first commit

This commit is contained in:
pvvx 2016-11-09 03:56:41 +03:00
parent 2ee525362e
commit d108756e9b
792 changed files with 336059 additions and 0 deletions

View file

@ -0,0 +1,164 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_8195A_H_
#define _HAL_8195A_H_
#include "platform_autoconf.h"
#include "basic_types.h"
#include "section_config.h"
#include "rtl8195a_sys_on.h"
#include "rtl8195a_peri_on.h"
#include "hal_platform.h"
#include "hal_pinmux.h"
#include "hal_api.h"
#include "hal_peri_on.h"
#include "hal_misc.h"
#include "hal_irqn.h"
#include "hal_vector_table.h"
#include "hal_diag.h"
#include "hal_spi_flash.h"
#include "rtl8195a_spi_flash.h"
#include "hal_timer.h"
#include "hal_util.h"
#include "hal_efuse.h"
#include "hal_soc_ps_monitor.h"
#include "diag.h"
#include "hal_common.h"
#include "hal_soc_ps_monitor.h"
/* ----------------------------------------------------------------------------
-- Cortex M3 Core Configuration
---------------------------------------------------------------------------- */
/*!
* @addtogroup Cortex_Core_Configuration Cortex M0 Core Configuration
* @{
*/
#define __CM3_REV 0x0200 /**< Core revision r0p0 */
#define __MPU_PRESENT 1 /**< Defines if an MPU is present or not */
#define __NVIC_PRIO_BITS 4 /**< Number of priority bits implemented in the NVIC */
#define __Vendor_SysTickConfig 1 /**< Vendor specific implementation of SysTickConfig is defined */
#include "core_cm3.h"
#ifdef CONFIG_TIMER_EN
#include "hal_timer.h"
#endif
#ifdef CONFIG_GDMA_EN
#include "hal_gdma.h"
#include "rtl8195a_gdma.h"
#endif
#ifdef CONFIG_GPIO_EN
#include "hal_gpio.h"
#include "rtl8195a_gpio.h"
#endif
#ifdef CONFIG_SPI_COM_EN
#include "hal_ssi.h"
#include "rtl8195a_ssi.h"
#endif
#ifdef CONFIG_UART_EN
#include "hal_uart.h"
#include "rtl8195a_uart.h"
#endif
#ifdef CONFIG_I2C_EN
#include "hal_i2c.h"
#include "rtl8195a_i2c.h"
#endif
#ifdef CONFIG_PCM_EN
#include "hal_pcm.h"
#include "rtl8195a_pcm.h"
#endif
#ifdef CONFIG_PWM_EN
#include "hal_pwm.h"
#include "rtl8195a_pwm.h"
#endif
#ifdef CONFIG_I2S_EN
#include "hal_i2s.h"
#include "rtl8195a_i2s.h"
#endif
#ifdef CONFIG_DAC_EN
#include "hal_dac.h"
#include "rtl8195a_dac.h"
#endif
#ifdef CONFIG_ADC_EN
#include "hal_adc.h"
#include "rtl8195a_adc.h"
#endif
#ifdef CONFIG_SDR_EN
#endif
#ifdef CONFIG_SPIC_EN
#endif
#ifdef CONFIG_SDIO_DEVICE_EN
#include "hal_sdio.h"
#endif
#ifdef CONFIG_NFC_EN
#include "hal_nfc.h"
#include "rtl8195a_nfc.h"
#endif
#ifdef CONFIG_WDG
#include "rtl8195a_wdt.h"
#endif
#ifdef CONFIG_USB_EN
#include "hal_usb.h"
#include "rtl8195a_usb.h"
#endif
#include "hal_log_uart.h"
#ifdef CONFIG_MII_EN
#include "hal_mii.h"
#include "rtl8195a_mii.h"
#endif
// firmware information, located at the header of Image2
#define FW_VERSION (0x0100)
#define FW_SUBVERSION (0x0001)
#define FW_CHIP_ID (0x8195)
#define FW_CHIP_VER (0x01)
#define FW_BUS_TYPE (0x01) // the iNIC firmware type: USB/SDIO
#define FW_INFO_RSV1 (0x00) // the firmware information reserved
#define FW_INFO_RSV2 (0x00) // the firmware information reserved
#define FW_INFO_RSV3 (0x00) // the firmware information reserved
#define FW_INFO_RSV4 (0x00) // the firmware information reserved
#define FLASH_RESERVED_DATA_BASE 0x8000 // reserve 32K for Image1
#define FLASH_SYSTEM_DATA_ADDR 0x9000 // reserve 32K+4K for Image1 + Reserved data
// Flash Map for Calibration data
#define FLASH_CAL_DATA_BASE 0xA000
#define FLASH_CAL_DATA_ADDR(_offset) (FLASH_CAL_DATA_BASE + _offset)
#define FLASH_CAL_DATA_SIZE 0x1000
#define FLASH_SECTOR_SIZE 0x1000
// SPIC Calibration Data
#define FLASH_SPIC_PARA_OFFSET 0x80
#define FLASH_SPIC_PARA_BASE (FLASH_SYSTEM_DATA_ADDR+FLASH_SPIC_PARA_OFFSET)
// SDRC Calibration Data
#define FLASH_SDRC_PARA_OFFSET 0x180
#define FLASH_SDRC_PARA_BASE (FLASH_SYSTEM_DATA_ADDR+FLASH_SDRC_PARA_OFFSET)
// ADC Calibration Data
#define FLASH_ADC_PARA_OFFSET 0x200
#define FLASH_ADC_PARA_BASE (FLASH_SYSTEM_DATA_ADDR+FLASH_ADC_PARA_OFFSET)
#endif //_HAL_8195A_H_

View file

@ -0,0 +1,350 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_ADC_H_
#define _RTL8195A_ADC_H_
//================ Register Bit Field ==========================
//2 REG_ADC_FIFO_READ
#define BIT_SHIFT_ADC_FIFO_RO 0
#define BIT_MASK_ADC_FIFO_RO 0xffffffffL
#define BIT_ADC_FIFO_RO(x) (((x) & BIT_MASK_ADC_FIFO_RO) << BIT_SHIFT_ADC_FIFO_RO)
#define BIT_CTRL_ADC_FIFO_RO(x) (((x) & BIT_MASK_ADC_FIFO_RO) << BIT_SHIFT_ADC_FIFO_RO)
#define BIT_GET_ADC_FIFO_RO(x) (((x) >> BIT_SHIFT_ADC_FIFO_RO) & BIT_MASK_ADC_FIFO_RO)
//2 REG_ADC_CONTROL
#define BIT_SHIFT_ADC_DBG_SEL 24
#define BIT_MASK_ADC_DBG_SEL 0x7
#define BIT_ADC_DBG_SEL(x) (((x) & BIT_MASK_ADC_DBG_SEL) << BIT_SHIFT_ADC_DBG_SEL)
#define BIT_CTRL_ADC_DBG_SEL(x) (((x) & BIT_MASK_ADC_DBG_SEL) << BIT_SHIFT_ADC_DBG_SEL)
#define BIT_GET_ADC_DBG_SEL(x) (((x) >> BIT_SHIFT_ADC_DBG_SEL) & BIT_MASK_ADC_DBG_SEL)
#define BIT_SHIFT_ADC_THRESHOLD 16
#define BIT_MASK_ADC_THRESHOLD 0x3f
#define BIT_ADC_THRESHOLD(x) (((x) & BIT_MASK_ADC_THRESHOLD) << BIT_SHIFT_ADC_THRESHOLD)
#define BIT_CTRL_ADC_THRESHOLD(x) (((x) & BIT_MASK_ADC_THRESHOLD) << BIT_SHIFT_ADC_THRESHOLD)
#define BIT_GET_ADC_THRESHOLD(x) (((x) >> BIT_SHIFT_ADC_THRESHOLD) & BIT_MASK_ADC_THRESHOLD)
#define BIT_SHIFT_ADC_BURST_SIZE 8
#define BIT_MASK_ADC_BURST_SIZE 0x1f
#define BIT_ADC_BURST_SIZE(x) (((x) & BIT_MASK_ADC_BURST_SIZE) << BIT_SHIFT_ADC_BURST_SIZE)
#define BIT_CTRL_ADC_BURST_SIZE(x) (((x) & BIT_MASK_ADC_BURST_SIZE) << BIT_SHIFT_ADC_BURST_SIZE)
#define BIT_GET_ADC_BURST_SIZE(x) (((x) >> BIT_SHIFT_ADC_BURST_SIZE) & BIT_MASK_ADC_BURST_SIZE)
#define BIT_ADC_ENDIAN BIT(3)
#define BIT_SHIFT_ADC_ENDIAN 3
#define BIT_MASK_ADC_ENDIAN 0x1
#define BIT_CTRL_ADC_ENDIAN(x) (((x) & BIT_MASK_ADC_ENDIAN) << BIT_SHIFT_ADC_ENDIAN)
#define BIT_ADC_OVERWRITE BIT(2)
#define BIT_SHIFT_ADC_OVERWRITE 2
#define BIT_MASK_ADC_OVERWRITE 0x1
#define BIT_CTRL_ADC_OVERWRITE(x) (((x) & BIT_MASK_ADC_OVERWRITE) << BIT_SHIFT_ADC_OVERWRITE)
#define BIT_ADC_ONESHOT BIT(1)
#define BIT_SHIFT_ADC_ONESHOT 1
#define BIT_MASK_ADC_ONESHOT 0x1
#define BIT_CTRL_ADC_ONESHOT(x) (((x) & BIT_MASK_ADC_ONESHOT) << BIT_SHIFT_ADC_ONESHOT)
#define BIT_ADC_COMP_ONLY BIT(0)
#define BIT_SHIFT_ADC_COMP_ONLY 0
#define BIT_MASK_ADC_COMP_ONLY 0x1
#define BIT_CTRL_ADC_COMP_ONLY(x) (((x) & BIT_MASK_ADC_COMP_ONLY) << BIT_SHIFT_ADC_COMP_ONLY)
//2 REG_ADC_INTR_EN
#define BIT_ADC_AWAKE_CPU_EN BIT(7)
#define BIT_SHIFT_ADC_AWAKE_CPU_EN 7
#define BIT_MASK_ADC_AWAKE_CPU_EN 0x1
#define BIT_CTRL_ADC_AWAKE_CPU_EN(x) (((x) & BIT_MASK_ADC_AWAKE_CPU_EN) << BIT_SHIFT_ADC_AWAKE_CPU_EN)
#define BIT_ADC_FIFO_RD_ERROR_EN BIT(6)
#define BIT_SHIFT_ADC_FIFO_RD_ERROR_EN 6
#define BIT_MASK_ADC_FIFO_RD_ERROR_EN 0x1
#define BIT_CTRL_ADC_FIFO_RD_ERROR_EN(x) (((x) & BIT_MASK_ADC_FIFO_RD_ERROR_EN) << BIT_SHIFT_ADC_FIFO_RD_ERROR_EN)
#define BIT_ADC_FIFO_RD_REQ_EN BIT(5)
#define BIT_SHIFT_ADC_FIFO_RD_REQ_EN 5
#define BIT_MASK_ADC_FIFO_RD_REQ_EN 0x1
#define BIT_CTRL_ADC_FIFO_RD_REQ_EN(x) (((x) & BIT_MASK_ADC_FIFO_RD_REQ_EN) << BIT_SHIFT_ADC_FIFO_RD_REQ_EN)
#define BIT_ADC_FIFO_FULL_EN BIT(4)
#define BIT_SHIFT_ADC_FIFO_FULL_EN 4
#define BIT_MASK_ADC_FIFO_FULL_EN 0x1
#define BIT_CTRL_ADC_FIFO_FULL_EN(x) (((x) & BIT_MASK_ADC_FIFO_FULL_EN) << BIT_SHIFT_ADC_FIFO_FULL_EN)
#define BIT_ADC_COMP_3_EN BIT(3)
#define BIT_SHIFT_ADC_COMP_3_EN 3
#define BIT_MASK_ADC_COMP_3_EN 0x1
#define BIT_CTRL_ADC_COMP_3_EN(x) (((x) & BIT_MASK_ADC_COMP_3_EN) << BIT_SHIFT_ADC_COMP_3_EN)
#define BIT_ADC_COMP_2_EN BIT(2)
#define BIT_SHIFT_ADC_COMP_2_EN 2
#define BIT_MASK_ADC_COMP_2_EN 0x1
#define BIT_CTRL_ADC_COMP_2_EN(x) (((x) & BIT_MASK_ADC_COMP_2_EN) << BIT_SHIFT_ADC_COMP_2_EN)
#define BIT_ADC_COMP_1_EN BIT(1)
#define BIT_SHIFT_ADC_COMP_1_EN 1
#define BIT_MASK_ADC_COMP_1_EN 0x1
#define BIT_CTRL_ADC_COMP_1_EN(x) (((x) & BIT_MASK_ADC_COMP_1_EN) << BIT_SHIFT_ADC_COMP_1_EN)
#define BIT_ADC_COMP_0_EN BIT(0)
#define BIT_SHIFT_ADC_COMP_0_EN 0
#define BIT_MASK_ADC_COMP_0_EN 0x1
#define BIT_CTRL_ADC_COMP_0_EN(x) (((x) & BIT_MASK_ADC_COMP_0_EN) << BIT_SHIFT_ADC_COMP_0_EN)
//2 REG_ADC_INTR_STS
#define BIT_ADC_FIFO_THRESHOLD BIT(7)
#define BIT_SHIFT_ADC_FIFO_THRESHOLD 7
#define BIT_MASK_ADC_FIFO_THRESHOLD 0x1
#define BIT_CTRL_ADC_FIFO_THRESHOLD(x) (((x) & BIT_MASK_ADC_FIFO_THRESHOLD) << BIT_SHIFT_ADC_FIFO_THRESHOLD)
#define BIT_ADC_FIFO_RD_ERROR_ST BIT(6)
#define BIT_SHIFT_ADC_FIFO_RD_ERROR_ST 6
#define BIT_MASK_ADC_FIFO_RD_ERROR_ST 0x1
#define BIT_CTRL_ADC_FIFO_RD_ERROR_ST(x) (((x) & BIT_MASK_ADC_FIFO_RD_ERROR_ST) << BIT_SHIFT_ADC_FIFO_RD_ERROR_ST)
#define BIT_ADC_FIFO_RD_REQ_ST BIT(5)
#define BIT_SHIFT_ADC_FIFO_RD_REQ_ST 5
#define BIT_MASK_ADC_FIFO_RD_REQ_ST 0x1
#define BIT_CTRL_ADC_FIFO_RD_REQ_ST(x) (((x) & BIT_MASK_ADC_FIFO_RD_REQ_ST) << BIT_SHIFT_ADC_FIFO_RD_REQ_ST)
#define BIT_ADC_FIFO_FULL_ST BIT(4)
#define BIT_SHIFT_ADC_FIFO_FULL_ST 4
#define BIT_MASK_ADC_FIFO_FULL_ST 0x1
#define BIT_CTRL_ADC_FIFO_FULL_ST(x) (((x) & BIT_MASK_ADC_FIFO_FULL_ST) << BIT_SHIFT_ADC_FIFO_FULL_ST)
#define BIT_ADC_COMP_3_ST BIT(3)
#define BIT_SHIFT_ADC_COMP_3_ST 3
#define BIT_MASK_ADC_COMP_3_ST 0x1
#define BIT_CTRL_ADC_COMP_3_ST(x) (((x) & BIT_MASK_ADC_COMP_3_ST) << BIT_SHIFT_ADC_COMP_3_ST)
#define BIT_ADC_COMP_2_ST BIT(2)
#define BIT_SHIFT_ADC_COMP_2_ST 2
#define BIT_MASK_ADC_COMP_2_ST 0x1
#define BIT_CTRL_ADC_COMP_2_ST(x) (((x) & BIT_MASK_ADC_COMP_2_ST) << BIT_SHIFT_ADC_COMP_2_ST)
#define BIT_ADC_COMP_1_ST BIT(1)
#define BIT_SHIFT_ADC_COMP_1_ST 1
#define BIT_MASK_ADC_COMP_1_ST 0x1
#define BIT_CTRL_ADC_COMP_1_ST(x) (((x) & BIT_MASK_ADC_COMP_1_ST) << BIT_SHIFT_ADC_COMP_1_ST)
#define BIT_ADC_COMP_0_ST BIT(0)
#define BIT_SHIFT_ADC_COMP_0_ST 0
#define BIT_MASK_ADC_COMP_0_ST 0x1
#define BIT_CTRL_ADC_COMP_0_ST(x) (((x) & BIT_MASK_ADC_COMP_0_ST) << BIT_SHIFT_ADC_COMP_0_ST)
//2 REG_ADC_COMP_VALUE_L
#define BIT_SHIFT_ADC_COMP_TH_1 16
#define BIT_MASK_ADC_COMP_TH_1 0xffff
#define BIT_ADC_COMP_TH_1(x) (((x) & BIT_MASK_ADC_COMP_TH_1) << BIT_SHIFT_ADC_COMP_TH_1)
#define BIT_CTRL_ADC_COMP_TH_1(x) (((x) & BIT_MASK_ADC_COMP_TH_1) << BIT_SHIFT_ADC_COMP_TH_1)
#define BIT_GET_ADC_COMP_TH_1(x) (((x) >> BIT_SHIFT_ADC_COMP_TH_1) & BIT_MASK_ADC_COMP_TH_1)
#define BIT_SHIFT_ADC_COMP_TH_0 0
#define BIT_MASK_ADC_COMP_TH_0 0xffff
#define BIT_ADC_COMP_TH_0(x) (((x) & BIT_MASK_ADC_COMP_TH_0) << BIT_SHIFT_ADC_COMP_TH_0)
#define BIT_CTRL_ADC_COMP_TH_0(x) (((x) & BIT_MASK_ADC_COMP_TH_0) << BIT_SHIFT_ADC_COMP_TH_0)
#define BIT_GET_ADC_COMP_TH_0(x) (((x) >> BIT_SHIFT_ADC_COMP_TH_0) & BIT_MASK_ADC_COMP_TH_0)
//2 REG_ADC_COMP_VALUE_H
#define BIT_SHIFT_ADC_COMP_TH_3 16
#define BIT_MASK_ADC_COMP_TH_3 0xffff
#define BIT_ADC_COMP_TH_3(x) (((x) & BIT_MASK_ADC_COMP_TH_3) << BIT_SHIFT_ADC_COMP_TH_3)
#define BIT_CTRL_ADC_COMP_TH_3(x) (((x) & BIT_MASK_ADC_COMP_TH_3) << BIT_SHIFT_ADC_COMP_TH_3)
#define BIT_GET_ADC_COMP_TH_3(x) (((x) >> BIT_SHIFT_ADC_COMP_TH_3) & BIT_MASK_ADC_COMP_TH_3)
#define BIT_SHIFT_ADC_COMP_TH_2 0
#define BIT_MASK_ADC_COMP_TH_2 0xffff
#define BIT_ADC_COMP_TH_2(x) (((x) & BIT_MASK_ADC_COMP_TH_2) << BIT_SHIFT_ADC_COMP_TH_2)
#define BIT_CTRL_ADC_COMP_TH_2(x) (((x) & BIT_MASK_ADC_COMP_TH_2) << BIT_SHIFT_ADC_COMP_TH_2)
#define BIT_GET_ADC_COMP_TH_2(x) (((x) >> BIT_SHIFT_ADC_COMP_TH_2) & BIT_MASK_ADC_COMP_TH_2)
//2 REG_ADC_COMP_SET
#define BIT_SHIFT_ADC_GREATER_THAN 0
#define BIT_MASK_ADC_GREATER_THAN 0xf
#define BIT_ADC_GREATER_THAN(x) (((x) & BIT_MASK_ADC_GREATER_THAN) << BIT_SHIFT_ADC_GREATER_THAN)
#define BIT_CTRL_ADC_GREATER_THAN(x) (((x) & BIT_MASK_ADC_GREATER_THAN) << BIT_SHIFT_ADC_GREATER_THAN)
#define BIT_GET_ADC_GREATER_THAN(x) (((x) >> BIT_SHIFT_ADC_GREATER_THAN) & BIT_MASK_ADC_GREATER_THAN)
//2 REG_ADC_POWER
#define BIT_SHIFT_ADC_PWR_CUT_CNTR 16
#define BIT_MASK_ADC_PWR_CUT_CNTR 0xff
#define BIT_ADC_PWR_CUT_CNTR(x) (((x) & BIT_MASK_ADC_PWR_CUT_CNTR) << BIT_SHIFT_ADC_PWR_CUT_CNTR)
#define BIT_CTRL_ADC_PWR_CUT_CNTR(x) (((x) & BIT_MASK_ADC_PWR_CUT_CNTR) << BIT_SHIFT_ADC_PWR_CUT_CNTR)
#define BIT_GET_ADC_PWR_CUT_CNTR(x) (((x) >> BIT_SHIFT_ADC_PWR_CUT_CNTR) & BIT_MASK_ADC_PWR_CUT_CNTR)
#define BIT_ADC_FIFO_ON_ST BIT(11)
#define BIT_SHIFT_ADC_FIFO_ON_ST 11
#define BIT_MASK_ADC_FIFO_ON_ST 0x1
#define BIT_CTRL_ADC_FIFO_ON_ST(x) (((x) & BIT_MASK_ADC_FIFO_ON_ST) << BIT_SHIFT_ADC_FIFO_ON_ST)
#define BIT_ADC_ISO_ON_ST BIT(10)
#define BIT_SHIFT_ADC_ISO_ON_ST 10
#define BIT_MASK_ADC_ISO_ON_ST 0x1
#define BIT_CTRL_ADC_ISO_ON_ST(x) (((x) & BIT_MASK_ADC_ISO_ON_ST) << BIT_SHIFT_ADC_ISO_ON_ST)
#define BIT_ADC_PWR33_ON_ST BIT(9)
#define BIT_SHIFT_ADC_PWR33_ON_ST 9
#define BIT_MASK_ADC_PWR33_ON_ST 0x1
#define BIT_CTRL_ADC_PWR33_ON_ST(x) (((x) & BIT_MASK_ADC_PWR33_ON_ST) << BIT_SHIFT_ADC_PWR33_ON_ST)
#define BIT_ADC_PWR12_ON_ST BIT(8)
#define BIT_SHIFT_ADC_PWR12_ON_ST 8
#define BIT_MASK_ADC_PWR12_ON_ST 0x1
#define BIT_CTRL_ADC_PWR12_ON_ST(x) (((x) & BIT_MASK_ADC_PWR12_ON_ST) << BIT_SHIFT_ADC_PWR12_ON_ST)
#define BIT_ADC_ISO_MANUAL BIT(3)
#define BIT_SHIFT_ADC_ISO_MANUAL 3
#define BIT_MASK_ADC_ISO_MANUAL 0x1
#define BIT_CTRL_ADC_ISO_MANUAL(x) (((x) & BIT_MASK_ADC_ISO_MANUAL) << BIT_SHIFT_ADC_ISO_MANUAL)
#define BIT_ADC_PWR33_MANUAL BIT(2)
#define BIT_SHIFT_ADC_PWR33_MANUAL 2
#define BIT_MASK_ADC_PWR33_MANUAL 0x1
#define BIT_CTRL_ADC_PWR33_MANUAL(x) (((x) & BIT_MASK_ADC_PWR33_MANUAL) << BIT_SHIFT_ADC_PWR33_MANUAL)
#define BIT_ADC_PWR12_MANUAL BIT(1)
#define BIT_SHIFT_ADC_PWR12_MANUAL 1
#define BIT_MASK_ADC_PWR12_MANUAL 0x1
#define BIT_CTRL_ADC_PWR12_MANUAL(x) (((x) & BIT_MASK_ADC_PWR12_MANUAL) << BIT_SHIFT_ADC_PWR12_MANUAL)
#define BIT_ADC_PWR_AUTO BIT(0)
#define BIT_SHIFT_ADC_PWR_AUTO 0
#define BIT_MASK_ADC_PWR_AUTO 0x1
#define BIT_CTRL_ADC_PWR_AUTO(x) (((x) & BIT_MASK_ADC_PWR_AUTO) << BIT_SHIFT_ADC_PWR_AUTO)
//2 REG_ADC_ANAPAR_AD0
#define BIT_SHIFT_ADC_ANAPAR_AD0 2
#define BIT_MASK_ADC_ANAPAR_AD0 0x3fffffff
#define BIT_ADC_ANAPAR_AD0(x) (((x) & BIT_MASK_ADC_ANAPAR_AD0) << BIT_SHIFT_ADC_ANAPAR_AD0)
#define BIT_CTRL_ADC_ANAPAR_AD0(x) (((x) & BIT_MASK_ADC_ANAPAR_AD0) << BIT_SHIFT_ADC_ANAPAR_AD0)
#define BIT_GET_ADC_ANAPAR_AD0(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD0) & BIT_MASK_ADC_ANAPAR_AD0)
#define BIT_ADC_AUDIO_EN BIT(1)
#define BIT_SHIFT_ADC_AUDIO_EN 1
#define BIT_MASK_ADC_AUDIO_EN 0x1
#define BIT_CTRL_ADC_AUDIO_EN(x) (((x) & BIT_MASK_ADC_AUDIO_EN) << BIT_SHIFT_ADC_AUDIO_EN)
#define BIT_ADC_EN_MANUAL BIT(0)
#define BIT_SHIFT_ADC_EN_MANUAL 0
#define BIT_MASK_ADC_EN_MANUAL 0x1
#define BIT_CTRL_ADC_EN_MANUAL(x) (((x) & BIT_MASK_ADC_EN_MANUAL) << BIT_SHIFT_ADC_EN_MANUAL)
//2 REG_ADC_ANAPAR_AD1
#define BIT_SHIFT_ADC_ANAPAR_AD1 0
#define BIT_MASK_ADC_ANAPAR_AD1 0xffffffffL
#define BIT_ADC_ANAPAR_AD1(x) (((x) & BIT_MASK_ADC_ANAPAR_AD1) << BIT_SHIFT_ADC_ANAPAR_AD1)
#define BIT_CTRL_ADC_ANAPAR_AD1(x) (((x) & BIT_MASK_ADC_ANAPAR_AD1) << BIT_SHIFT_ADC_ANAPAR_AD1)
#define BIT_GET_ADC_ANAPAR_AD1(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD1) & BIT_MASK_ADC_ANAPAR_AD1)
//2 REG_ADC_ANAPAR_AD2
#define BIT_SHIFT_ADC_ANAPAR_AD2 0
#define BIT_MASK_ADC_ANAPAR_AD2 0xffffffffL
#define BIT_ADC_ANAPAR_AD2(x) (((x) & BIT_MASK_ADC_ANAPAR_AD2) << BIT_SHIFT_ADC_ANAPAR_AD2)
#define BIT_CTRL_ADC_ANAPAR_AD2(x) (((x) & BIT_MASK_ADC_ANAPAR_AD2) << BIT_SHIFT_ADC_ANAPAR_AD2)
#define BIT_GET_ADC_ANAPAR_AD2(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD2) & BIT_MASK_ADC_ANAPAR_AD2)
//2 REG_ADC_ANAPAR_AD3
#define BIT_SHIFT_ADC_ANAPAR_AD3 0
#define BIT_MASK_ADC_ANAPAR_AD3 0xffffffffL
#define BIT_ADC_ANAPAR_AD3(x) (((x) & BIT_MASK_ADC_ANAPAR_AD3) << BIT_SHIFT_ADC_ANAPAR_AD3)
#define BIT_CTRL_ADC_ANAPAR_AD3(x) (((x) & BIT_MASK_ADC_ANAPAR_AD3) << BIT_SHIFT_ADC_ANAPAR_AD3)
#define BIT_GET_ADC_ANAPAR_AD3(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD3) & BIT_MASK_ADC_ANAPAR_AD3)
//2 REG_ADC_ANAPAR_AD4
#define BIT_SHIFT_ADC_ANAPAR_AD4 0
#define BIT_MASK_ADC_ANAPAR_AD4 0xffffffffL
#define BIT_ADC_ANAPAR_AD4(x) (((x) & BIT_MASK_ADC_ANAPAR_AD4) << BIT_SHIFT_ADC_ANAPAR_AD4)
#define BIT_CTRL_ADC_ANAPAR_AD4(x) (((x) & BIT_MASK_ADC_ANAPAR_AD4) << BIT_SHIFT_ADC_ANAPAR_AD4)
#define BIT_GET_ADC_ANAPAR_AD4(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD4) & BIT_MASK_ADC_ANAPAR_AD4)
//2 REG_ADC_ANAPAR_AD5
#define BIT_SHIFT_ADC_ANAPAR_AD5 0
#define BIT_MASK_ADC_ANAPAR_AD5 0xffffffffL
#define BIT_ADC_ANAPAR_AD5(x) (((x) & BIT_MASK_ADC_ANAPAR_AD5) << BIT_SHIFT_ADC_ANAPAR_AD5)
#define BIT_CTRL_ADC_ANAPAR_AD5(x) (((x) & BIT_MASK_ADC_ANAPAR_AD5) << BIT_SHIFT_ADC_ANAPAR_AD5)
#define BIT_GET_ADC_ANAPAR_AD5(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD5) & BIT_MASK_ADC_ANAPAR_AD5)
//2 REG_ADC_CALI_DATA
#define BIT_SHIFT_ADC_CALI_DATA_6 16
#define BIT_MASK_ADC_CALI_DATA_6 0xffff
#define BIT_ADC_CALI_DATA_6(x) (((x) & BIT_MASK_ADC_CALI_DATA_6) << BIT_SHIFT_ADC_CALI_DATA_6)
#define BIT_CTRL_ADC_CALI_DATA_6(x) (((x) & BIT_MASK_ADC_CALI_DATA_6) << BIT_SHIFT_ADC_CALI_DATA_6)
#define BIT_GET_ADC_CALI_DATA_6(x) (((x) >> BIT_SHIFT_ADC_CALI_DATA_6) & BIT_MASK_ADC_CALI_DATA_6)
#define BIT_SHIFT_ADC_CALI_DATA_0 0
#define BIT_MASK_ADC_CALI_DATA_0 0xffff
#define BIT_ADC_CALI_DATA_0(x) (((x) & BIT_MASK_ADC_CALI_DATA_0) << BIT_SHIFT_ADC_CALI_DATA_0)
#define BIT_CTRL_ADC_CALI_DATA_0(x) (((x) & BIT_MASK_ADC_CALI_DATA_0) << BIT_SHIFT_ADC_CALI_DATA_0)
#define BIT_GET_ADC_CALI_DATA_0(x) (((x) >> BIT_SHIFT_ADC_CALI_DATA_0) & BIT_MASK_ADC_CALI_DATA_0)
//================ Register Reg Field =========================
#define REG_ADC_FIFO_READ 0x0000
#define REG_ADC_CONTROL 0x0004
#define REG_ADC_INTR_EN 0x0008
#define REG_ADC_INTR_STS 0x000C
#define REG_ADC_COMP_VALUE_L 0x0010
#define REG_ADC_COMP_VALUE_H 0x0014
#define REG_ADC_COMP_SET 0x0018
#define REG_ADC_POWER 0x001C
#define REG_ADC_ANAPAR_AD0 0x0020
#define REG_ADC_ANAPAR_AD1 0x0024
#define REG_ADC_ANAPAR_AD2 0x0028
#define REG_ADC_ANAPAR_AD3 0x002C
#define REG_ADC_ANAPAR_AD4 0x0030
#define REG_ADC_ANAPAR_AD5 0x0034
#define REG_ADC_CALI_DATA 0x0038
//================ ADC HAL related enumeration ==================
//================ ADC Function Prototypes =====================
#define HAL_ADC_WRITE32(addr, value) HAL_WRITE32(ADC_REG_BASE,addr,value)
#define HAL_ADC_READ32(addr) HAL_READ32(ADC_REG_BASE,addr)
RTK_STATUS HalADCInit8195a(IN VOID *Data);
RTK_STATUS HalADCDeInit8195a(IN VOID *Data);
RTK_STATUS HalADCEnableRtl8195a(IN VOID *Data);
RTK_STATUS HalADCIntrCtrl8195a(IN VOID *Data);
u32 HalADCReceiveRtl8195a(IN VOID *Data);
u32 HalADCReadRegRtl8195a(IN VOID *Data,IN u8 I2CReg);
#endif

