mirror of
https://github.com/cwyark/ameba-sdk-gcc-make.git
synced 2024-11-25 23:44:19 +00:00
588 lines
19 KiB
C
588 lines
19 KiB
C
|
/*
|
||
|
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
|
||
|
All rights reserved
|
||
|
|
||
|
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
||
|
|
||
|
***************************************************************************
|
||
|
* *
|
||
|
* FreeRTOS provides completely free yet professionally developed, *
|
||
|
* robust, strictly quality controlled, supported, and cross *
|
||
|
* platform software that has become a de facto standard. *
|
||
|
* *
|
||
|
* Help yourself get started quickly and support the FreeRTOS *
|
||
|
* project by purchasing a FreeRTOS tutorial book, reference *
|
||
|
* manual, or both from: http://www.FreeRTOS.org/Documentation *
|
||
|
* *
|
||
|
* Thank you! *
|
||
|
* *
|
||
|
***************************************************************************
|
||
|
|
||
|
This file is part of the FreeRTOS distribution.
|
||
|
|
||
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||
|
the terms of the GNU General Public License (version 2) as published by the
|
||
|
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
|
||
|
|
||
|
>>! NOTE: The modification to the GPL is included to allow you to !<<
|
||
|
>>! distribute a combined work that includes FreeRTOS without being !<<
|
||
|
>>! obliged to provide the source code for proprietary components !<<
|
||
|
>>! outside of the FreeRTOS kernel. !<<
|
||
|
|
||
|
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
FOR A PARTICULAR PURPOSE. Full license text is available from the following
|
||
|
link: http://www.freertos.org/a00114.html
|
||
|
|
||
|
1 tab == 4 spaces!
|
||
|
|
||
|
***************************************************************************
|
||
|
* *
|
||
|
* Having a problem? Start by reading the FAQ "My application does *
|
||
|
* not run, what could be wrong?" *
|
||
|
* *
|
||
|
* http://www.FreeRTOS.org/FAQHelp.html *
|
||
|
* *
|
||
|
***************************************************************************
|
||
|
|
||
|
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
|
||
|
license and Real Time Engineers Ltd. contact details.
|
||
|
|
||
|
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
||
|
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
|
||
|
compatible FAT file system, and our tiny thread aware UDP/IP stack.
|
||
|
|
||
|
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
|
||
|
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
|
||
|
licenses offer ticketed support, indemnification and middleware.
|
||
|
|
||
|
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
||
|
engineered and independently SIL3 certified version for use in safety and
|
||
|
mission critical applications that require provable dependability.
|
||
|
|
||
|
1 tab == 4 spaces!
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
* This file implements the same demo and test as GenQTest.c, but uses the
|
||
|
* light weight API in place of the fully featured API.
|
||
|
*
|
||
|
* See the comments at the top of GenQTest.c for a description.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
/* Scheduler include files. */
|
||
|
#include "FreeRTOS.h"
|
||
|
#include "task.h"
|
||
|
#include "queue.h"
|
||
|
#include "semphr.h"
|
||
|
|
||
|
/* Demo program include files. */
|
||
|
#include "AltQTest.h"
|
||
|
|
||
|
#define genqQUEUE_LENGTH ( 5 )
|
||
|
#define genqNO_BLOCK ( 0 )
|
||
|
|
||
|
#define genqMUTEX_LOW_PRIORITY ( tskIDLE_PRIORITY )
|
||
|
#define genqMUTEX_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 )
|
||
|
#define genqMUTEX_MEDIUM_PRIORITY ( tskIDLE_PRIORITY + 2 )
|
||
|
#define genqMUTEX_HIGH_PRIORITY ( tskIDLE_PRIORITY + 3 )
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/*
|
||
|
* Tests the behaviour of the xQueueAltSendToFront() and xQueueAltSendToBack()
|
||
|
* macros by using both to fill a queue, then reading from the queue to
|
||
|
* check the resultant queue order is as expected. Queue data is also
|
||
|
* peeked.
|
||
|
*/
|
||
|
static void prvSendFrontAndBackTest( void *pvParameters );
|
||
|
|
||
|
/*
|
||
|
* The following three tasks are used to demonstrate the mutex behaviour.
|
||
|
* Each task is given a different priority to demonstrate the priority
|
||
|
* inheritance mechanism.
|
||
|
*
|
||
|
* The low priority task obtains a mutex. After this a high priority task
|
||
|
* attempts to obtain the same mutex, causing its priority to be inherited
|
||
|
* by the low priority task. The task with the inherited high priority then
|
||
|
* resumes a medium priority task to ensure it is not blocked by the medium
|
||
|
* priority task while it holds the inherited high priority. Once the mutex
|
||
|
* is returned the task with the inherited priority returns to its original
|
||
|
* low priority, and is therefore immediately preempted by first the high
|
||
|
* priority task and then the medium prioroity task before it can continue.
