mirror of
https://github.com/pvvx/RTL00_WEB.git
synced 2024-12-28 00:35:17 +00:00
2439 lines
72 KiB
C
2439 lines
72 KiB
C
/*
|
|
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
|
|
All rights reserved
|
|
|
|
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
|
|
|
***************************************************************************
|
|
* *
|
|
* FreeRTOS provides completely free yet professionally developed, *
|
|
* robust, strictly quality controlled, supported, and cross *
|
|
* platform software that has become a de facto standard. *
|
|
* *
|
|
* Help yourself get started quickly and support the FreeRTOS *
|
|
* project by purchasing a FreeRTOS tutorial book, reference *
|
|
* manual, or both from: http://www.FreeRTOS.org/Documentation *
|
|
* *
|
|
* Thank you! *
|
|
* *
|
|
***************************************************************************
|
|
|
|
This file is part of the FreeRTOS distribution.
|
|
|
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License (version 2) as published by the
|
|
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
|
|
|
|
>>! NOTE: The modification to the GPL is included to allow you to !<<
|
|
>>! distribute a combined work that includes FreeRTOS without being !<<
|
|
>>! obliged to provide the source code for proprietary components !<<
|
|
>>! outside of the FreeRTOS kernel. !<<
|
|
|
|
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. Full license text is available from the following
|
|
link: http://www.freertos.org/a00114.html
|
|
|
|
1 tab == 4 spaces!
|
|
|
|
***************************************************************************
|
|
* *
|
|
* Having a problem? Start by reading the FAQ "My application does *
|
|
* not run, what could be wrong?" *
|
|
* *
|
|
* http://www.FreeRTOS.org/FAQHelp.html *
|
|
* *
|
|
***************************************************************************
|
|
|
|
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
|
|
license and Real Time Engineers Ltd. contact details.
|
|
|
|
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
|
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
|
|
compatible FAT file system, and our tiny thread aware UDP/IP stack.
|
|
|
|
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
|
|
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
|
|
licenses offer ticketed support, indemnification and middleware.
|
|
|
|
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
|
engineered and independently SIL3 certified version for use in safety and
|
|
mission critical applications that require provable dependability.
|
|
|
|
1 tab == 4 spaces!
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <platform/platform_stdlib.h>
|
|
|
|
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
|
all the API functions to use the MPU wrappers. That should only be done when
|
|
task.h is included from an application file. */
|
|
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
#include "queue.h"
|
|
|
|
#if ( configUSE_CO_ROUTINES == 1 )
|
|
#include "croutine.h"
|
|
#endif
|
|
|
|
/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
|
|
MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
|
|
header files above, but not in this file, in order to generate the correct
|
|
privileged Vs unprivileged linkage and placement. */
|
|
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
|
|
|
|
|
|
/* Constants used with the xRxLock and xTxLock structure members. */
|
|
#define queueUNLOCKED ( ( BaseType_t ) -1 )
|
|
#define queueLOCKED_UNMODIFIED ( ( BaseType_t ) 0 )
|
|
|
|
/* When the Queue_t structure is used to represent a base queue its pcHead and
|
|
pcTail members are used as pointers into the queue storage area. When the
|
|
Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
|
|
not necessary, and the pcHead pointer is set to NULL to indicate that the
|
|
pcTail pointer actually points to the mutex holder (if any). Map alternative
|
|
names to the pcHead and pcTail structure members to ensure the readability of
|
|
the code is maintained despite this dual use of two structure members. An
|
|
alternative implementation would be to use a union, but use of a union is
|
|
against the coding standard (although an exception to the standard has been
|
|
permitted where the dual use also significantly changes the type of the
|
|
structure member). */
|
|
#define pxMutexHolder pcTail
|
|
#define uxQueueType pcHead
|
|
#define queueQUEUE_IS_MUTEX NULL
|
|
|
|
/* Semaphores do not actually store or copy data, so have an item size of
|
|
zero. */
|
|
#define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
|
|
#define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
|
|
|
|
#if( configUSE_PREEMPTION == 0 )
|
|
/* If the cooperative scheduler is being used then a yield should not be
|
|
performed just because a higher priority task has been woken. */
|
|
#define queueYIELD_IF_USING_PREEMPTION()
|
|
#else
|
|
#define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
|
|
#endif
|
|
|
|
/*
|
|
* Definition of the queue used by the scheduler.
|
|
* Items are queued by copy, not reference.
|
|
*/
|
|
typedef struct QueueDefinition
|
|
{
|
|
int8_t *pcHead; /*< Points to the beginning of the queue storage area. */
|
|
int8_t *pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
|
|
int8_t *pcWriteTo; /*< Points to the free next place in the storage area. */
|
|
|
|
union /* Use of a union is an exception to the coding standard to ensure two mutually exclusive structure members don't appear simultaneously (wasting RAM). */
|
|
{
|
|
int8_t *pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
|
|
UBaseType_t uxRecursiveCallCount;/*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
|
|
} u;
|
|
|
|
List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
|
|
List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
|
|
|
|
volatile UBaseType_t uxMessagesWaiting;/*< The number of items currently in the queue. */
|
|
UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
|
|
UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
|
|
|
|
volatile BaseType_t xRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
|
|
volatile BaseType_t xTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
UBaseType_t uxQueueNumber;
|
|
uint8_t ucQueueType;
|
|
#endif
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
struct QueueDefinition *pxQueueSetContainer;
|
|
#endif
|
|
|
|
} xQUEUE;
|
|
|
|
/* The old xQUEUE name is maintained above then typedefed to the new Queue_t
|
|
name below to enable the use of older kernel aware debuggers. */
|
|
typedef xQUEUE Queue_t;
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/*
|
|
* The queue registry is just a means for kernel aware debuggers to locate
|
|
* queue structures. It has no other purpose so is an optional component.
|
|
*/
|
|
#if ( configQUEUE_REGISTRY_SIZE > 0 )
|
|
|
|
/* The type stored within the queue registry array. This allows a name
|
|
to be assigned to each queue making kernel aware debugging a little
|
|
more user friendly. */
|
|
typedef struct QUEUE_REGISTRY_ITEM
|
|
{
|
|
const char *pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
QueueHandle_t xHandle;
|
|
} xQueueRegistryItem;
|
|
|
|
/* The old xQueueRegistryItem name is maintained above then typedefed to the
|
|
new xQueueRegistryItem name below to enable the use of older kernel aware
|
|
debuggers. */
|
|
typedef xQueueRegistryItem QueueRegistryItem_t;
|
|
|
|
/* The queue registry is simply an array of QueueRegistryItem_t structures.