View file

@ -0,0 +1,294 @@
#ifndef _RTL8195A_DAC_H_
#define _RTL8195A_DAC_H_
//================ Register Bit Field ==========================
//2 REG_DAC0_FIFO_WR
#define BIT_SHIFT_DAC0_FIFO_WO 0
#define BIT_MASK_DAC0_FIFO_WO 0xffffffffL
#define BIT_DAC0_FIFO_WO(x) (((x) & BIT_MASK_DAC0_FIFO_WO) << BIT_SHIFT_DAC0_FIFO_WO)
#define BIT_CTRL_DAC0_FIFO_WO(x) (((x) & BIT_MASK_DAC0_FIFO_WO) << BIT_SHIFT_DAC0_FIFO_WO)
#define BIT_GET_DAC0_FIFO_WO(x) (((x) >> BIT_SHIFT_DAC0_FIFO_WO) & BIT_MASK_DAC0_FIFO_WO)
//2 REG_DAC_CTRL
#define BIT_SHIFT_DAC_DELTA_SIGMA 25
#define BIT_MASK_DAC_DELTA_SIGMA 0x7
#define BIT_DAC_DELTA_SIGMA(x) (((x) & BIT_MASK_DAC_DELTA_SIGMA) << BIT_SHIFT_DAC_DELTA_SIGMA)
#define BIT_CTRL_DAC_DELTA_SIGMA(x) (((x) & BIT_MASK_DAC_DELTA_SIGMA) << BIT_SHIFT_DAC_DELTA_SIGMA)
#define BIT_GET_DAC_DELTA_SIGMA(x) (((x) >> BIT_SHIFT_DAC_DELTA_SIGMA) & BIT_MASK_DAC_DELTA_SIGMA)
#define BIT_DAC_BYPASS_DSC BIT(24)
#define BIT_SHIFT_DAC_BYPASS_DSC 24
#define BIT_MASK_DAC_BYPASS_DSC 0x1
#define BIT_CTRL_DAC_BYPASS_DSC(x) (((x) & BIT_MASK_DAC_BYPASS_DSC) << BIT_SHIFT_DAC_BYPASS_DSC)
#define BIT_SHIFT_DAC_DSC_DBG_SEL 19
#define BIT_MASK_DAC_DSC_DBG_SEL 0x3
#define BIT_DAC_DSC_DBG_SEL(x) (((x) & BIT_MASK_DAC_DSC_DBG_SEL) << BIT_SHIFT_DAC_DSC_DBG_SEL)
#define BIT_CTRL_DAC_DSC_DBG_SEL(x) (((x) & BIT_MASK_DAC_DSC_DBG_SEL) << BIT_SHIFT_DAC_DSC_DBG_SEL)
#define BIT_GET_DAC_DSC_DBG_SEL(x) (((x) >> BIT_SHIFT_DAC_DSC_DBG_SEL) & BIT_MASK_DAC_DSC_DBG_SEL)
#define BIT_SHIFT_DAC_DBG_SEL 16
#define BIT_MASK_DAC_DBG_SEL 0x7
#define BIT_DAC_DBG_SEL(x) (((x) & BIT_MASK_DAC_DBG_SEL) << BIT_SHIFT_DAC_DBG_SEL)
#define BIT_CTRL_DAC_DBG_SEL(x) (((x) & BIT_MASK_DAC_DBG_SEL) << BIT_SHIFT_DAC_DBG_SEL)
#define BIT_GET_DAC_DBG_SEL(x) (((x) >> BIT_SHIFT_DAC_DBG_SEL) & BIT_MASK_DAC_DBG_SEL)
#define BIT_SHIFT_DAC_BURST_SIZE 8
#define BIT_MASK_DAC_BURST_SIZE 0xf
#define BIT_DAC_BURST_SIZE(x) (((x) & BIT_MASK_DAC_BURST_SIZE) << BIT_SHIFT_DAC_BURST_SIZE)
#define BIT_CTRL_DAC_BURST_SIZE(x) (((x) & BIT_MASK_DAC_BURST_SIZE) << BIT_SHIFT_DAC_BURST_SIZE)
#define BIT_GET_DAC_BURST_SIZE(x) (((x) >> BIT_SHIFT_DAC_BURST_SIZE) & BIT_MASK_DAC_BURST_SIZE)
#define BIT_DAC_FILTER_SETTLE BIT(4)
#define BIT_SHIFT_DAC_FILTER_SETTLE 4
#define BIT_MASK_DAC_FILTER_SETTLE 0x1
#define BIT_CTRL_DAC_FILTER_SETTLE(x) (((x) & BIT_MASK_DAC_FILTER_SETTLE) << BIT_SHIFT_DAC_FILTER_SETTLE)
#define BIT_DAC_OV_OPTION BIT(3)
#define BIT_SHIFT_DAC_OV_OPTION 3
#define BIT_MASK_DAC_OV_OPTION 0x1
#define BIT_CTRL_DAC_OV_OPTION(x) (((x) & BIT_MASK_DAC_OV_OPTION) << BIT_SHIFT_DAC_OV_OPTION)
#define BIT_DAC_ENDIAN BIT(2)
#define BIT_SHIFT_DAC_ENDIAN 2
#define BIT_MASK_DAC_ENDIAN 0x1
#define BIT_CTRL_DAC_ENDIAN(x) (((x) & BIT_MASK_DAC_ENDIAN) << BIT_SHIFT_DAC_ENDIAN)
#define BIT_DAC_SPEED BIT(1)
#define BIT_SHIFT_DAC_SPEED 1
#define BIT_MASK_DAC_SPEED 0x1
#define BIT_CTRL_DAC_SPEED(x) (((x) & BIT_MASK_DAC_SPEED) << BIT_SHIFT_DAC_SPEED)
#define BIT_DAC_FIFO_EN BIT(0)
#define BIT_SHIFT_DAC_FIFO_EN 0
#define BIT_MASK_DAC_FIFO_EN 0x1
#define BIT_CTRL_DAC_FIFO_EN(x) (((x) & BIT_MASK_DAC_FIFO_EN) << BIT_SHIFT_DAC_FIFO_EN)
//2 REG_DAC_INTR_CTRL
#define BIT_DAC_DSC_OVERFLOW1_EN BIT(6)
#define BIT_SHIFT_DAC_DSC_OVERFLOW1_EN 6
#define BIT_MASK_DAC_DSC_OVERFLOW1_EN 0x1
#define BIT_CTRL_DAC_DSC_OVERFLOW1_EN(x) (((x) & BIT_MASK_DAC_DSC_OVERFLOW1_EN) << BIT_SHIFT_DAC_DSC_OVERFLOW1_EN)
#define BIT_DAC_DSC_OVERFLOW0_EN BIT(5)
#define BIT_SHIFT_DAC_DSC_OVERFLOW0_EN 5
#define BIT_MASK_DAC_DSC_OVERFLOW0_EN 0x1
#define BIT_CTRL_DAC_DSC_OVERFLOW0_EN(x) (((x) & BIT_MASK_DAC_DSC_OVERFLOW0_EN) << BIT_SHIFT_DAC_DSC_OVERFLOW0_EN)
#define BIT_DAC__WRITE_ERROR_EN BIT(4)
#define BIT_SHIFT_DAC__WRITE_ERROR_EN 4
#define BIT_MASK_DAC__WRITE_ERROR_EN 0x1
#define BIT_CTRL_DAC__WRITE_ERROR_EN(x) (((x) & BIT_MASK_DAC__WRITE_ERROR_EN) << BIT_SHIFT_DAC__WRITE_ERROR_EN)
#define BIT_DAC_FIFO_STOP_EN BIT(3)
#define BIT_SHIFT_DAC_FIFO_STOP_EN 3
#define BIT_MASK_DAC_FIFO_STOP_EN 0x1
#define BIT_CTRL_DAC_FIFO_STOP_EN(x) (((x) & BIT_MASK_DAC_FIFO_STOP_EN) << BIT_SHIFT_DAC_FIFO_STOP_EN)
#define BIT_DAC_FIFO_OVERFLOW_EN BIT(2)
#define BIT_SHIFT_DAC_FIFO_OVERFLOW_EN 2
#define BIT_MASK_DAC_FIFO_OVERFLOW_EN 0x1
#define BIT_CTRL_DAC_FIFO_OVERFLOW_EN(x) (((x) & BIT_MASK_DAC_FIFO_OVERFLOW_EN) << BIT_SHIFT_DAC_FIFO_OVERFLOW_EN)
#define BIT_DAC_FIFO_WR_REQ_EN BIT(1)
#define BIT_SHIFT_DAC_FIFO_WR_REQ_EN 1
#define BIT_MASK_DAC_FIFO_WR_REQ_EN 0x1
#define BIT_CTRL_DAC_FIFO_WR_REQ_EN(x) (((x) & BIT_MASK_DAC_FIFO_WR_REQ_EN) << BIT_SHIFT_DAC_FIFO_WR_REQ_EN)
#define BIT_DAC_FIFO_FULL_EN BIT(0)
#define BIT_SHIFT_DAC_FIFO_FULL_EN 0
#define BIT_MASK_DAC_FIFO_FULL_EN 0x1
#define BIT_CTRL_DAC_FIFO_FULL_EN(x) (((x) & BIT_MASK_DAC_FIFO_FULL_EN) << BIT_SHIFT_DAC_FIFO_FULL_EN)
//2 REG_DAC_INTR_STS
#define BIT_DAC_DSC_OVERFLOW1_ST BIT(6)
#define BIT_SHIFT_DAC_DSC_OVERFLOW1_ST 6
#define BIT_MASK_DAC_DSC_OVERFLOW1_ST 0x1
#define BIT_CTRL_DAC_DSC_OVERFLOW1_ST(x) (((x) & BIT_MASK_DAC_DSC_OVERFLOW1_ST) << BIT_SHIFT_DAC_DSC_OVERFLOW1_ST)
#define BIT_DAC_DSC_OVERFLOW0_ST BIT(5)
#define BIT_SHIFT_DAC_DSC_OVERFLOW0_ST 5
#define BIT_MASK_DAC_DSC_OVERFLOW0_ST 0x1
#define BIT_CTRL_DAC_DSC_OVERFLOW0_ST(x) (((x) & BIT_MASK_DAC_DSC_OVERFLOW0_ST) << BIT_SHIFT_DAC_DSC_OVERFLOW0_ST)
#define BIT_DAC__WRITE_ERROR_ST BIT(4)
#define BIT_SHIFT_DAC__WRITE_ERROR_ST 4
#define BIT_MASK_DAC__WRITE_ERROR_ST 0x1
#define BIT_CTRL_DAC__WRITE_ERROR_ST(x) (((x) & BIT_MASK_DAC__WRITE_ERROR_ST) << BIT_SHIFT_DAC__WRITE_ERROR_ST)
#define BIT_DAC_FIFO_STOP_ST BIT(3)
#define BIT_SHIFT_DAC_FIFO_STOP_ST 3
#define BIT_MASK_DAC_FIFO_STOP_ST 0x1
#define BIT_CTRL_DAC_FIFO_STOP_ST(x) (((x) & BIT_MASK_DAC_FIFO_STOP_ST) << BIT_SHIFT_DAC_FIFO_STOP_ST)
#define BIT_DAC_FIFO_OVERFLOW_ST BIT(2)
#define BIT_SHIFT_DAC_FIFO_OVERFLOW_ST 2
#define BIT_MASK_DAC_FIFO_OVERFLOW_ST 0x1
#define BIT_CTRL_DAC_FIFO_OVERFLOW_ST(x) (((x) & BIT_MASK_DAC_FIFO_OVERFLOW_ST) << BIT_SHIFT_DAC_FIFO_OVERFLOW_ST)
#define BIT_DAC_FIFO_WR_REQ_ST BIT(1)
#define BIT_SHIFT_DAC_FIFO_WR_REQ_ST 1
#define BIT_MASK_DAC_FIFO_WR_REQ_ST 0x1
#define BIT_CTRL_DAC_FIFO_WR_REQ_ST(x) (((x) & BIT_MASK_DAC_FIFO_WR_REQ_ST) << BIT_SHIFT_DAC_FIFO_WR_REQ_ST)
#define BIT_DAC_FIFO_FULL_ST BIT(0)
#define BIT_SHIFT_DAC_FIFO_FULL_ST 0
#define BIT_MASK_DAC_FIFO_FULL_ST 0x1
#define BIT_CTRL_DAC_FIFO_FULL_ST(x) (((x) & BIT_MASK_DAC_FIFO_FULL_ST) << BIT_SHIFT_DAC_FIFO_FULL_ST)
//2 REG_DAC_PWR_CTRL
#define BIT_SHIFT_DAC_PWR_CUT_CNTR 16
#define BIT_MASK_DAC_PWR_CUT_CNTR 0xff
#define BIT_DAC_PWR_CUT_CNTR(x) (((x) & BIT_MASK_DAC_PWR_CUT_CNTR) << BIT_SHIFT_DAC_PWR_CUT_CNTR)
#define BIT_CTRL_DAC_PWR_CUT_CNTR(x) (((x) & BIT_MASK_DAC_PWR_CUT_CNTR) << BIT_SHIFT_DAC_PWR_CUT_CNTR)
#define BIT_GET_DAC_PWR_CUT_CNTR(x) (((x) >> BIT_SHIFT_DAC_PWR_CUT_CNTR) & BIT_MASK_DAC_PWR_CUT_CNTR)
#define BIT_ST_DAC_FIFO_ON BIT(11)
#define BIT_SHIFT_ST_DAC_FIFO_ON 11
#define BIT_MASK_ST_DAC_FIFO_ON 0x1
#define BIT_CTRL_ST_DAC_FIFO_ON(x) (((x) & BIT_MASK_ST_DAC_FIFO_ON) << BIT_SHIFT_ST_DAC_FIFO_ON)
#define BIT_ST_DAC_ISO_ON BIT(10)
#define BIT_SHIFT_ST_DAC_ISO_ON 10
#define BIT_MASK_ST_DAC_ISO_ON 0x1
#define BIT_CTRL_ST_DAC_ISO_ON(x) (((x) & BIT_MASK_ST_DAC_ISO_ON) << BIT_SHIFT_ST_DAC_ISO_ON)
#define BIT_ST_DAC_PWR33_ON BIT(9)
#define BIT_SHIFT_ST_DAC_PWR33_ON 9
#define BIT_MASK_ST_DAC_PWR33_ON 0x1
#define BIT_CTRL_ST_DAC_PWR33_ON(x) (((x) & BIT_MASK_ST_DAC_PWR33_ON) << BIT_SHIFT_ST_DAC_PWR33_ON)
#define BIT_ST_DAC_PWR12_ON BIT(8)
#define BIT_SHIFT_ST_DAC_PWR12_ON 8
#define BIT_MASK_ST_DAC_PWR12_ON 0x1
#define BIT_CTRL_ST_DAC_PWR12_ON(x) (((x) & BIT_MASK_ST_DAC_PWR12_ON) << BIT_SHIFT_ST_DAC_PWR12_ON)
#define BIT_DAC_ISO_MANU BIT(3)
#define BIT_SHIFT_DAC_ISO_MANU 3
#define BIT_MASK_DAC_ISO_MANU 0x1
#define BIT_CTRL_DAC_ISO_MANU(x) (((x) & BIT_MASK_DAC_ISO_MANU) << BIT_SHIFT_DAC_ISO_MANU)
#define BIT_DAC_PWR33_MANU BIT(2)
#define BIT_SHIFT_DAC_PWR33_MANU 2
#define BIT_MASK_DAC_PWR33_MANU 0x1
#define BIT_CTRL_DAC_PWR33_MANU(x) (((x) & BIT_MASK_DAC_PWR33_MANU) << BIT_SHIFT_DAC_PWR33_MANU)
#define BIT_DAC_PWR12_MANU BIT(1)
#define BIT_SHIFT_DAC_PWR12_MANU 1
#define BIT_MASK_DAC_PWR12_MANU 0x1
#define BIT_CTRL_DAC_PWR12_MANU(x) (((x) & BIT_MASK_DAC_PWR12_MANU) << BIT_SHIFT_DAC_PWR12_MANU)
#define BIT_DAC_PWR_AUTO BIT(0)
#define BIT_SHIFT_DAC_PWR_AUTO 0
#define BIT_MASK_DAC_PWR_AUTO 0x1
#define BIT_CTRL_DAC_PWR_AUTO(x) (((x) & BIT_MASK_DAC_PWR_AUTO) << BIT_SHIFT_DAC_PWR_AUTO)
//2 REG_DAC_ANAPAR_DA0
#define BIT_SHIFT_PWR_ALL_CNTR 12
#define BIT_MASK_PWR_ALL_CNTR 0xfffff
#define BIT_PWR_ALL_CNTR(x) (((x) & BIT_MASK_PWR_ALL_CNTR) << BIT_SHIFT_PWR_ALL_CNTR)
#define BIT_CTRL_PWR_ALL_CNTR(x) (((x) & BIT_MASK_PWR_ALL_CNTR) << BIT_SHIFT_PWR_ALL_CNTR)
#define BIT_GET_PWR_ALL_CNTR(x) (((x) >> BIT_SHIFT_PWR_ALL_CNTR) & BIT_MASK_PWR_ALL_CNTR)
#define BIT_SHIFT_PWR_FUP_CNTR 0
#define BIT_MASK_PWR_FUP_CNTR 0xfff
#define BIT_PWR_FUP_CNTR(x) (((x) & BIT_MASK_PWR_FUP_CNTR) << BIT_SHIFT_PWR_FUP_CNTR)
#define BIT_CTRL_PWR_FUP_CNTR(x) (((x) & BIT_MASK_PWR_FUP_CNTR) << BIT_SHIFT_PWR_FUP_CNTR)
#define BIT_GET_PWR_FUP_CNTR(x) (((x) >> BIT_SHIFT_PWR_FUP_CNTR) & BIT_MASK_PWR_FUP_CNTR)
//2 REG_DAC_ANAPAR_DA1
#define BIT_FUP_EN BIT(31)
#define BIT_SHIFT_FUP_EN 31
#define BIT_MASK_FUP_EN 0x1
#define BIT_CTRL_FUP_EN(x) (((x) & BIT_MASK_FUP_EN) << BIT_SHIFT_FUP_EN)
#define BIT_SHIFT_ANAPAR_DA 8
#define BIT_MASK_ANAPAR_DA 0x7fffff
#define BIT_ANAPAR_DA(x) (((x) & BIT_MASK_ANAPAR_DA) << BIT_SHIFT_ANAPAR_DA)
#define BIT_CTRL_ANAPAR_DA(x) (((x) & BIT_MASK_ANAPAR_DA) << BIT_SHIFT_ANAPAR_DA)
#define BIT_GET_ANAPAR_DA(x) (((x) >> BIT_SHIFT_ANAPAR_DA) & BIT_MASK_ANAPAR_DA)
#define BIT_D_POW_DACVREF BIT(7)
#define BIT_SHIFT_D_POW_DACVREF 7
#define BIT_MASK_D_POW_DACVREF 0x1
#define BIT_CTRL_D_POW_DACVREF(x) (((x) & BIT_MASK_D_POW_DACVREF) << BIT_SHIFT_D_POW_DACVREF)
#define BIT_D_POW_VREF2 BIT(6)
#define BIT_SHIFT_D_POW_VREF2 6
#define BIT_MASK_D_POW_VREF2 0x1
#define BIT_CTRL_D_POW_VREF2(x) (((x) & BIT_MASK_D_POW_VREF2) << BIT_SHIFT_D_POW_VREF2)
#define BIT_D_POW_MBIAS BIT(5)
#define BIT_SHIFT_D_POW_MBIAS 5
#define BIT_MASK_D_POW_MBIAS 0x1
#define BIT_CTRL_D_POW_MBIAS(x) (((x) & BIT_MASK_D_POW_MBIAS) << BIT_SHIFT_D_POW_MBIAS)
#define BIT_D_POW_DIV4 BIT(4)
#define BIT_SHIFT_D_POW_DIV4 4
#define BIT_MASK_D_POW_DIV4 0x1
#define BIT_CTRL_D_POW_DIV4(x) (((x) & BIT_MASK_D_POW_DIV4) << BIT_SHIFT_D_POW_DIV4)
#define BIT_D_POW_DF1SE_R BIT(3)
#define BIT_SHIFT_D_POW_DF1SE_R 3
#define BIT_MASK_D_POW_DF1SE_R 0x1
#define BIT_CTRL_D_POW_DF1SE_R(x) (((x) & BIT_MASK_D_POW_DF1SE_R) << BIT_SHIFT_D_POW_DF1SE_R)
#define BIT_D_POW_DF2SE_L BIT(2)
#define BIT_SHIFT_D_POW_DF2SE_L 2
#define BIT_MASK_D_POW_DF2SE_L 0x1
#define BIT_CTRL_D_POW_DF2SE_L(x) (((x) & BIT_MASK_D_POW_DF2SE_L) << BIT_SHIFT_D_POW_DF2SE_L)
#define BIT_D_POW_DAC_R BIT(1)
#define BIT_SHIFT_D_POW_DAC_R 1
#define BIT_MASK_D_POW_DAC_R 0x1
#define BIT_CTRL_D_POW_DAC_R(x) (((x) & BIT_MASK_D_POW_DAC_R) << BIT_SHIFT_D_POW_DAC_R)
#define BIT_D_POW_DAC_L BIT(0)
#define BIT_SHIFT_D_POW_DAC_L 0
#define BIT_MASK_D_POW_DAC_L 0x1
#define BIT_CTRL_D_POW_DAC_L(x) (((x) & BIT_MASK_D_POW_DAC_L) << BIT_SHIFT_D_POW_DAC_L)
//================ Register Reg Field =========================
#define REG_DAC0_FIFO_WR 0x0000
#define REG_DAC_CTRL 0x0004
#define REG_DAC_INTR_CTRL 0x0008
#define REG_DAC_INTR_STS 0x000C
#define REG_DAC_PWR_CTRL 0x0010
#define REG_DAC_ANAPAR_DA0 0x0014
#define REG_DAC_ANAPAR_DA1 0x0018
//================ DAC HAL related enumeration ==================
//================ DAC HAL Macro ===========================
#define HAL_DAC_WRITE32(dacidx, addr, value) HAL_WRITE32(DAC_REG_BASE+dacidx*0x800 \
,addr,value)
#define HAL_DAC_READ32(dacidx, addr) HAL_READ32(DAC_REG_BASE+dacidx*0x800,addr)
//================ DAC Function Prototypes =====================
RTK_STATUS HalDACInit8195a(IN VOID *Data);
RTK_STATUS HalDACDeInit8195a(IN VOID *Data);
RTK_STATUS HalDACEnableRtl8195a(IN VOID *Data);
RTK_STATUS HalDACIntrCtrl8195a(IN VOID *Data);
u8 HalDACSendRtl8195a(IN VOID *Data);
u32 HalDACReadRegRtl8195a(IN VOID *Data,IN u8 I2CReg);
#endif