|
||
|
*/
|
||
|
static void prvLowPriorityMutexTask( void *pvParameters );
|
||
|
static void prvMediumPriorityMutexTask( void *pvParameters );
|
||
|
static void prvHighPriorityMutexTask( void *pvParameters );
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/* Flag that will be latched to pdTRUE should any unexpected behaviour be
|
||
|
detected in any of the tasks. */
|
||
|
static BaseType_t xErrorDetected = pdFALSE;
|
||
|
|
||
|
/* Counters that are incremented on each cycle of a test. This is used to
|
||
|
detect a stalled task - a test that is no longer running. */
|
||
|
static volatile uint32_t ulLoopCounter = 0;
|
||
|
static volatile uint32_t ulLoopCounter2 = 0;
|
||
|
|
||
|
/* The variable that is guarded by the mutex in the mutex demo tasks. */
|
||
|
static volatile uint32_t ulGuardedVariable = 0;
|
||
|
|
||
|
/* Handles used in the mutext test to suspend and resume the high and medium
|
||
|
priority mutex test tasks. */
|
||
|
static TaskHandle_t xHighPriorityMutexTask, xMediumPriorityMutexTask;
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vStartAltGenericQueueTasks( UBaseType_t uxPriority )
|
||
|
{
|
||
|
QueueHandle_t xQueue;
|
||
|
SemaphoreHandle_t xMutex;
|
||
|
|
||
|
/* Create the queue that we are going to use for the
|
||
|
prvSendFrontAndBackTest demo. */
|
||
|
xQueue = xQueueCreate( genqQUEUE_LENGTH, sizeof( uint32_t ) );
|
||
|
|
||
|
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
|
||
|
in use. The queue registry is provided as a means for kernel aware
|
||
|
debuggers to locate queues and has no purpose if a kernel aware debugger
|
||
|
is not being used. The call to vQueueAddToRegistry() will be removed
|
||
|
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||
|
defined to be less than 1. */
|
||
|
vQueueAddToRegistry( xQueue, "Alt_Gen_Test_Queue" );
|
||
|
|
||
|
/* Create the demo task and pass it the queue just created. We are
|
||
|
passing the queue handle by value so it does not matter that it is
|
||
|
declared on the stack here. */
|
||
|
xTaskCreate( prvSendFrontAndBackTest, "FGenQ", configMINIMAL_STACK_SIZE, ( void * ) xQueue, uxPriority, NULL );
|
||
|
|
||
|
/* Create the mutex used by the prvMutexTest task. */
|
||
|
xMutex = xSemaphoreCreateMutex();
|
||
|
|
||
|
/* vQueueAddToRegistry() adds the mutex to the registry, if one is
|
||
|
in use. The registry is provided as a means for kernel aware
|
||
|
debuggers to locate mutex and has no purpose if a kernel aware debugger
|
||
|
is not being used. The call to vQueueAddToRegistry() will be removed
|
||
|
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||
|
defined to be less than 1. */
|
||
|
vQueueAddToRegistry( ( QueueHandle_t ) xMutex, "Alt_Q_Mutex" );
|
||
|
|
||
|
/* Create the mutex demo tasks and pass it the mutex just created. We are
|
||
|
passing the mutex handle by value so it does not matter that it is declared
|
||
|
on the stack here. */
|
||
|
xTaskCreate( prvLowPriorityMutexTask, "FMuLow", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_LOW_PRIORITY, NULL );
|
||
|
xTaskCreate( prvMediumPriorityMutexTask, "FMuMed", configMINIMAL_STACK_SIZE, NULL, genqMUTEX_MEDIUM_PRIORITY, &xMediumPriorityMutexTask );
|
||
|
xTaskCreate( prvHighPriorityMutexTask, "FMuHigh", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_HIGH_PRIORITY, &xHighPriorityMutexTask );
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvSendFrontAndBackTest( void *pvParameters )
|
||
|
{
|
||
|
uint32_t ulData, ulData2;
|
||
|
QueueHandle_t xQueue;
|
||
|
|
||
|
#ifdef USE_STDIO
|
||
|
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
|
||
|
|
||
|
const char * const pcTaskStartMsg = "Alt queue SendToFront/SendToBack/Peek test started.\r\n";
|
||
|
|
||
|
/* Queue a message for printing to say the task has started. */
|
||
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
||
|
#endif
|
||
|
|
||
|
xQueue = ( QueueHandle_t ) pvParameters;
|
||
|
|
||
|
for( ;; )
|
||
|
{
|
||
|
/* The queue is empty, so sending an item to the back of the queue
|
||
|
should have the same efect as sending it to the front of the queue.