|
|
The pcQueueName member of a structure being NULL is indicative of the
|
|
array position being vacant. */
|
|
QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
|
|
|
|
#endif /* configQUEUE_REGISTRY_SIZE */
|
|
|
|
/*
|
|
* Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
|
|
* prevent an ISR from adding or removing items to the queue, but does prevent
|
|
* an ISR from removing tasks from the queue event lists. If an ISR finds a
|
|
* queue is locked it will instead increment the appropriate queue lock count
|
|
* to indicate that a task may require unblocking. When the queue in unlocked
|
|
* these lock counts are inspected, and the appropriate action taken.
|
|
*/
|
|
static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Uses a critical section to determine if there is any data in a queue.
|
|
*
|
|
* @return pdTRUE if the queue contains no items, otherwise pdFALSE.
|
|
*/
|
|
static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Uses a critical section to determine if there is any space in a queue.
|
|
*
|
|
* @return pdTRUE if there is no space, otherwise pdFALSE;
|
|
*/
|
|
static BaseType_t prvIsQueueFull( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Copies an item into the queue, either at the front of the queue or the
|
|
* back of the queue.
|
|
*/
|
|
static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
|
|
|
|
/*
|
|
* Copies an item out of a queue.
|
|
*/
|
|
static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION;
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
/*
|
|
* Checks to see if a queue is a member of a queue set, and if so, notifies
|
|
* the queue set that the queue contains data.
|
|
*/
|
|
static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
|
|
#endif
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/*
|
|
* Macro to mark a queue as locked. Locking a queue prevents an ISR from
|
|
* accessing the queue event lists.
|
|
*/
|
|
#define prvLockQueue( pxQueue ) \
|
|
taskENTER_CRITICAL(); \
|
|
{ \
|
|
if( ( pxQueue )->xRxLock == queueUNLOCKED ) \
|
|
{ \
|
|
( pxQueue )->xRxLock = queueLOCKED_UNMODIFIED; \
|
|
} \
|
|
if( ( pxQueue )->xTxLock == queueUNLOCKED ) \
|
|
{ \
|
|
( pxQueue )->xTxLock = queueLOCKED_UNMODIFIED; \
|
|
} \
|
|
} \
|
|
taskEXIT_CRITICAL()
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue )
|
|
{
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
configASSERT( pxQueue );
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
pxQueue->pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize );
|
|
pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
|
|
pxQueue->pcWriteTo = pxQueue->pcHead;
|
|
pxQueue->u.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - ( UBaseType_t ) 1U ) * pxQueue->uxItemSize );
|
|
pxQueue->xRxLock = queueUNLOCKED;
|
|
pxQueue->xTxLock = queueUNLOCKED;
|
|
|
|
if( xNewQueue == pdFALSE )
|
|
{
|
|
/* If there are tasks blocked waiting to read from the queue, then
|
|
the tasks will remain blocked as after this function exits the queue
|
|
will still be empty. If there are tasks blocked waiting to write to
|
|
the queue, then one should be unblocked as after this function exits
|
|
it will be possible to write to it. */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) == pdTRUE )
|
|
{
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Ensure the event queues start in the correct state. */
|
|
vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
|
|
vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* A value is returned for calling semantic consistency with previous
|
|
versions. */
|
|
return pdPASS;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType )
|
|
{
|
|
Queue_t *pxNewQueue;
|
|
size_t xQueueSizeInBytes;
|
|
QueueHandle_t xReturn = NULL;
|
|
|
|
/* Remove compiler warnings about unused parameters should
|
|
configUSE_TRACE_FACILITY not be set to 1. */
|
|
( void ) ucQueueType;
|
|
|
|
/* Allocate the new queue structure. */
|
|
if( uxQueueLength > ( UBaseType_t ) 0 )
|
|
{
|
|
pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) );
|
|
if( pxNewQueue != NULL )
|
|
{
|
|
/* Create the list of pointers to queue items. The queue is one byte
|
|
longer than asked for to make wrap checking easier/faster. */
|
|
xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ) + ( size_t ) 1; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
|
pxNewQueue->pcHead = ( int8_t * ) pvPortMalloc( xQueueSizeInBytes );
|
|
if( pxNewQueue->pcHead != NULL )
|
|
{
|
|
/* Initialise the queue members as described above where the
|
|
queue type is defined. */
|
|
pxNewQueue->uxLength = uxQueueLength;
|
|
pxNewQueue->uxItemSize = uxItemSize;
|
|
( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
{
|
|
pxNewQueue->ucQueueType = ucQueueType;
|
|
}
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
|
|
#if( configUSE_QUEUE_SETS == 1 )
|
|
{
|
|
pxNewQueue->pxQueueSetContainer = NULL;
|
|
}
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
|
|
traceQUEUE_CREATE( pxNewQueue );
|
|
xReturn = pxNewQueue;
|
|
}
|
|
else
|
|
{
|
|
traceQUEUE_CREATE_FAILED( ucQueueType );
|
|
vPortFree( pxNewQueue );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
configASSERT( xReturn );
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
|
|
QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
|
|
{
|
|
Queue_t *pxNewQueue;
|
|
|
|
/* Prevent compiler warnings about unused parameters if
|
|
configUSE_TRACE_FACILITY does not equal 1. */
|
|
( void ) ucQueueType;
|
|
|
|
/* Allocate the new queue structure. */
|
|
pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) );
|
|
if( pxNewQueue != NULL )
|
|
{
|
|
/* Information required for priority inheritance. */
|
|
pxNewQueue->pxMutexHolder = NULL;
|
|
pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
|
|
|
|
/* Queues used as a mutex no data is actually copied into or out
|
|
of the queue. */
|
|
pxNewQueue->pcWriteTo = NULL;
|
|
pxNewQueue->u.pcReadFrom = NULL;
|
|
|
|
/* Each mutex has a length of 1 (like a binary semaphore) and
|
|
an item size of 0 as nothing is actually copied into or out
|
|
of the mutex. */
|
|
pxNewQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
|
|
pxNewQueue->uxLength = ( UBaseType_t ) 1U;
|
|
pxNewQueue->uxItemSize = ( UBaseType_t ) 0U;
|
|
pxNewQueue->xRxLock = queueUNLOCKED;
|
|
pxNewQueue->xTxLock = queueUNLOCKED;
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
{
|
|
pxNewQueue->ucQueueType = ucQueueType;
|
|
}
|
|
#endif
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
{
|
|
pxNewQueue->pxQueueSetContainer = NULL;
|
|
}
|
|
#endif
|
|
|
|
/* Ensure the event queues start with the correct state. */
|
|
vListInitialise( &( pxNewQueue->xTasksWaitingToSend ) );
|
|
vListInitialise( &( pxNewQueue->xTasksWaitingToReceive ) );
|
|
|
|
traceCREATE_MUTEX( pxNewQueue );
|
|
|
|
/* Start with the semaphore in the expected state. */
|
|
( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
|
|
}
|
|
else
|
|
{
|
|
traceCREATE_MUTEX_FAILED();
|
|
}
|
|
|
|
configASSERT( pxNewQueue );
|
|
return pxNewQueue;
|
|
}
|
|
|
|
#endif /* configUSE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
|
|
|
|
void* xQueueGetMutexHolder( QueueHandle_t xSemaphore )
|
|
{
|
|
void *pxReturn;
|
|
|
|
/* This function is called by xSemaphoreGetMutexHolder(), and should not
|
