RTL8710AF_GCC/component/common/application/xmodem/uart_fw_update.c
2016-09-12 17:16:56 +08:00

1073 lines
36 KiB
C

/********************************************************************************
* Copyright (c) 2014, Realtek Semiconductor Corp.
* All rights reserved.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*******************************************************************************
*/
#include "xmport_uart.h"
#include "xmport_loguart.h"
#include "rtl8195a.h"
#include "xmodem.h"
#include "xmport_uart.h"
#include "hal_spi_flash.h"
#include "rtl8195a_spi_flash.h"
#include <platform/platform_stdlib.h>
#if /*CONFIG_PERI_UPDATE_IMG*/1
#define IMG1_SIGN_OFFSET 0x34
enum {
XMODEM_UART_0 = 0,
XMODEM_UART_1 = 1,
XMODEM_UART_2 = 2,
XMODEM_LOG_UART = 3
};
FWU_DATA_SECTION char xMFrameBuf[XM_BUFFER_SIZE];
FWU_DATA_SECTION XMODEM_CTRL xMCtrl;
FWU_DATA_SECTION static u32 fw_img1_size;
FWU_DATA_SECTION static u32 fw_img2_size;
FWU_DATA_SECTION static u32 fw_img2_addr;
FWU_DATA_SECTION static u32 fw_img3_size;
FWU_DATA_SECTION static u32 fw_img3_addr;
FWU_DATA_SECTION static u32 flash_wr_offset;
FWU_DATA_SECTION static u32 flash_erased_addr;
FWU_DATA_SECTION static u8 start_with_img1;
FWU_DATA_SECTION static u32 flash_wr_err_cnt;
FWU_DATA_SECTION HAL_RUART_ADAPTER xmodem_uart_adp; // we can dynamic allocate memory for this object to save memory
FWU_RODATA_SECTION const char Img2Signature[8]="81958711";
extern u32 SpicCalibrationPattern[4];
extern const u8 ROM_IMG1_VALID_PATTEN[];
extern HAL_RUART_ADAPTER *pxmodem_uart_adp;
#ifdef CONFIG_GPIO_EN
extern HAL_GPIO_ADAPTER gBoot_Gpio_Adapter;
extern PHAL_GPIO_ADAPTER _pHAL_Gpio_Adapter;
#endif
extern BOOLEAN SpicFlashInitRtl8195A(u8 SpicBitMode);
_LONG_CALL_
extern VOID SpicWaitBusyDoneRtl8195A(VOID);
extern VOID SpicWaitWipDoneRefinedRtl8195A(SPIC_INIT_PARA SpicInitPara);
VOID WriteImg1Sign(u32 Image2Addr);
FWU_TEXT_SECTION void FWU_WriteWord(u32 Addr, u32 FData)
{
SPIC_INIT_PARA SpicInitPara;
HAL_WRITE32(SPI_FLASH_BASE, Addr, FData);
// Wait spic busy done
SpicWaitBusyDoneRtl8195A();
// Wait flash busy done (wip=0)
SpicWaitWipDoneRefinedRtl8195A(SpicInitPara);
}
FWU_TEXT_SECTION u32 xModem_MemCmp(const u32 *av, const u32 *bv, u32 len)
{
const u32 *a = av;
const u32 *b = (u32*)((u8*)bv+SPI_FLASH_BASE);
u32 len4b = len >> 2;
u32 i;
for (i=0; i<len4b; i++) {
if (a[i] != b[i]) {
DBG_MISC_ERR("OTU: Flash write check error @ 0x%08x\r\n", (u32)(&b[i]));
return ((u32)(&b[i]));
}
}
return 0;
}
FWU_TEXT_SECTION
u32 xModem_Frame_Dump(char *ptr, unsigned int frame_num)
{
u32 i;
DiagPrintf("===== Frme %d ======\r\n", frame_num);
for(i=0;i<128;i+=16) {
DiagPrintf("%02x: ", i);
DiagPrintf("%02x %02x %02x %02x %02x %02x %02x %02x ",
*(ptr+i),*(ptr+i+1),*(ptr+i+2),*(ptr+i+3),*(ptr+i+4),*(ptr+i+5),*(ptr+i+6),*(ptr+i+7));
DiagPrintf("%02x %02x %02x %02x %02x %02x %02x %02x \r\n",
*(ptr+i+8),*(ptr+i+9),*(ptr+i+10),*(ptr+i+11),*(ptr+i+12),*(ptr+i+13),*(ptr+i+14),*(ptr+i+15));
}
return 0;
}
FWU_TEXT_SECTION
u32 xModem_Frame_MemWrite(char *ptr, unsigned int frame_num, unsigned int frame_size)
{
u32 idx=0;
u32 skip_sz=0;
// "flash_wr_offset" here is used as the skip bytes from the head