View file

@ -0,0 +1,528 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_GDMA_H_
#define _RTL8195A_GDMA_H_
// Define GDMA Handshake interface with peripheral, 0 -> GDMA0, 1-> GDMA1
// Set this Hnadshake interface map to register REG_PESOC_SOC_CTRL
#define GDMA_HANDSHAKE_UART0_TX 0
#define GDMA_HANDSHAKE_UART0_RX 1
#define GDMA_HANDSHAKE_UART1_TX 2
#define GDMA_HANDSHAKE_UART1_RX 3
#define GDMA_HANDSHAKE_UART2_TX 14 // Only on GDMA 0, hardware fixed
#define GDMA_HANDSHAKE_UART2_RX 14 // Only on GDMA 1, hardware fixed
#define GDMA_HANDSHAKE_SSI0_TX 4
#define GDMA_HANDSHAKE_SSI0_RX 5
#define GDMA_HANDSHAKE_SSI1_TX 6
#define GDMA_HANDSHAKE_SSI1_RX 7
#define GDMA_HANDSHAKE_SSI2_TX 15 // Only on GDMA 0, hardware fixed
#define GDMA_HANDSHAKE_SSI2_RX 15 // Only on GDMA 1, hardware fixed
#define GDMA_HANDSHAKE_I2C0_TX 8
#define GDMA_HANDSHAKE_I2C0_RX 9
#define GDMA_HANDSHAKE_I2C1_TX 10
#define GDMA_HANDSHAKE_I2C1_RX 11
#define GDMA_HANDSHAKE_ADC 12
#define GDMA_HANDSHAKE_DAC0 13 // Only on GDMA 0, hardware fixed
#define GDMA_HANDSHAKE_DAC1 13 // Only on GDMA 1, hardware fixed
#define HAL_GDMAX_READ32(GdmaIndex, addr) \
HAL_READ32(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr)
#define HAL_GDMAX_WRITE32(GdmaIndex, addr, value) \
HAL_WRITE32((GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF)), addr, value)
#define HAL_GDMAX_READ16(GdmaIndex, addr) \
HAL_READ16(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr)
#define HAL_GDMAX_WRITE16(GdmaIndex, addr, value) \
HAL_WRITE16(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr, value)
#define HAL_GDMAX_READ8(GdmaIndex, addr) \
HAL_READ8(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr)
#define HAL_GDMAX_WRITE8(GdmaIndex, addr, value) \
HAL_WRITE8(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr, value)
#define GDMA_CH_MAX 0x06
#define REG_GDMA_CH_OFF 0x058
#define REG_GDMA_CH_SAR 0x000
#define REG_GDMA_CH_DAR 0x008
#define REG_GDMA_CH_LLP 0x010
#define REG_GDMA_CH_CTL 0x018
#define REG_GDMA_CH_SSTAT 0x020
#define REG_GDMA_CH_DSTAT 0x028
#define REG_GDMA_CH_SSTATAR 0x030
#define REG_GDMA_CH_DSTATAR 0x038
#define REG_GDMA_CH_CFG 0x040
#define REG_GDMA_CH_SGR 0x048
#define REG_GDMA_CH_DSR 0x050
#define MAX_DMA_BLOCK_SIZE 4092
//3 Interrupt Registers
#define REG_GDMA_RAW_INT_BASE 0x2C0
#define REG_GDMA_RAW_INT_TFR 0x2C0
#define REG_GDMA_RAW_INT_BLOCK 0x2c8
#define REG_GDMA_RAW_INT_SRC_TRAN 0x2D0
#define REG_GDMA_RAW_INT_DST_TRAN 0x2D8
#define REG_GDMA_RAW_INT_ERR 0x2E0
#define REG_GDMA_STATUS_INT_BASE 0x2E8
#define REG_GDMA_STATUS_INT_TFR 0x2E8
#define REG_GDMA_STATUS_INT_BLOCK 0x2F0
#define REG_GDMA_STATUS_INT_SRC_TRAN 0x2F8
#define REG_GDMA_STATUS_INT_DST_TRAN 0x300
#define REG_GDMA_STATUS_INT_ERR 0x308
#define REG_GDMA_MASK_INT_BASE 0x310
#define REG_GDMA_MASK_INT_TFR 0x310
#define REG_GDMA_MASK_INT_BLOCK 0x318
#define REG_GDMA_MASK_INT_SRC_TRAN 0x320
#define REG_GDMA_MASK_INT_DST_TRAN 0x328
#define REG_GDMA_MASK_INT_INT_ERR 0x330
#define REG_GDMA_CLEAR_INT_BASE 0x338
#define REG_GDMA_CLEAR_INT_TFR 0x338
#define REG_GDMA_CLEAR_INT_BLOCK 0x340
#define REG_GDMA_CLEAR_INT_SRC_TRAN 0x348
#define REG_GDMA_CLEAR_INT_DST_TRAN 0x350
#define REG_GDMA_CLEAR_INT_ERR 0x358
#define REG_GDMA_STATUS_INT 0x360
//3 Software handshaking Registers
#define REG_GDMA_REQ_SRC 0x368
#define REG_GDMA_REQ_DST 0x370
#define REG_GDMA_REQ_SGL_REQ 0x378
#define REG_GDMA_REQ_DST_REQ 0x380
#define REG_GDMA_REQ_LST_SRC 0x388
#define REG_GDMA_REQ_LST_DST 0x390
//3 Miscellaneous Registers
#define REG_GDMA_DMAC_CFG 0x398
#define REG_GDMA_CH_EN 0x3A0
#define REG_GDMA_DMA_ID 0x3A8
#define REG_GDMA_DMA_TEST 0x3B0
#define REG_GDMA_DMA_COM_PARAMS6 0x3C8
#define REG_GDMA_DMA_COM_PARAMS5 0x3D0
#define REG_GDMA_DMA_COM_PARAMS4 0x3D8
#define REG_GDMA_DMA_COM_PARAMS3 0x3E0
#define REG_GDMA_DMA_COM_PARAMS2 0x3E8
#define REG_GDMA_DMA_COM_PARAMS1 0x3F0
#define REG_GDMA_DMA_COM_PARAMS0 0x3F8
//3 CTL Register Bit Control
#define BIT_SHIFT_CTLX_LO_INT_EN 0
#define BIT_MASK_CTLX_LO_INT_EN 0x1
#define BIT_CTLX_LO_INT_EN(x)(((x) & BIT_MASK_CTLX_LO_INT_EN) << BIT_SHIFT_CTLX_LO_INT_EN)
#define BIT_INVC_CTLX_LO_INT_EN (~(BIT_MASK_CTLX_LO_INT_EN << BIT_SHIFT_CTLX_LO_INT_EN))
#define BIT_SHIFT_CTLX_LO_DST_TR_WIDTH 1
#define BIT_MASK_CTLX_LO_DST_TR_WIDTH 0x7
#define BIT_CTLX_LO_DST_TR_WIDTH(x) (((x) & BIT_MASK_CTLX_LO_DST_TR_WIDTH) << BIT_SHIFT_CTLX_LO_DST_TR_WIDTH)
#define BIT_INVC_CTLX_LO_DST_TR_WIDTH (~(BIT_MASK_CTLX_LO_DST_TR_WIDTH << BIT_SHIFT_CTLX_LO_DST_TR_WIDTH))
#define BIT_SHIFT_CTLX_LO_SRC_TR_WIDTH 4
#define BIT_MASK_CTLX_LO_SRC_TR_WIDTH 0x7
#define BIT_CTLX_LO_SRC_TR_WIDTH(x) (((x) & BIT_MASK_CTLX_LO_SRC_TR_WIDTH) << BIT_SHIFT_CTLX_LO_SRC_TR_WIDTH)
#define BIT_INVC_CTLX_LO_SRC_TR_WIDTH (~(BIT_MASK_CTLX_LO_SRC_TR_WIDTH << BIT_SHIFT_CTLX_LO_SRC_TR_WIDTH))
#define BIT_SHIFT_CTLX_LO_DINC 7
#define BIT_MASK_CTLX_LO_DINC 0x3
#define BIT_CTLX_LO_DINC(x)(((x) & BIT_MASK_CTLX_LO_DINC) << BIT_SHIFT_CTLX_LO_DINC)
#define BIT_INVC_CTLX_LO_DINC (~(BIT_MASK_CTLX_LO_DINC << BIT_SHIFT_CTLX_LO_DINC))
#define BIT_SHIFT_CTLX_LO_SINC 9
#define BIT_MASK_CTLX_LO_SINC 0x3
#define BIT_CTLX_LO_SINC(x)(((x) & BIT_MASK_CTLX_LO_SINC) << BIT_SHIFT_CTLX_LO_SINC)
#define BIT_INVC_CTLX_LO_SINC (~(BIT_MASK_CTLX_LO_SINC << BIT_SHIFT_CTLX_LO_SINC))
#define BIT_SHIFT_CTLX_LO_DEST_MSIZE 11
#define BIT_MASK_CTLX_LO_DEST_MSIZE 0x7
#define BIT_CTLX_LO_DEST_MSIZE(x)(((x) & BIT_MASK_CTLX_LO_DEST_MSIZE) << BIT_SHIFT_CTLX_LO_DEST_MSIZE)
#define BIT_INVC_CTLX_LO_DEST_MSIZE (~(BIT_MASK_CTLX_LO_DEST_MSIZE << BIT_SHIFT_CTLX_LO_DEST_MSIZE))
#define BIT_SHIFT_CTLX_LO_SRC_MSIZE 14
#define BIT_MASK_CTLX_LO_SRC_MSIZE 0x7
#define BIT_CTLX_LO_SRC_MSIZE(x)(((x) & BIT_MASK_CTLX_LO_SRC_MSIZE) << BIT_SHIFT_CTLX_LO_SRC_MSIZE)
#define BIT_INVC_CTLX_LO_SRC_MSIZE (~(BIT_MASK_CTLX_LO_SRC_MSIZE << BIT_SHIFT_CTLX_LO_SRC_MSIZE))
#define BIT_SHIFT_CTLX_LO_SRC_GATHER_EN 17
#define BIT_MASK_CTLX_LO_SRC_GATHER_EN 0x1
#define BIT_CTLX_LO_SRC_GATHER_EN(x)(((x) & BIT_MASK_CTLX_LO_SRC_GATHER_EN) << BIT_SHIFT_CTLX_LO_SRC_GATHER_EN)
#define BIT_INVC_CTLX_LO_SRC_GATHER_EN (~(BIT_MASK_CTLX_LO_SRC_GATHER_EN << BIT_SHIFT_CTLX_LO_SRC_GATHER_EN))
#define BIT_SHIFT_CTLX_LO_DST_SCATTER_EN 18
#define BIT_MASK_CTLX_LO_DST_SCATTER_EN 0x1
#define BIT_CTLX_LO_DST_SCATTER_EN(x)(((x) & BIT_MASK_CTLX_LO_DST_SCATTER_EN) << BIT_SHIFT_CTLX_LO_DST_SCATTER_EN)
#define BIT_INVC_CTLX_LO_DST_SCATTER_EN (~(BIT_MASK_CTLX_LO_DST_SCATTER_EN << BIT_SHIFT_CTLX_LO_DST_SCATTER_EN))
#define BIT_SHIFT_CTLX_LO_TT_FC 20
#define BIT_MASK_CTLX_LO_TT_FC 0x7
#define BIT_CTLX_LO_TT_FC(x)(((x) & BIT_MASK_CTLX_LO_TT_FC) << BIT_SHIFT_CTLX_LO_TT_FC)
#define BIT_INVC_CTLX_LO_TT_FC (~(BIT_MASK_CTLX_LO_TT_FC << BIT_SHIFT_CTLX_LO_TT_FC))
#define BIT_SHIFT_CTLX_LO_DMS 23
#define BIT_MASK_CTLX_LO_DMS 0x3
#define BIT_CTLX_LO_DMS(x)(((x) & BIT_MASK_CTLX_LO_DMS) << BIT_MASK_CTLX_LO_DMS)
#define BIT_INVC_CTLX_LO_DMS (~(BIT_MASK_CTLX_LO_DMS << BIT_SHIFT_CTLX_LO_DMS))
#define BIT_SHIFT_CTLX_LO_SMS 25
#define BIT_MASK_CTLX_LO_SMS 0x3
#define BIT_CTLX_LO_SMS(x)(((x) & BIT_MASK_CTLX_LO_SMS) << BIT_SHIFT_CTLX_LO_SMS)
#define BIT_INVC_CTLX_LO_SMS (~(BIT_MASK_CTLX_LO_SMS << BIT_SHIFT_CTLX_LO_SMS))
#define BIT_SHIFT_CTLX_LO_LLP_DST_EN 27
#define BIT_MASK_CTLX_LO_LLP_DST_EN 0x1
#define BIT_CTLX_LO_LLP_DST_EN(x)(((x) & BIT_MASK_CTLX_LO_LLP_DST_EN) << BIT_SHIFT_CTLX_LO_LLP_DST_EN)
#define BIT_INVC_CTLX_LO_LLP_DST_EN (~(BIT_MASK_CTLX_LO_LLP_DST_EN << BIT_SHIFT_CTLX_LO_LLP_DST_EN))
#define BIT_SHIFT_CTLX_LO_LLP_SRC_EN 28
#define BIT_MASK_CTLX_LO_LLP_SRC_EN 0x1
#define BIT_CTLX_LO_LLP_SRC_EN(x)(((x) & BIT_MASK_CTLX_LO_LLP_SRC_EN) << BIT_SHIFT_CTLX_LO_LLP_SRC_EN)
#define BIT_INVC_CTLX_LO_LLP_SRC_EN (~(BIT_MASK_CTLX_LO_LLP_SRC_EN << BIT_SHIFT_CTLX_LO_LLP_SRC_EN))
#define BIT_SHIFT_CTLX_UP_BLOCK_BS 0
#define BIT_MASK_CTLX_UP_BLOCK_BS 0xFFF
#define BIT_CTLX_UP_BLOCK_BS(x)(((x) & BIT_MASK_CTLX_UP_BLOCK_BS) << BIT_SHIFT_CTLX_UP_BLOCK_BS)
#define BIT_INVC_CTLX_UP_BLOCK_BS (~(BIT_MASK_CTLX_UP_BLOCK_BS << BIT_SHIFT_CTLX_UP_BLOCK_BS))
#define BIT_SHIFT_CTLX_UP_DONE 12
#define BIT_MASK_CTLX_UP_DONE 0x1
#define BIT_CTLX_UP_DONE(x)(((x) & BIT_MASK_CTLX_UP_DONE) << BIT_SHIFT_CTLX_UP_DONE)
#define BIT_INVC_CTLX_UP_DONE (~(BIT_MASK_CTLX_UP_DONE << BIT_SHIFT_CTLX_UP_DONE))
//3 CFG Register Bit Control
#define BIT_SHIFT_CFGX_LO_CH_PRIOR 5
#define BIT_MASK_CFGX_LO_CH_PRIOR 0x7
#define BIT_CFGX_LO_CH_PRIOR(x)(((x) & BIT_MASK_CFGX_LO_CH_PRIOR) << BIT_SHIFT_CFGX_LO_CH_PRIOR)
#define BIT_INVC_CFGX_LO_CH_PRIOR (~(BIT_MASK_CFGX_LO_CH_PRIOR << BIT_SHIFT_CFGX_LO_CH_PRIOR))
#define BIT_SHIFT_CFGX_LO_CH_SUSP 8
#define BIT_MASK_CFGX_LO_CH_SUSP 0x1
#define BIT_CFGX_LO_CH_SUSP(x)(((x) & BIT_MASK_CFGX_LO_CH_SUSP) << BIT_SHIFT_CFGX_LO_CH_SUSP)
#define BIT_INVC_CFGX_LO_CH_SUSP (~(BIT_MASK_CFGX_LO_CH_SUSP << BIT_SHIFT_CFGX_LO_CH_SUSP))
#define BIT_SHIFT_CFGX_LO_FIFO_EMPTY 9
#define BIT_MASK_CFGX_LO_FIFO_EMPTY 0x1
#define BIT_CFGX_LO_FIFO_EMPTY(x)(((x) & BIT_MASK_CFGX_LO_FIFO_EMPTY) << BIT_SHIFT_CFGX_LO_FIFO_EMPTY)
#define BIT_INVC_CFGX_LO_FIFO_EMPTY (~(BIT_MASK_CFGX_LO_FIFO_EMPTY << BIT_SHIFT_CFGX_LO_FIFO_EMPTY))
#define BIT_SHIFT_CFGX_LO_HS_SEL_DST 10
#define BIT_MASK_CFGX_LO_HS_SEL_DST 0x1
#define BIT_CFGX_LO_HS_SEL_DST(x)(((x) & BIT_MASK_CFGX_LO_HS_SEL_DST) << BIT_SHIFT_CFGX_LO_HS_SEL_DST)
#define BIT_INVC_CFGX_LO_HS_SEL_DST (~(BIT_MASK_CFGX_LO_HS_SEL_DST << BIT_SHIFT_CFGX_LO_HS_SEL_DST))
#define BIT_SHIFT_CFGX_LO_HS_SEL_SRC 11
#define BIT_MASK_CFGX_LO_HS_SEL_SRC 0x1
#define BIT_CFGX_LO_HS_SEL_SRC(x)(((x) & BIT_MASK_CFGX_LO_HS_SEL_SRC) << BIT_SHIFT_CFGX_LO_HS_SEL_SRC)
#define BIT_INVC_CFGX_LO_HS_SEL_SRC (~(BIT_MASK_CFGX_LO_HS_SEL_SRC << BIT_SHIFT_CFGX_LO_HS_SEL_SRC))
#define BIT_SHIFT_CFGX_LO_LOCK_CH_L 12
#define BIT_MASK_CFGX_LO_LOCK_CH_L 0x3
#define BIT_CFGX_LO_LOCK_CH_L(x)(((x) & BIT_MASK_CFGX_LO_LOCK_CH_L) << BIT_SHIFT_CFGX_LO_LOCK_CH_L)
#define BIT_INVC_CFGX_LO_LOCK_CH_L (~(BIT_MASK_CFGX_LO_LOCK_CH_L << BIT_SHIFT_CFGX_LO_LOCK_CH_L))
#define BIT_SHIFT_CFGX_LO_LOCK_B_L 14
#define BIT_MASK_CFGX_LO_LOCK_B_L 0x3
#define BIT_CFGX_LO_LOCK_B_L(x)(((x) & BIT_MASK_CFGX_LO_LOCK_B_L) << BIT_SHIFT_CFGX_LO_LOCK_B_L)
#define BIT_INVC_CFGX_LO_LOCK_B_L (~(BIT_MASK_CFGX_LO_LOCK_B_L << BIT_SHIFT_CFGX_LO_LOCK_B_L))
#define BIT_SHIFT_CFGX_LO_LOCK_CH 16
#define BIT_MASK_CFGX_LO_LOCK_CH 0x1
#define BIT_CFGX_LO_LOCK_CH(x)(((x) & BIT_MASK_CFGX_LO_LOCK_CH) << BIT_SHIFT_CFGX_LO_LOCK_CH)
#define BIT_INVC_CFGX_LO_LOCK_CH (~(BIT_MASK_CFGX_LO_LOCK_CH << BIT_SHIFT_CFGX_LO_LOCK_CH))
#define BIT_SHIFT_CFGX_LO_LOCK_B 17
#define BIT_MASK_CFGX_LO_LOCK_B 0x1
#define BIT_CFGX_LO_LOCK_B(x)(((x) & BIT_MASK_CFGX_LO_LOCK_B) << BIT_SHIFT_CFGX_LO_LOCK_B)
#define BIT_INVC_CFGX_LO_LOCK_B (~(BIT_MASK_CFGX_LO_LOCK_B << BIT_SHIFT_CFGX_LO_LOCK_B))
#define BIT_SHIFT_CFGX_LO_DST_HS_POL 18
#define BIT_MASK_CFGX_LO_DST_HS_POL 0x1
#define BIT_CFGX_LO_DST_HS_POL(x)(((x) & BIT_MASK_CFGX_LO_DST_HS_POL) << BIT_SHIFT_CFGX_LO_DST_HS_POL)
#define BIT_INVC_CFGX_LO_DST_HS_POL (~(BIT_MASK_CFGX_LO_DST_HS_POL << BIT_SHIFT_CFGX_LO_DST_HS_POL))
#define BIT_SHIFT_CFGX_LO_SRC_HS_POL 19
#define BIT_MASK_CFGX_LO_SRC_HS_POL 0x1
#define BIT_CFGX_LO_SRC_HS_POL(x)(((x) & BIT_MASK_CFGX_LO_SRC_HS_POL) << BIT_SHIFT_CFGX_LO_SRC_HS_POL)
#define BIT_INVC_CFGX_LO_SRC_HS_POL (~(BIT_MASK_CFGX_LO_SRC_HS_POL << BIT_SHIFT_CFGX_LO_SRC_HS_POL))
#define BIT_SHIFT_CFGX_LO_MAX_ABRST 20
#define BIT_MASK_CFGX_LO_MAX_ABRST 0x3FF
#define BIT_CFGX_LO_MAX_ABRST(x)(((x) & BIT_MASK_CFGX_LO_MAX_ABRST) << BIT_SHIFT_CFGX_LO_MAX_ABRST)
#define BIT_INVC_CFGX_LO_MAX_ABRST (~(BIT_MASK_CFGX_LO_MAX_ABRST << BIT_SHIFT_CFGX_LO_MAX_ABRST))
#define BIT_SHIFT_CFGX_LO_RELOAD_SRC 30
#define BIT_MASK_CFGX_LO_RELOAD_SRC 0x1
#define BIT_CFGX_LO_RELOAD_SRC(x)(((x) & BIT_MASK_CFGX_LO_RELOAD_SRC) << BIT_SHIFT_CFGX_LO_RELOAD_SRC)
#define BIT_INVC_CFGX_LO_RELOAD_SRC (~(BIT_MASK_CFGX_LO_RELOAD_SRC << BIT_SHIFT_CFGX_LO_RELOAD_SRC))
#define BIT_SHIFT_CFGX_LO_RELOAD_DST 31
#define BIT_MASK_CFGX_LO_RELOAD_DST 0x1
#define BIT_CFGX_LO_RELOAD_DST(x)(((x) & BIT_MASK_CFGX_LO_RELOAD_DST) << BIT_SHIFT_CFGX_LO_RELOAD_DST)
#define BIT_INVC_CFGX_LO_RELOAD_DST (~(BIT_MASK_CFGX_LO_RELOAD_DST << BIT_SHIFT_CFGX_LO_RELOAD_DST))
#define BIT_SHIFT_CFGX_UP_FCMODE 0
#define BIT_MASK_CFGX_UP_FCMODE 0x1
#define BIT_CFGX_UP_FCMODE(x)(((x) & BIT_MASK_CFGX_UP_FCMODE) << BIT_SHIFT_CFGX_UP_FCMODE)
#define BIT_INVC_CFGX_UP_FCMODE (~(BIT_MASK_CFGX_UP_FCMODE << BIT_SHIFT_CFGX_UP_FCMODE))
#define BIT_SHIFT_CFGX_UP_FIFO_MODE 1
#define BIT_MASK_CFGX_UP_FIFO_MODE 0x1
#define BIT_CFGX_UP_FIFO_MODE(x)(((x) & BIT_MASK_CFGX_UP_FIFO_MODE) << BIT_SHIFT_CFGX_UP_FIFO_MODE)
#define BIT_INVC_CFGX_UP_FIFO_MODE (~(BIT_MASK_CFGX_UP_FIFO_MODE << BIT_SHIFT_CFGX_UP_FIFO_MODE))
#define BIT_SHIFT_CFGX_UP_PROTCTL 2
#define BIT_MASK_CFGX_UP_PROTCTL 0x7
#define BIT_CFGX_UP_PROTCTL(x)(((x) & BIT_MASK_CFGX_UP_PROTCTL) << BIT_SHIFT_CFGX_UP_PROTCTL)
#define BIT_INVC_CFGX_UP_PROTCTL (~(BIT_MASK_CFGX_UP_PROTCTL << BIT_SHIFT_CFGX_UP_PROTCTL))
#define BIT_SHIFT_CFGX_UP_DS_UPD_EN 5
#define BIT_MASK_CFGX_UP_DS_UPD_EN 0x1
#define BIT_CFGX_UP_DS_UPD_EN(x)(((x) & BIT_MASK_CFGX_UP_DS_UPD_EN) << BIT_SHIFT_CFGX_UP_DS_UPD_EN)
#define BIT_INVC_CFGX_UP_DS_UPD_EN (~(BIT_MASK_CFGX_UP_DS_UPD_EN << BIT_SHIFT_CFGX_UP_DS_UPD_EN))
#define BIT_SHIFT_CFGX_UP_SS_UPD_EN 6
#define BIT_MASK_CFGX_UP_SS_UPD_EN 0x1
#define BIT_CFGX_UP_SS_UPD_EN(x)(((x) & BIT_MASK_CFGX_UP_SS_UPD_EN) << BIT_SHIFT_CFGX_UP_SS_UPD_EN)
#define BIT_INVC_CFGX_UP_SS_UPD_EN (~(BIT_MASK_CFGX_UP_SS_UPD_EN << BIT_SHIFT_CFGX_UP_SS_UPD_EN))
#define BIT_SHIFT_CFGX_UP_SRC_PER 7
#define BIT_MASK_CFGX_UP_SRC_PER 0xF
#define BIT_CFGX_UP_SRC_PER(x)(((x) & BIT_MASK_CFGX_UP_SRC_PER) << BIT_SHIFT_CFGX_UP_SRC_PER)
#define BIT_INVC_CFGX_UP_SRC_PER (~(BIT_MASK_CFGX_UP_SRC_PER << BIT_SHIFT_CFGX_UP_SRC_PER))
#define BIT_SHIFT_CFGX_UP_DEST_PER 11
#define BIT_MASK_CFGX_UP_DEST_PER 0xF
#define BIT_CFGX_UP_DEST_PER(x)(((x) & BIT_MASK_CFGX_UP_DEST_PER) << BIT_SHIFT_CFGX_UP_DEST_PER)
#define BIT_INVC_CFGX_UP_DEST_PER (~(BIT_MASK_CFGX_UP_DEST_PER << BIT_SHIFT_CFGX_UP_DEST_PER))
typedef enum _GDMA_CHANNEL_NUM_ {
GdmaNoCh = 0x0000,
GdmaCh0 = 0x0101,
GdmaCh1 = 0x0202,
GdmaCh2 = 0x0404,
GdmaCh3 = 0x0808,
GdmaCh4 = 0x1010,
GdmaCh5 = 0x2020,
GdmaCh6 = 0x4040,
GdmaCh7 = 0x8080,
GdmaAllCh = 0xffff
}GDMA_CHANNEL_NUM, *PGDMA_CHANNEL_NUM;
//3 CTL register struct
typedef enum _GDMA_CTL_TT_FC_TYPE_ {
TTFCMemToMem = 0x00,
TTFCMemToPeri = 0x01,
TTFCPeriToMem = 0x02
}GDMA_CTL_TT_FC_TYPE, *PGDMA_CTL_TT_FC_TYPE;
//Max type = Bus Width
typedef enum _GDMA_CTL_TR_WIDTH_ {
TrWidthOneByte = 0x00,
TrWidthTwoBytes = 0x01,
TrWidthFourBytes = 0x02
}GDMA_CTL_TR_WIDTH, *PGDMA_CTL_TR_WIDTH;
typedef enum _GDMA_CTL_MSIZE_ {
MsizeOne = 0x00,
MsizeFour = 0x01,
MsizeEight = 0x02
}GDMA_CTL_MSIZE, *PGDMA_CTL_MSIZE;
typedef enum _GDMA_INC_TYPE_ {
IncType = 0x00,
DecType = 0x01,
NoChange = 0x02
}GDMA_INC_TYPE, *PGDMA_INC_TYPE;
typedef struct _GDMA_CTL_REG_ {
GDMA_CTL_TT_FC_TYPE TtFc;
GDMA_CTL_TR_WIDTH DstTrWidth;
GDMA_CTL_TR_WIDTH SrcTrWidth;
GDMA_INC_TYPE Dinc;
GDMA_INC_TYPE Sinc;
GDMA_CTL_MSIZE DestMsize;
GDMA_CTL_MSIZE SrcMsize;
u8 IntEn :1; // Bit 0
u8 SrcGatherEn :1; // Bit 1
u8 DstScatterEn :1; // Bit 2
u8 LlpDstEn :1; // Bit 3
u8 LlpSrcEn :1; // Bit 4
u8 Done :1; // Bit 5
u8 Rsvd6To7 :2; //Bit 6 -7
u16 BlockSize;
}GDMA_CTL_REG, *PGDMA_CTL_REG;
//3 CFG Register Structure
typedef enum _GDMA_CH_PRIORITY_ {
Prior0 = 0,
Prior1 = 1,
Prior2 = 2,
Prior3 = 3,
Prior4 = 4,
Prior5 = 5,
Prior6 = 6,
Prior7 = 7
}GDMA_CH_PRIORITY, *PGDMA_CH_PRIORITY;
typedef enum _GDMA_LOCK_LEVEL_ {
OverComplDmaTransfer = 0x00,
OverComplDmaBlockTransfer = 0x01,
OverComplDmaTransation = 0x02
}GDMA_LOCK_LEVEL, *PGDMA_LOCK_LEVEL;
typedef struct _GDMA_CFG_REG_ {
GDMA_CH_PRIORITY ChPrior;
GDMA_LOCK_LEVEL LockBL;
GDMA_LOCK_LEVEL LockChL;
u16 MaxAbrst;
u8 SrcPer;
u8 DestPer;
u16 ChSusp :1; //Bit 0
u16 FifoEmpty :1; //Bit 1
u16 HsSelDst :1; //Bit 2
u16 HsSelSrc :1; //Bit 3
u16 LockCh :1; //Bit 4
u16 LockB :1; //Bit 5
u16 DstHsPol :1; //Bit 6
u16 SrcHsPol :1; //Bit 7
u16 ReloadSrc :1; //Bit 8
u16 ReloadDst :1; //Bit 9
u16 FifoMode :1; //Bit 10
u16 DsUpdEn :1; //Bit 11
u16 SsUpdEn :1; //Bit 12
u16 Rsvd13To15 :3;
}GDMA_CFG_REG, *PGDMA_CFG_REG;
typedef enum _GDMA_ISR_TYPE_ {
TransferType = 0x1,
BlockType = 0x2,
SrcTransferType = 0x4,
DstTransferType = 0x8,
ErrType = 0x10
}GDMA_ISR_TYPE, *PGDMA_ISR_TYPE;
VOID
HalGdmaOnOffRtl8195a (
IN VOID *Data
);
BOOL
HalGdamChInitRtl8195a(
IN VOID *Data
);
BOOL
HalGdmaChSetingRtl8195a(
IN VOID *Data
);
BOOL
HalGdmaChBlockSetingRtl8195a(
IN VOID *Data
);
BOOL
HalGdmaChBlockSetingRtl8195a_Patch(
IN VOID *Data
);
VOID
HalGdmaChDisRtl8195a (
IN VOID *Data
);
VOID
HalGdmaChEnRtl8195a (
IN VOID *Data
);
VOID
HalGdmaChIsrEnAndDisRtl8195a (
IN VOID *Data
);
u8
HalGdmaChIsrCleanRtl8195a (
IN VOID *Data
);
VOID
HalGdmaChCleanAutoSrcRtl8195a (
IN VOID *Data
);
VOID
HalGdmaChCleanAutoDstRtl8195a (
IN VOID *Data
);
u32
HalGdmaQueryDArRtl8195a(
IN VOID *Data
);
u32
HalGdmaQuerySArRtl8195a(
IN VOID *Data
);
BOOL
HalGdmaQueryChEnRtl8195a (
IN VOID *Data
);
#ifdef CONFIG_CHIP_E_CUT
_LONG_CALL_ BOOL
HalGdmaChBlockSetingRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ u32
HalGdmaQueryDArRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ u32
HalGdmaQuerySArRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ BOOL
HalGdmaQueryChEnRtl8195a_V04 (
IN VOID *Data
);
#endif // #ifdef CONFIG_CHIP_E_CUT
#endif