|
be called directly. Note: This is a good way of determining if the
|
|
calling task is the mutex holder, but not a good way of determining the
|
|
identity of the mutex holder, as the holder may change between the
|
|
following critical section exiting and the function returning. */
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
|
|
{
|
|
pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder;
|
|
}
|
|
else
|
|
{
|
|
pxReturn = NULL;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return pxReturn;
|
|
} /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
|
|
|
|
#endif
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_RECURSIVE_MUTEXES == 1 )
|
|
|
|
BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
|
|
{
|
|
BaseType_t xReturn;
|
|
Queue_t * const pxMutex = ( Queue_t * ) xMutex;
|
|
|
|
configASSERT( pxMutex );
|
|
|
|
/* If this is the task that holds the mutex then pxMutexHolder will not
|
|
change outside of this task. If this task does not hold the mutex then
|
|
pxMutexHolder can never coincidentally equal the tasks handle, and as
|
|
this is the only condition we are interested in it does not matter if
|
|
pxMutexHolder is accessed simultaneously by another task. Therefore no
|
|
mutual exclusion is required to test the pxMutexHolder variable. */
|
|
if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Not a redundant cast as TaskHandle_t is a typedef. */
|
|
{
|
|
traceGIVE_MUTEX_RECURSIVE( pxMutex );
|
|
|
|
/* uxRecursiveCallCount cannot be zero if pxMutexHolder is equal to
|
|
the task handle, therefore no underflow check is required. Also,
|
|
uxRecursiveCallCount is only modified by the mutex holder, and as
|
|
there can only be one, no mutual exclusion is required to modify the
|
|
uxRecursiveCallCount member. */
|
|
( pxMutex->u.uxRecursiveCallCount )--;
|
|
|
|
/* Have we unwound the call count? */
|
|
if( pxMutex->u.uxRecursiveCallCount == ( UBaseType_t ) 0 )
|
|
{
|
|
/* Return the mutex. This will automatically unblock any other
|
|
task that might be waiting to access the mutex. */
|
|
( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
xReturn = pdPASS;
|
|
}
|
|
else
|
|
{
|
|
/* The mutex cannot be given because the calling task is not the
|
|
holder. */
|
|
xReturn = pdFAIL;
|
|
|
|
traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_RECURSIVE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_RECURSIVE_MUTEXES == 1 )
|
|
|
|
BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait )
|
|
{
|
|
BaseType_t xReturn;
|
|
Queue_t * const pxMutex = ( Queue_t * ) xMutex;
|
|
|
|
configASSERT( pxMutex );
|
|
|
|
/* Comments regarding mutual exclusion as per those within
|
|
xQueueGiveMutexRecursive(). */
|
|
|
|
traceTAKE_MUTEX_RECURSIVE( pxMutex );
|
|
|
|
if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
|
|
{
|
|
( pxMutex->u.uxRecursiveCallCount )++;
|
|
xReturn = pdPASS;
|
|
}
|
|
else
|
|
{
|
|
xReturn = xQueueGenericReceive( pxMutex, NULL, xTicksToWait, pdFALSE );
|
|
|
|
/* pdPASS will only be returned if the mutex was successfully
|
|
obtained. The calling task may have entered the Blocked state
|
|
before reaching here. */
|
|
if( xReturn == pdPASS )
|
|
{
|
|
( pxMutex->u.uxRecursiveCallCount )++;
|
|
}
|
|
else
|
|
{
|
|
traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
|
|
}
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_RECURSIVE_MUTEXES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_COUNTING_SEMAPHORES == 1 )
|
|
|
|
QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount )
|
|
{
|
|
QueueHandle_t xHandle;
|
|
|
|
configASSERT( uxMaxCount != 0 );
|
|
configASSERT( uxInitialCount <= uxMaxCount );
|
|
|
|
xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
|
|
|
|
if( xHandle != NULL )
|
|
{
|
|
( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
|
|
|
|
traceCREATE_COUNTING_SEMAPHORE();
|
|
}
|
|
else
|
|
{
|
|
traceCREATE_COUNTING_SEMAPHORE_FAILED();
|
|
}
|
|
|
|
configASSERT( xHandle );
|
|
return xHandle;
|
|
}
|
|
|
|
#endif /* configUSE_COUNTING_SEMAPHORES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition )
|
|
{
|
|
BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
|
|
TimeOut_t xTimeOut;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
configASSERT( pxQueue );
|
|
configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
|
configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
|
|
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
|
{
|
|
configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
|
|
}
|
|
#endif
|
|
|
|
|
|
/* This function relaxes the coding standard somewhat to allow return
|
|
statements within the function itself. This is done in the interest
|
|
of execution time efficiency. */
|
|
for( ;; )
|
|
{
|
|
taskENTER_CRITICAL();
|
|
{
|
|
/* Is there room on the queue now? The running task must be
|
|
the highest priority task wanting to access the queue. If
|
|
the head item in the queue is to be overwritten then it does
|
|
not matter if the queue is full. */
|
|
if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
|
|
{
|
|
traceQUEUE_SEND( pxQueue );
|
|
xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
{
|
|
if( pxQueue->pxQueueSetContainer != NULL )
|
|
{
|
|
if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) == pdTRUE )
|
|
{
|
|
/* The queue is a member of a queue set, and posting
|
|
to the queue set caused a higher priority task to
|
|
unblock. A context switch is required. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If there was a task waiting for data to arrive on the
|
|
queue then unblock it now. */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) == pdTRUE )
|
|
{
|
|
/* The unblocked task has a priority higher than
|
|
our own so yield immediately. Yes it is ok to
|
|
do this from within the critical section - the
|
|
kernel takes care of that. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else if( xYieldRequired != pdFALSE )
|
|
{
|
|
/* This path is a special case that will only get
|
|
executed if the task was holding multiple mutexes
|
|
and the mutexes were given back in an order that is
|
|
different to that in which they were taken. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
#else /* configUSE_QUEUE_SETS */
|
|
{
|
|
/* If there was a task waiting for data to arrive on the
|
|
queue then unblock it now. */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) == pdTRUE )
|
|
{
|
|
/* The unblocked task has a priority higher than
|
|
our own so yield immediately. Yes it is ok to do
|
|
this from within the critical section - the kernel
|
|
takes care of that. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else if( xYieldRequired != pdFALSE )
|
|
{
|
|
/* This path is a special case that will only get
|
|
executed if the task was holding multiple mutexes and
|
|
the mutexes were given back in an order that is
|
|
different to that in which they were taken. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
|
|
taskEXIT_CRITICAL();
|
|
return pdPASS;
|
|
}
|
|
else
|
|
{
|
|
if( xTicksToWait == ( TickType_t ) 0 )
|
|
{
|
|
/* The queue was full and no block time is specified (or
|
|
the block time has expired) so leave now. */
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Return to the original privilege level before exiting
|
|
the function. */
|
|
