS=SPDAT;
}while((DSP_STATUS & 0x80) == 0x00); // Bit7=1 is Ready
gpio_write(&gpio_cs, 1);
}
//--------------------------------------------------------------------------------------------//
void SPI_PL7223_Write(unsigned char* buf, unsigned int addr, unsigned int len)
{
unsigned int i;
gpio_write(&gpio_cs, 0);
addr |= WRITE_PL7223; // Write command
SPI_PL7223_SEND((unsigned char)(addr >> 8)& 0xFF); // Write middle byte address
SPI_PL7223_SEND((unsigned char)(addr & 0xFF));// Write low byte address
for (i = 0; i < len ; i++){
SPI_PL7223_SEND(buf[i]);
}
gpio_write(&gpio_cs, 1);
SPI_PL7223_DELY(3); // for CS:Hi to Low need 100nsec, Delay-Time 27usec
}
//--------------------------------------------------------------------------------------------//
void SPI_PL7223_Read(unsigned char* buf, unsigned int addr, unsigned int len)
{
static unsigned int i;
gpio_write(&gpio_cs, 0);
addr |= READ_PL7223; // Read command
SPI_PL7223_SEND((unsigned char)(addr >> 8)& 0xFF); // Write middle byte address
SPI_PL7223_SEND((unsigned char)(addr & 0x00FF)); // Write low byte address
for(i=0;i<len;i++){ // Read 256 Bytes/Page to Flash Memory
SPI_PL7223_SEND(DUM_PL7223); // Send Dummy Data to Read righ Data
buf[i] = SPDAT; // Read SPIDAT and clear TX complete flag
}
gpio_write(&gpio_cs, 1);
}
//--------------------------------------------------------------------------------------------//
void SPI_PL7223_Read_Status(void)
{
gpio_write(&gpio_cs, 0);
SPI_PL7223_SEND((unsigned char)(DSPSTATUS_PL7223 >> 8)& 0xFF); // RDSR command
SPI_PL7223_SEND((unsigned char)(DSPSTATUS_PL7223& 0x00FF)); // RDSR command
do
{
SPI_PL7223_SEND(DUM_PL7223);
DSP_STATUS=SPDAT;
}while((DSP_STATUS & 0x80) == 0x00); // Bit7=1 is Ready
gpio_write(&gpio_cs, 1);
}
//--------------------------------------------------------------------------------------------//
void SPI_PL7223_Masurement(void)
{
//Vrms address : 0x3002~0x3003
// VA_rms = (Read_Data_PL7223[3]*256+Read_Data_PL7223[2])/64;
EE_Temp = Read_Data_PL7223[3];
EE_Temp = EE_Temp << 8;
EE_Temp += Read_Data_PL7223[2];
VA_rms = (float)EE_Temp/64.00;
//Irms address : 0x3008~0x3009
// IA_rms = Read_Data_PL7223[3]+Read_Data_PL7223[2]/256;
EE_Temp = Read_Data_PL7223[8];
IA_rms = (float)EE_Temp/256.00;
EE_Temp = Read_Data_PL7223[9];
IA_rms = IA_rms + (float)EE_Temp;
//Active address : 0x3078~0x307D
// PA = Read_Data_PL7223[124]*256+Read_Data_PL7223[123];
EE_Temp = Read_Data_PL7223[124];
EE_Temp = EE_Temp << 8;
EE_Temp += Read_Data_PL7223[123];
PA = (float)EE_Temp;
//PF Calculate
// SA = VA_rms*IA_rms;
SA = VA_rms*IA_rms;
// PF_A = PA/SA
PF_A = SA==0? 0: PA/SA;
Theta_A = acos(PF_A);
QA = SA * sin(Theta_A);
if(IA_rms==0)
Theta_A = 0;
else
Theta_A = Theta_A * (180.00/(3.141592653589));
/** Frequency = [Sample_cnt0/(ZCC_STOP-ZCC_START)]*[(ZCC_CNT-1)/2] */
Sample_cnt0 = Read_Data_PL7223[145]; // Sample_cnt01
Sample_cnt0 = Sample_cnt0 <<8;
Sample_cnt0 += Read_Data_PL7223[144]; // Sample_cnt00
ZCC_cnt = Read_Data_PL7223[91]; // ZCC_cnt1
ZCC_cnt = ZCC_cnt <<8;
ZCC_cnt += Read_Data_PL7223[90]; // ZCC_cnt0
ZCC_Stop = Read_Data_PL7223[97]; // ZCC_STOP1
ZCC_Stop = ZCC_Stop <<8;
ZCC_Stop += Read_Data_PL7223[96]; // ZCC_STOP0
ZCC_Start = Read_Data_PL7223[103]; // ZCC_START1
ZCC_Start = ZCC_Start <<8;
ZCC_Start += Read_Data_PL7223[102]; // ZCC_START0
Frequency = (float)((float)Sample_cnt0 / (ZCC_Stop - ZCC_Start)) * (((float)ZCC_cnt - 1.0) / 2);
#define UART_Display(name) printf(#name" %d.%d\n\r", (int)(name*1000)/1000, (int)(name*1000)%1000)
UART_Display(VA_rms);
UART_Display(IA_rms);
UART_Display(Frequency);
UART_Display(PA);
UART_Display(QA);
UART_Display(SA);
UART_Display(PF_A);
UART_Display(Theta_A);
}
//--------------------------------------------------------------------------------------------//
void SPI_PL7223_DELY(int dely_cnt) // MCUCLK 4MHz, Delay-Time 9usec/clock
{
HalDelayUs(dely_cnt*20);
}
//--------------------------------------------------------------------------------------------//
void SPI_PL7223_SEND(unsigned char spicmd)
{
SPDAT = (char)spi_master_write(&spi0_master, (int)spicmd);
}
//--------------------------------------------------------------------------------------------//