while ((flash_wr_offset > 0) && (idx < frame_size)) {
flash_wr_offset--;
idx++;
skip_sz++;
}
// "fw_img2_size" here is used as the memory length to write
// "fw_img2_addr" is used as the start memory address to write
while (idx < frame_size) {
if (fw_img2_size == 0) {
return idx;
}
if (((fw_img2_addr & 0x03) == 0) &&
(fw_img2_size > 3) &&
((frame_size - idx) > 3)) {
// write address is 4-byte aligned
*((u32*)fw_img2_addr) = (*((u32*)(ptr+idx)));
fw_img2_addr += 4;
fw_img2_size -= 4;
idx += 4;
} else if (fw_img2_size > 0){
*((u8*)fw_img2_addr) = (*((u8*)(ptr+idx)));
fw_img2_addr++;
fw_img2_size--;
idx++;
}
}
return (idx - skip_sz);
}
FWU_TEXT_SECTION
u32 xModem_Frame_FlashWrite(char *ptr, unsigned int frame_num, unsigned int frame_size)
{
u32 idx=0;
u32 skip_sz=0;
u32 temp;
u32 i;
// "flash_wr_offset" here is used as the skip bytes from the head
while ((flash_wr_offset > 0) && (idx < frame_size)) {
flash_wr_offset--;
idx++;
skip_sz++;
}
// "fw_img2_size" here is used as the memory length to write
// "fw_img2_addr" is used as the start memory address to write
while (idx < frame_size) {
if (fw_img2_size == 0) {
return idx;
}
if ((fw_img2_size > 3) && ((frame_size - idx) > 3)) {
FWU_WriteWord(fw_img2_addr, (*((u32*)(ptr+idx))));
fw_img2_addr += 4;
fw_img2_size -= 4;
idx += 4;
} else {
temp = 0xFFFFFFFF;
for (i=0;i<4;i++) {
// Just for little endian
*((((u8*)&temp) + i)) = (*((u8*)(ptr+idx)));
idx++;
fw_img2_size--;
if ((fw_img2_size == 0) || (idx >= frame_size)) {
break;
}
}
FWU_WriteWord(fw_img2_addr, temp);
fw_img2_addr += 4;
}
}
return (idx - skip_sz);
}
FWU_TEXT_SECTION
u32 xModem_Frame_Img2(char *ptr, unsigned int frame_num, unsigned int frame_size)
{
u32 address;
u32 ImageIndex=0;
u32 rx_len=0;
u32 *chk_sr;
u32 *chk_dr;
u32 err_addr;
if (frame_num == 1) {
// Parse Image2 header
flash_wr_offset = fw_img2_addr;
fw_img2_size = rtk_le32_to_cpu(*((u32*)ptr)) + 0x10;
if ((fw_img2_size & 0x03) != 0) {
DBG_MISC_ERR("xModem_Frame_ImgAll Err#2: fw_img2_addr=0x%x fw_img2_size(%d) isn't 4-bytes aligned\r\n", fw_img2_addr, fw_img2_size);
fw_img1_size = 0;
fw_img2_size = 0;
return rx_len;
}
if (fw_img2_size > (2*1024*1024)) {
DBG_MISC_ERR("xModem_Frame_ImgAll Image2 to Big: fw_img2_addr=0x%x fw_img2_size(%d) \r\n", fw_img2_addr, fw_img2_size);
fw_img1_size = 0;
fw_img2_size = 0;
return rx_len;
}
fw_img3_addr = fw_img2_addr + fw_img2_size;
// erase Flash first
address = fw_img2_addr & (~0xfff); // 4k aligned, 4k is the page size of flash memory
while ((address) < (fw_img2_addr+fw_img2_size)) {
SpicSectorEraseFlashRtl8195A(SPI_FLASH_BASE + address);
address += 0x1000;
}
flash_erased_addr = address;
}
if (fw_img2_size > 0) {
// writing image2
chk_sr = (u32*)((u8*)ptr+ImageIndex);
chk_dr = (u32*)flash_wr_offset;
while (ImageIndex < frame_size) {
FWU_WriteWord(flash_wr_offset, (*((u32*)(ptr+ImageIndex))));
ImageIndex += 4;
flash_wr_offset += 4;
rx_len += 4;
fw_img2_size -= 4;
if (fw_img2_size == 0) {
// Image2 write done,
break;
}
}
err_addr = xModem_MemCmp(chk_sr, chk_dr, (flash_wr_offset - (u32)chk_dr));
if (err_addr) {
flash_wr_err_cnt++;
}
}
if (ImageIndex >= frame_size) {