traceQUEUE_SEND_FAILED( pxQueue );
|
|
return errQUEUE_FULL;
|
|
}
|
|
else if( xEntryTimeSet == pdFALSE )
|
|
{
|
|
/* The queue was full and a block time was specified so
|
|
configure the timeout structure. */
|
|
vTaskSetTimeOutState( &xTimeOut );
|
|
xEntryTimeSet = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
/* Entry time was already set. */
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Interrupts and other tasks can send to and receive from the queue
|
|
now the critical section has been exited. */
|
|
|
|
vTaskSuspendAll();
|
|
prvLockQueue( pxQueue );
|
|
|
|
/* Update the timeout state to see if it has expired yet. */
|
|
if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
|
|
{
|
|
if( prvIsQueueFull( pxQueue ) != pdFALSE )
|
|
{
|
|
traceBLOCKING_ON_QUEUE_SEND( pxQueue );
|
|
vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
|
|
|
|
/* Unlocking the queue means queue events can effect the
|
|
event list. It is possible that interrupts occurring now
|
|
remove this task from the event list again - but as the
|
|
scheduler is suspended the task will go onto the pending
|
|
ready last instead of the actual ready list. */
|
|
prvUnlockQueue( pxQueue );
|
|
|
|
/* Resuming the scheduler will move tasks from the pending
|
|
ready list into the ready list - so it is feasible that this
|
|
task is already in a ready list before it yields - in which
|
|
case the yield will not cause a context switch unless there
|
|
is also a higher priority task in the pending ready list. */
|
|
if( xTaskResumeAll() == pdFALSE )
|
|
{
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Try again. */
|
|
prvUnlockQueue( pxQueue );
|
|
( void ) xTaskResumeAll();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* The timeout has expired. */
|
|
prvUnlockQueue( pxQueue );
|
|
( void ) xTaskResumeAll();
|
|
|
|
/* Return to the original privilege level before exiting the
|
|
function. */
|
|
traceQUEUE_SEND_FAILED( pxQueue );
|
|
return errQUEUE_FULL;
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_ALTERNATIVE_API == 1 )
|
|
|
|
BaseType_t xQueueAltGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, BaseType_t xCopyPosition )
|
|
{
|
|
BaseType_t xEntryTimeSet = pdFALSE;
|
|
TimeOut_t xTimeOut;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
configASSERT( pxQueue );
|
|
configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
|
|
|
for( ;; )
|
|
{
|
|
taskENTER_CRITICAL();
|
|
{
|
|
/* Is there room on the queue now? To be running we must be
|
|
the highest priority task wanting to access the queue. */
|
|
if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
|
|
{
|
|
traceQUEUE_SEND( pxQueue );
|
|
prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
|
|
|
|
/* If there was a task waiting for data to arrive on the
|
|
queue then unblock it now. */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) == pdTRUE )
|
|
{
|
|
/* The unblocked task has a priority higher than
|
|
our own so yield immediately. */
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
taskEXIT_CRITICAL();
|
|
return pdPASS;
|
|
}
|
|
else
|
|
{
|
|
if( xTicksToWait == ( TickType_t ) 0 )
|
|
{
|
|
taskEXIT_CRITICAL();
|
|
return errQUEUE_FULL;
|
|
}
|
|
else if( xEntryTimeSet == pdFALSE )
|
|
{
|
|
vTaskSetTimeOutState( &xTimeOut );
|
|
xEntryTimeSet = pdTRUE;
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
|
|
{
|
|
if( prvIsQueueFull( pxQueue ) != pdFALSE )
|
|
{
|
|
traceBLOCKING_ON_QUEUE_SEND( pxQueue );
|
|
vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
taskEXIT_CRITICAL();
|
|
traceQUEUE_SEND_FAILED( pxQueue );
|
|
return errQUEUE_FULL;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
}
|
|
}
|
|
|
|
#endif /* configUSE_ALTERNATIVE_API */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_ALTERNATIVE_API == 1 )
|
|
|
|
BaseType_t xQueueAltGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, BaseType_t xJustPeeking )
|
|
{
|
|
BaseType_t xEntryTimeSet = pdFALSE;
|
|
TimeOut_t xTimeOut;
|
|
int8_t *pcOriginalReadPosition;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
configASSERT( pxQueue );
|
|
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
|
|
|
for( ;; )
|
|
{
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
|
{
|
|
/* Remember our read position in case we are just peeking. */
|
|
pcOriginalReadPosition = pxQueue->u.pcReadFrom;
|
|
|
|
prvCopyDataFromQueue( pxQueue, pvBuffer );
|
|
|
|
if( xJustPeeking == pdFALSE )
|
|
{
|
|
traceQUEUE_RECEIVE( pxQueue );
|
|
|
|
/* Data is actually being removed (not just peeked). */
|
|
--( pxQueue->uxMessagesWaiting );
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
{
|
|
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
|
|
{
|
|
/* Record the information required to implement
|
|
priority inheritance should it become necessary. */
|
|
pxQueue->pxMutexHolder = ( int8_t * ) xTaskGetCurrentTaskHandle();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) == pdTRUE )
|
|
{
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
traceQUEUE_PEEK( pxQueue );
|
|
|
|
/* We are not removing the data, so reset our read
|
|
pointer. */
|
|
pxQueue->u.pcReadFrom = pcOriginalReadPosition;
|
|
|
|
/* The data is being left in the queue, so see if there are
|
|
any other tasks waiting for the data. */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
/* Tasks that are removed from the event list will get added to
|
|
the pending ready list as the scheduler is still suspended. */
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
|
{
|
|
/* The task waiting has a higher priority than this task. */
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
taskEXIT_CRITICAL();
|
|
return pdPASS;
|
|
}
|
|
else
|
|
{
|
|
if( xTicksToWait == ( TickType_t ) 0 )
|
|
{
|
|
taskEXIT_CRITICAL();
|
|
traceQUEUE_RECEIVE_FAILED( pxQueue );
|
|
return errQUEUE_EMPTY;
|
|
}
|
|
else if( xEntryTimeSet == pdFALSE )
|
|
{
|
|
vTaskSetTimeOutState( &xTimeOut );
|
|
xEntryTimeSet = pdTRUE;
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
|
|
{
|
|
if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
|
|
{
|
|
traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
{
|
|
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
|
|
{
|
|
taskENTER_CRITICAL();
|
|
{
|
|
vTaskPriorityInherit( ( void * ) pxQueue->pxMutexHolder );
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
taskEXIT_CRITICAL();
|
|
traceQUEUE_RECEIVE_FAILED( pxQueue );
|
|
return errQUEUE_EMPTY;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
}
|
|
}
|
|
|
|
|
|
#endif /* configUSE_ALTERNATIVE_API */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition )
|
|
{
|
|
BaseType_t xReturn;
|
|
UBaseType_t uxSavedInterruptStatus;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
configASSERT( pxQueue );
|
|
configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
|
configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
|
|
|
|
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
system call (or maximum API call) interrupt priority. Interrupts that are
|
|
above the maximum system call priority are kept permanently enabled, even
|
|
when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
failure if a FreeRTOS API function is called from an interrupt that has been
|
|
assigned a priority above the configured maximum system call priority.