View file

@ -0,0 +1,24 @@
Example Description
This example describes how to use SPI stream read/write by mbed api.
The SPI Interface provides a "Serial Peripheral Interface" Master.
This interface can be used for communication with SPI slave devices,
such as FLASH memory, LCD screens and other modules or integrated circuits.
In this example, we use config SPI_IS_AS_MASTER to decide if device is master or slave.
If SPI_IS_AS_MASTER is 1, then device is master.
If SPI_IS_AS_MASTER is 0, then device is slave.
We connect wires as below:
master's MOSI (PC_2) connect to slave's MOSI (PC_2)
master's MISO (PC_3) connect to slave's MISO (PC_3)
master's SCLK (PC_1) connect to slave's SCLK (PC_1)
master's CS (PC_0) connect to slave's CS (PC_0)
This example shows master sends data to slave.
We bootup slave first, and then bootup master.
Then log will presents that master sending data to slave.

View file

@ -0,0 +1,176 @@
/*
* Routines to access hardware
*
* Copyright (c) 2014 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "main.h"
#include "spi_api.h"
#include "spi_ex_api.h"
#define SPI_IS_AS_MASTER 1
#define TEST_BUF_SIZE 2048
#define SCLK_FREQ 1000000
#define SPI_DMA_DEMO 0
#define TEST_LOOP 100
// SPI0
#define SPI0_MOSI PC_2
#define SPI0_MISO PC_3
#define SPI0_SCLK PC_1
#define SPI0_CS PC_0
_LONG_CALL_ extern
void __rtl_memDump_v1_00(const u8 *start, u32 size, char * strHeader);
extern void wait_ms(u32);
char TestBuf[TEST_BUF_SIZE];
volatile int TrDone;
void master_tr_done_callback(void *pdata, SpiIrq event)
{
TrDone = 1;
}
void slave_tr_done_callback(void *pdata, SpiIrq event)
{
TrDone = 1;
}
#if SPI_IS_AS_MASTER
spi_t spi_master;
#else
spi_t spi_slave;
#endif
/**
* @brief Main program.
* @param None
* @retval None
*/
void main(void)
{
int Counter = 0;
int i;
#if SPI_IS_AS_MASTER
spi_init(&spi_master, SPI0_MOSI, SPI0_MISO, SPI0_SCLK, SPI0_CS);
spi_frequency(&spi_master, SCLK_FREQ);
spi_format(&spi_master, 16, (SPI_SCLK_IDLE_LOW|SPI_SCLK_TOGGLE_MIDDLE) , 0);
// wait Slave ready
wait_ms(1000);
while (Counter < TEST_LOOP) {
DBG_8195A("======= Test Loop %d =======\r\n", Counter);
for (i=0;i<TEST_BUF_SIZE;i++) {
TestBuf[i] = i;
}
spi_irq_hook(&spi_master, master_tr_done_callback, (uint32_t)&spi_master);
DBG_8195A("SPI Master Write Test==>\r\n");
TrDone = 0;
#if SPI_DMA_DEMO
spi_master_write_stream_dma(&spi_master, TestBuf, TEST_BUF_SIZE);
#else
spi_master_write_stream(&spi_master, TestBuf, TEST_BUF_SIZE);
#endif
i=0;
DBG_8195A("SPI Master Wait Write Done...\r\n");
while(TrDone == 0) {
wait_ms(10);
i++;
}
DBG_8195A("SPI Master Write Done!!\r\n");
DBG_8195A("SPI Master Read Test==>\r\n");
DBG_8195A("Wait 5 sec for SPI Slave get ready...\r\n");
for (i=0;i<5;i++) {
wait_ms(1000);
}
_memset(TestBuf, 0, TEST_BUF_SIZE);
spi_flush_rx_fifo(&spi_master);
TrDone = 0;
#if SPI_DMA_DEMO
spi_master_read_stream_dma(&spi_master, TestBuf, TEST_BUF_SIZE);
#else
spi_master_read_stream(&spi_master, TestBuf, TEST_BUF_SIZE);
#endif
i=0;
DBG_8195A("SPI Master Wait Read Done...\r\n");
while(TrDone == 0) {
wait_ms(10);
i++;
}
DBG_8195A("SPI Master Read Done!!\r\n");
__rtl_memDump_v1_00(TestBuf, TEST_BUF_SIZE, "SPI Master Read Data:");
Counter++;
}
spi_free(&spi_master);
DBG_8195A("SPI Master Test <==\r\n");
#else
spi_init(&spi_slave, SPI0_MOSI, SPI0_MISO, SPI0_SCLK, SPI0_CS);
spi_format(&spi_slave, 16, (SPI_SCLK_IDLE_LOW|SPI_SCLK_TOGGLE_MIDDLE) , 1);
while (spi_busy(&spi_slave)) {
DBG_8195A("Wait SPI Bus Ready...\r\n");
wait_ms(1000);
}
while (Counter < TEST_LOOP) {
DBG_8195A("======= Test Loop %d =======\r\n", Counter);
_memset(TestBuf, 0, TEST_BUF_SIZE);
DBG_8195A("SPI Slave Read Test ==>\r\n");
spi_irq_hook(&spi_slave, slave_tr_done_callback, (uint32_t)&spi_slave);
TrDone = 0;
spi_flush_rx_fifo(&spi_slave);
#if SPI_DMA_DEMO
spi_slave_read_stream_dma(&spi_slave, TestBuf, TEST_BUF_SIZE);
#else
spi_slave_read_stream(&spi_slave, TestBuf, TEST_BUF_SIZE);
#endif
i=0;
DBG_8195A("SPI Slave Wait Read Done...\r\n");
while(TrDone == 0) {
wait_ms(100);
i++;
if (i>150) {
DBG_8195A("SPI Slave Wait Timeout\r\n");
break;
}
}
__rtl_memDump_v1_00(TestBuf, TEST_BUF_SIZE, "SPI Slave Read Data:");
// Slave Write Test
DBG_8195A("SPI Slave Write Test ==>\r\n");
TrDone = 0;
#if SPI_DMA_DEMO
spi_slave_write_stream_dma(&spi_slave, TestBuf, TEST_BUF_SIZE);
#else
spi_slave_write_stream(&spi_slave, TestBuf, TEST_BUF_SIZE);
#endif
i=0;
DBG_8195A("SPI Slave Wait Write Done...\r\n");
while(TrDone == 0) {
wait_ms(100);
i++;
if (i> 200) {
DBG_8195A("SPI Slave Write Timeout...\r\n");
break;
}
}
DBG_8195A("SPI Slave Write Done!!\r\n");
Counter++;
}
spi_free(&spi_slave);
#endif
DBG_8195A("SPI Demo finished.\n");
for(;;);
}