View file

@ -0,0 +1,398 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_GPIO_H_
#define _RTL8195A_GPIO_H_
#include "hal_api.h"
#include "hal_gpio.h"
#define GPIO_PORTA_DR 0x00 // data register
#define GPIO_PORTA_DDR 0x04 // data direction
#define GPIO_PORTA_CTRL 0x08 // data source control, we should keep it as default: data source from software
#define GPIO_PORTB_DR 0x0c // data register
#define GPIO_PORTB_DDR 0x10 // data direction
#define GPIO_PORTB_CTRL 0x14 // data source control, we should keep it as default: data source from software
#define GPIO_PORTC_DR 0x18 // data register
#define GPIO_PORTC_DDR 0x1c // data direction
#define GPIO_PORTC_CTRL 0x20 // data source control, we should keep it as default: data source from software
//1 Only the PORTA can be configured to generate interrupts
#define GPIO_INT_EN 0x30 // Interrupt enable register
#define GPIO_INT_MASK 0x34 // Interrupt mask
#define GPIO_INT_TYPE 0x38 // Interrupt type(level/edge) register
#define GPIO_INT_POLARITY 0x3C // Interrupt polarity(Active low/high) register
#define GPIO_INT_STATUS 0x40 // Interrupt status
#define GPIO_INT_RAWSTATUS 0x44 // Interrupt status without mask
#define GPIO_DEBOUNCE 0x48 // Interrupt signal debounce
#define GPIO_PORTA_EOI 0x4c // Clear interrupt
#define GPIO_EXT_PORTA 0x50 // GPIO IN read or OUT read back
#define GPIO_EXT_PORTB 0x54 // GPIO IN read or OUT read back
#define GPIO_EXT_PORTC 0x58 // GPIO IN read or OUT read back
#define GPIO_INT_SYNC 0x60 // Is level-sensitive interrupt being sync sith PCLK
enum {
HAL_GPIO_HIGHZ = 0,
HAL_GPIO_PULL_LOW = 1,
HAL_GPIO_PULL_HIGH = 2
};
typedef enum
{
GPIO_Mode_IN = 0x00, /*!< GPIO Input Mode */
GPIO_Mode_OUT = 0x01, /*!< GPIO Output Mode */
GPIO_Mode_INT = 0x02, /*!< GPIO Interrupt Mode */
GPIO_Mode_MAX = 0x03,
}GPIOMode_TypeDef;
/**
* @brief GPIO Configuration PullUp PullDown enumeration
*/
typedef enum
{
GPIO_PuPd_NOPULL = 0x00, /*!< GPIO Interrnal HIGHZ */
GPIO_PuPd_DOWN = 0x01, /*!< GPIO Interrnal Pull DOWN */
GPIO_PuPd_UP = 0x02, /*!< GPIO Interrnal Pull UP */
}GPIOPuPd_TypeDef;
/**
* @brief Setting interrupt's trigger type
*
* Setting interrupt's trigger type
*/
typedef enum
{
GPIO_INT_Trigger_LEVEL = 0x0, /**< This interrupt is level trigger */
GPIO_INT_Trigger_EDGE = 0x1, /**< This interrupt is edge trigger */
}GPIOIT_LevelType;
/**
* @brief Setting interrupt active mode
*
* Setting interrupt active mode
*/
typedef enum
{
GPIO_INT_POLARITY_ACTIVE_LOW = 0x0, /**< Setting interrupt to low active: falling edge or low level */
GPIO_INT_POLARITY_ACTIVE_HIGH = 0x1, /**< Setting interrupt to high active: rising edge or high level */
}GPIOIT_PolarityType;
/**
* @brief Enable/Disable interrupt debounce mode
*
* Enable/Disable interrupt debounce mode
*/
typedef enum
{
GPIO_INT_DEBOUNCE_DISABLE = 0x0, /**< Disable interrupt debounce */
GPIO_INT_DEBOUNCE_ENABLE = 0x1, /**< Enable interrupt debounce */
}GPIOIT_DebounceType;
typedef struct {
GPIOMode_TypeDef GPIO_Mode; /*!< Specifies the operating mode for the selected pins. */
GPIOPuPd_TypeDef GPIO_PuPd; /*!< Specifies the operating Pull-up/Pull down for the selected pins. */
GPIOIT_LevelType GPIO_ITTrigger; /**< Interrupt mode is level or edge trigger */
GPIOIT_PolarityType GPIO_ITPolarity; /**< Interrupt mode is high or low active trigger */
GPIOIT_DebounceType GPIO_ITDebounce; /**< Enable or disable de-bounce for interrupt */
u32 GPIO_Pin; // Pin: [7:5]: port number, [4:0]: pin number
}GPIO_InitTypeDef;
//======================================================
// ROM Function prototype
extern PHAL_GPIO_ADAPTER _pHAL_Gpio_Adapter;
#ifndef CONFIG_RELEASE_BUILD_LIBRARIES
static __inline HAL_Status
GPIO_Lock (
VOID
)
{
HAL_Status Status;
if (_pHAL_Gpio_Adapter->EnterCritical) {
_pHAL_Gpio_Adapter->EnterCritical();
}
if(_pHAL_Gpio_Adapter->Locked) {
Status = HAL_BUSY;
}
else {
_pHAL_Gpio_Adapter->Locked = 1;
Status = HAL_OK;
}
if (_pHAL_Gpio_Adapter->ExitCritical) {
_pHAL_Gpio_Adapter->ExitCritical();
}
return Status;
}
static __inline VOID
GPIO_UnLock (
VOID
)
{
if (_pHAL_Gpio_Adapter->EnterCritical) {
_pHAL_Gpio_Adapter->EnterCritical();
}
_pHAL_Gpio_Adapter->Locked = 0;
if (_pHAL_Gpio_Adapter->ExitCritical) {
_pHAL_Gpio_Adapter->ExitCritical();
}
}
#endif // #ifndef CONFIG_RELEASE_BUILD_LIBRARIES
_LONG_CALL_ extern u32
HAL_GPIO_IrqHandler_8195a(
IN VOID *pData
);
_LONG_CALL_ extern u32
HAL_GPIO_MbedIrqHandler_8195a(
IN VOID *pData
);
_LONG_CALL_ HAL_Status
HAL_GPIO_IntCtrl_8195a(
HAL_GPIO_PIN *GPIO_Pin,
u32 En
);
_LONG_CALL_ HAL_Status
HAL_GPIO_Init_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_DeInit_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_GPIO_PIN_STATE
HAL_GPIO_ReadPin_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_WritePin_8195a(
HAL_GPIO_PIN *GPIO_Pin,
HAL_GPIO_PIN_STATE Pin_State
);
_LONG_CALL_ HAL_Status
HAL_GPIO_RegIrq_8195a(
IN PIRQ_HANDLE pIrqHandle
);
_LONG_CALL_ HAL_Status
HAL_GPIO_UnRegIrq_8195a(
IN PIRQ_HANDLE pIrqHandle
);
_LONG_CALL_ HAL_Status
HAL_GPIO_UserRegIrq_8195a(
HAL_GPIO_PIN *GPIO_Pin,
VOID *IrqHandler,
VOID *IrqData
);
_LONG_CALL_ HAL_Status
HAL_GPIO_UserUnRegIrq_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_MaskIrq_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_UnMaskIrq_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_IntDebounce_8195a(
HAL_GPIO_PIN *GPIO_Pin,
u8 Enable
);
_LONG_CALL_ u32
HAL_GPIO_GetIPPinName_8195a(
u32 chip_pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_PullCtrl_8195a(
u32 chip_pin,
u8 pull_type
);
_LONG_CALL_ u32
GPIO_GetChipPinName_8195a(
u32 port,
u32 pin
);
_LONG_CALL_ VOID
GPIO_PullCtrl_8195a(
u32 chip_pin,
u8 pull_type
);
_LONG_CALL_ VOID
GPIO_Int_SetType_8195a(
u8 pin_num,
u8 int_mode
);
_LONG_CALL_ HAL_Status HAL_GPIO_IntCtrl_8195aV02(HAL_GPIO_PIN *GPIO_Pin, u32 En);
_LONG_CALL_ u32 GPIO_Int_Clear_8195aV02(u32 irq_clr);
HAL_Status
HAL_GPIO_ClearISR_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
/********** HAL In-Line Functions **********/
/**
* @brief Reads the specified input port pin.
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval The input port pin current status(High or Low).
*/
static __inline s32
HAL_GPIO_ReadPin(
HAL_GPIO_PIN *GPIO_Pin
)
{
return (s32)HAL_GPIO_ReadPin_8195a(GPIO_Pin);
}
/**
* @brief Write the specified output port pin.
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @param Pin_State: The state going to be set to the assigned GPIO pin.
*
* @retval None
*/
static __inline VOID
HAL_GPIO_WritePin(
HAL_GPIO_PIN *GPIO_Pin,
u32 Value
)
{
HAL_GPIO_WritePin_8195a(GPIO_Pin, (HAL_GPIO_PIN_STATE)Value);
}
/**
* @brief To register a user interrupt handler for a specified pin
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @param IrqHandler: The IRQ handler to be assigned to the specified pin
*
* @param IrqData: The pointer will be pass the the IRQ handler
*
* @retval None
*/
static __inline VOID
HAL_GPIO_UserRegIrq(
HAL_GPIO_PIN *GPIO_Pin,
VOID *IrqHandler,
VOID *IrqData
)
{
HAL_GPIO_UserRegIrq_8195a(GPIO_Pin, IrqHandler, IrqData);
}
/**
* @brief To un-register a user interrupt handler for a specified pin
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval None
*/
static __inline VOID
HAL_GPIO_UserUnRegIrq(
HAL_GPIO_PIN *GPIO_Pin
)
{
HAL_GPIO_UserUnRegIrq_8195a(GPIO_Pin);
}
/**
* @brief Enable/Disable GPIO interrupt
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin initialization.
*
* @param En: Enable (1) or Disable (0)
*
* @retval HAL_Status
*/
static __inline VOID
HAL_GPIO_IntCtrl(
HAL_GPIO_PIN *GPIO_Pin,
u32 En
)
{
HAL_GPIO_IntCtrl_8195a(GPIO_Pin, En);
}
/**
* @brief Mask the interrupt of a specified pin
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval None
*/
static __inline VOID
HAL_GPIO_MaskIrq(
HAL_GPIO_PIN *GPIO_Pin
)
{
HAL_GPIO_MaskIrq_8195a(GPIO_Pin);
}
/**
* @brief UnMask the interrupt of a specified pin
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval None
*/
static __inline VOID
HAL_GPIO_UnMaskIrq(
HAL_GPIO_PIN *GPIO_Pin
)
{
HAL_GPIO_ClearISR_8195a(GPIO_Pin);
HAL_GPIO_UnMaskIrq_8195a(GPIO_Pin);
}
#endif // end of "#define _RTL8195A_GPIO_H_"

View file

@ -0,0 +1,404 @@
/******************************************************************************
*
* Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*******************************************************************************/
#ifndef __RTL8195A_GSPI_H__
#define __RTL8195A_GSPI_H__
#define SPI_LOCAL_DOMAIN 0x0
#define SPI_TXFIFO_DOMAIN 0xc
#define SPI_RXFIFO_DOMAIN 0x1f
//IO Bus domain address mapping
#define DEFUALT_OFFSET 0x0
#define SPI_LOCAL_OFFSET 0x10250000
#define SPI_TX_FIFO_OFFSET 0x10310000
#define SPI_RX_FIFO_OFFSET 0x10340000
#define SPI_LOCAL_DEVICE_ID 0
#define SPI_TXQ_FIFO_DEVICE_ID 3
#define SPI_RXQ_FIFO_DEVICE_ID 7
#define SPI_UNDEFINED_DEVICE_ID (-1)
//SPI Local registers
#define SPI_REG_INT_CTRL 0x0004 // 4 bytes, SPI INT Control
#define SPI_REG_INT_TIMEOUT 0x0006 // 2 bytes, SPI 32us INT timout
#define SPI_REG_HIMR 0x0014 // 4 bytes, SPI Host Interrupt Mask
#define SPI_REG_HISR 0x0018 // 4 bytes, SPI Host Interrupt Service Routine
#define SPI_REG_RX0_REQ_LEN 0x001C // 4 bytes, RXDMA Request Length
#define SPI_REG_FREE_TX_SPACE 0x0020 // 4 bytes, Free Tx Buffer Page
#define SPI_REG_TX_SEQNUM 0x0024 // 1 byte, TX Sequence Number Definition
#define SPI_REG_HCPWM 0x0038 // 1 byte, HCI Current Power Mode
#define SPI_REG_HCPWM2 0x003A // 2 bytes, HCI Current Power Mode 2
#define SPI_REG_AVAI_PATH_L 0x0040 // 4 bytes, SPI TX Available Low Size reg
#define SPI_REG_AVAI_PATH_H 0x0044 // 4 bytes, SPI TX Available High Size reg
#define SPI_REG_RX_AGG_CTL 0x0048 // 4 bytes, SPI RX AGG control
#define SPI_REG_H2C_MSG 0x004C // 4 bytes, SPI_REG_H2C_MSG
#define SPI_REG_C2H_MSG 0x0050 // 4 bytes, SPI_REG_C2H_MSG
#define SPI_REG_HRPWM 0x0080 // 1 byte, SPI_REG_HRPWM
#define SPI_REG_HPS_CLKR 0x0084 // 1 byte, not uesd
#define SPI_REG_CPU_IND 0x0087 // 1 byte, firmware indication to host
#define SPI_REG_32K_TRANS_CTL 0x0088 // 1 byte, 32K transparent control, BIT0 EN32K_TRANS
#define SPI_REG_32K_IDLE_TIME 0x008B // 1 byte, 32K idle time,
#define SPI_REG_DELY_LINE_SEL 0x008C // 1 byte, Delay line selection,
#define SPI_REG_SPI_CFG 0x00F0 // 1 byte, SPI configuration,
#define LOCAL_REG_FREE_TX_SPACE (SPI_LOCAL_OFFSET | SPI_REG_FREE_TX_SPACE)
// Register SPI_REG_CPU_IND
#define SPI_CPU_RDY_IND (BIT0)
/************************************************/
// SPI_REG_HISR: SDIO Host Interrupt Service Routine
#define SPI_HISR_RX_REQUEST (BIT0)
#define SPI_HISR_AVAL_INT (BIT1)
#define SPI_HISR_TXPKT_OVER_BUFF (BIT2)
#define SPI_HISR_TX_AGG_SIZE_MISMATCH (BIT3)
#define SPI_HISR_TXBD_OVF (BIT4)
//BIT5~16 not used
#define SPI_HISR_C2H_MSG_INT (BIT17)
#define SPI_HISR_CPWM1_INT (BIT18)
#define SPI_HISR_CPWM2_INT (BIT19)
//BIT20~31 not used
#define SPI_HISR_CPU_NOT_RDY (BIT22)
#define MASK_SPI_HISR_CLEAR (SPI_HISR_RX_REQUEST |\
SPI_HISR_AVAL_INT |\
SPI_HISR_TXPKT_OVER_BUFF |\
SPI_HISR_TX_AGG_SIZE_MISMATCH |\
SPI_HISR_TXBD_OVF |\
SPI_HISR_C2H_MSG_INT |\
SPI_HISR_CPWM1_INT |\
SPI_HISR_CPWM2_INT)
// RTL8195A SPI Host Interrupt Mask Register
#define SPI_HIMR_RX_REQUEST_MSK (BIT0)
#define SPI_HIMR_AVAL_MSK (BIT1)
#define SPI_HIMR_TXPKT_SIZE_OVER_BUFF_MSK (BIT2)
#define SPI_HIMR_AGG_SIZE_MISMATCH_MSK (BIT3)
#define SPI_HIMR_TXBD_OVF_MSK (BIT4)
//BIT5~16 not used
#define SPI_HIMR_C2H_MSG_INT_MSK (BIT17)
#define SPI_HIMR_CPWM1_INT_MSK (BIT18)
#define SPI_HIMR_CPWM2_INT_MSK (BIT19)
//BIT20~31 not used
#define SPI_HIMR_DISABLED 0
// Register SPI_REG_HCPWM
#define SPI_HCPWM_WLAN_TRX (BIT1)
enum{
SPI_LITTLE_ENDIAN = 2,
SPI_BIG_ENDIAN = 0
};
enum{
SPI_WORD_LEN_16 = 0,
SPI_WORD_LEN_32 = 1
};
typedef enum{
SPI_LITTLE_ENDIAN_16 = SPI_LITTLE_ENDIAN|SPI_WORD_LEN_16,
SPI_LITTLE_ENDIAN_32 = SPI_LITTLE_ENDIAN|SPI_WORD_LEN_32, // default configure
SPI_BIG_ENDIAN_16 = SPI_BIG_ENDIAN|SPI_WORD_LEN_16,
SPI_BIG_ENDIAN_32 = SPI_BIG_ENDIAN|SPI_WORD_LEN_32
}_gspi_conf_t;
#define GSPI_CMD_LEN 4
#define GSPI_STATUS_LEN 8
#define FILL_SPI_CMD(byte_en, addr, domain_id, fun, write_flag) ((byte_en & 0xff) | ((addr & 0xffff) << 8) \
| ((domain_id & 0x1f) << 24) | ((fun & 0x3) << 29) | ((write_flag & 0x1) << 31))
#define GET_STATUS_HISR(status) ((((*(u32*)status)) & 0x3) |((((*(u32*)status) >> 2) & 0x7) << 17))
#define GET_STATUS_FREE_TX(status) ((((*(u32*)status) >> 5) & 0x7ffffff) << 2)
#define GET_STATUS_RXQ_REQ_LEN(status) (((*(u32*)((u8 *)status + 4))) & 0xffffff)
#define GET_STATUS_TX_SEQ(status) (((*(u32*)((u8 *)status + 4)) >> 24) & 0xff)
#define GSPI_CMD_TX 0x83 //
#define GSPI_CMD_RX 0X82
// define transmit packat type
#define GPSI_TX_PACKET_802_3 (0x83)
#define GSPI_TX_PACKET_802_11 (0x81)
#define GSPI_TX_H2C_CMD (0x11)
#define GSPI_TX_MEM_READ (0x51)
#define GSPI_TX_MEM_WRITE (0x53)
#define GSPI_TX_MEM_SET (0x55)
#define GSPI_TX_FM_FREETOGO (0x61)
//define receive packet type
#define GSPI_RX_PACKET_802_3 (0x82)
#define GSPI_RX_PACKET_802_11 (0x80)
#define GSPI_RX_C2H_CMD (0x10)
#define GSPI_RX_MEM_READ (0x50)
#define GSPI_RX_MEM_WRITE (0x52)
#define GSPI_RX_MEM_SET (0x54)
#define GSPI_RX_FM_FREETOGO (0x60)
typedef struct _GSPI_TX_DESC{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 rsvd0:24;
#else
u32 rsvd0:24;
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 rsvd1;
// u4Byte 3
u32 rsvd2;
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} GSPI_TX_DESC, *PGSPI_TX_DESC;
typedef struct _GSPI_RX_DESC{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 pkt_len:16; // bit[15:0], the packet size
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 rsvd0:6; // bit[29:24]
u32 icv:1; // bit[30], ICV error
u32 crc:1; // bit[31], CRC error
#else
u32 crc:1; // bit[31], CRC error
u32 icv:1; // bit[30], ICV error
u32 rsvd0:6; // bit[29:24]
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 pkt_len:16; // bit[15:0], the packet size
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the type of this packet
u32 rsvd1:24; // bit[31:8]
#else
u32 rsvd1:24; // bit[31:8]
u32 type:8; // bit[7:0], the type of this packet
#endif
// u4Byte 2
u32 rsvd2;
// u4Byte 3
u32 rsvd3;
// u4Byte 4
u32 rsvd4;
// u4Byte 5
u32 rsvd5;
} GSPI_RX_DESC, *PGSPI_RX_DESC;
#define SIZE_TX_DESC (sizeof(GSPI_TX_DESC))
#define SIZE_RX_DESC (sizeof(GSPI_RX_DESC))
// For memory read command
typedef struct _GSPI_DESC_MR{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 pkt_len:16; // bit[15:0], the packet size
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 rsvd0:8; // bit[31:24]
#else
u32 rsvd0:8; // bit[31:24]
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 pkt_len:16; // bit[15:0], the packet size
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the type of this packet
u32 rsvd1:24; // bit[31:8]
#else
u32 rsvd1:24; // bit[31:8]
u32 type:8; // bit[7:0], the type of this packet
#endif
// u4Byte 2
u32 start_addr;
// u4Byte 3
u32 rsvd2;
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} GSPI_DESC_MR, *PGSPI_DESC_MR;
// For memory write reply command
typedef struct _GSPI_DESC_MW{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 reply:1; // bit[8], request to send a reply message
u32 rsvd0:23;
#else
u32 rsvd0:23;
u32 reply:1; // bit[8], request to send a reply message
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 start_addr; // memory write start address
// u4Byte 3
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 write_len:16; // bit[15:0], the length to write
u32 rsvd2:16; // bit[31:16]
#else
u32 rsvd2:16; // bit[31:16]
u32 write_len:16; // bit[15:0], the length to write
#endif
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} GSPI_DESC_MW, *PGSPI_DESC_MW;
// For memory set command
typedef struct _GSPI_DESC_MS{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 data:8; // bit[8:15], the value to be written to the memory
u32 reply:1; // bit[16], request to send a reply message
u32 rsvd0:15;
#else
u32 rsvd0:15;
u32 reply:1; // bit[16], request to send a reply message
u32 data:8; // bit[8:15], the value to be written to the memory
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 start_addr; // memory write start address
// u4Byte 3
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 write_len:16; // bit[15:0], the length to write
u32 rsvd2:16; // bit[31:16]
#else
u32 rsvd2:16; // bit[31:16]
u32 write_len:16; // bit[15:0], the length to write
#endif
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} GSPI_DESC_MS, *PGSPI_DESC_MS;
// TX Desc for Jump to Start command
typedef struct _GSPI_DESC_JS{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 rsvd0:24;
#else
u32 rsvd0:24;
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 start_fun; // the pointer of the startup function
// u4Byte 3
u32 rsvd2;
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} GSPI_DESC_JS, *PGSPI_DESC_JS;
// CCPWM2 bit map definition for Firmware download
#define GSPI_INIT_DONE (BIT0)
#define GSPI_MEM_WR_DONE (BIT1)
#define GSPI_MEM_RD_DONE (BIT2)
#define GSPI_MEM_ST_DONE (BIT3)
#define GSPI_CPWM2_TOGGLE (BIT15)
// Register REG_SPDIO_CPU_IND
#define GPSI_SYSTEM_TRX_RDY_IND (BIT0)
#endif //__GSPI_REG_H__