|
|
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
that have been assigned a priority at or (logically) below the maximum
|
|
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
More information (albeit Cortex-M specific) is provided on the following
|
|
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
|
/* Similar to xQueueGenericSend, except without blocking if there is no room
|
|
in the queue. Also don't directly wake a task that was blocked on a queue
|
|
read, instead return a flag to say whether a context switch is required or
|
|
not (i.e. has a task with a higher priority than us been woken by this
|
|
post). */
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
{
|
|
if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
|
|
{
|
|
traceQUEUE_SEND_FROM_ISR( pxQueue );
|
|
|
|
if( prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition ) != pdFALSE )
|
|
{
|
|
/* This is a special case that can only be executed if a task
|
|
holds multiple mutexes and then gives the mutexes back in an
|
|
order that is different to that in which they were taken. */
|
|
if( pxHigherPriorityTaskWoken != NULL )
|
|
{
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
/* The event list is not altered if the queue is locked. This will
|
|
be done when the queue is unlocked later. */
|
|
if( pxQueue->xTxLock == queueUNLOCKED )
|
|
{
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
{
|
|
if( pxQueue->pxQueueSetContainer != NULL )
|
|
{
|
|
if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) == pdTRUE )
|
|
{
|
|
/* The queue is a member of a queue set, and posting
|
|
to the queue set caused a higher priority task to
|
|
unblock. A context switch is required. */
|
|
if( pxHigherPriorityTaskWoken != NULL )
|
|
{
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
|
{
|
|
/* The task waiting has a higher priority so
|
|
record that a context switch is required. */
|
|
if( pxHigherPriorityTaskWoken != NULL )
|
|
{
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
#else /* configUSE_QUEUE_SETS */
|
|
{
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
|
{
|
|
/* The task waiting has a higher priority so record that a
|
|
context switch is required. */
|
|
if( pxHigherPriorityTaskWoken != NULL )
|
|
{
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
}
|
|
else
|
|
{
|
|
/* Increment the lock count so the task that unlocks the queue
|
|
knows that data was posted while it was locked. */
|
|
++( pxQueue->xTxLock );
|
|
}
|
|
|
|
xReturn = pdPASS;
|
|
}
|
|
else
|
|
{
|
|
traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
|
|
xReturn = errQUEUE_FULL;
|
|
}
|
|
}
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeeking )
|
|
{
|
|
BaseType_t xEntryTimeSet = pdFALSE;
|
|
TimeOut_t xTimeOut;
|
|
int8_t *pcOriginalReadPosition;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
configASSERT( pxQueue );
|
|
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
|
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
|
{
|
|
configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
|
|
}
|
|
#endif
|
|
|
|
/* This function relaxes the coding standard somewhat to allow return
|
|
statements within the function itself. This is done in the interest
|
|
of execution time efficiency. */
|
|
|
|
for( ;; )
|
|
{
|
|
taskENTER_CRITICAL();
|
|
{
|
|
/* Is there data in the queue now? To be running we must be
|
|
the highest priority task wanting to access the queue. */
|
|
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
|
{
|
|
/* Remember the read position in case the queue is only being
|
|
peeked. */
|
|
pcOriginalReadPosition = pxQueue->u.pcReadFrom;
|
|
|
|
prvCopyDataFromQueue( pxQueue, pvBuffer );
|
|
|
|
if( xJustPeeking == pdFALSE )
|
|
{
|
|
traceQUEUE_RECEIVE( pxQueue );
|
|
|
|
/* Actually removing data, not just peeking. */
|
|
--( pxQueue->uxMessagesWaiting );
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
{
|
|
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
|
|
{
|
|
/* Record the information required to implement
|
|
priority inheritance should it become necessary. */
|
|
pxQueue->pxMutexHolder = ( int8_t * ) pvTaskIncrementMutexHeldCount(); /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_MUTEXES */
|
|
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) == pdTRUE )
|
|
{
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
traceQUEUE_PEEK( pxQueue );
|
|
|
|
/* The data is not being removed, so reset the read
|
|
pointer. */
|
|
pxQueue->u.pcReadFrom = pcOriginalReadPosition;
|
|
|
|
/* The data is being left in the queue, so see if there are
|
|
any other tasks waiting for the data. */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
/* Tasks that are removed from the event list will get added to
|
|
the pending ready list as the scheduler is still suspended. */
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
|
{
|
|
/* The task waiting has a higher priority than this task. */
|
|
queueYIELD_IF_USING_PREEMPTION();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
taskEXIT_CRITICAL();
|
|
return pdPASS;
|
|
}
|
|
else
|
|
{
|
|
if( xTicksToWait == ( TickType_t ) 0 )
|
|
{
|
|
/* The queue was empty and no block time is specified (or
|
|
the block time has expired) so leave now. */
|
|
taskEXIT_CRITICAL();
|
|
traceQUEUE_RECEIVE_FAILED( pxQueue );
|
|
return errQUEUE_EMPTY;
|
|
}
|
|
else if( xEntryTimeSet == pdFALSE )
|
|
{
|
|
/* The queue was empty and a block time was specified so
|
|
configure the timeout structure. */
|
|
vTaskSetTimeOutState( &xTimeOut );
|
|
xEntryTimeSet = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
/* Entry time was already set. */
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Interrupts and other tasks can send to and receive from the queue
|
|
now the critical section has been exited. */
|
|
|
|
vTaskSuspendAll();
|
|
prvLockQueue( pxQueue );
|
|
|
|
/* Update the timeout state to see if it has expired yet. */
|
|
if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
|
|
{
|
|
if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
|
|
{
|
|
traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
|
|
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
{
|
|
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
|
|
{
|
|
taskENTER_CRITICAL();
|
|
{
|
|
vTaskPriorityInherit( ( void * ) pxQueue->pxMutexHolder );
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
|
|
prvUnlockQueue( pxQueue );
|
|
if( xTaskResumeAll() == pdFALSE )
|
|
{
|
|
portYIELD_WITHIN_API();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Try again. */
|
|
prvUnlockQueue( pxQueue );
|
|
( void ) xTaskResumeAll();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
prvUnlockQueue( pxQueue );
|
|
( void ) xTaskResumeAll();
|
|
traceQUEUE_RECEIVE_FAILED( pxQueue );
|
|
return errQUEUE_EMPTY;
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken )
|
|
{
|
|
BaseType_t xReturn;
|
|
UBaseType_t uxSavedInterruptStatus;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
configASSERT( pxQueue );
|
|
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
|
|
|
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
system call (or maximum API call) interrupt priority. Interrupts that are
|
|
above the maximum system call priority are kept permanently enabled, even
|
|
when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
failure if a FreeRTOS API function is called from an interrupt that has been
|
|
assigned a priority above the configured maximum system call priority.