View file

@ -0,0 +1,24 @@
Example Description
This example describes how to use SPI read/write by mbed api.
The SPI Interface provides a "Serial Peripheral Interface" Master.
This interface can be used for communication with SPI slave devices,
such as FLASH memory, LCD screens and other modules or integrated circuits.
In this example, we use config SPI_IS_AS_MASTER to decide if device is master or slave.
If SPI_IS_AS_MASTER is 1, then device is master.
If SPI_IS_AS_MASTER is 0, then device is slave.
We connect wires as below:
master's MOSI (PC_2) connect to slave's MOSI (PC_2)
master's MISO (PC_3) connect to slave's MISO (PC_3)
master's SCLK (PC_1) connect to slave's SCLK (PC_1)
master's CS (PC_0) connect to slave's CS (PC_0)
This example shows master sends data to slave.
We bootup slave first, and then bootup master.
Then log will presents that master sending data to slave.

View file

@ -0,0 +1,64 @@
/*
* Routines to access hardware
*
* Copyright (c) 2014 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "main.h"
#include "spi_api.h"
#define SPI_IS_AS_MASTER 1
// SPI0
#define SPI0_MOSI PC_2
#define SPI0_MISO PC_3
#define SPI0_SCLK PC_1
#define SPI0_CS PC_0
/**
* @brief Main program.
* @param None
* @retval None
*/
void main(void)
{
int TestingTimes = 10;
int Counter = 0;
int TestData = 0;
#if SPI_IS_AS_MASTER
spi_t spi_master;
SPI0_IS_AS_SLAVE = 0;
spi_init(&spi_master, SPI0_MOSI, SPI0_MISO, SPI0_SCLK, SPI0_CS);
DBG_SSI_INFO("--------------------------------------------------------\n");
for(Counter = 0, TestData=0xFF; Counter < TestingTimes; Counter++) {
spi_master_write(&spi_master, TestData);
DBG_SSI_INFO("Master write: %02X\n", TestData);
TestData--;
}
spi_free(&spi_master);
#else
spi_t spi_slave;
SPI0_IS_AS_SLAVE = 1;
spi_init(&spi_slave, SPI0_MOSI, SPI0_MISO, SPI0_SCLK, SPI0_CS);
DBG_SSI_INFO("--------------------------------------------------------\n");
for(Counter = 0, TestData=0xFF; Counter < TestingTimes; Counter++) {
DBG_SSI_INFO(ANSI_COLOR_CYAN"Slave read : %02X\n"ANSI_COLOR_RESET,
spi_slave_read(&spi_slave));
TestData--;
}
spi_free(&spi_slave);
#endif
DBG_SSI_INFO("SPI Demo finished.\n");
for(;;);
}