return rx_len;
}
// Skip the gap between image2 and image3,
// there is no gap in current image format
if (flash_wr_offset < fw_img3_addr) {
if ((flash_wr_offset + (frame_size-ImageIndex)) <= fw_img3_addr) {
flash_wr_offset += (frame_size-ImageIndex);
return rx_len;
} else {
while (ImageIndex < frame_size) {
if (flash_wr_offset == fw_img3_addr) {
break;
}
ImageIndex += 4;
flash_wr_offset += 4;
}
}
}
if (fw_img3_addr == flash_wr_offset) {
if (ImageIndex < frame_size) {
fw_img3_size = rtk_le32_to_cpu(*((u32*)(ptr+ImageIndex)));
if (fw_img3_size == 0x1A1A1A1A) {
// all padding bytes, no image3
fw_img3_size = 0;
return rx_len;
}
if ((fw_img3_size & 0x03) != 0) {
DBG_MISC_ERR("xModem_Frame_ImgAll Err#5: fw_img3_addr=0x%x fw_img3_size(%d) isn't 4-bytes aligned\r\n", fw_img3_addr, fw_img3_size);
fw_img3_size = 0;
return rx_len;
}
if (fw_img3_size > (2*1024*1024)) {
DBG_MISC_ERR("xModem_Frame_ImgAll Image3 to Big: fw_img3_addr=0x%x fw_img2_size(%d) \r\n", fw_img3_addr, fw_img3_size);
fw_img3_size = 0;
return rx_len;
}
// Flash sector erase for image2 writing
if (flash_erased_addr >= fw_img3_addr) {
address = flash_erased_addr;
} else {
address = fw_img3_addr & (~0xfff); // 4k aligned, 4k is the page size of flash memory
}
while ((address) < (fw_img3_addr+fw_img3_size)) {
DBG_MISC_INFO("Flash Erase: 0x%x\n", address);
#if 0
if ((address & 0xFFFF) == 0) {
SpicBlockEraseFlashRtl8195A(SPI_FLASH_BASE + address);
address += 0x10000; // 1 block = 64k bytes
}
else
#endif
{
SpicSectorEraseFlashRtl8195A(SPI_FLASH_BASE + address);
address += 0x1000; // 1 sector = 4k bytes
}
}
flash_erased_addr = address;
}
}
if (fw_img3_size > 0) {
// writing image3
chk_sr = (u32*)((u8*)ptr+ImageIndex);
chk_dr = (u32*)flash_wr_offset;
while (ImageIndex < frame_size) {
FWU_WriteWord(flash_wr_offset, (*((u32*)(ptr+ImageIndex))));
ImageIndex += 4;
flash_wr_offset += 4;
rx_len += 4;
fw_img3_size -= 4;
if (fw_img3_size == 0) {
// Image3 write done,
break;
}
}
err_addr = xModem_MemCmp(chk_sr, chk_dr, (flash_wr_offset - (u32)chk_dr));
if (err_addr) {
flash_wr_err_cnt++;
}
}
return rx_len;
}
FWU_TEXT_SECTION
u32 xModem_Frame_ImgAll(char *ptr, unsigned int frame_num, unsigned int frame_size)
{
int i;
u32 address;
u32 img_size;
u32 img_addr;
u32 ImgIdx=0;
u32 Img1Sign;
u32 rx_len=0;
u32 *chk_sr;
u32 *chk_dr;
u32 err_addr;
if (frame_num == 1) {
// Check is it the start patten of image1
start_with_img1 = 1;
for(i=0; i<4; i++) {
Img1Sign = rtk_le32_to_cpu(*((u32*)(ptr + i*4)));
if(Img1Sign != SpicCalibrationPattern[i]) {
start_with_img1 = 0;
break;
}
}
// Get the image size: the first 4 bytes
if (start_with_img1) {
// Image1 + Image2
// Check the Image1 Signature
i=0;
while (ROM_IMG1_VALID_PATTEN[i] != 0xff) {
if (ptr[i+IMG1_SIGN_OFFSET] != ROM_IMG1_VALID_PATTEN[i]) {
// image1 validation patten miss match
DBG_MISC_ERR("xModem_Frame_ImgAll Err: Image1 Signature Incorrect\r\n");
fw_img1_size = 0;
fw_img2_size = 0;
fw_img2_addr = 0;
fw_img3_size = 0;
fw_img3_addr = 0;
return 0;
} else {
// make the signature all 0xff for now, write the signature when image1 download is done
ptr[i+IMG1_SIGN_OFFSET] = 0xff;
}
i++;
}
flash_wr_offset = 0;