|
|
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
that have been assigned a priority at or (logically) below the maximum
|
|
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
More information (albeit Cortex-M specific) is provided on the following
|
|
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
{
|
|
/* Cannot block in an ISR, so check there is data available. */
|
|
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
|
{
|
|
traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
|
|
|
|
prvCopyDataFromQueue( pxQueue, pvBuffer );
|
|
--( pxQueue->uxMessagesWaiting );
|
|
|
|
/* If the queue is locked the event list will not be modified.
|
|
Instead update the lock count so the task that unlocks the queue
|
|
will know that an ISR has removed data while the queue was
|
|
locked. */
|
|
if( pxQueue->xRxLock == queueUNLOCKED )
|
|
{
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
|
{
|
|
/* The task waiting has a higher priority than us so
|
|
force a context switch. */
|
|
if( pxHigherPriorityTaskWoken != NULL )
|
|
{
|
|
*pxHigherPriorityTaskWoken = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Increment the lock count so the task that unlocks the queue
|
|
knows that data was removed while it was locked. */
|
|
++( pxQueue->xRxLock );
|
|
}
|
|
|
|
xReturn = pdPASS;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFAIL;
|
|
traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
|
|
}
|
|
}
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer )
|
|
{
|
|
BaseType_t xReturn;
|
|
UBaseType_t uxSavedInterruptStatus;
|
|
int8_t *pcOriginalReadPosition;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
configASSERT( pxQueue );
|
|
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
|
|
|
|
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
system call (or maximum API call) interrupt priority. Interrupts that are
|
|
above the maximum system call priority are kept permanently enabled, even
|
|
when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
failure if a FreeRTOS API function is called from an interrupt that has been
|
|
assigned a priority above the configured maximum system call priority.
|
|
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
that have been assigned a priority at or (logically) below the maximum
|
|
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
More information (albeit Cortex-M specific) is provided on the following
|
|
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
{
|
|
/* Cannot block in an ISR, so check there is data available. */
|
|
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
|
{
|
|
traceQUEUE_PEEK_FROM_ISR( pxQueue );
|
|
|
|
/* Remember the read position so it can be reset as nothing is
|
|
actually being removed from the queue. */
|
|
pcOriginalReadPosition = pxQueue->u.pcReadFrom;
|
|
prvCopyDataFromQueue( pxQueue, pvBuffer );
|
|
pxQueue->u.pcReadFrom = pcOriginalReadPosition;
|
|
|
|
xReturn = pdPASS;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFAIL;
|
|
traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
|
|
}
|
|
}
|
|
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
|
|
{
|
|
UBaseType_t uxReturn;
|
|
|
|
configASSERT( xQueue );
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return uxReturn;
|
|
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
|
|
{
|
|
UBaseType_t uxReturn;
|
|
Queue_t *pxQueue;
|
|
|
|
pxQueue = ( Queue_t * ) xQueue;
|
|
configASSERT( pxQueue );
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return uxReturn;
|
|
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
|
|
{
|
|
UBaseType_t uxReturn;
|
|
|
|
configASSERT( xQueue );
|
|
|
|
uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
|
|
|
|
return uxReturn;
|
|
} /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vQueueDelete( QueueHandle_t xQueue )
|
|
{
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
configASSERT( pxQueue );
|
|
|
|
traceQUEUE_DELETE( pxQueue );
|
|
#if ( configQUEUE_REGISTRY_SIZE > 0 )
|
|
{
|
|
vQueueUnregisterQueue( pxQueue );
|
|
}
|
|
#endif
|
|
if( pxQueue->pcHead != NULL )
|
|
{
|
|
vPortFree( pxQueue->pcHead );
|
|
}
|
|
vPortFree( pxQueue );
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
|
UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
|
|
{
|
|
return ( ( Queue_t * ) xQueue )->uxQueueNumber;
|
|
}
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
|
void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber )
|
|
{
|
|
( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
|
|
}
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
|
uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
|
|
{
|
|
return ( ( Queue_t * ) xQueue )->ucQueueType;
|
|
}
|
|
|
|
#endif /* configUSE_TRACE_FACILITY */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition )
|
|
{
|
|
BaseType_t xReturn = pdFALSE;
|
|
|
|
if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
|
|
{
|
|
#if ( configUSE_MUTEXES == 1 )
|
|
{
|
|
if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
|
|
{
|
|
/* The mutex is no longer being held. */
|
|
xReturn = xTaskPriorityDisinherit( ( void * ) pxQueue->pxMutexHolder );
|
|
pxQueue->pxMutexHolder = NULL;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
#endif /* configUSE_MUTEXES */
|
|
}
|
|
else if( xPosition == queueSEND_TO_BACK )
|
|
{
|
|
( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. */
|
|
pxQueue->pcWriteTo += pxQueue->uxItemSize;
|
|
if( pxQueue->pcWriteTo >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
|
|
{
|
|
pxQueue->pcWriteTo = pxQueue->pcHead;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
( void ) memcpy( ( void * ) pxQueue->u.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
pxQueue->u.pcReadFrom -= pxQueue->uxItemSize;
|
|
if( pxQueue->u.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
|
|
{
|
|
pxQueue->u.pcReadFrom = ( pxQueue->pcTail - pxQueue->uxItemSize );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
if( xPosition == queueOVERWRITE )
|
|
{
|
|
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
|
{
|
|
/* An item is not being added but overwritten, so subtract
|
|
one from the recorded number of items in the queue so when
|
|
one is added again below the number of recorded items remains
|
|
correct. */
|
|
--( pxQueue->uxMessagesWaiting );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
++( pxQueue->uxMessagesWaiting );
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer )
|
|
{
|
|
if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
|
|
{
|
|
pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
|
|
if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
|
|
{
|
|
pxQueue->u.pcReadFrom = pxQueue->pcHead;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. */
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvUnlockQueue( Queue_t * const pxQueue )
|
|
{
|
|
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
|
|
|
|
/* The lock counts contains the number of extra data items placed or
|
|
removed from the queue while the queue was locked. When a queue is
|
|
locked items can be added or removed, but the event lists cannot be
|
|
updated. */
|
|
taskENTER_CRITICAL();
|
|
{
|
|
/* See if data was added to the queue while it was locked. */
|
|
while( pxQueue->xTxLock > queueLOCKED_UNMODIFIED )
|
|
{
|
|
/* Data was posted while the queue was locked. Are any tasks
|
|
blocked waiting for data to become available? */
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
{
|
|
if( pxQueue->pxQueueSetContainer != NULL )
|
|
{
|
|
if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) == pdTRUE )
|
|
{
|
|
/* The queue is a member of a queue set, and posting to
|
|
the queue set caused a higher priority task to unblock.