View file

@ -0,0 +1,19 @@
Example Description
This example describes how to use UART to communicate with PC.
Required Components:
USBtoTTL adapter
Connect to PC
- Connect Ground: connect to GND pin via USBtoTTL adapter
- Use UART1
GPIOA_6 as UART1_RX connect to TX of USBtoTTL adapter
GPIOA_7 as UART1_TX connect to RX of USBtoTTL adapter
Open Super terminal or teraterm and
set baud rate to 38400, 1 stopbit, no parity, no flow contorl.
This example shows:
User input will be received by demo board, and demo board will loopback the received character with a prompt string "8195a$".

View file

@ -0,0 +1,46 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "serial_api.h"
#include "main.h"
#define UART_TX PA_7
#define UART_RX PA_6
void uart_send_string(serial_t *sobj, char *pstr)
{
unsigned int i=0;
while (*(pstr+i) != 0) {
serial_putc(sobj, *(pstr+i));
i++;
}
}
void main(void)
{
// sample text
char rc;
serial_t sobj;
// mbed uart test
serial_init(&sobj,UART_TX,UART_RX);
serial_baud(&sobj,38400);
serial_format(&sobj, 8, ParityNone, 1);
uart_send_string(&sobj, "UART API Demo...\r\n");
uart_send_string(&sobj, "Hello World!!\r\n");
while(1){
uart_send_string(&sobj, "\r\n8195a$");
rc = serial_getc(&sobj);
serial_putc(&sobj, rc);
}
}

View file

@ -0,0 +1,16 @@
Example Description
This example describes how to use UART TX to simulate clock source
Required Components:
Oscilloscope
Connect to PC
- Connect Ground: connect to GND of oscilloscope
- Use UART1
GPIOA_6 as UART1_RX connect NOTHING
GPIOA_7 as UART1_TX connect to probe of oscilloscope
This example shows:
1. Clock signal output from UART1_TX to oscilloscope

View file

@ -0,0 +1,94 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "serial_api.h"
#include "serial_ex_api.h"
#include "main.h"
#define UART_TX PA_7
#define UART_RX PA_6
/* 100 bytes data, 500 clocks, provide buadrate/2 frequency */
#define SREAM_LEN 128
char sim_clock[SREAM_LEN+1];
volatile uint32_t is_stop = 0;
static serial_t sobj_clk;
void uart_clock_send_string(serial_t *sobj, char *pstr)
{
int32_t ret=0;
ret = serial_send_stream_dma(sobj, pstr, _strlen(pstr));
if (ret != 0) {
DBG_8195A("%s Error(%d)\n", __FUNCTION__, ret);
}
}
void uart_clock_send_string_done(uint32_t id)
{
serial_t *sobj = (void*)id;
if(!is_stop)
uart_clock_send_string(sobj, sim_clock);
}
void uart_clock_deinit(void)
{
is_stop = 1;
serial_free(&sobj_clk);
}
void uart_clock_init(int rate)
{
//serial_t sobj;
int ret;
int i;
for (i=0;i<SREAM_LEN;i++) {
sim_clock[i] = 0x55;
}
sim_clock[i] = 0;
serial_init(&sobj_clk,UART_TX,UART_RX);
serial_baud(&sobj_clk, rate*2);
serial_format(&sobj_clk, 8, ParityNone, 0);
serial_send_comp_handler(&sobj_clk, (void*)uart_clock_send_string_done, (uint32_t) &sobj_clk);
}
void uart_clock_on(void)
{
is_stop = 0;
uart_clock_send_string(&sobj_clk, sim_clock);
}
void uart_clock_off(void)
{
is_stop = 1;
serial_send_stream_abort(&sobj_clk);
}
void main(void)
{
// only support 33kHz, 36kHz, 36.7kHz 38kHz, 40kHz, 56kHz
uart_clock_init(38000);
while(1) {
uart_clock_on();
wait_ms(5000);
uart_clock_off();
wait_ms(5000);
}
}

View file

@ -0,0 +1,19 @@
Example Description
This example describes how to use UART to communicate with PC.
Required Components:
USBtoTTL adapter
Connect to PC
- Connect Ground: connect to GND pin via USBtoTTL adapter
- Use UART1
GPIOA_6 as UART1_RX connect to TX of USBtoTTL adapter
GPIOA_7 as UART1_TX connect to RX of USBtoTTL adapter
Open Super terminal or teraterm and
set baud rate to 38400, 1 stopbit, no parity, no flow contorl.
This example shows:
1. The RX data ready interrupt service routine is used to receive characters from the PC, and then loopback them to the PC.
2. The TX done interrupt service routine will send a prompt string "8195a$" to the PC.