fw_img1_size = rtk_le32_to_cpu(*((u32*)(ptr + 0x10))) + 0x20;
if ((fw_img1_size & 0x03) != 0) {
DBG_MISC_WARN("xModem_Frame_ImgAll Err: fw_img1_size(0x%x) isn't 4-bytes aligned\r\n", fw_img1_size);
fw_img1_size = 0;
fw_img2_size = 0;
fw_img2_addr = 0;
fw_img3_size = 0;
fw_img3_addr = 0;
return 0;
}
address = 0;
img_size = fw_img1_size;
img_addr = 0;
fw_img2_addr = rtk_le16_to_cpu(*((u16*)(ptr + 0x18))) * 1024;
if (fw_img2_addr == 0) {
// it's old format: image1 & image2 is cascaded directly
fw_img2_addr = fw_img1_size;
}
fw_img2_size = 0;
DBG_MISC_INFO("Update Image All: Image1 Size=%d, Image2 Addr=0x%x\r\n", fw_img1_size, fw_img2_addr);
} else {
// It's image2(+image3) only
if (fw_img2_addr == 0) {
DBG_MISC_WARN("The single-image format in flash now, it cannot just update the image2\r\n");
fw_img1_size = 0;
fw_img2_size = 0;
return rx_len;
}
flash_wr_offset = fw_img2_addr;
fw_img1_size = 0;
fw_img2_size = rtk_le32_to_cpu(*((u32*)ptr)) + 0x10;
fw_img3_addr = fw_img2_addr + fw_img2_size;
if ((fw_img2_size & 0x03) != 0) {
DBG_MISC_ERR("xModem_Frame_ImgAll Err: fw_img2_size(0x%x) isn't 4-bytes aligned\r\n", fw_img2_size);
fw_img1_size = 0;
fw_img2_size = 0;
return rx_len;
}
address = fw_img2_addr & (~0xfff); // 4k aligned, 4k is the page size of flash memory
img_size = fw_img2_size;
img_addr = fw_img2_addr;
DBG_MISC_INFO("Update Image2: Addr=0x%x, Size=%d\r\n", fw_img2_addr, fw_img2_size);
}
// erase Flash sector first
while ((address) < (img_addr+img_size)) {
// DBG_MISC_INFO("Flash Erase: 0x%x\n", address);
if ((address >= 0x10000 ) && ((address & 0xFFFF) == 0)) {
SpicBlockEraseFlashRtl8195A(SPI_FLASH_BASE + address);
address += 0x10000; // 1 Block = 64k bytes
}
else
{
SpicSectorEraseFlashRtl8195A(SPI_FLASH_BASE + address);
address += 0x1000; // 1 sector = 4k bytes
}
}
flash_erased_addr = address;
}
{
if (!start_with_img1) {
if (fw_img2_size > 0) {
chk_sr = (u32*)((u8*)ptr+ImgIdx);
chk_dr = (u32*)flash_wr_offset;
while (ImgIdx < frame_size) {
FWU_WriteWord(flash_wr_offset, (*((u32*)(ptr+ImgIdx))));
ImgIdx += 4;
flash_wr_offset += 4;
rx_len += 4;
fw_img2_size -= 4;
if (fw_img2_size == 0) {
break;
}
}
err_addr = xModem_MemCmp(chk_sr, chk_dr, (flash_wr_offset - (u32)chk_dr));
if (err_addr) {
flash_wr_err_cnt++;
}
}
} else {
ImgIdx = 0;
if (fw_img1_size > 0) {
// still writing image1
chk_sr = (u32*)((u8*)ptr+ImgIdx);
chk_dr = (u32*)flash_wr_offset;
while (ImgIdx < frame_size) {
FWU_WriteWord(flash_wr_offset, (*((u32*)(ptr+ImgIdx))));
ImgIdx += 4;
flash_wr_offset += 4;
rx_len += 4;
fw_img1_size -= 4;
if (fw_img1_size == 0) {
// Image1 write done,
break;
}
}
err_addr = xModem_MemCmp(chk_sr, chk_dr, (flash_wr_offset - (u32)chk_dr));
if (err_addr) {
flash_wr_err_cnt++;
} else {
if (fw_img1_size == 0) {
// Write Image1 signature
WriteImg1Sign(IMG1_SIGN_OFFSET);
}
}
}
if (ImgIdx >= frame_size) {
return rx_len;
}
if (fw_img2_addr == 0) {
return rx_len;
}
// Skip the section of system data
if (flash_wr_offset < fw_img2_addr) {
if ((flash_wr_offset + (frame_size-ImgIdx)) <= fw_img2_addr) {
flash_wr_offset += (frame_size-ImgIdx);
return rx_len;
} else {
while (ImgIdx < frame_size) {
if (flash_wr_offset == fw_img2_addr) {