View file

@ -0,0 +1,860 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_I2C_H_
#define _RTL8195A_I2C_H_
#include "hal_api.h"
//================ Register Bit Field ==================
//2 REG_DW_I2C_IC_CON
#define BIT_IC_CON_IC_SLAVE_DISABLE BIT(6)
#define BIT_SHIFT_IC_CON_IC_SLAVE_DISABLE 6
#define BIT_MASK_IC_CON_IC_SLAVE_DISABLE 0x1
#define BIT_CTRL_IC_CON_IC_SLAVE_DISABLE(x) (((x) & BIT_MASK_IC_CON_IC_SLAVE_DISABLE) << BIT_SHIFT_IC_CON_IC_SLAVE_DISABLE)
#define BIT_IC_CON_IC_RESTART_EN BIT(5)
#define BIT_SHIFT_IC_CON_IC_RESTART_EN 5
#define BIT_MASK_IC_CON_IC_RESTART_EN 0x1
#define BIT_CTRL_IC_CON_IC_RESTART_EN(x) (((x) & BIT_MASK_IC_CON_IC_RESTART_EN) << BIT_SHIFT_IC_CON_IC_RESTART_EN)
#define BIT_IC_CON_IC_10BITADDR_MASTER BIT(4)
#define BIT_SHIFT_IC_CON_IC_10BITADDR_MASTER 4
#define BIT_MASK_IC_CON_IC_10BITADDR_MASTER 0x1
#define BIT_CTRL_IC_CON_IC_10BITADDR_MASTER(x) (((x) & BIT_MASK_IC_CON_IC_10BITADDR_MASTER) << BIT_SHIFT_IC_CON_IC_10BITADDR_MASTER)
#define BIT_IC_CON_IC_10BITADDR_SLAVE BIT(3)
#define BIT_SHIFT_IC_CON_IC_10BITADDR_SLAVE 3
#define BIT_MASK_IC_CON_IC_10BITADDR_SLAVE 0x1
#define BIT_CTRL_IC_CON_IC_10BITADDR_SLAVE(x) (((x) & BIT_MASK_IC_CON_IC_10BITADDR_SLAVE) << BIT_SHIFT_IC_CON_IC_10BITADDR_SLAVE)
#define BIT_SHIFT_IC_CON_SPEED 1
#define BIT_MASK_IC_CON_SPEED 0x3
#define BIT_IC_CON_SPEED(x) (((x) & BIT_MASK_IC_CON_SPEED) << BIT_SHIFT_IC_CON_SPEED)
#define BIT_CTRL_IC_CON_SPEED(x) (((x) & BIT_MASK_IC_CON_SPEED) << BIT_SHIFT_IC_CON_SPEED)
#define BIT_GET_IC_CON_SPEED(x) (((x) >> BIT_SHIFT_IC_CON_SPEED) & BIT_MASK_IC_CON_SPEED)
#define BIT_IC_CON_MASTER_MODE BIT(0)
#define BIT_SHIFT_IC_CON_MASTER_MODE 0
#define BIT_MASK_IC_CON_MASTER_MODE 0x1
#define BIT_CTRL_IC_CON_MASTER_MODE(x) (((x) & BIT_MASK_IC_CON_MASTER_MODE) << BIT_SHIFT_IC_CON_MASTER_MODE)
//2 REG_DW_I2C_IC_TAR
#define BIT_IC_TAR_IC_10BITADDR_MASTER BIT(12)
#define BIT_SHIFT_IC_TAR_IC_10BITADDR_MASTER 12
#define BIT_MASK_IC_TAR_IC_10BITADDR_MASTER 0x1
#define BIT_CTRL_IC_TAR_IC_10BITADDR_MASTER(x) (((x) & BIT_MASK_IC_TAR_IC_10BITADDR_MASTER) << BIT_SHIFT_IC_TAR_IC_10BITADDR_MASTER)
#define BIT_IC_TAR_SPECIAL BIT(11)
#define BIT_SHIFT_IC_TAR_SPECIAL 11
#define BIT_MASK_IC_TAR_SPECIAL 0x1
#define BIT_CTRL_IC_TAR_SPECIAL(x) (((x) & BIT_MASK_IC_TAR_SPECIAL) << BIT_SHIFT_IC_TAR_SPECIAL)
#define BIT_IC_TAR_GC_OR_START BIT(10)
#define BIT_SHIFT_IC_TAR_GC_OR_START 10
#define BIT_MASK_IC_TAR_GC_OR_START 0x1
#define BIT_CTRL_IC_TAR_GC_OR_START(x) (((x) & BIT_MASK_IC_TAR_GC_OR_START) << BIT_SHIFT_IC_TAR_GC_OR_START)
#define BIT_SHIFT_IC_TAR 0
#define BIT_MASK_IC_TAR 0x3ff
#define BIT_IC_TAR(x) (((x) & BIT_MASK_IC_TAR) << BIT_SHIFT_IC_TAR)
#define BIT_CTRL_IC_TAR(x) (((x) & BIT_MASK_IC_TAR) << BIT_SHIFT_IC_TAR)
#define BIT_GET_IC_TAR(x) (((x) >> BIT_SHIFT_IC_TAR) & BIT_MASK_IC_TAR)
//2 REG_DW_I2C_IC_SAR
#define BIT_SHIFT_IC_SAR 0
#define BIT_MASK_IC_SAR 0x3ff
#define BIT_IC_SAR(x) (((x) & BIT_MASK_IC_SAR) << BIT_SHIFT_IC_SAR)
#define BIT_CTRL_IC_SAR(x) (((x) & BIT_MASK_IC_SAR) << BIT_SHIFT_IC_SAR)
#define BIT_GET_IC_SAR(x) (((x) >> BIT_SHIFT_IC_SAR) & BIT_MASK_IC_SAR)
//2 REG_DW_I2C_IC_HS_MADDR
#define BIT_SHIFT_IC_HS_MADDR 0
#define BIT_MASK_IC_HS_MADDR 0x7
#define BIT_IC_HS_MADDR(x) (((x) & BIT_MASK_IC_HS_MADDR) << BIT_SHIFT_IC_HS_MADDR)
#define BIT_CTRL_IC_HS_MADDR(x) (((x) & BIT_MASK_IC_HS_MADDR) << BIT_SHIFT_IC_HS_MADDR)
#define BIT_GET_IC_HS_MADDR(x) (((x) >> BIT_SHIFT_IC_HS_MADDR) & BIT_MASK_IC_HS_MADDR)
//2 REG_DW_I2C_IC_DATA_CMD
#define BIT_IC_DATA_CMD_RESTART BIT(10)
#define BIT_SHIFT_IC_DATA_CMD_RESTART 10
#define BIT_MASK_IC_DATA_CMD_RESTART 0x1
#define BIT_CTRL_IC_DATA_CMD_RESTART(x) (((x) & BIT_MASK_IC_DATA_CMD_RESTART) << BIT_SHIFT_IC_DATA_CMD_RESTART)
#define BIT_IC_DATA_CMD_STOP BIT(9)
#define BIT_SHIFT_IC_DATA_CMD_STOP 9
#define BIT_MASK_IC_DATA_CMD_STOP 0x1
#define BIT_CTRL_IC_DATA_CMD_STOP(x) (((x) & BIT_MASK_IC_DATA_CMD_STOP) << BIT_SHIFT_IC_DATA_CMD_STOP)
#define BIT_IC_DATA_CMD_CMD BIT(8)
#define BIT_SHIFT_IC_DATA_CMD_CMD 8
#define BIT_MASK_IC_DATA_CMD_CMD 0x1
#define BIT_CTRL_IC_DATA_CMD_CMD(x) (((x) & BIT_MASK_IC_DATA_CMD_CMD) << BIT_SHIFT_IC_DATA_CMD_CMD)
#define BIT_SHIFT_IC_DATA_CMD_DAT 0
#define BIT_MASK_IC_DATA_CMD_DAT 0xff
#define BIT_IC_DATA_CMD_DAT(x) (((x) & BIT_MASK_IC_DATA_CMD_DAT) << BIT_SHIFT_IC_DATA_CMD_DAT)
#define BIT_CTRL_IC_DATA_CMD_DAT(x) (((x) & BIT_MASK_IC_DATA_CMD_DAT) << BIT_SHIFT_IC_DATA_CMD_DAT)
#define BIT_GET_IC_DATA_CMD_DAT(x) (((x) >> BIT_SHIFT_IC_DATA_CMD_DAT) & BIT_MASK_IC_DATA_CMD_DAT)
//2 REG_DW_I2C_IC_SS_SCL_HCNT
#define BIT_SHIFT_IC_SS_SCL_HCNT 0
#define BIT_MASK_IC_SS_SCL_HCNT 0xffff
#define BIT_IC_SS_SCL_HCNT(x) (((x) & BIT_MASK_IC_SS_SCL_HCNT) << BIT_SHIFT_IC_SS_SCL_HCNT)
#define BIT_CTRL_IC_SS_SCL_HCNT(x) (((x) & BIT_MASK_IC_SS_SCL_HCNT) << BIT_SHIFT_IC_SS_SCL_HCNT)
#define BIT_GET_IC_SS_SCL_HCNT(x) (((x) >> BIT_SHIFT_IC_SS_SCL_HCNT) & BIT_MASK_IC_SS_SCL_HCNT)
//2 REG_DW_I2C_IC_SS_SCL_LCNT
#define BIT_SHIFT_IC_SS_SCL_LCNT 0
#define BIT_MASK_IC_SS_SCL_LCNT 0xffff
#define BIT_IC_SS_SCL_LCNT(x) (((x) & BIT_MASK_IC_SS_SCL_LCNT) << BIT_SHIFT_IC_SS_SCL_LCNT)
#define BIT_CTRL_IC_SS_SCL_LCNT(x) (((x) & BIT_MASK_IC_SS_SCL_LCNT) << BIT_SHIFT_IC_SS_SCL_LCNT)
#define BIT_GET_IC_SS_SCL_LCNT(x) (((x) >> BIT_SHIFT_IC_SS_SCL_LCNT) & BIT_MASK_IC_SS_SCL_LCNT)
//2 REG_DW_I2C_IC_FS_SCL_HCNT
#define BIT_SHIFT_IC_FS_SCL_HCNT 0
#define BIT_MASK_IC_FS_SCL_HCNT 0xffff
#define BIT_IC_FS_SCL_HCNT(x) (((x) & BIT_MASK_IC_FS_SCL_HCNT) << BIT_SHIFT_IC_FS_SCL_HCNT)
#define BIT_CTRL_IC_FS_SCL_HCNT(x) (((x) & BIT_MASK_IC_FS_SCL_HCNT) << BIT_SHIFT_IC_FS_SCL_HCNT)
#define BIT_GET_IC_FS_SCL_HCNT(x) (((x) >> BIT_SHIFT_IC_FS_SCL_HCNT) & BIT_MASK_IC_FS_SCL_HCNT)
//2 REG_DW_I2C_IC_FS_SCL_LCNT
#define BIT_SHIFT_IC_FS_SCL_LCNT 0
#define BIT_MASK_IC_FS_SCL_LCNT 0xffff
#define BIT_IC_FS_SCL_LCNT(x) (((x) & BIT_MASK_IC_FS_SCL_LCNT) << BIT_SHIFT_IC_FS_SCL_LCNT)
#define BIT_CTRL_IC_FS_SCL_LCNT(x) (((x) & BIT_MASK_IC_FS_SCL_LCNT) << BIT_SHIFT_IC_FS_SCL_LCNT)
#define BIT_GET_IC_FS_SCL_LCNT(x) (((x) >> BIT_SHIFT_IC_FS_SCL_LCNT) & BIT_MASK_IC_FS_SCL_LCNT)
//2 REG_DW_I2C_IC_HS_SCL_HCNT
#define BIT_SHIFT_IC_HS_SCL_HCNT 0
#define BIT_MASK_IC_HS_SCL_HCNT 0xffff
#define BIT_IC_HS_SCL_HCNT(x) (((x) & BIT_MASK_IC_HS_SCL_HCNT) << BIT_SHIFT_IC_HS_SCL_HCNT)
#define BIT_CTRL_IC_HS_SCL_HCNT(x) (((x) & BIT_MASK_IC_HS_SCL_HCNT) << BIT_SHIFT_IC_HS_SCL_HCNT)
#define BIT_GET_IC_HS_SCL_HCNT(x) (((x) >> BIT_SHIFT_IC_HS_SCL_HCNT) & BIT_MASK_IC_HS_SCL_HCNT)
//2 REG_DW_I2C_IC_HS_SCL_LCNT
#define BIT_SHIFT_IC_HS_SCL_LCNT 0
#define BIT_MASK_IC_HS_SCL_LCNT 0xffff
#define BIT_IC_HS_SCL_LCNT(x) (((x) & BIT_MASK_IC_HS_SCL_LCNT) << BIT_SHIFT_IC_HS_SCL_LCNT)
#define BIT_CTRL_IC_HS_SCL_LCNT(x) (((x) & BIT_MASK_IC_HS_SCL_LCNT) << BIT_SHIFT_IC_HS_SCL_LCNT)
#define BIT_GET_IC_HS_SCL_LCNT(x) (((x) >> BIT_SHIFT_IC_HS_SCL_LCNT) & BIT_MASK_IC_HS_SCL_LCNT)
//2 REG_DW_I2C_IC_INTR_STAT
#define BIT_IC_INTR_STAT_R_GEN_CALL BIT(11)
#define BIT_SHIFT_IC_INTR_STAT_R_GEN_CALL 11
#define BIT_MASK_IC_INTR_STAT_R_GEN_CALL 0x1
#define BIT_CTRL_IC_INTR_STAT_R_GEN_CALL(x) (((x) & BIT_MASK_IC_INTR_STAT_R_GEN_CALL) << BIT_SHIFT_IC_INTR_STAT_R_GEN_CALL)
#define BIT_IC_INTR_STAT_R_START_DET BIT(10)
#define BIT_SHIFT_IC_INTR_STAT_R_START_DET 10
#define BIT_MASK_IC_INTR_STAT_R_START_DET 0x1
#define BIT_CTRL_IC_INTR_STAT_R_START_DET(x) (((x) & BIT_MASK_IC_INTR_STAT_R_START_DET) << BIT_SHIFT_IC_INTR_STAT_R_START_DET)
#define BIT_IC_INTR_STAT_R_STOP_DET BIT(9)
#define BIT_SHIFT_IC_INTR_STAT_R_STOP_DET 9
#define BIT_MASK_IC_INTR_STAT_R_STOP_DET 0x1
#define BIT_CTRL_IC_INTR_STAT_R_STOP_DET(x) (((x) & BIT_MASK_IC_INTR_STAT_R_STOP_DET) << BIT_SHIFT_IC_INTR_STAT_R_STOP_DET)
#define BIT_IC_INTR_STAT_R_ACTIVITY BIT(8)
#define BIT_SHIFT_IC_INTR_STAT_R_ACTIVITY 8
#define BIT_MASK_IC_INTR_STAT_R_ACTIVITY 0x1
#define BIT_CTRL_IC_INTR_STAT_R_ACTIVITY(x) (((x) & BIT_MASK_IC_INTR_STAT_R_ACTIVITY) << BIT_SHIFT_IC_INTR_STAT_R_ACTIVITY)
#define BIT_IC_INTR_STAT_R_RX_DONE BIT(7)
#define BIT_SHIFT_IC_INTR_STAT_R_RX_DONE 7
#define BIT_MASK_IC_INTR_STAT_R_RX_DONE 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RX_DONE(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RX_DONE) << BIT_SHIFT_IC_INTR_STAT_R_RX_DONE)
#define BIT_IC_INTR_STAT_R_TX_ABRT BIT(6)
#define BIT_SHIFT_IC_INTR_STAT_R_TX_ABRT 6
#define BIT_MASK_IC_INTR_STAT_R_TX_ABRT 0x1
#define BIT_CTRL_IC_INTR_STAT_R_TX_ABRT(x) (((x) & BIT_MASK_IC_INTR_STAT_R_TX_ABRT) << BIT_SHIFT_IC_INTR_STAT_R_TX_ABRT)
#define BIT_IC_INTR_STAT_R_RD_REQ BIT(5)
#define BIT_SHIFT_IC_INTR_STAT_R_RD_REQ 5
#define BIT_MASK_IC_INTR_STAT_R_RD_REQ 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RD_REQ(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RD_REQ) << BIT_SHIFT_IC_INTR_STAT_R_RD_REQ)
#define BIT_IC_INTR_STAT_R_TX_EMPTY BIT(4)
#define BIT_SHIFT_IC_INTR_STAT_R_TX_EMPTY 4
#define BIT_MASK_IC_INTR_STAT_R_TX_EMPTY 0x1
#define BIT_CTRL_IC_INTR_STAT_R_TX_EMPTY(x) (((x) & BIT_MASK_IC_INTR_STAT_R_TX_EMPTY) << BIT_SHIFT_IC_INTR_STAT_R_TX_EMPTY)
#define BIT_IC_INTR_STAT_R_TX_OVER BIT(3)
#define BIT_SHIFT_IC_INTR_STAT_R_TX_OVER 3
#define BIT_MASK_IC_INTR_STAT_R_TX_OVER 0x1
#define BIT_CTRL_IC_INTR_STAT_R_TX_OVER(x) (((x) & BIT_MASK_IC_INTR_STAT_R_TX_OVER) << BIT_SHIFT_IC_INTR_STAT_R_TX_OVER)
#define BIT_IC_INTR_STAT_R_RX_FULL BIT(2)
#define BIT_SHIFT_IC_INTR_STAT_R_RX_FULL 2
#define BIT_MASK_IC_INTR_STAT_R_RX_FULL 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RX_FULL(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RX_FULL) << BIT_SHIFT_IC_INTR_STAT_R_RX_FULL)
#define BIT_IC_INTR_STAT_R_RX_OVER BIT(1)
#define BIT_SHIFT_IC_INTR_STAT_R_RX_OVER 1
#define BIT_MASK_IC_INTR_STAT_R_RX_OVER 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RX_OVER(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RX_OVER) << BIT_SHIFT_IC_INTR_STAT_R_RX_OVER)
#define BIT_IC_INTR_STAT_R_RX_UNDER BIT(0)
#define BIT_SHIFT_IC_INTR_STAT_R_RX_UNDER 0
#define BIT_MASK_IC_INTR_STAT_R_RX_UNDER 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RX_UNDER(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RX_UNDER) << BIT_SHIFT_IC_INTR_STAT_R_RX_UNDER)
//2 REG_DW_I2C_IC_INTR_MASK
#define BIT_IC_INTR_MASK_M_GEN_CALL BIT(11)
#define BIT_SHIFT_IC_INTR_MASK_M_GEN_CALL 11
#define BIT_MASK_IC_INTR_MASK_M_GEN_CALL 0x1
#define BIT_CTRL_IC_INTR_MASK_M_GEN_CALL(x) (((x) & BIT_MASK_IC_INTR_MASK_M_GEN_CALL) << BIT_SHIFT_IC_INTR_MASK_M_GEN_CALL)
#define BIT_IC_INTR_MASK_M_START_DET BIT(10)
#define BIT_SHIFT_IC_INTR_MASK_M_START_DET 10
#define BIT_MASK_IC_INTR_MASK_M_START_DET 0x1
#define BIT_CTRL_IC_INTR_MASK_M_START_DET(x) (((x) & BIT_MASK_IC_INTR_MASK_M_START_DET) << BIT_SHIFT_IC_INTR_MASK_M_START_DET)
#define BIT_IC_INTR_MASK_M_STOP_DET BIT(9)
#define BIT_SHIFT_IC_INTR_MASK_M_STOP_DET 9
#define BIT_MASK_IC_INTR_MASK_M_STOP_DET 0x1
#define BIT_CTRL_IC_INTR_MASK_M_STOP_DET(x) (((x) & BIT_MASK_IC_INTR_MASK_M_STOP_DET) << BIT_SHIFT_IC_INTR_MASK_M_STOP_DET)
#define BIT_IC_INTR_MASK_M_ACTIVITY BIT(8)
#define BIT_SHIFT_IC_INTR_MASK_M_ACTIVITY 8
#define BIT_MASK_IC_INTR_MASK_M_ACTIVITY 0x1
#define BIT_CTRL_IC_INTR_MASK_M_ACTIVITY(x) (((x) & BIT_MASK_IC_INTR_MASK_M_ACTIVITY) << BIT_SHIFT_IC_INTR_MASK_M_ACTIVITY)
#define BIT_IC_INTR_MASK_M_RX_DONE BIT(7)
#define BIT_SHIFT_IC_INTR_MASK_M_RX_DONE 7
#define BIT_MASK_IC_INTR_MASK_M_RX_DONE 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RX_DONE(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RX_DONE) << BIT_SHIFT_IC_INTR_MASK_M_RX_DONE)
#define BIT_IC_INTR_MASK_M_TX_ABRT BIT(6)
#define BIT_SHIFT_IC_INTR_MASK_M_TX_ABRT 6
#define BIT_MASK_IC_INTR_MASK_M_TX_ABRT 0x1
#define BIT_CTRL_IC_INTR_MASK_M_TX_ABRT(x) (((x) & BIT_MASK_IC_INTR_MASK_M_TX_ABRT) << BIT_SHIFT_IC_INTR_MASK_M_TX_ABRT)
#define BIT_IC_INTR_MASK_M_RD_REQ BIT(5)
#define BIT_SHIFT_IC_INTR_MASK_M_RD_REQ 5
#define BIT_MASK_IC_INTR_MASK_M_RD_REQ 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RD_REQ(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RD_REQ) << BIT_SHIFT_IC_INTR_MASK_M_RD_REQ)
#define BIT_IC_INTR_MASK_M_TX_EMPTY BIT(4)
#define BIT_SHIFT_IC_INTR_MASK_M_TX_EMPTY 4
#define BIT_MASK_IC_INTR_MASK_M_TX_EMPTY 0x1
#define BIT_CTRL_IC_INTR_MASK_M_TX_EMPTY(x) (((x) & BIT_MASK_IC_INTR_MASK_M_TX_EMPTY) << BIT_SHIFT_IC_INTR_MASK_M_TX_EMPTY)
#define BIT_IC_INTR_MASK_M_TX_OVER BIT(3)
#define BIT_SHIFT_IC_INTR_MASK_M_TX_OVER 3
#define BIT_MASK_IC_INTR_MASK_M_TX_OVER 0x1
#define BIT_CTRL_IC_INTR_MASK_M_TX_OVER(x) (((x) & BIT_MASK_IC_INTR_MASK_M_TX_OVER) << BIT_SHIFT_IC_INTR_MASK_M_TX_OVER)
#define BIT_IC_INTR_MASK_M_RX_FULL BIT(2)
#define BIT_SHIFT_IC_INTR_MASK_M_RX_FULL 2
#define BIT_MASK_IC_INTR_MASK_M_RX_FULL 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RX_FULL(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RX_FULL) << BIT_SHIFT_IC_INTR_MASK_M_RX_FULL)
#define BIT_IC_INTR_MASK_M_RX_OVER BIT(1)
#define BIT_SHIFT_IC_INTR_MASK_M_RX_OVER 1
#define BIT_MASK_IC_INTR_MASK_M_RX_OVER 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RX_OVER(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RX_OVER) << BIT_SHIFT_IC_INTR_MASK_M_RX_OVER)
#define BIT_IC_INTR_MASK_M_RX_UNDER BIT(0)
#define BIT_SHIFT_IC_INTR_MASK_M_RX_UNDER 0
#define BIT_MASK_IC_INTR_MASK_M_RX_UNDER 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RX_UNDER(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RX_UNDER) << BIT_SHIFT_IC_INTR_MASK_M_RX_UNDER)
//2 REG_DW_I2C_IC_RAW_INTR_STAT
#define BIT_IC_RAW_INTR_STAT_GEN_CALL BIT(11)
#define BIT_SHIFT_IC_RAW_INTR_STAT_GEN_CALL 11
#define BIT_MASK_IC_RAW_INTR_STAT_GEN_CALL 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_GEN_CALL(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_GEN_CALL) << BIT_SHIFT_IC_RAW_INTR_STAT_GEN_CALL)
#define BIT_IC_RAW_INTR_STAT_START_DET BIT(10)
#define BIT_SHIFT_IC_RAW_INTR_STAT_START_DET 10
#define BIT_MASK_IC_RAW_INTR_STAT_START_DET 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_START_DET(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_START_DET) << BIT_SHIFT_IC_RAW_INTR_STAT_START_DET)
#define BIT_IC_RAW_INTR_STAT_STOP_DET BIT(9)
#define BIT_SHIFT_IC_RAW_INTR_STAT_STOP_DET 9
#define BIT_MASK_IC_RAW_INTR_STAT_STOP_DET 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_STOP_DET(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_STOP_DET) << BIT_SHIFT_IC_RAW_INTR_STAT_STOP_DET)
#define BIT_IC_RAW_INTR_STAT_ACTIVITY BIT(8)
#define BIT_SHIFT_IC_RAW_INTR_STAT_ACTIVITY 8
#define BIT_MASK_IC_RAW_INTR_STAT_ACTIVITY 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_ACTIVITY(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_ACTIVITY) << BIT_SHIFT_IC_RAW_INTR_STAT_ACTIVITY)
#define BIT_IC_RAW_INTR_STAT_RX_DONE BIT(7)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RX_DONE 7
#define BIT_MASK_IC_RAW_INTR_STAT_RX_DONE 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RX_DONE(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RX_DONE) << BIT_SHIFT_IC_RAW_INTR_STAT_RX_DONE)
#define BIT_IC_RAW_INTR_STAT_TX_ABRT BIT(6)
#define BIT_SHIFT_IC_RAW_INTR_STAT_TX_ABRT 6
#define BIT_MASK_IC_RAW_INTR_STAT_TX_ABRT 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_TX_ABRT(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_TX_ABRT) << BIT_SHIFT_IC_RAW_INTR_STAT_TX_ABRT)
#define BIT_IC_RAW_INTR_STAT_RD_REQ BIT(5)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RD_REQ 5
#define BIT_MASK_IC_RAW_INTR_STAT_RD_REQ 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RD_REQ(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RD_REQ) << BIT_SHIFT_IC_RAW_INTR_STAT_RD_REQ)
#define BIT_IC_RAW_INTR_STAT_TX_EMPTY BIT(4)
#define BIT_SHIFT_IC_RAW_INTR_STAT_TX_EMPTY 4
#define BIT_MASK_IC_RAW_INTR_STAT_TX_EMPTY 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_TX_EMPTY(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_TX_EMPTY) << BIT_SHIFT_IC_RAW_INTR_STAT_TX_EMPTY)
#define BIT_IC_RAW_INTR_STAT_TX_OVER BIT(3)
#define BIT_SHIFT_IC_RAW_INTR_STAT_TX_OVER 3
#define BIT_MASK_IC_RAW_INTR_STAT_TX_OVER 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_TX_OVER(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_TX_OVER) << BIT_SHIFT_IC_RAW_INTR_STAT_TX_OVER)
#define BIT_IC_RAW_INTR_STAT_RX_FULL BIT(2)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RX_FULL 2
#define BIT_MASK_IC_RAW_INTR_STAT_RX_FULL 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RX_FULL(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RX_FULL) << BIT_SHIFT_IC_RAW_INTR_STAT_RX_FULL)
#define BIT_IC_RAW_INTR_STAT_RX_OVER BIT(1)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RX_OVER 1
#define BIT_MASK_IC_RAW_INTR_STAT_RX_OVER 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RX_OVER(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RX_OVER) << BIT_SHIFT_IC_RAW_INTR_STAT_RX_OVER)
#define BIT_IC_RAW_INTR_STAT_RX_UNDER BIT(0)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RX_UNDER 0
#define BIT_MASK_IC_RAW_INTR_STAT_RX_UNDER 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RX_UNDER(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RX_UNDER) << BIT_SHIFT_IC_RAW_INTR_STAT_RX_UNDER)
//2 REG_DW_I2C_IC_RX_TL
#define BIT_SHIFT_IC_RX_TL 0
#define BIT_MASK_IC_RX_TL 0xff
#define BIT_IC_RX_TL(x) (((x) & BIT_MASK_IC_RX_TL) << BIT_SHIFT_IC_RX_TL)
#define BIT_CTRL_IC_RX_TL(x) (((x) & BIT_MASK_IC_RX_TL) << BIT_SHIFT_IC_RX_TL)
#define BIT_GET_IC_RX_TL(x) (((x) >> BIT_SHIFT_IC_RX_TL) & BIT_MASK_IC_RX_TL)
//2 REG_DW_I2C_IC_TX_TL
#define BIT_SHIFT_IC_TX_TL 0
#define BIT_MASK_IC_TX_TL 0xff
#define BIT_IC_TX_TL(x) (((x) & BIT_MASK_IC_TX_TL) << BIT_SHIFT_IC_TX_TL)
#define BIT_CTRL_IC_TX_TL(x) (((x) & BIT_MASK_IC_TX_TL) << BIT_SHIFT_IC_TX_TL)
#define BIT_GET_IC_TX_TL(x) (((x) >> BIT_SHIFT_IC_TX_TL) & BIT_MASK_IC_TX_TL)
//2 REG_DW_I2C_IC_CLR_INTR
#define BIT_IC_CLR_INTR BIT(0)
#define BIT_SHIFT_IC_CLR_INTR 0
#define BIT_MASK_IC_CLR_INTR 0x1
#define BIT_CTRL_IC_CLR_INTR(x) (((x) & BIT_MASK_IC_CLR_INTR) << BIT_SHIFT_IC_CLR_INTR)
//2 REG_DW_I2C_IC_CLR_RX_UNDER
#define BIT_IC_CLR_RX_UNDER BIT(0)
#define BIT_SHIFT_IC_CLR_RX_UNDER 0
#define BIT_MASK_IC_CLR_RX_UNDER 0x1
#define BIT_CTRL_IC_CLR_RX_UNDER(x) (((x) & BIT_MASK_IC_CLR_RX_UNDER) << BIT_SHIFT_IC_CLR_RX_UNDER)
//2 REG_DW_I2C_IC_CLR_RX_OVER
#define BIT_IC_CLR_RX_OVER BIT(0)
#define BIT_SHIFT_IC_CLR_RX_OVER 0
#define BIT_MASK_IC_CLR_RX_OVER 0x1
#define BIT_CTRL_IC_CLR_RX_OVER(x) (((x) & BIT_MASK_IC_CLR_RX_OVER) << BIT_SHIFT_IC_CLR_RX_OVER)
//2 REG_DW_I2C_IC_CLR_TX_OVER
#define BIT_IC_CLR_TX_OVER BIT(0)
#define BIT_SHIFT_IC_CLR_TX_OVER 0
#define BIT_MASK_IC_CLR_TX_OVER 0x1
#define BIT_CTRL_IC_CLR_TX_OVER(x) (((x) & BIT_MASK_IC_CLR_TX_OVER) << BIT_SHIFT_IC_CLR_TX_OVER)
//2 REG_DW_I2C_IC_CLR_RD_REQ
#define BIT_IC_CLR_RD_REQ BIT(0)
#define BIT_SHIFT_IC_CLR_RD_REQ 0
#define BIT_MASK_IC_CLR_RD_REQ 0x1
#define BIT_CTRL_IC_CLR_RD_REQ(x) (((x) & BIT_MASK_IC_CLR_RD_REQ) << BIT_SHIFT_IC_CLR_RD_REQ)
//2 REG_DW_I2C_IC_CLR_TX_ABRT
#define BIT_CLR_RD_REQ BIT(0)
#define BIT_SHIFT_CLR_RD_REQ 0
#define BIT_MASK_CLR_RD_REQ 0x1