View file

@ -0,0 +1,65 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "serial_api.h"
#include "main.h"
#define UART_TX PA_7
#define UART_RX PA_6
volatile char rc=0;
void uart_send_string(serial_t *sobj, char *pstr)
{
unsigned int i=0;
while (*(pstr+i) != 0) {
serial_putc(sobj, *(pstr+i));
i++;
}
}
void uart_irq(uint32_t id, SerialIrq event)
{
serial_t *sobj = (void*)id;
if(event == RxIrq) {
rc = serial_getc(sobj);
serial_putc(sobj, rc);
}
if(event == TxIrq && rc!=0){
uart_send_string(sobj, "\r\n8195a$");
rc = 0;
}
}
void main(void)
{
// sample text
serial_t sobj;
// mbed uart test
serial_init(&sobj,UART_TX,UART_RX);
serial_baud(&sobj,38400);
serial_format(&sobj, 8, ParityNone, 1);
uart_send_string(&sobj, "UART IRQ API Demo...\r\n");
uart_send_string(&sobj, "Hello World!!\n");
uart_send_string(&sobj, "\r\n8195a$");
serial_irq_handler(&sobj, uart_irq, (uint32_t)&sobj);
serial_irq_set(&sobj, RxIrq, 1);
serial_irq_set(&sobj, TxIrq, 1);
while(1);
}

View file

@ -0,0 +1,19 @@
Example Description
This example describes how to use UART to communicate with PC.
Required Components:
USBtoTTL adapter
Connect to PC
- Connect Ground: connect to GND pin via USBtoTTL adapter
- Use UART1
GPIOA_6 as UART1_RX connect to TX of USBtoTTL adapter
GPIOA_7 as UART1_TX connect to RX of USBtoTTL adapter
Open Super terminal or teraterm and
set baud rate to 38400, 1 stopbit, no parity, no flow contorl.
This example shows:
1. The RX data ready interrupt service routine is used to receive characters from the PC, and then loopback them to the PC.
2. The TX done interrupt service routine will send a prompt string "8195a$" to the PC.

View file

@ -0,0 +1,95 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "serial_api.h"
#include "serial_ex_api.h"
//#include "main.h"
#define UART_TX PA_7 //PB_5
#define UART_RX PA_6 //PB_4
#define SRX_BUF_SZ 100
char rx_buf[SRX_BUF_SZ]={0};
volatile uint32_t tx_busy=0;
volatile uint32_t rx_done=0;
void uart_send_string_done(uint32_t id)
{
serial_t *sobj = (void*)id;
tx_busy = 0;
}
void uart_recv_string_done(uint32_t id)
{
serial_t *sobj = (void*)id;
rx_done = 1;
}
void uart_send_string(serial_t *sobj, char *pstr)
{
int32_t ret=0;
if (tx_busy) {
return;
}
tx_busy = 1;
ret = serial_send_stream_dma(sobj, pstr, _strlen(pstr));
if (ret != 0) {
DBG_8195A("%s Error(%d)\n", __FUNCTION__, ret);
tx_busy = 0;
}
}
void main(void)
{
serial_t sobj;
int ret;
int i=0;
int len;
serial_init(&sobj,UART_TX,UART_RX);
serial_baud(&sobj,38400);
serial_format(&sobj, 8, ParityNone, 1);
serial_send_comp_handler(&sobj, (void*)uart_send_string_done, (uint32_t) &sobj);
serial_recv_comp_handler(&sobj, (void*)uart_recv_string_done, (uint32_t) &sobj);
DBG_8195A("receive 13 bytes\r\n", rx_buf);
ret = serial_recv_stream_dma(&sobj, rx_buf, 13);
if (ret) {
DBG_8195A(" %s: Recv Error(%d)\n", __FUNCTION__, ret);
rx_done = 1;
}
while (1) {
if (rx_done) {
uart_send_string(&sobj, rx_buf);
rx_done = 0;
len = (i+4) & 0x0f;
i++;
/* Wait for inputing x character to initiate DMA.
8 for this example*/
DBG_8195A("rx_len=%d\r\n", len);
ret = serial_recv_stream_dma(&sobj, rx_buf, len);
rx_buf[len] = 0; // end of string
if (ret) {
DBG_8195A(" %s: Recv Error(%d)\n", __FUNCTION__, ret);
rx_done = 1;
}
}
}
}

View file

@ -0,0 +1,19 @@
Example Description
This example describes how to use UART to communicate with PC.
Required Components:
USBtoTTL adapter
Connect to PC
- Connect Ground: connect to GND pin via USBtoTTL adapter
- Use UART1
GPIOA_6 as UART1_RX connect to TX of USBtoTTL adapter
GPIOA_7 as UART1_TX connect to RX of USBtoTTL adapter
Open Super terminal or teraterm and
set baud rate to 38400, 1 stopbit, no parity, no flow contorl.
This example shows:
1. The RX data ready interrupt service routine is used to receive characters from the PC, and then loopback them to the PC.
2. The TX done interrupt service routine will send a prompt string "8195a$" to the PC.