|
|
A context switch is required. */
|
|
vTaskMissedYield();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Tasks that are removed from the event list will get added to
|
|
the pending ready list as the scheduler is still suspended. */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
|
{
|
|
/* The task waiting has a higher priority so record that a
|
|
context switch is required. */
|
|
vTaskMissedYield();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#else /* configUSE_QUEUE_SETS */
|
|
{
|
|
/* Tasks that are removed from the event list will get added to
|
|
the pending ready list as the scheduler is still suspended. */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
|
{
|
|
/* The task waiting has a higher priority so record that a
|
|
context switch is required. */
|
|
vTaskMissedYield();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
|
|
--( pxQueue->xTxLock );
|
|
}
|
|
|
|
pxQueue->xTxLock = queueUNLOCKED;
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
/* Do the same for the Rx lock. */
|
|
taskENTER_CRITICAL();
|
|
{
|
|
while( pxQueue->xRxLock > queueLOCKED_UNMODIFIED )
|
|
{
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
|
{
|
|
vTaskMissedYield();
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
--( pxQueue->xRxLock );
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
pxQueue->xRxLock = queueUNLOCKED;
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue )
|
|
{
|
|
BaseType_t xReturn;
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
|
|
{
|
|
xReturn = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFALSE;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
|
|
{
|
|
BaseType_t xReturn;
|
|
|
|
configASSERT( xQueue );
|
|
if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( UBaseType_t ) 0 )
|
|
{
|
|
xReturn = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFALSE;
|
|
}
|
|
|
|
return xReturn;
|
|
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static BaseType_t prvIsQueueFull( const Queue_t *pxQueue )
|
|
{
|
|
BaseType_t xReturn;
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
|
|
{
|
|
xReturn = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFALSE;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return xReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
|
|
{
|
|
BaseType_t xReturn;
|
|
|
|
configASSERT( xQueue );
|
|
if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( ( Queue_t * ) xQueue )->uxLength )
|
|
{
|
|
xReturn = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFALSE;
|
|
}
|
|
|
|
return xReturn;
|
|
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_CO_ROUTINES == 1 )
|
|
|
|
BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait )
|
|
{
|
|
BaseType_t xReturn;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
/* If the queue is already full we may have to block. A critical section
|
|
is required to prevent an interrupt removing something from the queue
|
|
between the check to see if the queue is full and blocking on the queue. */
|
|
portDISABLE_INTERRUPTS();
|
|
{
|
|
if( prvIsQueueFull( pxQueue ) != pdFALSE )
|
|
{
|
|
/* The queue is full - do we want to block or just leave without
|
|
posting? */
|
|
if( xTicksToWait > ( TickType_t ) 0 )
|
|
{
|
|
/* As this is called from a coroutine we cannot block directly, but
|
|
return indicating that we need to block. */
|
|
vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
|
|
portENABLE_INTERRUPTS();
|
|
return errQUEUE_BLOCKED;
|
|
}
|
|
else
|
|
{
|
|
portENABLE_INTERRUPTS();
|
|
return errQUEUE_FULL;
|
|
}
|
|
}
|
|
}
|
|
portENABLE_INTERRUPTS();
|
|
|
|
portDISABLE_INTERRUPTS();
|
|
{
|
|
if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
|
|
{
|
|
/* There is room in the queue, copy the data into the queue. */
|
|
prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
|
|
xReturn = pdPASS;
|
|
|
|
/* Were any co-routines waiting for data to become available? */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
/* In this instance the co-routine could be placed directly
|
|
into the ready list as we are within a critical section.
|
|
Instead the same pending ready list mechanism is used as if
|
|
the event were caused from within an interrupt. */
|
|
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
|
{
|
|
/* The co-routine waiting has a higher priority so record
|
|
that a yield might be appropriate. */
|
|
xReturn = errQUEUE_YIELD;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
xReturn = errQUEUE_FULL;
|
|
}
|
|
}
|
|
portENABLE_INTERRUPTS();
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_CO_ROUTINES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_CO_ROUTINES == 1 )
|
|
|
|
BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait )
|
|
{
|
|
BaseType_t xReturn;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
/* If the queue is already empty we may have to block. A critical section
|
|
is required to prevent an interrupt adding something to the queue
|
|
between the check to see if the queue is empty and blocking on the queue. */
|
|
portDISABLE_INTERRUPTS();
|
|
{
|
|
if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
|
|
{
|
|
/* There are no messages in the queue, do we want to block or just
|
|
leave with nothing? */
|
|
if( xTicksToWait > ( TickType_t ) 0 )
|
|
{
|
|
/* As this is a co-routine we cannot block directly, but return
|
|
indicating that we need to block. */
|
|
vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
|
|
portENABLE_INTERRUPTS();
|
|
return errQUEUE_BLOCKED;
|
|
}
|
|
else
|
|
{
|
|
portENABLE_INTERRUPTS();
|
|
return errQUEUE_FULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
portENABLE_INTERRUPTS();
|
|
|
|
portDISABLE_INTERRUPTS();
|
|
{
|
|
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
|
{
|
|
/* Data is available from the queue. */
|
|
pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
|
|
if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
|
|
{
|
|
pxQueue->u.pcReadFrom = pxQueue->pcHead;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
--( pxQueue->uxMessagesWaiting );
|
|
( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
|
|
|
|
xReturn = pdPASS;
|
|
|
|
/* Were any co-routines waiting for space to become available? */
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
|
{
|
|
/* In this instance the co-routine could be placed directly
|
|
into the ready list as we are within a critical section.