break;
}
ImgIdx += 4;
flash_wr_offset += 4;
rx_len += 4;
}
}
}
if (fw_img2_addr == flash_wr_offset) {
if (ImgIdx < frame_size) {
fw_img2_size = rtk_le32_to_cpu(*((u32*)(ptr+ImgIdx))) + 0x10;
fw_img3_addr = fw_img2_addr + fw_img2_size;
if ((fw_img2_size & 0x03) != 0) {
DBG_MISC_ERR("xModem_Frame_ImgAll Err#2: fw_img2_addr=0x%x fw_img2_size(%d) isn't 4-bytes aligned\r\n", fw_img2_addr, fw_img2_size);
fw_img1_size = 0;
fw_img2_size = 0;
return rx_len;
}
if (fw_img2_size > (2*1024*1024)) {
DBG_MISC_ERR("xModem_Frame_ImgAll Image2 to Big: fw_img2_addr=0x%x fw_img2_size(%d) \r\n", fw_img2_addr, fw_img2_size);
fw_img1_size = 0;
fw_img2_size = 0;
return rx_len;
}
// Flash sector erase for image2 writing
if (flash_erased_addr >= fw_img2_addr) {
address = flash_erased_addr;
} else {
address = fw_img2_addr & (~0xfff); // 4k aligned, 4k is the page size of flash memory
}
while ((address) < (fw_img2_addr+fw_img2_size)) {
DBG_MISC_INFO("Flash Erase: 0x%x\n", address);
if ((address & 0xFFFF) == 0) {
SpicBlockEraseFlashRtl8195A(SPI_FLASH_BASE + address);
address += 0x10000; // 1 block = 64k bytes
}
else
{
SpicSectorEraseFlashRtl8195A(SPI_FLASH_BASE + address);
address += 0x1000; // 1 sector = 4k bytes
}
}
flash_erased_addr = address;
}
}
if (fw_img2_size > 0) {
// writing image2
chk_sr = (u32*)((u8*)ptr+ImgIdx);
chk_dr = (u32*)flash_wr_offset;
while (ImgIdx < frame_size) {
FWU_WriteWord(flash_wr_offset, (*((u32*)(ptr+ImgIdx))));
ImgIdx += 4;
flash_wr_offset += 4;
rx_len += 4;
fw_img2_size -= 4;
if (fw_img2_size == 0) {
// Image2 write done,
break;
}
}
err_addr = xModem_MemCmp(chk_sr, chk_dr, (flash_wr_offset - (u32)chk_dr));
if (err_addr) {
flash_wr_err_cnt++;
}
}
if (ImgIdx >= frame_size) {
return rx_len;
}
if (fw_img3_addr == flash_wr_offset) {
if (ImgIdx < frame_size) {
fw_img3_size = rtk_le32_to_cpu(*((u32*)(ptr+ImgIdx)));
if (fw_img3_size == 0x1A1A1A1A) {
// all padding bytes, no image3
fw_img3_size = 0;
// DBG_8195A("No Img3\r\n");
return rx_len;
}
if ((fw_img3_size & 0x03) != 0) {
DBG_MISC_ERR("xModem_Frame_ImgAll Err#5: fw_img3_addr=0x%x fw_img3_size(%d) isn't 4-bytes aligned\r\n", fw_img3_addr, fw_img3_size);
fw_img3_size = 0;
return rx_len;
}
if (fw_img3_size > (2*1024*1024)) {
DBG_MISC_ERR("xModem_Frame_ImgAll Image3 to Big: fw_img3_addr=0x%x fw_img2_size(%d) \r\n", fw_img3_addr, fw_img3_size);
fw_img3_size = 0;
return rx_len;
}
// Flash sector erase for image2 writing
if (flash_erased_addr >= fw_img3_addr) {
address = flash_erased_addr;
} else {
address = fw_img3_addr & (~0xfff); // 4k aligned, 4k is the page size of flash memory
}
while ((address) < (fw_img3_addr+fw_img3_size)) {
DBG_MISC_INFO("Flash Erase: 0x%x\n", address);
if ((address & 0xFFFF) == 0) {
SpicBlockEraseFlashRtl8195A(SPI_FLASH_BASE + address);
address += 0x10000; // 1 block = 64k bytes
}
else
{
SpicSectorEraseFlashRtl8195A(SPI_FLASH_BASE + address);
address += 0x1000; // 1 sector = 4k bytes
}
}
flash_erased_addr = address;
}
}
if (fw_img3_size > 0) {
// writing image3
chk_sr = (u32*)((u8*)ptr+ImgIdx);
chk_dr = (u32*)flash_wr_offset;
while (ImgIdx < frame_size) {
FWU_WriteWord(flash_wr_offset, (*((u32*)(ptr+ImgIdx))));