View file

@ -0,0 +1,89 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "serial_api.h"
#include "serial_ex_api.h"
#include "main.h"
#define UART_TX PA_7 //PB_5
#define UART_RX PA_6 //PB_4
#define SRX_BUF_SZ 16
char rx_buf[SRX_BUF_SZ]={0};
volatile uint32_t tx_busy=0;
volatile uint32_t rx_done=0;
void uart_send_string_done(uint32_t id)
{
serial_t *sobj = (void*)id;
tx_busy = 0;
}
void uart_recv_string_done(uint32_t id)
{
serial_t *sobj = (void*)id;
rx_done = 1;
}
void uart_send_string(serial_t *sobj, char *pstr)
{
int32_t ret=0;
if (tx_busy) {
return;
}
tx_busy = 1;
ret = serial_send_stream(sobj, pstr, _strlen(pstr));
if (ret != 0) {
DBG_8195A("%s Error(%d)\n", __FUNCTION__, ret);
tx_busy = 0;
}
}
void main(void)
{
serial_t sobj;
int ret;
serial_init(&sobj,UART_TX,UART_RX);
serial_baud(&sobj,38400);
serial_format(&sobj, 8, ParityNone, 1);
serial_send_comp_handler(&sobj, (void*)uart_send_string_done, (uint32_t) &sobj);
serial_recv_comp_handler(&sobj, (void*)uart_recv_string_done, (uint32_t) &sobj);
ret = serial_recv_stream(&sobj, rx_buf, 8);
if (ret) {
DBG_8195A(" %s: Recv Error(%d)\n", __FUNCTION__, ret);
rx_done = 1;
}
while (1) {
#if 0
if (!tx_busy) {
uart_send_string(&sobj, "Hello! World!! :) \r\n");
}
#endif
if (rx_done) {
uart_send_string(&sobj, rx_buf);
rx_done = 0;
ret = serial_recv_stream(&sobj, rx_buf, 8);
if (ret) {
DBG_8195A(" %s: Recv Error(%d)\n", __FUNCTION__, ret);
rx_done = 1;
}
}
}
}

View file

@ -0,0 +1,19 @@
Example Description
This example describes how to use UART RX API with timeout.
Required Components:
USBtoTTL adapter
Connect to PC
- Connect Ground: connect to GND pin via USBtoTTL adapter
- Use UART1
GPIOA_6 as UART1_RX connect to TX of USBtoTTL adapter
GPIOA_7 as UART1_TX connect to RX of USBtoTTL adapter
Open Super terminal or teraterm and
set baud rate to 38400, 1 stopbit, no parity, no flow contorl.
This example shows:
1. The RX data ready interrupt service routine is used to receive characters from the PC, and then loopback them to the PC.
2. The TX done interrupt service routine will send the received string to the PC.

View file

@ -0,0 +1,119 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "serial_api.h"
#include "serial_ex_api.h"
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
#define UART_TX PA_7 //PB_5
#define UART_RX PA_6 //PB_4
#define SRX_BUF_SZ 100
#define UART_TIMEOUT_MS 5000 //ms
#define TASK_STACK_SIZE 2048
#define TASK_PRIORITY (tskIDLE_PRIORITY + 1)
char rx_buf[SRX_BUF_SZ]={0};
volatile uint32_t rx_bytes=0;
SemaphoreHandle_t UartRxSema;
SemaphoreHandle_t UartTxSema;
void uart_send_string_done(uint32_t id)
{
serial_t *sobj = (void*)id;
signed portBASE_TYPE xHigherPriorityTaskWoken;
xSemaphoreGiveFromISR(UartTxSema, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
void uart_recv_string_done(uint32_t id)
{
serial_t *sobj = (void*)id;
signed portBASE_TYPE xHigherPriorityTaskWoken;
rx_bytes = sobj->rx_len;
xSemaphoreGiveFromISR(UartRxSema, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
void uart_send_string(serial_t *sobj, char *pstr)
{
int32_t ret=0;
xSemaphoreTake(UartTxSema, portMAX_DELAY);
ret = serial_send_stream(sobj, pstr, _strlen(pstr));
if (ret != 0) {
DBG_8195A("%s Error(%d)\n", __FUNCTION__, ret);
xSemaphoreGive( UartTxSema );
}
}
void uart_demo(void)
{
serial_t sobj;
int ret;
serial_init(&sobj,UART_TX,UART_RX);
serial_baud(&sobj,115200);
serial_format(&sobj, 8, ParityNone, 1);
serial_send_comp_handler(&sobj, (void*)uart_send_string_done, (uint32_t) &sobj);
serial_recv_comp_handler(&sobj, (void*)uart_recv_string_done, (uint32_t) &sobj);
// Create semaphore for UART RX done(received espected bytes or timeout)
UartRxSema = xSemaphoreCreateBinary();
// Create semaphore for UART TX done
UartTxSema = xSemaphoreCreateBinary();
xSemaphoreGive( UartTxSema ); // Ready to TX
while (1) {
rx_bytes = 0;
#if 1
ret = serial_recv_stream(&sobj, rx_buf, 10); // Interrupt mode
#else
ret = serial_recv_stream_dma(&sobj, rx_buf, 10); // DMA mode
#endif
if( xSemaphoreTake( UartRxSema, ( TickType_t ) UART_TIMEOUT_MS/portTICK_RATE_MS ) != pdTRUE ) {
rx_bytes = serial_recv_stream_abort(&sobj);
}
if (rx_bytes > 0) {
rx_buf[rx_bytes] = 0x00; // end of string
uart_send_string(&sobj, rx_buf);
}
}
}
void main(void)
{
// create demo Task
if( xTaskCreate( (TaskFunction_t)uart_demo, "UART DEMO", (TASK_STACK_SIZE/4), NULL, TASK_PRIORITY, NULL) != pdPASS) {
DBG_8195A("Cannot create demo task\n\r");
}
#if defined(CONFIG_KERNEL) && !TASK_SCHEDULER_DISABLED
#ifdef PLATFORM_FREERTOS
vTaskStartScheduler();
#endif
#else
#error !!!Need FREERTOS!!!
#endif
while(1);
}