|
||
|
|
||
|
First send to the front and check everything is as expected. */
|
||
|
xQueueAltSendToFront( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
|
||
|
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 1 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( xQueueAltReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* The data we sent to the queue should equal the data we just received
|
||
|
from the queue. */
|
||
|
if( ulLoopCounter != ulData )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* Then do the same, sending the data to the back, checking everything
|
||
|
is as expected. */
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 0 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
xQueueAltSendToBack( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
|
||
|
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 1 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( xQueueAltReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 0 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* The data we sent to the queue should equal the data we just received
|
||
|
from the queue. */
|
||
|
if( ulLoopCounter != ulData )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
#if configUSE_PREEMPTION == 0
|
||
|
taskYIELD();
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
/* Place 2, 3, 4 into the queue, adding items to the back of the queue. */
|
||
|
for( ulData = 2; ulData < 5; ulData++ )
|
||
|
{
|
||
|
xQueueAltSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK );
|
||
|
}
|
||
|
|
||
|
/* Now the order in the queue should be 2, 3, 4, with 2 being the first
|
||
|
thing to be read out. Now add 1 then 0 to the front of the queue. */
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 3 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
ulData = 1;
|
||
|
xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
|
||
|
ulData = 0;
|
||
|
xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
|
||
|
|
||
|
/* Now the queue should be full, and when we read the data out we
|
||
|
should receive 0, 1, 2, 3, 4. */
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 5 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( xQueueAltSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
#if configUSE_PREEMPTION == 0
|
||
|
taskYIELD();
|
||
|
#endif
|
||
|
|
||
|
/* Check the data we read out is in the expected order. */
|
||
|
for( ulData = 0; ulData < genqQUEUE_LENGTH; ulData++ )
|
||
|
{
|
||
|
/* Try peeking the data first. */
|
||
|
if( xQueueAltPeek( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( ulData != ulData2 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Now try receiving the data for real. The value should be the
|
||
|
same. Clobber the value first so we know we really received it. */
|
||
|
ulData2 = ~ulData2;
|
||
|
if( xQueueAltReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( ulData != ulData2 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* The queue should now be empty again. */
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 0 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
#if configUSE_PREEMPTION == 0
|
||
|
taskYIELD();
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Our queue is empty once more, add 10, 11 to the back. */
|
||
|
ulData = 10;
|
||
|
if( xQueueAltSendToBack( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
ulData = 11;
|
||
|
if( xQueueAltSendToBack( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 2 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* Now we should have 10, 11 in the queue. Add 7, 8, 9 to the
|
||
|
front. */
|
||
|
for( ulData = 9; ulData >= 7; ulData-- )
|
||
|
{
|
||
|
if( xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Now check that the queue is full, and that receiving data provides
|
||
|
the expected sequence of 7, 8, 9, 10, 11. */
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 5 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( xQueueAltSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
#if configUSE_PREEMPTION == 0
|
||
|
taskYIELD();
|
||
|
#endif
|
||
|
|
||
|
/* Check the data we read out is in the expected order. */
|
||
|
for( ulData = 7; ulData < ( 7 + genqQUEUE_LENGTH ); ulData++ )
|
||
|
{
|
||
|
if( xQueueAltReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( ulData != ulData2 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if( uxQueueMessagesWaiting( xQueue ) != 0 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
ulLoopCounter++;
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvLowPriorityMutexTask( void *pvParameters )
|
||
|
{
|
||
|
SemaphoreHandle_t xMutex = ( SemaphoreHandle_t ) pvParameters;
|
||
|
|
||
|
#ifdef USE_STDIO
|
||
|
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
|
||
|
|
||
|
const char * const pcTaskStartMsg = "Fast mutex with priority inheritance test started.\r\n";
|
||
|
|
||
|
/* Queue a message for printing to say the task has started. */
|
||