ImgIdx += 4;
flash_wr_offset += 4;
rx_len += 4;
fw_img3_size -= 4;
if (fw_img3_size == 0) {
// Image3 write done,
break;
}
}
err_addr = xModem_MemCmp(chk_sr, chk_dr, (flash_wr_offset - (u32)chk_dr));
if (err_addr) {
flash_wr_err_cnt++;
}
}
}
}
return rx_len;
}
FWU_TEXT_SECTION
s32
xModem_Init_UART_Port(u8 uart_idx, u8 pin_mux, u32 baud_rate)
{
if (uart_idx <= XMODEM_UART_2) {
// update firmware via generic UART
pxmodem_uart_adp = &xmodem_uart_adp; // we can use dynamic allocate to save memory
// pxmodem_uart_adp = RtlZmalloc(sizeof(HAL_RUART_ADAPTER));
xmodem_uart_init(uart_idx, pin_mux, baud_rate);
xmodem_uart_func_hook(&(xMCtrl.ComPort));
} else if(uart_idx == XMODEM_LOG_UART) {
// update firmware via Log UART
// DiagPrintf("Open xModem Transfer on Log UART...\r\n");
// xmodem_loguart_init();
xmodem_loguart_init(baud_rate);
xmodem_loguart_func_hook(&(xMCtrl.ComPort));
// DiagPrintf("Please Start the xModem Sender...\r\n");
} else {
// invalid UART port
DBG_MISC_ERR("xModem_Init_UART_Port: Invaild UART port(%d)\n", uart_idx);
return -1;
}
return 0;
}
FWU_TEXT_SECTION
VOID
xModem_DeInit_UART_Port(u8 uart_idx)
{
if (uart_idx <= XMODEM_UART_2) {
xmodem_uart_deinit();
} else if (uart_idx == XMODEM_LOG_UART) {
xmodem_loguart_deinit();
}
}
FWU_TEXT_SECTION
__weak s32
UpdatedImg2AddrValidate(
u32 Image2Addr,
u32 DefImage2Addr,
u32 DefImage2Size
)
{
if (Image2Addr == 0xffffffff) {
// Upgraded Image2 isn't exist
return 0; // invalid address
}
if ((Image2Addr & 0xfff) != 0) {
// Not 4K aligned
return 0; // invalid address
}
if (Image2Addr <= DefImage2Addr) {
// Updated image2 address must bigger than the addrss of default image2
return 0; // invalid address
}
if (Image2Addr < (DefImage2Addr+DefImage2Size)) {
// Updated image2 overlap with the default image2
return 0; // invalid address
}
return 1; // this address is valid
}
FWU_TEXT_SECTION
__weak s32
Img2SignValidate(
u32 Image2Addr
)
{
u32 img2_sig[3];
s32 sign_valid=0;
// Image2 header: Size(4B) + Addr(4B) + Signature(8B)
img2_sig[0] = HAL_READ32(SPI_FLASH_BASE, Image2Addr + 8);
img2_sig[1] = HAL_READ32(SPI_FLASH_BASE, Image2Addr + 12);
img2_sig[2] = 0; // end of string
if (_memcmp((void*)img2_sig, (void*)Img2Signature, 8)) {
DBG_MISC_INFO("Invalid Image2 Signature:%s\n", img2_sig);
} else {
sign_valid = 1;
}
return sign_valid;
}
FWU_TEXT_SECTION
VOID
MarkImg2SignOld(
u32 Image2Addr
)
{
u32 img2_sig;
_memcpy((void*)&img2_sig, (void*)Img2Signature, 4);
*((char*)(&img2_sig)) = '0'; // '8' -> the latest image; '0' -> the older image
FWU_WriteWord((Image2Addr + 8), img2_sig);
}
FWU_TEXT_SECTION
VOID
WriteImg1Sign(
u32 Image2Addr
)
{
u32 img1_sig;
_memcpy((void*)&img1_sig, (void*)ROM_IMG1_VALID_PATTEN, 4);
FWU_WriteWord(IMG1_SIGN_OFFSET, img1_sig);
}
FWU_TEXT_SECTION
VOID
WriteImg2Sign(
u32 Image2Addr
)
{
u32 img2_sig[2];
_memcpy((void*)img2_sig, (void*)Img2Signature, 8);
FWU_WriteWord((Image2Addr + 8), img2_sig[0]);
FWU_WriteWord((Image2Addr + 12), img2_sig[1]);
}
FWU_TEXT_SECTION
u32
SelectImg2ToUpdate(
u32 *OldImg2Addr
)
{
u32 DefImage2Addr=0xFFFFFFFF; // the default Image2 addr.
u32 SecImage2Addr=0xFFFFFFFF; // the 2nd image2 addr.