View file

@ -0,0 +1,10 @@
Example Description
This example describes how to use watchdog api.
Requirement Components: None
In this example, watchdog is setup to 5s timeout.
Watchdog won't bark if we refresh it before timeout.
The timer is also reloaded after refresh.
Otherwise it will restart system in default or call callback function if registered.

View file

@ -0,0 +1,61 @@
/*
* Routines to access hardware
*
* Copyright (c) 2015 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "device.h"
#include "diag.h"
#include "main.h"
#include "wdt_api.h"
#define RUN_CALLBACK_IF_WATCHDOG_BARKS (0)
void dummy_task() {
for (int i=0; i<50000000; i++)
asm(" nop");
}
void small_task() {
printf("\r\ndoing small task...\r\n");
dummy_task();
printf("refresh watchdog\r\n\r\n");
watchdog_refresh();
}
void big_task() {
printf("\r\ndoing big task...\r\n");
for (int i=0; i<10; i++) {
DiagPrintf("doing dummy task %d\r\n", i);
dummy_task();
}
printf("refresh watchdog\r\n\r\n");
watchdog_refresh();
}
void my_watchdog_irq_handler(uint32_t id) {
printf("watchdog barks!!!\r\n");
watchdog_stop();
}
void main(void) {
watchdog_init(5000); // setup 5s watchdog
#if RUN_CALLBACK_IF_WATCHDOG_BARKS
watchdog_irq_init(my_watchdog_irq_handler, 0);
#else
// system would restart when watchdog barks
#endif
watchdog_start();
small_task();
big_task();
while(1);
}

View file

@ -0,0 +1,14 @@
Example Description
This example describes how to use wlan interface.
PIN assignment
Wlan is natively support and external gpio pin assign is not required.
User Mamnual
Detail information for how to use wi-fi can be found in
AN0025 Realtek at command

View file

@ -0,0 +1,29 @@
#include "FreeRTOS.h"
#include "task.h"
#include "diag.h"
#include "main.h"
extern void wlan_netowrk(void);
extern void console_init(void);
/**
* @brief Main program.
* @param None
* @retval None
*/
void main(void)
{
console_init();
#if defined(CONFIG_WIFI_NORMAL) && defined(CONFIG_NETWORK)
wlan_network();
#endif
//3 3)Enable Schedule, Start Kernel
#if defined(CONFIG_KERNEL) && !TASK_SCHEDULER_DISABLED
#ifdef PLATFORM_FREERTOS
vTaskStartScheduler();
#endif
#else
RtlConsolTaskRom(NULL);
#endif
}