#define BIT_CTRL_CLR_RD_REQ(x) (((x) & BIT_MASK_CLR_RD_REQ) << BIT_SHIFT_CLR_RD_REQ)
//2 REG_DW_I2C_IC_CLR_RX_DONE
#define BIT_IC_CLR_RX_DONE BIT(0)
#define BIT_SHIFT_IC_CLR_RX_DONE 0
#define BIT_MASK_IC_CLR_RX_DONE 0x1
#define BIT_CTRL_IC_CLR_RX_DONE(x) (((x) & BIT_MASK_IC_CLR_RX_DONE) << BIT_SHIFT_IC_CLR_RX_DONE)
//2 REG_DW_I2C_IC_CLR_ACTIVITY
#define BIT_IC_CLR_ACTIVITY BIT(0)
#define BIT_SHIFT_IC_CLR_ACTIVITY 0
#define BIT_MASK_IC_CLR_ACTIVITY 0x1
#define BIT_CTRL_IC_CLR_ACTIVITY(x) (((x) & BIT_MASK_IC_CLR_ACTIVITY) << BIT_SHIFT_IC_CLR_ACTIVITY)
//2 REG_DW_I2C_IC_CLR_STOP_DET
#define BIT_IC_CLR_STOP_DET BIT(0)
#define BIT_SHIFT_IC_CLR_STOP_DET 0
#define BIT_MASK_IC_CLR_STOP_DET 0x1
#define BIT_CTRL_IC_CLR_STOP_DET(x) (((x) & BIT_MASK_IC_CLR_STOP_DET) << BIT_SHIFT_IC_CLR_STOP_DET)
//2 REG_DW_I2C_IC_CLR_START_DET
#define BIT_IC_CLR_START_DET BIT(0)
#define BIT_SHIFT_IC_CLR_START_DET 0
#define BIT_MASK_IC_CLR_START_DET 0x1
#define BIT_CTRL_IC_CLR_START_DET(x) (((x) & BIT_MASK_IC_CLR_START_DET) << BIT_SHIFT_IC_CLR_START_DET)
//2 REG_DW_I2C_IC_CLR_GEN_CALL
#define BIT_IC_CLR_GEN_CALL BIT(0)
#define BIT_SHIFT_IC_CLR_GEN_CALL 0
#define BIT_MASK_IC_CLR_GEN_CALL 0x1
#define BIT_CTRL_IC_CLR_GEN_CALL(x) (((x) & BIT_MASK_IC_CLR_GEN_CALL) << BIT_SHIFT_IC_CLR_GEN_CALL)
//2 REG_DW_I2C_IC_ENABLE
#define BIT_IC_ENABLE BIT(0)
#define BIT_SHIFT_IC_ENABLE 0
#define BIT_MASK_IC_ENABLE 0x1
#define BIT_CTRL_IC_ENABLE(x) (((x) & BIT_MASK_IC_ENABLE) << BIT_SHIFT_IC_ENABLE)
//2 REG_DW_I2C_IC_STATUS
#define BIT_IC_STATUS_SLV_ACTIVITY BIT(6)
#define BIT_SHIFT_IC_STATUS_SLV_ACTIVITY 6
#define BIT_MASK_IC_STATUS_SLV_ACTIVITY 0x1
#define BIT_CTRL_IC_STATUS_SLV_ACTIVITY(x) (((x) & BIT_MASK_IC_STATUS_SLV_ACTIVITY) << BIT_SHIFT_IC_STATUS_SLV_ACTIVITY)
#define BIT_IC_STATUS_MST_ACTIVITY BIT(5)
#define BIT_SHIFT_IC_STATUS_MST_ACTIVITY 5
#define BIT_MASK_IC_STATUS_MST_ACTIVITY 0x1
#define BIT_CTRL_IC_STATUS_MST_ACTIVITY(x) (((x) & BIT_MASK_IC_STATUS_MST_ACTIVITY) << BIT_SHIFT_IC_STATUS_MST_ACTIVITY)
#define BIT_IC_STATUS_RFF BIT(4)
#define BIT_SHIFT_IC_STATUS_RFF 4
#define BIT_MASK_IC_STATUS_RFF 0x1
#define BIT_CTRL_IC_STATUS_RFF(x) (((x) & BIT_MASK_IC_STATUS_RFF) << BIT_SHIFT_IC_STATUS_RFF)
#define BIT_IC_STATUS_RFNE BIT(3)
#define BIT_SHIFT_IC_STATUS_RFNE 3
#define BIT_MASK_IC_STATUS_RFNE 0x1
#define BIT_CTRL_IC_STATUS_RFNE(x) (((x) & BIT_MASK_IC_STATUS_RFNE) << BIT_SHIFT_IC_STATUS_RFNE)
#define BIT_IC_STATUS_TFE BIT(2)
#define BIT_SHIFT_IC_STATUS_TFE 2
#define BIT_MASK_IC_STATUS_TFE 0x1
#define BIT_CTRL_IC_STATUS_TFE(x) (((x) & BIT_MASK_IC_STATUS_TFE) << BIT_SHIFT_IC_STATUS_TFE)
#define BIT_IC_STATUS_TFNF BIT(1)
#define BIT_SHIFT_IC_STATUS_TFNF 1
#define BIT_MASK_IC_STATUS_TFNF 0x1
#define BIT_CTRL_IC_STATUS_TFNF(x) (((x) & BIT_MASK_IC_STATUS_TFNF) << BIT_SHIFT_IC_STATUS_TFNF)
#define BIT_IC_STATUS_ACTIVITY BIT(0)
#define BIT_SHIFT_IC_STATUS_ACTIVITY 0
#define BIT_MASK_IC_STATUS_ACTIVITY 0x1
#define BIT_CTRL_IC_STATUS_ACTIVITY(x) (((x) & BIT_MASK_IC_STATUS_ACTIVITY) << BIT_SHIFT_IC_STATUS_ACTIVITY)
//2 REG_DW_I2C_IC_TXFLR
#define BIT_SHIFT_IC_TXFLR 0
#define BIT_MASK_IC_TXFLR 0x3f
#define BIT_IC_TXFLR(x) (((x) & BIT_MASK_IC_TXFLR) << BIT_SHIFT_IC_TXFLR)
#define BIT_CTRL_IC_TXFLR(x) (((x) & BIT_MASK_IC_TXFLR) << BIT_SHIFT_IC_TXFLR)
#define BIT_GET_IC_TXFLR(x) (((x) >> BIT_SHIFT_IC_TXFLR) & BIT_MASK_IC_TXFLR)
//2 REG_DW_I2C_IC_RXFLR
#define BIT_SHIFT_IC_RXFLR 0
#define BIT_MASK_IC_RXFLR 0x1f
#define BIT_IC_RXFLR(x) (((x) & BIT_MASK_IC_RXFLR) << BIT_SHIFT_IC_RXFLR)
#define BIT_CTRL_IC_RXFLR(x) (((x) & BIT_MASK_IC_RXFLR) << BIT_SHIFT_IC_RXFLR)
#define BIT_GET_IC_RXFLR(x) (((x) >> BIT_SHIFT_IC_RXFLR) & BIT_MASK_IC_RXFLR)
//2 REG_DW_I2C_IC_SDA_HOLD
#define BIT_SHIFT_IC_SDA_HOLD 0
#define BIT_MASK_IC_SDA_HOLD 0xffff
#define BIT_IC_SDA_HOLD(x) (((x) & BIT_MASK_IC_SDA_HOLD) << BIT_SHIFT_IC_SDA_HOLD)
#define BIT_CTRL_IC_SDA_HOLD(x) (((x) & BIT_MASK_IC_SDA_HOLD) << BIT_SHIFT_IC_SDA_HOLD)
#define BIT_GET_IC_SDA_HOLD(x) (((x) >> BIT_SHIFT_IC_SDA_HOLD) & BIT_MASK_IC_SDA_HOLD)
//2 REG_DW_I2C_IC_TX_ABRT_SOURCE
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX BIT(15)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX 15
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST BIT(14)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST 14
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO BIT(13)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO 13
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO)
#define BIT_IC_TX_ABRT_SOURCE_ARB_LOST BIT(12)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ARB_LOST 12
#define BIT_MASK_IC_TX_ABRT_SOURCE_ARB_LOST 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ARB_LOST(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ARB_LOST) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ARB_LOST)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS BIT(11)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS 11
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT BIT(10)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT 10
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT BIT(9)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT 9
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT BIT(8)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT 8
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET BIT(7)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET 7
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET BIT(6)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET 6
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ BIT(5)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ 5
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK BIT(4)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK 4
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK BIT(3)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK 3
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK BIT(2)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK 2
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK BIT(1)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK 1
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK BIT(0)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK 0
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK)
//2 REG_DW_I2C_IC_SLV_DATA_NACK_ONLY
#define BIT_IC_SLV_DATA_NACK_ONLY BIT(0)
#define BIT_SHIFT_IC_SLV_DATA_NACK_ONLY 0
#define BIT_MASK_IC_SLV_DATA_NACK_ONLY 0x1
#define BIT_CTRL_IC_SLV_DATA_NACK_ONLY(x) (((x) & BIT_MASK_IC_SLV_DATA_NACK_ONLY) << BIT_SHIFT_IC_SLV_DATA_NACK_ONLY)
//2 REG_DW_I2C_IC_DMA_CR
#define BIT_IC_DMA_CR_TDMAE BIT(1)
#define BIT_SHIFT_IC_DMA_CR_TDMAE 1
#define BIT_MASK_IC_DMA_CR_TDMAE 0x1
#define BIT_CTRL_IC_DMA_CR_TDMAE(x) (((x) & BIT_MASK_IC_DMA_CR_TDMAE) << BIT_SHIFT_IC_DMA_CR_TDMAE)
#define BIT_IC_DMA_CR_RDMAE BIT(0)
#define BIT_SHIFT_IC_DMA_CR_RDMAE 0
#define BIT_MASK_IC_DMA_CR_RDMAE 0x1
#define BIT_CTRL_IC_DMA_CR_RDMAE(x) (((x) & BIT_MASK_IC_DMA_CR_RDMAE) << BIT_SHIFT_IC_DMA_CR_RDMAE)
//2 REG_DW_I2C_IC_DMA_TDLR
#define BIT_SHIFT_IC_DMA_TDLR_DMATDL 0
#define BIT_MASK_IC_DMA_TDLR_DMATDL 0x1f
#define BIT_IC_DMA_TDLR_DMATDL(x) (((x) & BIT_MASK_IC_DMA_TDLR_DMATDL) << BIT_SHIFT_IC_DMA_TDLR_DMATDL)
#define BIT_CTRL_IC_DMA_TDLR_DMATDL(x) (((x) & BIT_MASK_IC_DMA_TDLR_DMATDL) << BIT_SHIFT_IC_DMA_TDLR_DMATDL)
#define BIT_GET_IC_DMA_TDLR_DMATDL(x) (((x) >> BIT_SHIFT_IC_DMA_TDLR_DMATDL) & BIT_MASK_IC_DMA_TDLR_DMATDL)
//2 REG_DW_I2C_IC_DMA_RDLR
#define BIT_SHIFT_IC_DMA_RDLR_DMARDL 0
#define BIT_MASK_IC_DMA_RDLR_DMARDL 0xf
#define BIT_IC_DMA_RDLR_DMARDL(x) (((x) & BIT_MASK_IC_DMA_RDLR_DMARDL) << BIT_SHIFT_IC_DMA_RDLR_DMARDL)
#define BIT_CTRL_IC_DMA_RDLR_DMARDL(x) (((x) & BIT_MASK_IC_DMA_RDLR_DMARDL) << BIT_SHIFT_IC_DMA_RDLR_DMARDL)
#define BIT_GET_IC_DMA_RDLR_DMARDL(x) (((x) >> BIT_SHIFT_IC_DMA_RDLR_DMARDL) & BIT_MASK_IC_DMA_RDLR_DMARDL)
//2 REG_DW_I2C_IC_SDA_SETUP
#define BIT_SHIFT_IC_SDA_SETUP 0
#define BIT_MASK_IC_SDA_SETUP 0xff
#define BIT_IC_SDA_SETUP(x) (((x) & BIT_MASK_IC_SDA_SETUP) << BIT_SHIFT_IC_SDA_SETUP)
#define BIT_CTRL_IC_SDA_SETUP(x) (((x) & BIT_MASK_IC_SDA_SETUP) << BIT_SHIFT_IC_SDA_SETUP)
#define BIT_GET_IC_SDA_SETUP(x) (((x) >> BIT_SHIFT_IC_SDA_SETUP) & BIT_MASK_IC_SDA_SETUP)
//2 REG_DW_I2C_IC_ACK_GENERAL_CALL
#define BIT_IC_ACK_GENERAL_CALL BIT(0)
#define BIT_SHIFT_IC_ACK_GENERAL_CALL 0
#define BIT_MASK_IC_ACK_GENERAL_CALL 0x1
#define BIT_CTRL_IC_ACK_GENERAL_CALL(x) (((x) & BIT_MASK_IC_ACK_GENERAL_CALL) << BIT_SHIFT_IC_ACK_GENERAL_CALL)
//2 REG_DW_I2C_IC_ENABLE_STATUS
#define BIT_IC_ENABLE_STATUS_SLV_RX_DATA_LOST BIT(2)
#define BIT_SHIFT_IC_ENABLE_STATUS_SLV_RX_DATA_LOST 2
#define BIT_MASK_IC_ENABLE_STATUS_SLV_RX_DATA_LOST 0x1
#define BIT_CTRL_IC_ENABLE_STATUS_SLV_RX_DATA_LOST(x) (((x) & BIT_MASK_IC_ENABLE_STATUS_SLV_RX_DATA_LOST) << BIT_SHIFT_IC_ENABLE_STATUS_SLV_RX_DATA_LOST)
#define BIT_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY BIT(1)
#define BIT_SHIFT_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY 1
#define BIT_MASK_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY 0x1
#define BIT_CTRL_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY(x) (((x) & BIT_MASK_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY) << BIT_SHIFT_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY)
#define BIT_IC_ENABLE_STATUS_IC_EN BIT(0)
#define BIT_SHIFT_IC_ENABLE_STATUS_IC_EN 0
#define BIT_MASK_IC_ENABLE_STATUS_IC_EN 0x1
#define BIT_CTRL_IC_ENABLE_STATUS_IC_EN(x) (((x) & BIT_MASK_IC_ENABLE_STATUS_IC_EN) << BIT_SHIFT_IC_ENABLE_STATUS_IC_EN)
//2 REG_DW_I2C_IC_COMP_PARAM_1
#define BIT_SHIFT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH 16
#define BIT_MASK_IC_COMP_PARAM_1_TX_BUFFER_DEPTH 0xff
#define BIT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_TX_BUFFER_DEPTH) << BIT_SHIFT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH)
#define BIT_CTRL_IC_COMP_PARAM_1_TX_BUFFER_DEPTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_TX_BUFFER_DEPTH) << BIT_SHIFT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH)
#define BIT_GET_IC_COMP_PARAM_1_TX_BUFFER_DEPTH(x) (((x) >> BIT_SHIFT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH) & BIT_MASK_IC_COMP_PARAM_1_TX_BUFFER_DEPTH)
#define BIT_SHIFT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH 8
#define BIT_MASK_IC_COMP_PARAM_1_RX_BUFFER_DEPTH 0xff
#define BIT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_RX_BUFFER_DEPTH) << BIT_SHIFT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH)
#define BIT_CTRL_IC_COMP_PARAM_1_RX_BUFFER_DEPTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_RX_BUFFER_DEPTH) << BIT_SHIFT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH)
#define BIT_GET_IC_COMP_PARAM_1_RX_BUFFER_DEPTH(x) (((x) >> BIT_SHIFT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH) & BIT_MASK_IC_COMP_PARAM_1_RX_BUFFER_DEPTH)
#define BIT_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS BIT(7)
#define BIT_SHIFT_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS 7
#define BIT_MASK_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS 0x1
#define BIT_CTRL_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS) << BIT_SHIFT_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS)
#define BIT_IC_COMP_PARAM_1_HAS_DMA BIT(6)
#define BIT_SHIFT_IC_COMP_PARAM_1_HAS_DMA 6
#define BIT_MASK_IC_COMP_PARAM_1_HAS_DMA 0x1
#define BIT_CTRL_IC_COMP_PARAM_1_HAS_DMA(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_HAS_DMA) << BIT_SHIFT_IC_COMP_PARAM_1_HAS_DMA)
#define BIT_IC_COMP_PARAM_1_INTR_IO BIT(5)
#define BIT_SHIFT_IC_COMP_PARAM_1_INTR_IO 5
#define BIT_MASK_IC_COMP_PARAM_1_INTR_IO 0x1
#define BIT_CTRL_IC_COMP_PARAM_1_INTR_IO(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_INTR_IO) << BIT_SHIFT_IC_COMP_PARAM_1_INTR_IO)
#define BIT_IC_COMP_PARAM_1_HC_COUNT_VALUES BIT(4)
#define BIT_SHIFT_IC_COMP_PARAM_1_HC_COUNT_VALUES 4
#define BIT_MASK_IC_COMP_PARAM_1_HC_COUNT_VALUES 0x1
#define BIT_CTRL_IC_COMP_PARAM_1_HC_COUNT_VALUES(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_HC_COUNT_VALUES) << BIT_SHIFT_IC_COMP_PARAM_1_HC_COUNT_VALUES)
#define BIT_SHIFT_IC_COMP_PARAM_1_MAX_SPEED_MODE 2
#define BIT_MASK_IC_COMP_PARAM_1_MAX_SPEED_MODE 0x3
#define BIT_IC_COMP_PARAM_1_MAX_SPEED_MODE(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_MAX_SPEED_MODE) << BIT_SHIFT_IC_COMP_PARAM_1_MAX_SPEED_MODE)
#define BIT_CTRL_IC_COMP_PARAM_1_MAX_SPEED_MODE(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_MAX_SPEED_MODE) << BIT_SHIFT_IC_COMP_PARAM_1_MAX_SPEED_MODE)
#define BIT_GET_IC_COMP_PARAM_1_MAX_SPEED_MODE(x) (((x) >> BIT_SHIFT_IC_COMP_PARAM_1_MAX_SPEED_MODE) & BIT_MASK_IC_COMP_PARAM_1_MAX_SPEED_MODE)
#define BIT_SHIFT_IC_COMP_PARAM_1_APB_DATA_WIDTH 0
#define BIT_MASK_IC_COMP_PARAM_1_APB_DATA_WIDTH 0x3
#define BIT_IC_COMP_PARAM_1_APB_DATA_WIDTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_APB_DATA_WIDTH) << BIT_SHIFT_IC_COMP_PARAM_1_APB_DATA_WIDTH)
#define BIT_CTRL_IC_COMP_PARAM_1_APB_DATA_WIDTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_APB_DATA_WIDTH) << BIT_SHIFT_IC_COMP_PARAM_1_APB_DATA_WIDTH)
#define BIT_GET_IC_COMP_PARAM_1_APB_DATA_WIDTH(x) (((x) >> BIT_SHIFT_IC_COMP_PARAM_1_APB_DATA_WIDTH) & BIT_MASK_IC_COMP_PARAM_1_APB_DATA_WIDTH)
//2 REG_DW_I2C_IC_COMP_VERSION
#define BIT_SHIFT_IC_COMP_VERSION 0
#define BIT_MASK_IC_COMP_VERSION 0xffffffffL
#define BIT_IC_COMP_VERSION(x) (((x) & BIT_MASK_IC_COMP_VERSION) << BIT_SHIFT_IC_COMP_VERSION)
#define BIT_CTRL_IC_COMP_VERSION(x) (((x) & BIT_MASK_IC_COMP_VERSION) << BIT_SHIFT_IC_COMP_VERSION)
#define BIT_GET_IC_COMP_VERSION(x) (((x) >> BIT_SHIFT_IC_COMP_VERSION) & BIT_MASK_IC_COMP_VERSION)
//2 REG_DW_I2C_IC_COMP_TYPE
#define BIT_SHIFT_IC_COMP_TYPE 0
#define BIT_MASK_IC_COMP_TYPE 0xffffffffL
#define BIT_IC_COMP_TYPE(x) (((x) & BIT_MASK_IC_COMP_TYPE) << BIT_SHIFT_IC_COMP_TYPE)
#define BIT_CTRL_IC_COMP_TYPE(x) (((x) & BIT_MASK_IC_COMP_TYPE) << BIT_SHIFT_IC_COMP_TYPE)
#define BIT_GET_IC_COMP_TYPE(x) (((x) >> BIT_SHIFT_IC_COMP_TYPE) & BIT_MASK_IC_COMP_TYPE)
//======================== Register Address Definition ========================
#define REG_DW_I2C_IC_CON 0x0000
#define REG_DW_I2C_IC_TAR 0x0004
#define REG_DW_I2C_IC_SAR 0x0008
#define REG_DW_I2C_IC_HS_MADDR 0x000C
#define REG_DW_I2C_IC_DATA_CMD 0x0010
#define REG_DW_I2C_IC_SS_SCL_HCNT 0x0014
#define REG_DW_I2C_IC_SS_SCL_LCNT 0x0018
#define REG_DW_I2C_IC_FS_SCL_HCNT 0x001C
#define REG_DW_I2C_IC_FS_SCL_LCNT 0x0020
#define REG_DW_I2C_IC_HS_SCL_HCNT 0x0024
#define REG_DW_I2C_IC_HS_SCL_LCNT 0x0028
#define REG_DW_I2C_IC_INTR_STAT 0x002C
#define REG_DW_I2C_IC_INTR_MASK 0x0030
#define REG_DW_I2C_IC_RAW_INTR_STAT 0x0034
#define REG_DW_I2C_IC_RX_TL 0x0038
#define REG_DW_I2C_IC_TX_TL 0x003C
#define REG_DW_I2C_IC_CLR_INTR 0x0040
#define REG_DW_I2C_IC_CLR_RX_UNDER 0x0044
#define REG_DW_I2C_IC_CLR_RX_OVER 0x0048
#define REG_DW_I2C_IC_CLR_TX_OVER 0x004C
#define REG_DW_I2C_IC_CLR_RD_REQ 0x0050
#define REG_DW_I2C_IC_CLR_TX_ABRT 0x0054
#define REG_DW_I2C_IC_CLR_RX_DONE 0x0058
#define REG_DW_I2C_IC_CLR_ACTIVITY 0x005C
#define REG_DW_I2C_IC_CLR_STOP_DET 0x0060
#define REG_DW_I2C_IC_CLR_START_DET 0x0064
#define REG_DW_I2C_IC_CLR_GEN_CALL 0x0068
#define REG_DW_I2C_IC_ENABLE 0x006C
#define REG_DW_I2C_IC_STATUS 0x0070
#define REG_DW_I2C_IC_TXFLR 0x0074
#define REG_DW_I2C_IC_RXFLR 0x0078
#define REG_DW_I2C_IC_SDA_HOLD 0x007C
#define REG_DW_I2C_IC_TX_ABRT_SOURCE 0x0080
#define REG_DW_I2C_IC_SLV_DATA_NACK_ONLY 0x0084
#define REG_DW_I2C_IC_DMA_CR 0x0088
#define REG_DW_I2C_IC_DMA_TDLR 0x008C
#define REG_DW_I2C_IC_DMA_RDLR 0x0090
#define REG_DW_I2C_IC_SDA_SETUP 0x0094
#define REG_DW_I2C_IC_ACK_GENERAL_CALL 0x0098
#define REG_DW_I2C_IC_ENABLE_STATUS 0x009C
#define REG_DW_I2C_IC_COMP_PARAM_1 0x00F4
#define REG_DW_I2C_IC_COMP_VERSION 0x00F8
#define REG_DW_I2C_IC_COMP_TYPE 0x00FC
//======================================================
// I2C related enumeration
// I2C Address Mode
typedef enum _I2C_ADDR_MODE_ {
I2C_ADDR_7BIT = 0,
I2C_ADDR_10BIT = 1,
}I2C_ADDR_MODE,*PI2C_ADDR_MODE;
// I2C Speed Mode
typedef enum _I2C_SPD_MODE_ {
I2C_SS_MODE = 1,
I2C_FS_MODE = 2,
I2C_HS_MODE = 3,
}I2C_SPD_MODE,*PI2C_SPD_MODE;
//I2C Timing Parameters
#define I2C_SS_MIN_SCL_HTIME 4000 //the unit is ns.
#define I2C_SS_MIN_SCL_LTIME 4700 //the unit is ns.
#define I2C_FS_MIN_SCL_HTIME 600 //the unit is ns.
#define I2C_FS_MIN_SCL_LTIME 1300 //the unit is ns.
#define I2C_HS_MIN_SCL_HTIME_100 60 //the unit is ns, with bus loading = 100pf
#define I2C_HS_MIN_SCL_LTIME_100 120 //the unit is ns., with bus loading = 100pf
#define I2C_HS_MIN_SCL_HTIME_400 160 //the unit is ns, with bus loading = 400pf
#define I2C_HS_MIN_SCL_LTIME_400 320 //the unit is ns., with bus loading = 400pf
//======================================================
//I2C Essential functions and macros
_LONG_CALL_ROM_ VOID HalI2CWrite32(IN u8 I2CIdx, IN u8 I2CReg, IN u32 I2CVal);
_LONG_CALL_ROM_ u32 HalI2CRead32(IN u8 I2CIdx, IN u8 I2CReg);
#define HAL_I2C_WRITE32(I2CIdx, addr, value) HalI2CWrite32(I2CIdx,addr,value)
#define HAL_I2C_READ32(I2CIdx, addr) HalI2CRead32(I2CIdx,addr)
// Rtl8195a I2C function prototypes
_LONG_CALL_ HAL_Status HalI2CEnableRtl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CInit8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CDeInit8195a(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status HalI2CSetCLKRtl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CMassSendRtl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CSendRtl8195a(IN VOID *Data);
_LONG_CALL_ u8 HalI2CReceiveRtl8195a(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status HalI2CIntrCtrl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CClrIntrRtl8195a(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status HalI2CClrAllIntrRtl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CDMACtrl8195a(IN VOID *Data);
_LONG_CALL_ u32 HalI2CReadRegRtl8195a(IN VOID *Data, IN u8 I2CReg);
_LONG_CALL_ HAL_Status HalI2CWriteRegRtl8195a(IN VOID *Data, IN u8 I2CReg, IN u32 RegVal);
//Rtl8195a I2C V02 function prototype
_LONG_CALL_ HAL_Status HalI2CSendRtl8195aV02(IN VOID *Data);
#if defined(CONFIG_CHIP_A_CUT) || defined(CONFIG_CHIP_B_CUT) || defined(CONFIG_CHIP_C_CUT)
_LONG_CALL_ HAL_Status HalI2CSetCLKRtl8195aV02(IN VOID *Data);
#elif defined(CONFIG_CHIP_E_CUT)
_LONG_CALL_ROM_ HAL_Status HalI2CSetCLKRtl8195aV02(IN VOID *Data);
#endif
//Rtl8195a I2C V02 function prototype END
//Rtl8195a I2C V04 function prototype
_LONG_CALL_ HAL_Status HalI2CSendRtl8195a_V04(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CMassSendRtl8195a_V04(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CInit8195a_V04(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CSetCLKRtl8195a_V04(IN VOID *Data);
//Rtl8195a I2C V04 function prototype END
HAL_Status HalI2CInit8195a_Patch(IN VOID *Data);
HAL_Status HalI2CSendRtl8195a_Patch(IN VOID *Data);
HAL_Status HalI2CSetCLKRtl8195a_Patch(IN VOID *Data);
HAL_Status HalI2CMassSendRtl8195a_Patch(IN VOID *Data);
HAL_Status HalI2CEnableRtl8195a_Patch(IN VOID *Data);
#endif