|
|
Instead the same pending ready list mechanism is used as if
|
|
the event were caused from within an interrupt. */
|
|
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
|
{
|
|
xReturn = errQUEUE_YIELD;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFAIL;
|
|
}
|
|
}
|
|
portENABLE_INTERRUPTS();
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_CO_ROUTINES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_CO_ROUTINES == 1 )
|
|
|
|
BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken )
|
|
{
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
/* Cannot block within an ISR so if there is no space on the queue then
|
|
exit without doing anything. */
|
|
if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
|
|
{
|
|
prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
|
|
|
|
/* We only want to wake one co-routine per ISR, so check that a
|
|
co-routine has not already been woken. */
|
|
if( xCoRoutinePreviouslyWoken == pdFALSE )
|
|
{
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
|
|
{
|
|
return pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
return xCoRoutinePreviouslyWoken;
|
|
}
|
|
|
|
#endif /* configUSE_CO_ROUTINES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_CO_ROUTINES == 1 )
|
|
|
|
BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxCoRoutineWoken )
|
|
{
|
|
BaseType_t xReturn;
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
/* We cannot block from an ISR, so check there is data available. If
|
|
not then just leave without doing anything. */
|
|
if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
|
|
{
|
|
/* Copy the data from the queue. */
|
|
pxQueue->u.pcReadFrom += pxQueue->uxItemSize;
|
|
if( pxQueue->u.pcReadFrom >= pxQueue->pcTail )
|
|
{
|
|
pxQueue->u.pcReadFrom = pxQueue->pcHead;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
--( pxQueue->uxMessagesWaiting );
|
|
( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
|
|
|
|
if( ( *pxCoRoutineWoken ) == pdFALSE )
|
|
{
|
|
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
|
|
{
|
|
if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
|
|
{
|
|
*pxCoRoutineWoken = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
xReturn = pdPASS;
|
|
}
|
|
else
|
|
{
|
|
xReturn = pdFAIL;
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_CO_ROUTINES */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configQUEUE_REGISTRY_SIZE > 0 )
|
|
|
|
void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
{
|
|
UBaseType_t ux;
|
|
|
|
/* See if there is an empty space in the registry. A NULL name denotes
|
|
a free slot. */
|
|
for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
|
|
{
|
|
if( xQueueRegistry[ ux ].pcQueueName == NULL )
|
|
{
|
|
/* Store the information on this queue. */
|
|
xQueueRegistry[ ux ].pcQueueName = pcQueueName;
|
|
xQueueRegistry[ ux ].xHandle = xQueue;
|
|
|
|
traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* configQUEUE_REGISTRY_SIZE */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configQUEUE_REGISTRY_SIZE > 0 )
|
|
|
|
void vQueueUnregisterQueue( QueueHandle_t xQueue )
|
|
{
|
|
UBaseType_t ux;
|
|
|
|
/* See if the handle of the queue being unregistered in actually in the
|
|
registry. */
|
|
for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
|
|
{
|
|
if( xQueueRegistry[ ux ].xHandle == xQueue )
|
|
{
|
|
/* Set the name to NULL to show that this slot if free again. */
|
|
xQueueRegistry[ ux ].pcQueueName = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
|
|
} /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
|
|
|
|
#endif /* configQUEUE_REGISTRY_SIZE */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_TIMERS == 1 )
|
|
|
|
void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait )
|
|
{
|
|
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
|
|
|
|
/* This function should not be called by application code hence the
|
|
'Restricted' in its name. It is not part of the public API. It is
|
|
designed for use by kernel code, and has special calling requirements.
|
|
It can result in vListInsert() being called on a list that can only
|
|
possibly ever have one item in it, so the list will be fast, but even
|
|
so it should be called with the scheduler locked and not from a critical
|
|
section. */
|
|
|
|
/* Only do anything if there are no messages in the queue. This function
|
|
will not actually cause the task to block, just place it on a blocked
|
|
list. It will not block until the scheduler is unlocked - at which
|
|
time a yield will be performed. If an item is added to the queue while
|
|
the queue is locked, and the calling task blocks on the queue, then the
|
|
calling task will be immediately unblocked when the queue is unlocked. */
|
|
prvLockQueue( pxQueue );
|
|
if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
|
|
{
|
|
/* There is nothing in the queue, block for the specified period. */
|
|
vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
prvUnlockQueue( pxQueue );
|
|
}
|
|
|
|
#endif /* configUSE_TIMERS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
|
|
QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
|
|
{
|
|
QueueSetHandle_t pxQueue;
|
|
|
|
pxQueue = xQueueGenericCreate( uxEventQueueLength, sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
|
|
|
|
return pxQueue;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
|
|
BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
|
|
{
|
|
BaseType_t xReturn;
|
|
|
|
taskENTER_CRITICAL();
|
|
{
|
|
if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
|
|
{
|
|
/* Cannot add a queue/semaphore to more than one queue set. */
|
|
xReturn = pdFAIL;
|
|
}
|
|
else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
|
|
{
|
|
/* Cannot add a queue/semaphore to a queue set if there are already
|
|
items in the queue/semaphore. */
|
|
xReturn = pdFAIL;
|
|
}
|
|
else
|
|
{
|
|
( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
|
|
xReturn = pdPASS;
|
|
}
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
|
|
BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet )
|
|
{
|
|
BaseType_t xReturn;
|
|
Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
|
|
|
|
if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
|
|
{
|
|
/* The queue was not a member of the set. */
|
|
xReturn = pdFAIL;
|
|
}
|
|
else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
|
|
{
|
|
/* It is dangerous to remove a queue from a set when the queue is
|
|
not empty because the queue set will still hold pending events for
|
|
the queue. */
|
|
xReturn = pdFAIL;
|
|
}
|
|
else
|
|
{
|
|
taskENTER_CRITICAL();
|
|
{
|
|
/* The queue is no longer contained in the set. */
|
|
pxQueueOrSemaphore->pxQueueSetContainer = NULL;
|
|
}
|
|
taskEXIT_CRITICAL();
|
|
xReturn = pdPASS;
|
|
}
|
|
|
|
return xReturn;
|
|
} /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
|
|
QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, TickType_t const xTicksToWait )
|
|
{
|
|
QueueSetMemberHandle_t xReturn = NULL;
|
|
|
|
( void ) xQueueGenericReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait, pdFALSE ); /*lint !e961 Casting from one typedef to another is not redundant. */
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
|
|
QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
|
|
{
|
|
QueueSetMemberHandle_t xReturn = NULL;
|
|
|
|
( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
/*-----------------------------------------------------------*/
|
|
|
|
#if ( configUSE_QUEUE_SETS == 1 )
|
|
|
|
static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition )
|
|
{
|
|
Queue_t *pxQueueSetContainer = pxQueue->pxQueueSetContainer;
|
|
BaseType_t xReturn = pdFALSE;
|
|
|
|
/* This function must be called form a critical section. */
|
|
|
|
configASSERT( pxQueueSetContainer );
|
|
configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
|
|
|
|
if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
|
|
{
|
|
traceQUEUE_SEND( pxQueueSetContainer );
|
|
/* The data copied is the handle of the queue that contains data. */
|
|
xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, xCopyPosition );
|
|
|
|
if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
|
|
{
|
|
if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
|
|
{
|
|
/* The task waiting has a higher priority */
|
|
xReturn = pdTRUE;
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mtCOVERAGE_TEST_MARKER();
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
#endif /* configUSE_QUEUE_SETS */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|