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
||
|
#endif
|
||
|
|
||
|
( void ) pvParameters;
|
||
|
|
||
|
|
||
|
for( ;; )
|
||
|
{
|
||
|
/* Take the mutex. It should be available now. */
|
||
|
if( xSemaphoreAltTake( xMutex, genqNO_BLOCK ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* Set our guarded variable to a known start value. */
|
||
|
ulGuardedVariable = 0;
|
||
|
|
||
|
/* Our priority should be as per that assigned when the task was
|
||
|
created. */
|
||
|
if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* Now unsuspend the high priority task. This will attempt to take the
|
||
|
mutex, and block when it finds it cannot obtain it. */
|
||
|
vTaskResume( xHighPriorityMutexTask );
|
||
|
|
||
|
/* We should now have inherited the prioritoy of the high priority task,
|
||
|
as by now it will have attempted to get the mutex. */
|
||
|
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* We can attempt to set our priority to the test priority - between the
|
||
|
idle priority and the medium/high test priorities, but our actual
|
||
|
prioroity should remain at the high priority. */
|
||
|
vTaskPrioritySet( NULL, genqMUTEX_TEST_PRIORITY );
|
||
|
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* Now unsuspend the medium priority task. This should not run as our
|
||
|
inherited priority is above that of the medium priority task. */
|
||
|
vTaskResume( xMediumPriorityMutexTask );
|
||
|
|
||
|
/* If the did run then it will have incremented our guarded variable. */
|
||
|
if( ulGuardedVariable != 0 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* When we give back the semaphore our priority should be disinherited
|
||
|
back to the priority to which we attempted to set ourselves. This means
|
||
|
that when the high priority task next blocks, the medium priority task
|
||
|
should execute and increment the guarded variable. When we next run
|
||
|
both the high and medium priority tasks will have been suspended again. */
|
||
|
if( xSemaphoreAltGive( xMutex ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* Check that the guarded variable did indeed increment... */
|
||
|
if( ulGuardedVariable != 1 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* ... and that our priority has been disinherited to
|
||
|
genqMUTEX_TEST_PRIORITY. */
|
||
|
if( uxTaskPriorityGet( NULL ) != genqMUTEX_TEST_PRIORITY )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* Set our priority back to our original priority ready for the next
|
||
|
loop around this test. */
|
||
|
vTaskPrioritySet( NULL, genqMUTEX_LOW_PRIORITY );
|
||
|
|
||
|
/* Just to show we are still running. */
|
||
|
ulLoopCounter2++;
|
||
|
|
||
|
#if configUSE_PREEMPTION == 0
|
||
|
taskYIELD();
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvMediumPriorityMutexTask( void *pvParameters )
|
||
|
{
|
||
|
( void ) pvParameters;
|
||
|
|
||
|
for( ;; )
|
||
|
{
|
||
|
/* The medium priority task starts by suspending itself. The low
|
||
|
priority task will unsuspend this task when required. */
|
||
|
vTaskSuspend( NULL );
|
||
|
|
||
|
/* When this task unsuspends all it does is increment the guarded
|
||
|
variable, this is so the low priority task knows that it has
|
||
|
executed. */
|
||
|
ulGuardedVariable++;
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvHighPriorityMutexTask( void *pvParameters )
|
||
|
{
|
||
|
SemaphoreHandle_t xMutex = ( SemaphoreHandle_t ) pvParameters;
|
||
|
|
||
|
( void ) pvParameters;
|
||
|
|
||
|
for( ;; )
|
||
|
{
|
||
|
/* The high priority task starts by suspending itself. The low
|
||
|
priority task will unsuspend this task when required. */
|
||
|
vTaskSuspend( NULL );
|
||
|
|
||
|
/* When this task unsuspends all it does is attempt to obtain
|
||
|
the mutex. It should find the mutex is not available so a
|
||
|
block time is specified. */
|
||
|
if( xSemaphoreAltTake( xMutex, portMAX_DELAY ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
/* When we eventually obtain the mutex we just give it back then
|
||
|
return to suspend ready for the next test. */
|
||
|
if( xSemaphoreAltGive( xMutex ) != pdPASS )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/* This is called to check that all the created tasks are still running. */
|
||
|
BaseType_t xAreAltGenericQueueTasksStillRunning( void )
|
||
|
{
|
||
|
static uint32_t ulLastLoopCounter = 0, ulLastLoopCounter2 = 0;
|
||
|
|
||
|
/* If the demo task is still running then we expect the loopcounters to
|
||
|
have incremented since this function was last called. */
|
||
|
if( ulLastLoopCounter == ulLoopCounter )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
if( ulLastLoopCounter2 == ulLoopCounter2 )
|
||
|
{
|
||
|
xErrorDetected = pdTRUE;
|
||
|
}
|
||
|
|
||
|
ulLastLoopCounter = ulLoopCounter;
|
||
|
ulLastLoopCounter2 = ulLoopCounter2;
|
||
|
|
||
|
/* Errors detected in the task itself will have latched xErrorDetected
|
||
|
to true. */
|
||
|
|
||
|
return !xErrorDetected;
|
||
|
}
|
||
|
|
||
|
|