View file

@ -0,0 +1,723 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_I2S_H_
#define _RTL8195A_I2S_H_
//=============== Register Bit Field Definition ====================
// REG_I2S_CONTROL
#define BIT_CTLX_I2S_EN BIT(0)
#define BIT_SHIFT_CTLX_I2S_EN 0
#define BIT_MASK_CTLX_I2S_EN 0x1
#define BIT_CTRL_CTLX_I2S_EN(x) (((x) & BIT_MASK_CTLX_I2S_EN) << BIT_SHIFT_CTLX_I2S_EN)
#define BIT_SHIFT_CTLX_I2S_TRX_ACT 1
#define BIT_MASK_CTLX_I2S_TRX_ACT 0x3
#define BIT_CTRL_CTLX_I2S_TRX_ACT(x) (((x) & BIT_MASK_CTLX_I2S_TRX_ACT) << BIT_SHIFT_CTLX_I2S_TRX_ACT)
#define BIT_GET_CTLX_I2S_TRX_ACT(x) (((x) >> BIT_SHIFT_CTLX_I2S_TRX_ACT) & BIT_MASK_CTLX_I2S_TRX_ACT)
#define BIT_SHIFT_CTLX_I2S_CH_NUM 3
#define BIT_MASK_CTLX_I2S_CH_NUM 0x3
#define BIT_CTRL_CTLX_I2S_CH_NUM(x) (((x) & BIT_MASK_CTLX_I2S_CH_NUM) << BIT_SHIFT_CTLX_I2S_CH_NUM)
#define BIT_GET_CTLX_I2S_CH_NUM(x) (((x) >> BIT_SHIFT_CTLX_I2S_CH_NUM) & BIT_MASK_CTLX_I2S_CH_NUM)
//pvvx?
#define BIT_CTLX_I2S_EDGE_SW 5
#define BIT_MASK_CTLX_EDGE_SW 0x1
#define BIT_CTLX_EDGE_SW(x) (((x) & BIT_MASK_CTLX_EDGE_SW) << BIT_SHIFT_CTLX_EDGE_SW)
#define BIT_INV_CTLX_EDGE_SW (~(BIT_MASK_CTLX_EDGE_SW << BIT_SHIFT_CTLX_EDGE_SW))
#define BIT_CTLX_I2S_WL BIT(6)
#define BIT_SHIFT_CTLX_I2S_WL 6
#define BIT_MASK_CTLX_I2S_WL 0x1
#define BIT_CTRL_CTLX_I2S_WL(x) (((x) & BIT_MASK_CTLX_I2S_WL) << BIT_SHIFT_CTLX_I2S_WL)
//pvvx?
#define BIT_CTLX_I2S_LOOP_BACK 7
#define BIT_MASK_CTLX_LOOP_BACK 0x1
#define BIT_CTLX_LOOP_BACK(x) (((x) & BIT_MASK_CTLX_LOOP_BACK) << BIT_CTLX_I2S_LOOP_BACK)
#define BIT_INV_CTLX_LOOP_BACK (~(BIT_MASK_CTLX_LOOP_BACK << BIT_CTLX_I2S_LOOP_BACK))
//pvvx?
#define BIT_CTLX_I2S_FORMAT 8
#define BIT_MASK_CTLX_FORMAT 0x3
#define BIT_CTLX_FORMAT(x) (((x) & BIT_MASK_CTLX_FORMAT) << BIT_CTLX_I2S_FORMAT)
#define BIT_INV_CTLX_FORMAT (~(BIT_MASK_CTLX_FORMAT << BIT_CTLX_I2S_FORMAT))
#define BIT_CTLX_I2S_LRSWAP BIT(10)
#define BIT_SHIFT_CTLX_I2S_LRSWAP 10
#define BIT_MASK_CTLX_I2S_LRSWAP 0x1
#define BIT_CTRL_CTLX_I2S_LRSWAP(x) (((x) & BIT_MASK_CTLX_I2S_LRSWAP) << BIT_SHIFT_CTLX_I2S_LRSWAP)
#define BIT_CTLX_I2S_SCK_INV BIT(11)
#define BIT_SHIFT_CTLX_I2S_SCK_INV 11
#define BIT_MASK_CTLX_I2S_SCK_INV 0x1
#define BIT_CTRL_CTLX_I2S_SCK_INV(x) (((x) & BIT_MASK_CTLX_I2S_SCK_INV) << BIT_SHIFT_CTLX_I2S_SCK_INV)
#define BIT_CTLX_I2S_ENDIAN_SWAP BIT(12)
#define BIT_SHIFT_CTLX_I2S_ENDIAN_SWAP 12
#define BIT_MASK_CTLX_I2S_ENDIAN_SWAP 0x1
#define BIT_CTRL_CTLX_I2S_ENDIAN_SWAP(x) (((x) & BIT_MASK_CTLX_I2S_ENDIAN_SWAP) << BIT_SHIFT_CTLX_I2S_ENDIAN_SWAP)
#define BIT_CTLX_I2S_SLAVE_MODE BIT(29)
#define BIT_SHIFT_CTLX_I2S_SLAVE_MODE 29
#define BIT_MASK_CTLX_I2S_SLAVE_MODE 0x1
#define BIT_CTRL_CTLX_I2S_SLAVE_MODE(x) (((x) & BIT_MASK_CTLX_I2S_SLAVE_MODE) << BIT_SHIFT_CTLX_I2S_SLAVE_MODE)
#define BIT_CTLX_I2S_CLK_SRC BIT(30)
#define BIT_SHIFT_CTLX_I2S_CLK_SRC 30
#define BIT_MASK_CTLX_I2S_CLK_SRC 0x1
#define BIT_CTRL_CTLX_I2S_CLK_SRC(x) (((x) & BIT_MASK_CTLX_I2S_CLK_SRC) << BIT_SHIFT_CTLX_I2S_CLK_SRC)
#define BIT_CTLX_I2S_SW_RSTN BIT(31)
#define BIT_SHIFT_CTLX_I2S_SW_RSTN 31
#define BIT_MASK_CTLX_I2S_SW_RSTN 0x1
#define BIT_CTRL_CTLX_I2S_SW_RSTN(x) (((x) & BIT_MASK_CTLX_I2S_SW_RSTN) << BIT_SHIFT_CTLX_I2S_SW_RSTN)
// REG_I2S_SETTING
#define BIT_SHIFT_SETTING_I2S_PAGE_SZ 0
#define BIT_MASK_SETTING_I2S_PAGE_SZ 0xFFF
#define BIT_CTRL_SETTING_I2S_PAGE_SZ(x) (((x) & BIT_MASK_SETTING_I2S_PAGE_SZ) << BIT_SHIFT_SETTING_I2S_PAGE_SZ)
#define BIT_GET_SETTING_I2S_PAGE_SZ(x) (((x) >> BIT_SHIFT_SETTING_I2S_PAGE_SZ) & BIT_MASK_SETTING_I2S_PAGE_SZ)
#define BIT_SHIFT_SETTING_I2S_PAGE_NUM 12
#define BIT_MASK_SETTING_I2S_PAGE_NUM 0x3
#define BIT_CTRL_SETTING_I2S_PAGE_NUM(x) (((x) & BIT_MASK_SETTING_I2S_PAGE_NUM) << BIT_SHIFT_SETTING_I2S_PAGE_NUM)
#define BIT_GET_SETTING_I2S_PAGE_NUM(x) (((x) >> BIT_SHIFT_SETTING_I2S_PAGE_NUM) & BIT_MASK_SETTING_I2S_PAGE_NUM)
#define BIT_SHIFT_SETTING_I2S_SAMPLE_RATE 14
#define BIT_MASK_SETTING_I2S_SAMPLE_RATE 0x7
#define BIT_CTRL_SETTING_I2S_SAMPLE_RATE(x) (((x) & BIT_MASK_SETTING_I2S_SAMPLE_RATE) << BIT_SHIFT_SETTING_I2S_SAMPLE_RATE)
#define BIT_GET_SETTING_I2S_SAMPLE_RATE(x) (((x) >> BIT_SHIFT_SETTING_I2S_SAMPLE_RATE) & BIT_MASK_SETTING_I2S_SAMPLE_RATE)
// i2s trx page own bit
#define BIT_PAGE_I2S_OWN_BIT BIT(31)
#define BIT_SHIFT_PAGE_I2S_OWN_BIT 31
#define BIT_MASK_PAGE_I2S_OWN_BIT 0x1
#define BIT_CTRL_PAGE_I2S_OWN_BIT(x) (((x) & BIT_MASK_PAGE_I2S_OWN_BIT) << BIT_SHIFT_PAGE_I2S_OWN_BIT)
//=============== Register Address Definition ====================
#define REG_I2S_PAGE_OWN_OFF 0x004
#define REG_I2S_CTL 0x000
#define REG_I2S_TX_PAGE_PTR 0x004
#define REG_I2S_RX_PAGE_PTR 0x008
#define REG_I2S_SETTING 0x00C
#define REG_I2S_TX_MASK_INT 0x010
#define REG_I2S_TX_STATUS_INT 0x014
#define REG_I2S_RX_MASK_INT 0x018
#define REG_I2S_RX_STATUS_INT 0x01c
#define REG_I2S_TX_PAGE0_OWN 0x020
#define REG_I2S_TX_PAGE1_OWN 0x024
#define REG_I2S_TX_PAGE2_OWN 0x028
#define REG_I2S_TX_PAGE3_OWN 0x02C
#define REG_I2S_RX_PAGE0_OWN 0x030
#define REG_I2S_RX_PAGE1_OWN 0x034
#define REG_I2S_RX_PAGE2_OWN 0x038
#define REG_I2S_RX_PAGE3_OWN 0x03C
/*I2S Essential Functions and Macros*/
VOID
HalI2SWrite32(
IN u8 I2SIdx,
IN u8 I2SReg,
IN u32 I2SVal
);
u32
HalI2SRead32(
IN u8 I2SIdx,
IN u8 I2SReg
);
/*
#define HAL_I2SX_READ32(I2sIndex, addr) \
HAL_READ32(I2S0_REG_BASE+ (I2sIndex*I2S1_REG_OFF), addr)
#define HAL_I2SX_WRITE32(I2sIndex, addr, value) \
HAL_WRITE32((I2S0_REG_BASE+ (I2sIndex*I2S1_REG_OFF)), addr, value)
*/
#define HAL_I2S_WRITE32(I2SIdx, addr, value) HalI2SWrite32(I2SIdx,addr,value)
#define HAL_I2S_READ32(I2SIdx, addr) HalI2SRead32(I2SIdx,addr)
/* I2S debug output*/
#define I2S_PREFIX "RTL8195A[i2s]: "
#define I2S_PREFIX_LVL " [i2s_DBG]: "
typedef enum _I2S_DBG_LVL_ {
HAL_I2S_LVL = 0x01,
SAL_I2S_LVL = 0x02,
VERI_I2S_LVL = 0x03,
}I2S_DBG_LVL,*PI2S_DBG_LVL;
#if CONFIG_DEBUG_LOG > 0
#ifdef CONFIG_DEBUG_LOG_I2S_HAL
#define DBG_8195A_I2S(...) do{ \
_DbgDump(I2S_PREFIX __VA_ARGS__);\
}while(0)
#define I2SDBGLVL 0xFF
#define DBG_8195A_I2S_LVL(LVL,...) do{\
if (LVL&I2SDBGLVL){\
_DbgDump(I2S_PREFIX_LVL __VA_ARGS__);\
}\
}while(0)
#else
#define DBG_I2S_LOG_PERD 100
#define DBG_8195A_I2S(...)
#define DBG_8195A_I2S_LVL(...)
#endif
#else
#define DBG_I2S_LOG_PERD 100
#define DBG_8195A_I2S(...)
#define DBG_8195A_I2S_LVL(...)
#endif
/*
#define REG_I2S_PAGE_OWN_OFF 0x004
#define REG_I2S_CTL 0x000
#define REG_I2S_TX_PAGE_PTR 0x004
#define REG_I2S_RX_PAGE_PTR 0x008
#define REG_I2S_SETTING 0x00C
#define REG_I2S_TX_MASK_INT 0x010
#define REG_I2S_TX_STATUS_INT 0x014
#define REG_I2S_RX_MASK_INT 0x018
#define REG_I2S_RX_STATUS_INT 0x01c
#define REG_I2S_TX_PAGE0_OWN 0x020
#define REG_I2S_TX_PAGE1_OWN 0x024
#define REG_I2S_TX_PAGE2_OWN 0x028
#define REG_I2S_TX_PAGE3_OWN 0x02C
#define REG_I2S_RX_PAGE0_OWN 0x030
#define REG_I2S_RX_PAGE1_OWN 0x034
#define REG_I2S_RX_PAGE2_OWN 0x038
#define REG_I2S_RX_PAGE3_OWN 0x03C
*/
/* template
#define BIT_SHIFT_CTLX_ 7
#define BIT_MASK_CTLX_ 0x1
#define BIT_CTLX_(x) (((x) & BIT_MASK_CTLX_) << BIT_SHIFT_CTLX_)
#define BIT_INV_CTLX_ (~(BIT_MASK_CTLX_ << BIT_SHIFT_CTLX_))
*//*
#define BIT_SHIFT_CTLX_IIS_EN 0
#define BIT_MASK_CTLX_IIS_EN 0x1
#define BIT_CTLX_IIS_EN(x) (((x) & BIT_MASK_CTLX_IIS_EN) << BIT_SHIFT_CTLX_IIS_EN)
#define BIT_INV_CTLX_IIS_EN (~(BIT_MASK_CTLX_IIS_EN << BIT_SHIFT_CTLX_IIS_EN))
#define BIT_SHIFT_CTLX_TRX 1
#define BIT_MASK_CTLX_TRX 0x3
#define BIT_CTLX_TRX(x) (((x) & BIT_MASK_CTLX_TRX) << BIT_SHIFT_CTLX_TRX)
#define BIT_INV_CTLX_TRX (~(BIT_MASK_CTLX_TRX << BIT_SHIFT_CTLX_TRX))
#define BIT_SHIFT_CTLX_CH_NUM 3
#define BIT_MASK_CTLX_CH_NUM 0x3
#define BIT_CTLX_CH_NUM(x) (((x) & BIT_MASK_CTLX_CH_NUM) << BIT_SHIFT_CTLX_CH_NUM)
#define BIT_INV_CTLX_CH_NUM (~(BIT_MASK_CTLX_CH_NUM << BIT_SHIFT_CTLX_CH_NUM))
#define BIT_SHIFT_CTLX_EDGE_SW 5
#define BIT_MASK_CTLX_EDGE_SW 0x1
#define BIT_CTLX_EDGE_SW(x) (((x) & BIT_MASK_CTLX_EDGE_SW) << BIT_SHIFT_CTLX_EDGE_SW)
#define BIT_INV_CTLX_EDGE_SW (~(BIT_MASK_CTLX_EDGE_SW << BIT_SHIFT_CTLX_EDGE_SW))
#define BIT_SHIFT_CTLX_WL 6
#define BIT_MASK_CTLX_WL 0x1
#define BIT_CTLX_WL(x) (((x) & BIT_MASK_CTLX_WL) << BIT_SHIFT_CTLX_WL)
#define BIT_INV_CTLX_WL (~(BIT_MASK_CTLX_WL << BIT_SHIFT_CTLX_WL))
#define BIT_SHIFT_CTLX_LOOP_BACK 7
#define BIT_MASK_CTLX_LOOP_BACK 0x1
#define BIT_CTLX_LOOP_BACK(x) (((x) & BIT_MASK_CTLX_LOOP_BACK) << BIT_SHIFT_CTLX_LOOP_BACK)
#define BIT_INV_CTLX_LOOP_BACK (~(BIT_MASK_CTLX_LOOP_BACK << BIT_SHIFT_CTLX_LOOP_BACK))
#define BIT_SHIFT_CTLX_FORMAT 8
#define BIT_MASK_CTLX_FORMAT 0x3
#define BIT_CTLX_FORMAT(x) (((x) & BIT_MASK_CTLX_FORMAT) << BIT_SHIFT_CTLX_FORMAT)
#define BIT_INV_CTLX_FORMAT (~(BIT_MASK_CTLX_FORMAT << BIT_SHIFT_CTLX_FORMAT))
#define BIT_SHIFT_CTLX_LRSWAP 10
#define BIT_MASK_CTLX_LRSWAP 0x1
#define BIT_CTLX_LRSWAP(x) (((x) & BIT_MASK_CTLX_LRSWAP) << BIT_SHIFT_CTLX_LRSWAP)
#define BIT_INV_CTLX_LRSWAP (~(BIT_MASK_CTLX_LRSWAP << BIT_SHIFT_CTLX_LRSWAP))
#define BIT_SHIFT_CTLX_SCK_INV 11
#define BIT_MASK_CTLX_SCK_INV 0x1
#define BIT_CTLX_SCK_INV(x) (((x) & BIT_MASK_CTLX_SCK_INV) << BIT_SHIFT_CTLX_SCK_INV)
#define BIT_INV_CTLX_SCK_INV (~(BIT_MASK_CTLX_SCK_INV << BIT_SHIFT_CTLX_SCK_INV))
#define BIT_SHIFT_CTLX_ENDIAN_SWAP 12
#define BIT_MASK_CTLX_ENDIAN_SWAP 0x1
#define BIT_CTLX_ENDIAN_SWAP(x) (((x) & BIT_MASK_CTLX_ENDIAN_SWAP) << BIT_SHIFT_CTLX_ENDIAN_SWAP)
#define BIT_INV_CTLX_ENDIAN_SWAP (~(BIT_MASK_CTLX_ENDIAN_SWAP << BIT_SHIFT_CTLX_ENDIAN_SWAP))
#define BIT_SHIFT_CTLX_DEBUG_SWITCH 15
#define BIT_MASK_CTLX_DEBUG_SWITCH 0x3
#define BIT_CTLX_DEBUG_SWITCH(x) (((x) & BIT_MASK_CTLX_DEBUG_SWITCH) << BIT_SHIFT_CTLX_DEBUG_SWITCH)
#define BIT_INV_CTLX_DEBUG_SWITCH (~(BIT_MASK_CTLX_DEBUG_SWITCH << BIT_SHIFT_CTLX_DEBUG_SWITCH))
#define BIT_SHIFT_CTLX_SLAVE_SEL 29
#define BIT_MASK_CTLX_SLAVE_SEL 0x1
#define BIT_CTLX_SLAVE_SEL(x) (((x) & BIT_MASK_CTLX_SLAVE_SEL) << BIT_SHIFT_CTLX_SLAVE_SEL)
#define BIT_INV_CTLX_SLAVE_SEL (~(BIT_MASK_CTLX_SLAVE_SEL << BIT_SHIFT_CTLX_SLAVE_SEL))
#define BIT_SHIFT_CTLX_CLK_SRC 30
#define BIT_MASK_CTLX_CLK_SRC 0x1
#define BIT_CTLX_CLK_SRC(x) (((x) & BIT_MASK_CTLX_CLK_SRC) << BIT_SHIFT_CTLX_CLK_SRC)
#define BIT_INV_CTLX_CLK_SRC (~(BIT_MASK_CTLX_CLK_SRC << BIT_SHIFT_CTLX_CLK_SRC))
#define BIT_SHIFT_CTLX_SW_RSTN 31
#define BIT_MASK_CTLX_SW_RSTN 0x1
#define BIT_CTLX_SW_RSTN(x) (((x) & BIT_MASK_CTLX_SW_RSTN) << BIT_SHIFT_CTLX_SW_RSTN)
#define BIT_INV_CTLX_SW_RSTN (~(BIT_MASK_CTLX_SW_RSTN << BIT_SHIFT_CTLX_SW_RSTN))
#define BIT_SHIFT_SETTING_PAGE_SZ 0
#define BIT_MASK_SETTING_PAGE_SZ 0xFFF
#define BIT_SETTING_PAGE_SZ(x) (((x) & BIT_MASK_SETTING_PAGE_SZ) << BIT_SHIFT_SETTING_PAGE_SZ)
#define BIT_INV_SETTING_PAGE_SZ (~(BIT_MASK_SETTING_PAGE_SZ << BIT_SHIFT_SETTING_PAGE_SZ))
#define BIT_SHIFT_SETTING_PAGE_NUM 12
#define BIT_MASK_SETTING_PAGE_NUM 0x3
#define BIT_SETTING_PAGE_NUM(x) (((x) & BIT_MASK_SETTING_PAGE_NUM) << BIT_SHIFT_SETTING_PAGE_NUM)
#define BIT_INV_SETTING_PAGE_NUM (~(BIT_MASK_SETTING_PAGE_NUM << BIT_SHIFT_SETTING_PAGE_NUM))
#define BIT_SHIFT_SETTING_SAMPLE_RATE 14
#define BIT_MASK_SETTING_SAMPLE_RATE 0x7
#define BIT_SETTING_SAMPLE_RATE(x) (((x) & BIT_MASK_SETTING_SAMPLE_RATE) << BIT_SHIFT_SETTING_SAMPLE_RATE)
#define BIT_INV_SETTING_SAMPLE_RATE (~(BIT_MASK_SETTING_SAMPLE_RATE << BIT_SHIFT_SETTING_SAMPLE_RATE))
*/
typedef enum _I2S_CTL_FORMAT {
FormatI2s = 0x00,
FormatLeftJustified = 0x01,
FormatRightJustified = 0x02
}I2S_CTL_FORMAT, *PI2S_CTL_FORMAT;
typedef enum _I2S_CTL_CHNUM {
ChannelStereo = 0x00,
Channel5p1 = 0x01,
ChannelMono = 0x02
}I2S_CTL_CHNUM, *PI2S_CTL_CHNUM;
typedef enum _I2S_CTL_TRX_ACT {
RxOnly = 0x00,
TxOnly = 0x01,
TXRX = 0x02
}I2S_CTL_TRX_ACT, *PI2S_CTL_TRX_ACT;
/*
typedef struct _I2S_CTL_REG_ {
I2S_CTL_FORMAT Format;
I2S_CTL_CHNUM ChNum;
I2S_CTL_TRX_ACT TrxAct;
u32 I2s_En :1; // Bit 0
u32 Rsvd1to4 :4; // Bit 1-4 is TrxAct, ChNum
u32 EdgeSw :1; // Bit 5 Edge switch
u32 WordLength :1; // Bit 6
u32 LoopBack :1; // Bit 7
u32 Rsvd8to9 :2; // Bit 8-9 is Format
u32 DacLrSwap :1; // Bit 10
u32 SckInv :1; // Bit 11
u32 EndianSwap :1; // Bit 12
u32 Rsvd13to14 :2; // Bit 11-14
u32 DebugSwitch :2; // Bit 15-16
u32 Rsvd17to28 :12; // Bit 17-28
u32 SlaveMode :1; // Bit 29
u32 SR44p1KHz :1; // Bit 30
u32 SwRstn :1; // Bit 31
} I2S_CTL_REG, *PI2S_CTL_REG;
*/
typedef enum _I2S_SETTING_PAGE_NUM {
I2s1Page = 0x00,
I2s2Page = 0x01,
I2s3Page = 0x02,
I2s4Page = 0x03
}I2S_SETTING_PAGE_NUM, *PI2S_SETTING_PAGE_NUM;
//sampling rate
typedef enum _I2S_SETTING_SR {
I2sSR8K = 0x00,
I2sSR16K = 0x01,
I2sSR24K = 0x02,
I2sSR32K = 0x03,
I2sSR48K = 0x05,
I2sSR44p1K = 0x15,
I2sSR96K = 0x06,
I2sSR88p2K = 0x16
}I2S_SETTING_SR, *PI2S_SETTING_SR;
/*
typedef struct _I2S_SETTING_REG_ {
I2S_SETTING_PAGE_NUM PageNum;
I2S_SETTING_SR SampleRate;
u32 PageSize:12; // Bit 0-11
}I2S_SETTING_REG, *PI2S_SETTING_REG;
typedef enum _I2S_TX_ISR {
I2sTxP0OK = 0x01,
I2sTxP1OK = 0x02,
I2sTxP2OK = 0x04,
I2sTxP3OK = 0x08,
I2sTxPageUn = 0x10,
I2sTxFifoEmpty = 0x20
}I2S_TX_ISR, *PI2S_TX_ISR;
typedef enum _I2S_RX_ISR {
I2sRxP0OK = 0x01,
I2sRxP1OK = 0x02,
I2sRxP2OK = 0x04,
I2sRxP3OK = 0x08,
I2sRxPageUn = 0x10,
I2sRxFifoFull = 0x20
}I2S_RX_ISR, *PI2S_RX_ISR;
*/
/* Hal I2S function prototype*/
RTK_STATUS
HalI2SInitRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SInitRtl8195a_Patch(
IN VOID *Data
);
RTK_STATUS
HalI2SDeInitRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2STxRtl8195a(
IN VOID *Data,
IN u8 *pBuff
);
RTK_STATUS
HalI2SRxRtl8195a(
IN VOID *Data,
OUT u8 *pBuff
);
RTK_STATUS
HalI2SEnableRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SIntrCtrlRtl8195a(
IN VOID *Data
);
u32
HalI2SReadRegRtl8195a(
IN VOID *Data,
IN u8 I2SReg
);
RTK_STATUS
HalI2SSetRateRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetWordLenRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetChNumRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetPageNumRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetPageSizeRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetDirectionRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetDMABufRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SClrIntrRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SClrAllIntrRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SDMACtrlRtl8195a(
IN VOID *Data
);
u8
HalI2SGetTxPageRtl8195a(
IN VOID *Data
);
u8
HalI2SGetRxPageRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SPageSendRtl8195a(
IN VOID *Data,
IN u8 PageIdx
);
RTK_STATUS
HalI2SPageRecvRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SClearAllOwnBitRtl8195a(
IN VOID *Data
);
#ifdef CONFIG_CHIP_E_CUT
_LONG_CALL_ RTK_STATUS
HalI2SInitRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ RTK_STATUS
HalI2SSetRateRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ RTK_STATUS
HalI2SSetWordLenRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ RTK_STATUS
HalI2SSetChNumRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ RTK_STATUS
HalI2SSetPageNumRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ RTK_STATUS
HalI2SSetPageSizeRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ RTK_STATUS
HalI2SSetDirectionRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ RTK_STATUS
HalI2SSetDMABufRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ u8
HalI2SGetTxPageRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ u8
HalI2SGetRxPageRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ RTK_STATUS
HalI2SPageSendRtl8195a_V04(
IN VOID *Data,
IN u8 PageIdx
);
_LONG_CALL_ RTK_STATUS
HalI2SPageRecvRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ RTK_STATUS
HalI2SClearAllOwnBitRtl8195a_V04(
IN VOID *Data
);
#endif // #ifdef CONFIG_CHIP_E_CUT
// HAL functions Wrapper
static __inline VOID
HalI2SSetRate(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SSetRateRtl8195a(Data);
#else
HalI2SSetRateRtl8195a_V04(Data);
#endif
}
static __inline VOID
HalI2SSetWordLen(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SSetWordLenRtl8195a(Data);
#else
HalI2SSetWordLenRtl8195a_V04(Data);
#endif
}
static __inline VOID
HalI2SSetChNum(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SSetChNumRtl8195a(Data);
#else
HalI2SSetChNumRtl8195a_V04(Data);
#endif
}
static __inline VOID
HalI2SSetPageNum(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SSetPageNumRtl8195a(Data);
#else
HalI2SSetPageNumRtl8195a_V04(Data);
#endif
}
static __inline VOID
HalI2SSetPageSize(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SSetPageSizeRtl8195a(Data);
#else
HalI2SSetPageSizeRtl8195a_V04(Data);
#endif
}
static __inline VOID
HalI2SSetDirection(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SSetDirectionRtl8195a(Data);
#else
HalI2SSetDirectionRtl8195a_V04(Data);
#endif
}
static __inline VOID
HalI2SSetDMABuf(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SSetDMABufRtl8195a(Data);
#else
HalI2SSetDMABufRtl8195a_V04(Data);
#endif
}
static __inline u8
HalI2SGetTxPage(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
return HalI2SGetTxPageRtl8195a(Data);
#else
return HalI2SGetTxPageRtl8195a_V04(Data);
#endif
}
static __inline u8
HalI2SGetRxPage(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
return HalI2SGetRxPageRtl8195a(Data);
#else
return HalI2SGetRxPageRtl8195a_V04(Data);
#endif
}
static __inline VOID
HalI2SPageSend(
IN VOID *Data,
IN u8 PageIdx
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SPageSendRtl8195a(Data, PageIdx);
#else
HalI2SPageSendRtl8195a_V04(Data, PageIdx);
#endif
}
static __inline VOID
HalI2SPageRecv(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SPageRecvRtl8195a(Data);
#else
HalI2SPageRecvRtl8195a_V04(Data);
#endif
}
static __inline VOID
HalI2SClearAllOwnBit(
IN VOID *Data
)
{
#ifndef CONFIG_CHIP_E_CUT
HalI2SClearAllOwnBitRtl8195a(Data);
#else
HalI2SClearAllOwnBitRtl8195a_V04(Data);
#endif
}
#endif /* _RTL8195A_I2S_H_ */