View file

@ -0,0 +1,202 @@
/*
FreeRTOS V7.3.0 - Copyright (C) 2012 Real Time Engineers Ltd.
FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT
http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, training, latest versions, license
and contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool.
Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell
the code with commercial support, indemnification, and middleware, under
the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also
provide a safety engineered and independently SIL3 certified version under
the SafeRTOS brand: http://www.SafeRTOS.com.
*/
#ifndef FREERTOS_CONFIG_H
#define FREERTOS_CONFIG_H
#if defined(__ICCARM__) || defined(__CC_ARM) || defined(__GNUC__)
#include <stdint.h>
extern uint32_t SystemCoreClock;
#endif
/*-----------------------------------------------------------
* Application specific definitions.
*
* These definitions should be adjusted for your particular hardware and
* application requirements.
*
* THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
* FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
*
* See http://www.freertos.org/a00110.html.
*----------------------------------------------------------*/
#define configUSE_PREEMPTION 1
#define configUSE_IDLE_HOOK 1
#define configUSE_TICK_HOOK 0
#define configCPU_CLOCK_HZ ( SystemCoreClock )
#define configTICK_RATE_HZ ( ( uint32_t ) 1000 )
#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 70 )
#ifdef CONFIG_UVC
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 110 * 1024 ) ) // use HEAP5
#else
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 60 * 1024 ) ) // use HEAP5
#endif
#define configMAX_TASK_NAME_LEN ( 10 )
#define configUSE_TRACE_FACILITY 0
#define configUSE_16_BIT_TICKS 0
#define configIDLE_SHOULD_YIELD 0
#define configUSE_CO_ROUTINES 1
#define configUSE_MUTEXES 1
#define configUSE_TIMERS 1
#define configMAX_PRIORITIES ( 11 )
#define PRIORITIE_OFFSET ( 4 )
#define configMAX_CO_ROUTINE_PRIORITIES ( 2 )
#define configUSE_COUNTING_SEMAPHORES 1
#define configUSE_ALTERNATIVE_API 0
#define configCHECK_FOR_STACK_OVERFLOW 2
#define configUSE_RECURSIVE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 0
#define configGENERATE_RUN_TIME_STATS 0
#if configGENERATE_RUN_TIME_STATS
#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() //( ulHighFrequencyTimerTicks = 0UL )
#define portGET_RUN_TIME_COUNTER_VALUE() xTickCount //ulHighFrequencyTimerTicks
#undef configUSE_TRACE_FACILITY
#define configUSE_TRACE_FACILITY 1
#define portCONFIGURE_STATS_PEROID_VALUE 1000 //unit Ticks
#endif
#define configTIMER_TASK_PRIORITY ( 1 )
#define configTIMER_QUEUE_LENGTH ( 10 )
#define configTIMER_TASK_STACK_DEPTH ( 512 ) // 512*4=2K
#if (__IASMARM__ != 1)
extern void freertos_pre_sleep_processing(unsigned int *expected_idle_time);
extern int freertos_ready_to_sleep();
/* Enable tickless power saving. */
#define configUSE_TICKLESS_IDLE 1
/* In wlan usage, this value is suggested to use value less than 80 milliseconds */
#define configEXPECTED_IDLE_TIME_BEFORE_SLEEP 2
/* It's magic trick that let us can use our own sleep function */
#define configPRE_SLEEP_PROCESSING( x ) ( freertos_pre_sleep_processing(&x) )
/* It's magic trick that let us can enable/disable tickless dynamically */
#define traceLOW_POWER_IDLE_BEGIN(); do { \
if (!freertos_ready_to_sleep()) { \
mtCOVERAGE_TEST_MARKER(); \
break; \
}
// portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
#define traceLOW_POWER_IDLE_END(); } while (0);
/* It's FreeRTOS related feature but it's not included in FreeRTOS design. */
#define configUSE_WAKELOCK_PMU 1
#endif // #if (__IASMARM__ != 1)
/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */
#define INCLUDE_vTaskPrioritySet 1
#define INCLUDE_uxTaskPriorityGet 1
#define INCLUDE_vTaskDelete 1
#define INCLUDE_vTaskCleanUpResources 0
#define INCLUDE_vTaskSuspend 1
#define INCLUDE_vTaskDelayUntil 1
#define INCLUDE_vTaskDelay 1
#define INCLUDE_pcTaskGetTaskName 1
#define INCLUDE_xTimerPendFunctionCall 1
/* Cortex-M specific definitions. */
#ifdef __NVIC_PRIO_BITS
/* __BVIC_PRIO_BITS will be specified when CMSIS is being used. */
#define configPRIO_BITS __NVIC_PRIO_BITS
#else
#define configPRIO_BITS 4 /* 15 priority levels */
#endif
/* The lowest interrupt priority that can be used in a call to a "set priority"
function. */
#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 0x0f
/* The highest interrupt priority that can be used by any interrupt service
routine that makes calls to interrupt safe FreeRTOS API functions. DO NOT CALL
INTERRUPT SAFE FREERTOS API FUNCTIONS FROM ANY INTERRUPT THAT HAS A HIGHER
PRIORITY THAN THIS! (higher priorities are lower numeric values. */
#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5
/* Interrupt priorities used by the kernel port layer itself. These are generic
to all Cortex-M ports, and do not rely on any particular library functions. */
#define configKERNEL_INTERRUPT_PRIORITY ( configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
/* !!!! configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to zero !!!!
See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. */
#define configMAX_SYSCALL_INTERRUPT_PRIORITY ( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
//#define RTK_MODE_TIMER
#endif /* FREERTOS_CONFIG_H */

Some files were not shown because too many files have changed in this diff Show more