u32 ATSCAddr=0xFFFFFFFF;
u32 UpdImage2Addr; // the addr of the image2 to be updated
u32 DefImage2Len;
#ifdef CONFIG_UPDATE_TOGGLE_IMG2
u32 SigImage0,SigImage1;
#endif
*OldImg2Addr = 0;
DefImage2Addr = (HAL_READ32(SPI_FLASH_BASE, 0x18)&0xFFFF) * 1024;
if ((DefImage2Addr != 0) && ((DefImage2Addr < (16*1024*1024)))) {
// Valid Default Image2 Addr: != 0 & located in 16M
DefImage2Len = HAL_READ32(SPI_FLASH_BASE, DefImage2Addr);
// Get the pointer of the upgraded Image2
SecImage2Addr = HAL_READ32(SPI_FLASH_BASE, FLASH_SYSTEM_DATA_ADDR);
if (UpdatedImg2AddrValidate(SecImage2Addr, DefImage2Addr, DefImage2Len)) {
UpdImage2Addr = SecImage2Addr; // Update the 2nd image2
#ifdef CONFIG_UPDATE_TOGGLE_IMG2
// read Part1/Part2 signature
SigImage0 = HAL_READ32(SPI_FLASH_BASE, DefImage2Addr + 8);
SigImage1 = HAL_READ32(SPI_FLASH_BASE, DefImage2Addr + 12);
DBG_8195A("\n\rPart1 Sig %x", SigImage0);
if(SigImage0==0x30303030 && SigImage1==0x30303030)
ATSCAddr = DefImage2Addr; // ATSC signature
else if(SigImage0==0x35393138 && SigImage1==0x31313738)
*OldImg2Addr = DefImage2Addr; // newer version, change to older version
else
UpdImage2Addr = DefImage2Addr; // update to older version
SigImage0 = HAL_READ32(SPI_FLASH_BASE, SecImage2Addr + 8);
SigImage1 = HAL_READ32(SPI_FLASH_BASE, SecImage2Addr + 12);
DBG_8195A("\n\rPart2 Sig %x\n\r", SigImage0);
if(SigImage0==0x30303030 && SigImage1==0x30303030)
ATSCAddr = SecImage2Addr; // ATSC signature
else if(SigImage0==0x35393138 && SigImage1==0x31313738)
*OldImg2Addr = SecImage2Addr;
else
UpdImage2Addr = SecImage2Addr;
// update ATSC clear partitin first
if(ATSCAddr != ~0x0){
*OldImg2Addr = UpdImage2Addr;
UpdImage2Addr = ATSCAddr;
}
#endif // end of SWAP_UPDATE, wf, 1006
} else {
// The upgraded image2 isn't exist or invalid so we can just update the default image2
UpdImage2Addr = DefImage2Addr; // Update the default image2
#ifdef CONFIG_UPDATE_TOGGLE_IMG2
*OldImg2Addr = DefImage2Addr;
#endif
}
} else {
UpdImage2Addr = 0;
}
return UpdImage2Addr;
}
FWU_TEXT_SECTION
void OTU_FW_Update(u8 uart_idx, u8 pin_mux, u32 baud_rate)
{
u32 wr_len;
u32 OldImage2Addr=0; // the addr of the image2 will become old one
SPIC_INIT_PARA SpicInitPara;
fw_img1_size = 0;
fw_img2_size = 0;
fw_img2_addr = 0;
fw_img3_size = 0;
fw_img3_addr = 0;
flash_wr_offset = 0;
flash_erased_addr = 0;
start_with_img1 = 0;;
flash_wr_err_cnt = 0;
// Get the address of the image2 to be updated
SPI_FLASH_PIN_FCTRL(ON);
if (!SpicFlashInitRtl8195A(SpicOneBitMode)){
SPI_FLASH_PIN_FCTRL(OFF);
DBG_MISC_ERR("OTU_FW_Update: SPI Init Fail!!!!!!\n");
return;
}
SpicWaitWipDoneRefinedRtl8195A(SpicInitPara);
printf("FW Update Over UART%d, PinMux=%d, Baud=%d\r\n", uart_idx, pin_mux, baud_rate);
fw_img2_addr = SelectImg2ToUpdate(&OldImage2Addr);
// Start to update the Image2 through xModem on peripheral device
printf("FW Update Image2 @ 0x%x\r\n", fw_img2_addr);
// We update the image via xModem on UART now, if we want to uase other peripheral device
// to update the image then we need to redefine the API
if (xModem_Init_UART_Port(uart_idx, pin_mux, baud_rate) < 0) {
return;
}
// xModemStart(&xMCtrl, xMFrameBuf, xModem_Frame_ImgAll); // Support Image format: Image1+Image2 or Image2 only
xModemStart(&xMCtrl, xMFrameBuf, xModem_Frame_Img2); // Support Image format: Image2 only
// xModemStart(&xMCtrl, xMFrameBuf, xModem_Frame_Dump); // for debugging
wr_len = xModemRxBuffer(&xMCtrl, (2*1024*1024));
xModemEnd(&xMCtrl);
xModem_DeInit_UART_Port(uart_idx);
if ((wr_len > 0) && (flash_wr_err_cnt == 0)) {
// Firmware update OK, now write the signature to active this image
WriteImg2Sign(fw_img2_addr);
#ifdef CONFIG_UPDATE_TOGGLE_IMG2
// Mark the other image2 as old one by modify its signature
if (OldImage2Addr != 0) {
printf("Mark Image2 @ 0x%x as Old\r\n", OldImage2Addr);
MarkImg2SignOld(OldImage2Addr);
}
#endif
}
printf("OTU_FW_Update Done, Write Len=%d\n", wr_len);
SPI_FLASH_PIN_FCTRL(OFF);
}
FWU_TEXT_SECTION
u8 OTU_check_gpio(void)
{
#ifdef CONFIG_GPIO_EN
HAL_GPIO_PIN GPIO_Pin;
u8 enter_update;
GPIO_Pin.pin_name = HAL_GPIO_GetIPPinName_8195a(0x21);; //pin PC_1
GPIO_Pin.pin_mode = DIN_PULL_HIGH;
_pHAL_Gpio_Adapter = &gBoot_Gpio_Adapter;
HAL_GPIO_Init_8195a(&GPIO_Pin);
if (HAL_GPIO_ReadPin_8195a(&GPIO_Pin) == GPIO_PIN_LOW) {
enter_update = 1;
}
else {
enter_update = 0;
}
HAL_GPIO_DeInit_8195a(&GPIO_Pin);
_pHAL_Gpio_Adapter = NULL;
return enter_update;
#else
return 0;
#endif
}
FWU_TEXT_SECTION
u8 OTU_check_uart(u32 UpdateImgCfg){
if(((UpdateImgCfg>>4)&0x03) == 2){
ACTCK_SDIOD_CCTRL(OFF);
/* SDIO Function Disable */
SDIOD_ON_FCTRL(OFF);
SDIOD_OFF_FCTRL(OFF);
// SDIO Pin Mux off
SDIOD_PIN_FCTRL(OFF);
}
if (xModem_Init_UART_Port(((UpdateImgCfg>>4)&0x03), (UpdateImgCfg&0x03), 115200) < 0) {
return 0;
}
char ch;
u8 x_count = 0;
int timeout1 = 500;
while (timeout1 != 0) {
if (xMCtrl.ComPort.poll()) {
ch = xMCtrl.ComPort.get();
if(ch != 0x78){
xModem_DeInit_UART_Port(((UpdateImgCfg>>4)&0x03));
return 0;
}
x_count ++;
if(x_count == 5){
xModem_DeInit_UART_Port(((UpdateImgCfg>>4)&0x03));
return 1;
}
}
HalDelayUs(200);
timeout1--;
}
if(!x_count){
xModem_DeInit_UART_Port(((UpdateImgCfg>>4)&0x03));
return 0;
}
int timeout2 = 4500;
while (timeout2 != 0) {
if (xMCtrl.ComPort.poll()) {
ch = xMCtrl.ComPort.get();
if(ch != 0x78){
xModem_DeInit_UART_Port(((UpdateImgCfg>>4)&0x03));
return 0;
}
x_count ++;
if(x_count == 5)
{
xModem_DeInit_UART_Port(((UpdateImgCfg>>4)&0x03));
return 1;
}
}
HalDelayUs(200);
timeout2--;
}
xModem_DeInit_UART_Port(((UpdateImgCfg>>4)&0x03));
return 0;
}
FWU_TEXT_SECTION
void OTU_Img_Download(u8 uart_idx, u8 pin_mux, u32 baud_rate,
u32 start_offset, u32 start_addr, u32 max_size)
{
SPIC_INIT_PARA SpicInitPara;
u32 wr_len;
u8 is_flash=0;
if (xModem_Init_UART_Port(uart_idx, pin_mux, baud_rate) < 0) {
return;
}
DBG_MISC_INFO("Image Download: StartOffset=%d StartAddr=0x%x MaxSize=%d\r\n", start_offset, start_addr, max_size);
fw_img2_addr = start_addr;
flash_wr_offset = start_offset;
fw_img2_size = max_size;
if ((start_addr & 0xFF000000) == SPI_FLASH_BASE) {
// it's going to write the Flash memory
if (((start_addr & 0x03) != 0) || ((start_offset&0x03) != 0)) {
DiagPrintf("StartAddr(0x%x), StartOffset(0x%x) Must 4-bytes Aligned\r\n", start_addr, start_offset);
return;
}
SPI_FLASH_PIN_FCTRL(ON);
if (!SpicFlashInitRtl8195A(SpicOneBitMode)){
DBG_MISC_ERR("OTU_FW_Update: SPI Init Fail!!!!!!\n");
SPI_FLASH_PIN_FCTRL(OFF);
return;
}
is_flash = 1;
SpicWaitWipDoneRefinedRtl8195A(SpicInitPara);
fw_img2_addr = start_addr & 0x00FFFFFF;
xModemStart(&xMCtrl, xMFrameBuf, xModem_Frame_FlashWrite);
} else {
xModemStart(&xMCtrl, xMFrameBuf, xModem_Frame_MemWrite);
}
wr_len = xModemRxBuffer(&xMCtrl, ((((max_size+flash_wr_offset-1)>>7)+1) << 7));
xModemEnd(&xMCtrl);
xModem_DeInit_UART_Port(uart_idx);
DBG_MISC_INFO("OTU_Img_Download Done, Write Len=%d\n", wr_len);
if (is_flash) {
SPI_FLASH_PIN_FCTRL(OFF);
}
}
#endif //#if CONFIG_PERI_UPDATE_IMG