View file

@ -0,0 +1,675 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_MII_H_
#define _RTL8195A_MII_H_
#include "basic_types.h"
#include "hal_api.h"
#define MII_TX_DESC_NO 8
#define MII_RX_DESC_NO 8
#define MII_BUF_SIZE 1536
#define MAX_FRAME_SIZE 1514
#define HAL_MII_READ32(addr) HAL_READ32(MII_REG_BASE, addr)
#define HAL_MII_WRITE32(addr, value) HAL_WRITE32(MII_REG_BASE, addr, value)
#define HAL_MII_READ16(addr) HAL_READ16(MII_REG_BASE, addr)
#define HAL_MII_WRITE16(addr, value) HAL_WRITE16(MII_REG_BASE, addr, value)
#define HAL_MII_READ8(addr) HAL_READ8(MII_REG_BASE, addr)
#define HAL_MII_WRITE8(addr, value) HAL_WRITE8(MII_REG_BASE, addr, value)
/* =============== MAC Register Offset Definition =============== */
#define REG_MII_IDR0 0x0000
#define REG_MII_IDR4 0x0004
#define REG_MII_COM 0x0038
#define REG_MII_ISRIMR 0x003C
#define REG_MII_TC 0x0040
#define REG_MII_RC 0x0044
#define REG_MII_MS 0x0058
#define REG_MII_MIIA 0x005C
#define REG_MII_TXFDP1 0x1300
#define REG_MII_RXFDP1 0x13F0
#define REG_MII_ETNRXCPU1 0x1430
#define REG_MII_IOCMD 0x1434
#define REG_MII_IOCMD1 0x1438
/* =============== MAC Register BIT Definition =============== */
/* Command Register (0x38) */
#define COM_RST BIT0
#define COM_RXCHKSUM BIT1
#define COM_RXJUMBO BIT3
/* Interrupt Status & Interrupt Mask Register (0x3C & 0x3E) */
#define ISR_RXOK BIT0
#define ISR_RER_RUNT BIT2
#define ISR_RER_OVF BIT4
#define ISR_RDU BIT5
#define ISR_TXOK BIT6
#define ISR_TER BIT7
#define ISR_LINKCHG BIT8
#define ISR_TDU BIT9
#define ISR_CLR_ALL 0x0000FFFF
#define IMR_RXOK BIT16
#define IMR_RER_RUNT BIT18
#define IMR_RER_OVF BIT20
#define IMR_RDU BIT21
#define IMR_TXOK BIT22
#define IMR_TER BIT23
#define IMR_LINKCHG BIT24
#define IMR_TDU BIT25
/* Transmit Configuration Register (0x40) */
#define TC_TX_NOPADDING BIT0
#define TC_NORMAL_MODE 0
#define TC_LBK_R2T 1
#define TC_LBK_T2R 3
#define TC_LBK_MASK 0x00000300 // bit[9:8]
#define TC_IFG_TIME 3 // 9.6 us for 10Mbps, 960 ns for 100Mbps
#define TC_IFG_MASK 0x00001C00 // bit[12:10]
/* Receive Configuration Register (0x44) */
#define RC_AAP BIT0
#define RC_APM BIT1
#define RC_AM BIT2
#define RC_AB BIT3
#define RC_AR BIT4
#define RC_AER BIT5
/* Media Status Register (0x58) */
#define MS_LINKB BIT26
/* MII Access Register (0x5C) */
#define MIIA_FLAG BIT31 // 1: Write, 0: Read
#define MIIA_PHY_ADDR_MASK 0x7C000000 // bit[30:26]
#define MIIA_PHY_REG_ADDR_MASK 0x001F0000 // bit[20:16]
/* IO Command Register (0x1434) */
#define IOCMD_TXFN1ST BIT0
#define IOCMD_TE BIT4
#define IOCMD_RE BIT5
#define IOCMD_RXFTH_1024 0
#define IOCMD_RXFTH_128 1
#define IOCMD_RXFTH_256 2
#define IOCMD_RXFTH_512 3
#define IOCMD_RXFTH_MASK 0x00001800 // bit[12:11]
#define IOCMD_TXFTH_128 0
#define IOCMD_TXFTH_256 1
#define IOCMD_TXFTH_512 2
#define IOCMD_TXFTH_1024 3
#define IOCMD_TXFTH_MASK 0x00180000 // bit[20:19]
#define IOCMD_SHORT_DES_FMT BIT30
/* IO Command1 Register (0x1438) */
#define IOCMD1_RXRING1 BIT16
#define IOCMD1_EN_1GB BIT24
#define IOCMD1_DSC_FMT_EXTRA 0x3 // 011
#define IOCMD1_DSCFMTEXTRA_MASK 0x70000000 // bit[30:28]
/* =============== PHY (RTL8201F) Register Bit Definition =============== */
#define PHY_ADDRESS 0x1 // 5 bits
#define PHY_REG0_ADDR 0x0 // 5 bits
#define PHY_REG1_ADDR 0x1 // 5 bits
/* Register 0 */
#define PHY_SPEED_MSB BIT6
#define PHY_DUPLEX_MODE BIT8
#define PHY_RESTART_NWAY BIT9
#define PHY_NWAY_EN BIT12
#define PHY_SPEED_LSB BIT13
#define PHY_SW_RESET BIT15
/* Register 1 */
#define PHY_LINK_STATUS BIT2
#define PHY_NWAY_COMPLETE BIT5
/* =============== Tx/Rx Descriptor Bit Definition =============== */
#define TX_DESC_OWN BIT31
#define TX_DESC_EOR BIT30
#define TX_DESC_FS BIT29
#define TX_DESC_LS BIT28
#define TX_DESC_CRC BIT23
#define TX_DESC_DATA_LEN_MASK 0x1FFFF // bit[16:0]
#define TX_DESC_VLAN_INTACT 0
#define TX_DESC_VLAN_INSERT 1
#define TX_DESC_VLAN_REMOVE 2
#define TX_DESC_VLAN_REMARKING 3
#define TX_DESC_VLAN_ACT_MASK 0x06000000
#define C_VLAN_HDR 0x8100279F
#define S_VLAN_HDR 0x88A8279F
#define TX_DESC_VLAN_TAG_MASK 0x0000FFFF
#define RX_DESC_OWN BIT31
#define RX_DESC_EOR BIT30
#define RX_DESC_PKT_TYPE_MASK 0x001E0000 // bit[20:17]
#define RX_DESC_DATA_LEN_MASK 0xFFF // bit[11:0]
typedef struct _TX_DESC_FMT_
{
u32 dw1; // offset 0
u32 addr; // offset 4
u32 dw2; // offset 8
u32 dw3; // offset 12
u32 dw4; // offset 16
}TX_DESC_FMT, *PTX_DESC_FMT;
typedef struct _RX_DESC_FMT_
{
u32 dw1; // offset 0
u32 addr; // offset 4
u32 dw2; // offset 8
u32 dw3; // offset 12
}RX_DESC_FMT, *PRX_DESC_FMT;
VOID
HalMiiInitIrqRtl8195a(
IN VOID *Data
);
s32
HalMiiInitRtl8195a(
IN VOID
);
VOID
HalMiiDeInitRtl8195a(
IN VOID
);
s32
HalMiiWriteDataRtl8195a(
IN const char *Data,
IN u32 Size
);
u32
HalMiiSendPacketRtl8195a(
IN VOID
);
u32
HalMiiReceivePacketRtl8195a(
IN VOID
);
u32
HalMiiReadDataRtl8195a(
IN u8 *Data,
IN u32 Size
);
VOID
HalMiiGetMacAddressRtl8195a(
IN u8 *Addr
);
u32
HalMiiGetLinkStatusRtl8195a(
IN VOID
);
VOID
HalMiiForceLinkRtl8195a(
IN s32 Speed,
IN s32 Duplex
);
#ifdef CONFIG_MII_VERIFY
/* Ethernet Module registers */
#define REG_RTL_MII_IDR0 0x0000 // Table 2 IDR0 (Offset 0000h-0003h, R/W)
#define REG_RTL_MII_IDR4 0x0004 // Table 3 IDR4 (Offset 0004h-0007h, R/W)
#define REG_RTL_MII_MAR0 0x0008 // Table 4 MAR0 (Offset 0008h-000bh, R/W)
#define REG_RTL_MII_MAR4 0x000C // Table 5 MAR4 (Offset 000ch-000fh, R/W)
#define REG_RTL_MII_CR 0x0038 // Table 21 Command Register (COM_REG, Offset 0038-003Bh, R/W)
#define REG_RTL_MII_IMRISR 0x003C // Table 22 + Table 23
#define REG_RTL_MII_TCR 0x0040 // Table 24 Transmit Configuration Register (TC_REG, Offset 0040h-0043h, R/W)
#define REG_RTL_MII_RCR 0x0044 // Table 25 Receive Configuration Register (RC_REG, Offset 0044h-0047h, R/W)
#define REG_RTL_MII_CTCR 0x0048 // Table 26 CPU Tag Control Register (CPUTAG_REG, Offset 0048h-004bh, R/W)
#define REG_RTL_MII_CONFIG 0x004C // Table 27 Configuration Register (CONFIG_REG, Offset 004ch-004fh, R/W)
#define REG_RTL_MII_CTCR1 0x0050 // Table 28 CPUTAG1 Register (CPUTAG1_REG, Offset 0050h-0053h, R/W)
#define REG_RTL_MII_MSR 0x0058 // Table 29 Media Status Register (MS_reg: Offset 0058h ??005bh, R/W)
#define REG_RTL_MII_MIIAR 0x005C // Table 30 MII Access Register (MIIA_REG, Offset 005c-005fh, R/W)
#define REG_RTL_MII_VR 0x0064 // Table 32 VLAN Register (VLAN_REG, Offset 0064-0067h, R/W)
#define REG_RTL_MII_IMR0 0x00D0 // Table 50 IMR0_REG (IMR0_REG, Offset D0h-D3h)
#define REG_RTL_MII_IMR1 0x00D4 // Table 51 IMR1_REG (IMR1_REG, Offset d4h-d7h)
#define REG_RTL_MII_ISR1 0x00D8 // Table 52 ISR1 Register (ISR1_REG, Offset D8h-DBh)
#define REG_RTL_MII_INTR 0x00DC // Table 53 Interrupt routing register (INTR_REG, Offset DCh-DFh)
#define REG_RTL_MII_CCR 0x00E4 // Table xx Clock Control Register (CLKCTL_REG, Offset E4h-E7h)
/* CPU Interface registers */
#define REG_RTL_MII_TXFDP1 0x1300 // Table 55 TxFDP1 register (TXFDP1_REG, offset 1300h-1303h)
#define REG_RTL_MII_TXCDO1 0x1304 // Table 56 TxCDO1 register (TXCDO1_REG, offset 1304h-1305h)
#define REG_RTL_MII_TXFDP2 0x1310 // Table 57 TxFDP2 register (TXFDP2_REG, offset 1310h-1313h)
#define REG_RTL_MII_TXCDO2 0x1314 // Table 58 TxCDO2 register (TXCDO2_REG, offset 1314h-1315h)
#define REG_RTL_MII_TXFDP3 0x1320 // Table 59 TxFDP3 register (TXFDP3_REG, offset 1320h-1323h)
#define REG_RTL_MII_TXCDO3 0x1324 // Table 60 TxCDO3 register (TXCDO3_REG, offset 1324h-1325h)
#define REG_RTL_MII_TXFDP4 0x1330 // Table 61 TxFDP4 register (TXFDP4_REG, offset 1330h-1333h)
#define REG_RTL_MII_TXCDO4 0x1334 // Table 62 TxCDO4 register (TXCDO4_REG, offset 1334h-1335h)
#define REG_RTL_MII_TXFDP5 0x1340 // Table 63 TxFDP5 register (TXFDP5_REG, offset 1340h-1343h)
#define REG_RTL_MII_TXCDO5 0x1344 // Table 64 TxCDO5 register (TXCDO5_REG, offset 1344h-1345h)
#define REG_RTL_MII_RXFDP2 0x1390 // Table 66 RxFDP2 register (RXFDP#_REG, offset 1390h-1393h)
#define REG_RTL_MII_RXFDP1 0x13F0 // Table 71 RxFDP1 register (RXFDP1_REG, offset 13F0h-13F3h)
#define REG_RTL_MII_RXRS1 0x13F6 // Table 73 Rx Ring Size1 register (RX_RS1_REG, offset 13F6h-13F7h)
#define REG_RTL_MII_RX_PSE1 0x142C // Table 77 Rx_Pse_Des_Thres_1_h (RX_PSE1_REG, Offset 142ch)
#define REG_RTL_MII_ETNRXCPU1 0x1430 // Table 79 EhtrntRxCPU_Des_Num1 (ETNRXCPU1_REG, Offset 1430h-1433h)
#define REG_RTL_MII_IOCMD 0x1434 // Table 80 Ethernet_IO_CMD (ETN_IO_CMD_REG, Offset 1434h-1437h)
#define REG_RTL_MII_IOCMD1 0x1438 // Table 81 Ethernet_IO_CMD1 (IO_CMD1_REG: Offset 1438h-143bh)
#define CMD_CONFIG 0x00081000
//2014-04-29 yclin (disable [27] r_en_precise_dma)
// #define CMD1_CONFIG 0x39000000
#define CMD1_CONFIG 0x31000000
// #define MAX_RX_DESC_SIZE 6
#define MAX_RX_DESC_SIZE 1
#define MAX_TX_DESC_SIZE 5
// 0058h
#define BIT_SHIFT_MSR_FORCE_SPEED_SELECT 16
#define BIT_MASK_MSR_FORCE_SPEED_SELECT 0x3
#define BIT_MSR_FORCE_SPEED_SELECT(x)(((x) & BIT_MASK_MSR_FORCE_SPEED_SELECT) << BIT_SHIFT_MSR_FORCE_SPEED_SELECT)
#define BIT_INVC_MSR_FORCE_SPEED_SELECT (~(BIT_MASK_MSR_FORCE_SPEED_SELECT << BIT_SHIFT_MSR_FORCE_SPEED_SELECT))
#define BIT_SHIFT_MSR_FORCE_SPEED_MODE_ENABLE 10
#define BIT_MASK_MSR_FORCE_SPEED_MODE_ENABLE 0x1
#define BIT_MSR_FORCE_SPEED_MODE_ENABLE(x)(((x) & BIT_MASK_MSR_FORCE_SPEED_MODE_ENABLE) << BIT_SHIFT_MSR_FORCE_SPEED_MODE_ENABLE)
#define BIT_INVC_MSR_FORCE_SPEED_MODE_ENABLE (~(BIT_MASK_MSR_FORCE_SPEED_MODE_ENABLE << BIT_SHIFT_MSR_FORCE_SPEED_MODE_ENABLE))
// 1434h
#define BIT_SHIFT_IOCMD_RXENABLE 5
#define BIT_MASK_IOCMD_RXENABLE 0x1
#define BIT_IOCMD_RXENABLE(x)(((x) & BIT_MASK_IOCMD_RXENABLE) << BIT_SHIFT_IOCMD_RXENABLE)
#define BIT_INVC_IOCMD_RXENABLE (~(BIT_MASK_IOCMD_RXENABLE << BIT_SHIFT_IOCMD_RXENABLE))
#define BIT_SHIFT_IOCMD_TXENABLE 4
#define BIT_MASK_IOCMD_TXENABLE 0x1
#define BIT_IOCMD_TXENABLE(x)(((x) & BIT_MASK_IOCMD_TXENABLE) << BIT_SHIFT_IOCMD_TXENABLE)
#define BIT_INVC_IOCMD_TXENABLE (~(BIT_MASK_IOCMD_TXENABLE << BIT_SHIFT_IOCMD_TXENABLE))
#define BIT_SHIFT_IOCMD_FIRST_DMATX_ENABLE 0
#define BIT_MASK_IOCMD_FIRST_DMATX_ENABLE 0x1
#define BIT_IOCMD_FIRST_DMATX_ENABLE(x)(((x) & BIT_MASK_IOCMD_FIRST_DMATX_ENABLE) << BIT_SHIFT_IOCMD_FIRST_DMATX_ENABLE)
#define BIT_INVC_IOCMD_FIRST_DMATX_ENABLE (~(BIT_MASK_IOCMD_FIRST_DMATX_ENABLE << BIT_SHIFT_IOCMD_FIRST_DMATX_ENABLE))
// 1438h
#define BIT_SHIFT_IOCMD1_FIRST_DMARX_ENABLE 16
#define BIT_MASK_IOCMD1_FIRST_DMARX_ENABLE 0x1
#define BIT_IOCMD1_FIRST_DMARX_ENABLE(x)(((x) & BIT_MASK_IOCMD1_FIRST_DMARX_ENABLE) << BIT_SHIFT_IOCMD1_FIRST_DMARX_ENABLE)
#define BIT_INVC_IOCMD1_FIRST_DMARX_ENABLE (~(BIT_MASK_IOCMD1_FIRST_DMARX_ENABLE << BIT_SHIFT_IOCMD1_FIRST_DMARX_ENABLE))
/**
* 1.4.1.7 Tx command descriptor used in RL6266
* 5 dobule words
*/
typedef struct _TX_INFO_ {
union {
struct {
u32 own:1; //31
u32 eor:1; //30
u32 fs:1; //29
u32 ls:1; //28
u32 ipcs:1; //27
u32 l4cs:1; //26
u32 keep:1; //25
u32 blu:1; //24
u32 crc:1; //23
u32 vsel:1; //22
u32 dislrn:1; //21
u32 cputag_ipcs:1; //20
u32 cputag_l4cs:1; //19
u32 cputag_psel:1; //18
u32 rsvd:1; //17
u32 data_length:17; //0~16
} bit;
u32 dw; //double word
} opts1;
u32 addr;
union {
struct {
u32 cputag:1; //31
u32 aspri:1; //30
u32 cputag_pri:3; //27~29
u32 tx_vlan_action:2; //25~26
u32 tx_pppoe_action:2; //23~24
u32 tx_pppoe_idx:3; //20~22
u32 efid:1; //19
u32 enhance_fid:3; //16~18
u32 vidl:8; // 8~15
u32 prio:3; // 5~7
u32 cfi:1; // 4
u32 vidh:4; // 0~3
} bit;
u32 dw; //double word
} opts2;
union {
struct {
u32 extspa:3; //29~31
u32 tx_portmask:6; //23~28
u32 tx_dst_stream_id:7; //16~22
u32 rsvd:14; // 2~15
u32 l34keep:1; // 1
u32 ptp:1; // 0
} bit;
u32 dw; //double word
} opts3;
union {
struct {
u32 lgsen:1; //31
u32 lgmss:11; //20~30
u32 rsvd:20; // 0~19
} bit;
u32 dw; //double word
} opts4;
} TX_INFO, *PTX_INFO;
typedef struct _RX_INFO_ {
union{
struct{
u32 own:1; //31
u32 eor:1; //30
u32 fs:1; //29
u32 ls:1; //28
u32 crcerr:1; //27
u32 ipv4csf:1; //26
u32 l4csf:1; //25
u32 rcdf:1; //24
u32 ipfrag:1; //23
u32 pppoetag:1; //22
u32 rwt:1; //21
u32 pkttype:4; //20-17
u32 l3routing:1; //16
u32 origformat:1; //15
u32 pctrl:1; //14
#ifdef CONFIG_RG_JUMBO_FRAME
u32 data_length:14; //13~0
#else
u32 rsvd:2; //13~12
u32 data_length:12; //11~0
#endif
}bit;
u32 dw; //double word
}opts1;
u32 addr;
union{
struct{
u32 cputag:1; //31
u32 ptp_in_cpu_tag_exist:1; //30
u32 svlan_tag_exist:1; //29
u32 rsvd_2:2; //27~28
u32 pon_stream_id:7; //20~26
u32 rsvd_1:3; //17~19
u32 ctagva:1; //16
u32 cvlan_tag:16; //15~0
}bit;
u32 dw; //double word
}opts2;
union{
struct{
u32 src_port_num:5; //27~31
u32 dst_port_mask:6; //21~26
u32 reason:8; //13~20
u32 internal_priority:3; //10~12
u32 ext_port_ttl_1:5; //5~9
u32 rsvd:5; //4~0
}bit;
u32 dw; //double word
}opts3;
} RX_INFO, *PRX_INFO;
/**
* GMAC_STATUS_REGS
*/
// TX/RX Descriptor Common
#define BIT_SHIFT_GMAC_DESCOWN 31
#define BIT_MASK_GMAC_DESCOWN 0x1
#define BIT_GMAC_DESCOWN(x)(((x) & BIT_MASK_GMAC_DESCOWN) << BIT_SHIFT_GMAC_DESCOWN)
#define BIT_INVC_GMAC_DESCOWN (~(BIT_MASK_GMAC_DESCOWN << BIT_SHIFT_GMAC_DESCOWN))
#define BIT_SHIFT_GMAC_RINGEND 30
#define BIT_MASK_GMAC_RINGEND 0x1
#define BIT_GMAC_RINGEND(x)(((x) & BIT_MASK_GMAC_RINGEND) << BIT_SHIFT_GMAC_RINGEND)
#define BIT_INVC_GMAC_RINGEND (~(BIT_MASK_GMAC_RINGEND << BIT_SHIFT_GMAC_RINGEND))
#define BIT_SHIFT_GMAC_FIRSTFRAG 29
#define BIT_MASK_GMAC_FIRSTFRAG 0x1
#define BIT_GMAC_FIRSTFRAG(x)(((x) & BIT_MASK_GMAC_FIRSTFRAG) << BIT_SHIFT_GMAC_FIRSTFRAG)
#define BIT_INVC_GMAC_FIRSTFRAG (~(BIT_MASK_GMAC_FIRSTFRAG << BIT_SHIFT_GMAC_FIRSTFRAG))
#define BIT_SHIFT_GMAC_LASTFRAG 28
#define BIT_MASK_GMAC_LASTFRAG 0x1
#define BIT_GMAC_LASTFRAG(x)(((x) & BIT_MASK_GMAC_LASTFRAG) << BIT_SHIFT_GMAC_LASTFRAG)
#define BIT_INVC_GMAC_LASTFRAG (~(BIT_MASK_GMAC_LASTFRAG << BIT_SHIFT_GMAC_LASTFRAG))
// TX Descriptor opts1
#define BIT_SHIFT_GMAC_IPCS 27
#define BIT_MASK_GMAC_IPCS 0x1
#define BIT_GMAC_IPCS(x)(((x) & BIT_MASK_GMAC_IPCS) << BIT_SHIFT_GMAC_IPCS)
#define BIT_INVC_GMAC_IPCS (~(BIT_MASK_GMAC_IPCS << BIT_SHIFT_GMAC_IPCS))
#define BIT_SHIFT_GMAC_L4CS 26
#define BIT_MASK_GMAC_L4CS 0x1
#define BIT_GMAC_L4CS(x)(((x) & BIT_MASK_GMAC_L4CS) << BIT_SHIFT_GMAC_L4CS)
#define BIT_INVC_GMAC_L4CS (~(BIT_MASK_GMAC_L4CS << BIT_SHIFT_GMAC_L4CS))
#define BIT_SHIFT_GMAC_KEEP 25
#define BIT_MASK_GMAC_KEEP 0x1
#define BIT_GMAC_KEEP(x)(((x) & BIT_MASK_GMAC_KEEP) << BIT_SHIFT_GMAC_KEEP)
#define BIT_INVC_GMAC_KEEP (~(BIT_MASK_GMAC_KEEP << BIT_SHIFT_GMAC_KEEP))
#define BIT_SHIFT_GMAC_BLU 24
#define BIT_MASK_GMAC_BLU 0x1
#define BIT_GMAC_BLU(x)(((x) & BIT_MASK_GMAC_BLU) << BIT_SHIFT_GMAC_BLU)
#define BIT_INVC_GMAC_BLU (~(BIT_MASK_GMAC_BLU << BIT_SHIFT_GMAC_BLU))
#define BIT_SHIFT_GMAC_TXCRC 23
#define BIT_MASK_GMAC_TXCRC 0x1
#define BIT_GMAC_TXCRC(x)(((x) & BIT_MASK_GMAC_TXCRC) << BIT_SHIFT_GMAC_TXCRC)
#define BIT_INVC_GMAC_TXCRC (~(BIT_MASK_GMAC_TXCRC << BIT_SHIFT_GMAC_TXCRC))
#define BIT_SHIFT_GMAC_VSEL 22
#define BIT_MASK_GMAC_VSEL 0x1
#define BIT_GMAC_VSEL(x)(((x) & BIT_MASK_GMAC_VSEL) << BIT_SHIFT_GMAC_VSEL)
#define BIT_INVC_GMAC_VSEL (~(BIT_MASK_GMAC_VSEL << BIT_SHIFT_GMAC_VSEL))
#define BIT_SHIFT_GMAC_DISLRN 21
#define BIT_MASK_GMAC_DISLRN 0x1
#define BIT_GMAC_DISLRN(x)(((x) & BIT_MASK_GMAC_DISLRN) << BIT_SHIFT_GMAC_DISLRN)
#define BIT_INVC_GMAC_DISLRN (~(BIT_MASK_GMAC_DISLRN << BIT_SHIFT_GMAC_DISLRN))
#define BIT_SHIFT_GMAC_CPUTAG_IPCS 20
#define BIT_MASK_GMAC_CPUTAG_IPCS 0x1
#define BIT_GMAC_CPUTAG_IPCS(x)(((x) & BIT_MASK_GMAC_CPUTAG_IPCS) << BIT_SHIFT_GMAC_CPUTAG_IPCS)
#define BIT_INVC_GMAC_CPUTAG_IPCS (~(BIT_MASK_GMAC_CPUTAG_IPCS << BIT_SHIFT_GMAC_CPUTAG_IPCS))
#define BIT_SHIFT_GMAC_CPUTAG_L4CS 19
#define BIT_MASK_GMAC_CPUTAG_L4CS 0x1
#define BIT_GMAC_CPUTAG_L4CS(x)(((x) & BIT_MASK_GMAC_CPUTAG_L4CS) << BIT_SHIFT_GMAC_CPUTAG_L4CS)
#define BIT_INVC_GMAC_CPUTAG_L4CS (~(BIT_MASK_GMAC_CPUTAG_L4CS << BIT_SHIFT_GMAC_CPUTAG_L4CS))
#define BIT_SHIFT_GMAC_CPUTAG_PSEL 18
#define BIT_MASK_GMAC_CPUTAG_PSEL 0x1
#define BIT_GMAC_CPUTAG_PSEL(x)(((x) & BIT_MASK_GMAC_CPUTAG_PSEL) << BIT_SHIFT_GMAC_CPUTAG_PSEL)
#define BIT_INVC_GMAC_CPUTAG_PSEL (~(BIT_MASK_GMAC_CPUTAG_PSEL << BIT_SHIFT_GMAC_CPUTAG_PSEL))
typedef struct _PHY_MODE_INFO_ {
u8 PhyAddress;
u8 PhyMode;
u8 PhyInterface;
} PHY_MODE_INFO, *PPHY_MODE_INFO;
typedef enum _PHY_MODE_SWITCH_ {
PHY_MODE_DISABLE = 0,
PHY_MODE_ENABLE = 1
} PHY_MODE_SWITCH, *PPHY_MODE_SWITCH;
typedef enum _PHY_INTERFACE_SELECT_ {
PHY_INTERFACE_ONE_WORKS = 0,
PHY_INTERFACE_ZERO_WORKS = 1
} PHY_INTERFACE_SELECT, *PPHY_INTERFACE_SELECT;
typedef enum _GMAC_MSR_FORCE_SPEED_ {
FORCE_SPD_100M = 0,
FORCE_SPD_10M = 1,
FORCE_SPD_GIGA = 2,
NO_FORCE_SPD = 3
}GMAC_MSR_FORCE_SPEED, *PGMAC_MSR_FORCE_SPEED;
typedef enum _GMAC_INTERRUPT_MASK_ {
GMAC_IMR_ROK = BIT16,
GMAC_IMR_CNT_WRAP = BIT17,
GMAC_IMR_RER_RUNT = BIT18,
// BIT19 Reserved
GMAC_IMR_RER_OVF = BIT20,
GMAC_IMR_RDU = BIT21,
GMAC_IMR_TOK_TI = BIT22,
GMAC_IMR_TER = BIT23,
GMAC_IMR_LINKCHG = BIT24,
GMAC_IMR_TDU = BIT25,
GMAC_IMR_SWINT = BIT26,
GMAC_IMR_RDU2 = BIT27,
GMAC_IMR_RDU3 = BIT28,
GMAC_IMR_RDU4 = BIT29,
GMAC_IMR_RDU5 = BIT30,
GMAC_IMR_RDU6 = BIT31,
} GMAC_INTERRUPT_MASK, *PGMAC_INTERRUPT_MASK;
typedef enum _GMAC_INTERRUPT_STATUS_ {
GMAC_ISR_ROK = BIT0,
GMAC_ISR_CNT_WRAP = BIT1,
GMAC_ISR_RER_RUNT = BIT2,
// BIT3 Reserved
GMAC_ISR_RER_OVF = BIT4,
GMAC_ISR_RDU = BIT5,
GMAC_ISR_TOK_TI = BIT6,
GMAC_ISR_TER = BIT7,
GMAC_ISR_LINKCHG = BIT8,
GMAC_ISR_TDU = BIT9,
GMAC_ISR_SWINT = BIT10,
GMAC_ISR_RDU2 = BIT11,
GMAC_ISR_RDU3 = BIT12,
GMAC_ISR_RDU4 = BIT13,
GMAC_ISR_RDU5 = BIT14,
GMAC_ISR_RDU6 = BIT15,
} GMAC_INTERRUPT_STATUS, *PGMAC_INTERRUPT_STATUS;
typedef enum _GMAC_TX_VLAN_ACTION_ {
INTACT = 0,
INSERT_VLAN_HDR = 1,
REMOVE_VLAN_HDR = 2,
REMARKING_VID = 3
}GMAC_TX_VLAN_ACTION, *PGMAC_TX_VLAN_ACTION;
typedef enum _GMAC_RX_PACKET_TYPE_ {
TYPE_ETHERNET = 0,
TYPE_IPV4 = 1,
TYPE_IPV4_PPTP = 2,
TYPE_IPV4_ICMP = 3,
TYPE_IPV4_IGMP = 4,
TYPE_IPV4_TCP = 5,
TYPE_IPV4_UDP = 6,
TYPE_IPV6 = 7,
TYPE_ICMPV6 = 8,
TYPE_IPV6_TCP = 9,
TYPE_IPV6_UDP = 10
}GMAC_RX_PACKET_TYPE, *PGMAC_RX_PACKET_TYPE;
BOOL
HalMiiGmacInitRtl8195a(
IN VOID *Data
);
BOOL
HalMiiGmacResetRtl8195a(
IN VOID *Data
);
BOOL
HalMiiGmacEnablePhyModeRtl8195a(
IN VOID *Data
);
u32
HalMiiGmacXmitRtl8195a(
IN VOID *Data
);
VOID
HalMiiGmacCleanTxRingRtl8195a(
IN VOID *Data
);
VOID
HalMiiGmacFillTxInfoRtl8195a(
IN VOID *Data
);
VOID
HalMiiGmacFillRxInfoRtl8195a(
IN VOID *Data
);
VOID
HalMiiGmacTxRtl8195a(
IN VOID *Data
);
VOID
HalMiiGmacRxRtl8195a(
IN VOID *Data
);
VOID
HalMiiGmacSetDefaultEthIoCmdRtl8195a(
IN VOID *Data
);
VOID
HalMiiGmacInitIrqRtl8195a(
IN VOID *Data
);
u32
HalMiiGmacGetInterruptStatusRtl8195a(
VOID
);
VOID
HalMiiGmacClearInterruptStatusRtl8195a(
u32 IsrStatus
);
#endif // #ifdef CONFIG_MII_VERIFY
#endif // #ifndef _RTL8195A_MII_H_

View file

@ -0,0 +1,155 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_NFC_H_
#define _RTL8195A_NFC_H_
#include "hal_api.h"
//#include "osdep_api.h"
#ifdef CONFIG_NFC_VERIFY
#include "../test/nfc/rtl8195a_nfc_test.h"
#endif
#if CONFIG_NFC_NORMAL
//===================== Register Bit Field Definition =====================
// TODO:
//===================== Register Address Definition =====================
//TODO:
//#include "osdep_api.h"
#define N2A_Q_LENGTH 10
#define N2ARLENGTH 4
//#define NFCTAGLENGTH 36 // maximum 36*4=144 bytes
#define NFCTAG_BASE 0x7F000
#define NFCTAG_PAGESIZE 256
#define NFCTAG_MAXPAGEIDX 16//(4*(1024/NFCTAG_PAGESIZE))
#define A2NWCLENGTH 4
#define FLASHAPPLENGTH 31
#define FLASHAPP_BASE 0x7E000
#define FLASH_PAGESIZE 128
#define FLASH_MAXPAGEIDX 32//(4*(1024/FLASH_PAGESIZE))
typedef struct _A2N_CATCH_W_ {
//u8 Vaild;
u8 A2NCatchRPage;
u32 A2NCatchWData[A2NWCLENGTH];
}A2N_CATCH_W_QUEUE, *PA2N_CATCH_W_QUEUE;
typedef struct _A2N_MAILBOX_Q_ {
u8 Length;
u8 Response;
u32 Content[A2NWCLENGTH+1];
}A2N_MAILBOX_Q,*PA2N_MAILBOX_Q;
typedef struct _N2A_CATCH_R_ {
u8 Vaild;
u8 N2ACatchRPage;
u32 N2ACatchRData[N2ARLENGTH];
}N2A_CATCH_R_QUEUE, *PN2A_CATCH_R_QUEUE;
typedef struct _N2A_R_ {
u8 Vaild;
u8 N2ARPage;
}N2A_R_QUEUE, *PN2A_R_QUEUE;
typedef struct _N2A_W_ {
u8 Vaild;
u8 N2AWPage;
u32 N2AWData;
}N2A_W_QUEUE, *PN2A_W_QUEUE;
typedef struct _NFC_ADAPTER_ {
u8 Function;
u32 NFCIsr;
u8 N2ABoxOpen;
u8 A2NSeq;
//u8 NFCTagFlashWIdx;
//u8 NFCTagFlashRIdx;
// u32 NFCTag[NFCTAGLENGTH];
#if !TASK_SCHEDULER_DISABLED
void * VeriSema;
#else
u32 VeriSema;
#endif
#ifdef PLATFORM_FREERTOS
void * NFCTask;
#else
u32 NFCTask;
#endif
#ifdef CONFIG_NFC_VERIFY
//N2A Write Tag
u8 N2AWQRIdx;
u8 N2AWQWIdx;
N2A_W_QUEUE N2AWQ[N2A_Q_LENGTH];
//N2A Read Tag
u8 N2ARQRIdx;
u8 N2ARQWIdx;
N2A_R_QUEUE N2ARQ[N2A_Q_LENGTH];
//N2A Read Catch
u8 N2ARCRIdx;
u8 N2ARCWIdx;
N2A_CATCH_R_QUEUE N2ACatchR[N2A_Q_LENGTH];
#endif
//A2N Write Catch
//u8 A2NWCRIdx;
//u8 A2NWCWIdx;
//A2N_CATCH_W_QUEUE A2NCatchW[N2A_Q_LENGTH];
//A2N Write mailbox queue
u8 A2NWMailBox;
u8 A2NWQRIdx;
u8 A2NWQWIdx;
A2N_MAILBOX_Q A2NMAILQ[N2A_Q_LENGTH];
u8 TaskStop;
void *nfc_obj;
}NFC_ADAPTER, *PNFC_ADAPTER;
typedef enum _N2A_CMD_ {
TAG_READ = 0,
TAG_WRITE = 1,
CATCH_READ_DATA = 2,
NFC_R_PRESENT = 4,
N2A_MAILBOX_STATE = 5,
EXT_CLK_REQ = 6,
MAX_N2ACMD
} N2A_CMD, *PN2A_CMD;
typedef enum _A2N_CMD_ {
TAG_READ_DATA = 0,
CATCH_READ = 2,
CATCH_WRITE = 3,
A2N_MAILBOX_STATE = 4,
CONFIRM_N2A_BOX_STATE = 5,
EXT_CLK_RSP = 6,
MAX_A2NCMD
} A2N_CMD, *PA2N_CMD;
// Callback event defination
typedef enum _NFC_HAL_EVENT_ {
NFC_HAL_READER_PRESENT = (1<<0),
NFC_HAL_READ = (1<<1),
NFC_HAL_WRITE = (1<<2),
NFC_HAL_ERR = (1<<3),
NFC_HAL_CACHE_RD = (1<<4)
}NFC_CB_EVENT, *PNFC_CB_EVENT;
VOID A2NWriteCatch(IN VOID *pNFCAdapte, IN u8 N2AWPage,
IN u8 Length, IN u32 *WData);
VOID A2NReadCatch(IN VOID *pNFCAdapte, IN u8 A2NRPage);
VOID HalNFCDmemInit(IN u32 *pTagData, IN u32 TagLen);
VOID HalNFCInit(PNFC_ADAPTER pNFCAdp);
VOID HalNFCDeinit(PNFC_ADAPTER pNFCAdp);
VOID HalNFCFwDownload(VOID);
u32 HalNFCDbgRead32(IN u32 Addr);
VOID HalNFCDbgWrite32(IN u32 Addr, IN u32 Data);
#endif //CONFIG_NFC_NORMAL
#endif // #ifndef _RTL8195A_NFC_H_

View file

@ -0,0 +1,449 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_PCM_H_
#define _RTL8195A_PCM_H_
#include "basic_types.h"
#include "hal_api.h"
#define HAL_PCMX_READ32(PcmIndex, addr) \
HAL_READ32(PCM0_REG_BASE+ (PcmIndex*PCM1_REG_OFF), addr)
#define HAL_PCMX_WRITE32(PcmIndex, addr, value) \
HAL_WRITE32((PCM0_REG_BASE+ (PcmIndex*PCM1_REG_OFF)), addr, value)
#define REG_PCM_TRXBSA_OFF 0x004
#define REG_PCM_CTL 0x000
#define REG_PCM_CHCNR03 0x004
#define REG_PCM_TSR03 0x008
#define REG_PCM_BSIZE03 0x00C
#define REG_PCM_CH0TXBSA 0x010
#define REG_PCM_CH1TXBSA 0x014
#define REG_PCM_CH2TXBSA 0x018
#define REG_PCM_CH3TXBSA 0x01c
#define REG_PCM_CH0RXBSA 0x020
#define REG_PCM_CH1RXBSA 0x024
#define REG_PCM_CH2RXBSA 0x028
#define REG_PCM_CH3RXBSA 0x02c
#define REG_PCM_IMR03 0x030
#define REG_PCM_ISR03 0x034
#define REG_PCM_CHCNR47 0x038
#define REG_PCM_TSR47 0x03c
#define REG_PCM_BSIZE47 0x040
#define REG_PCM_CH4TXBSA 0x044
#define REG_PCM_CH5TXBSA 0x048
#define REG_PCM_CH6TXBSA 0x04c
#define REG_PCM_CH7TXBSA 0x050
#define REG_PCM_CH4RXBSA 0x054
#define REG_PCM_CH5RXBSA 0x058
#define REG_PCM_CH6RXBSA 0x05c
#define REG_PCM_CH7RXBSA 0x060
#define REG_PCM_IMR47 0x064
#define REG_PCM_ISR47 0x068
#define REG_PCM_CHCNR811 0x06c
#define REG_PCM_TSR811 0x070
#define REG_PCM_BSIZE811 0x074
#define REG_PCM_CH8TXBSA 0x078
#define REG_PCM_CH9TXBSA 0x07c
#define REG_PCM_CH10TXBSA 0x080
#define REG_PCM_CH11TXBSA 0x084
#define REG_PCM_CH8RXBSA 0x088
#define REG_PCM_CH9RXBSA 0x08c
#define REG_PCM_CH10RXBSA 0x090
#define REG_PCM_CH11RXBSA 0x094
#define REG_PCM_IMR811 0x098
#define REG_PCM_ISR811 0x09c
#define REG_PCM_CHCNR1215 0x0a0
#define REG_PCM_TSR1215 0x0a4
#define REG_PCM_BSIZE1215 0x0a8
#define REG_PCM_CH12TXBSA 0x0ac
#define REG_PCM_CH13TXBSA 0x0b0
#define REG_PCM_CH14TXBSA 0x0b4
#define REG_PCM_CH15TXBSA 0x0b8
#define REG_PCM_CH12RXBSA 0x0bc
#define REG_PCM_CH13RXBSA 0x0c0
#define REG_PCM_CH14RXBSA 0x0c4
#define REG_PCM_CH15RXBSA 0x0c8
#define REG_PCM_IMR1215 0x0cc
#define REG_PCM_ISR1215 0x0d0
#define REG_PCM_INTMAP 0x0d4
#define REG_PCM_WTSR03 0x0d8
#define REG_PCM_WTSR47 0x0dc
#define REG_PCM_RX_BUFOW 0x0e0
/* template
#define BIT_SHIFT_CTLX_ 7
#define BIT_MASK_CTLX_ 0x1
#define BIT_CTLX_(x) (((x) & BIT_MASK_CTLX_) << BIT_SHIFT_CTLX_)
#define BIT_INV_CTLX_ (~(BIT_MASK_CTLX_ << BIT_SHIFT_CTLX_))
*/
#define BIT_SHIFT_CTLX_SLAVE_SEL 8
#define BIT_MASK_CTLX_SLAVE_SEL 0x1
#define BIT_CTLX_SLAVE_SEL(x) (((x) & BIT_MASK_CTLX_SLAVE_SEL) << BIT_SHIFT_CTLX_SLAVE_SEL)
#define BIT_INV_CTLX_SLAVE_SEL (~(BIT_MASK_CTLX_SLAVE_SEL << BIT_SHIFT_CTLX_SLAVE_SEL))
#define BIT_SHIFT_CTLX_FSINV 9
#define BIT_MASK_CTLX_FSINV 0x1
#define BIT_CTLX_FSINV(x) (((x) & BIT_MASK_CTLX_FSINV) << BIT_SHIFT_CTLX_FSINV)
#define BIT_INV_CTLX_FSINV (~(BIT_MASK_CTLX_FSINV << BIT_SHIFT_CTLX_FSINV))
#define BIT_SHIFT_CTLX_PCM_EN 12
#define BIT_MASK_CTLX_PCM_EN 0x1
#define BIT_CTLX_PCM_EN(x) (((x) & BIT_MASK_CTLX_PCM_EN) << BIT_SHIFT_CTLX_PCM_EN)
#define BIT_INV_CTLX_PCM_EN (~(BIT_MASK_CTLX_PCM_EN << BIT_SHIFT_CTLX_PCM_EN))
#define BIT_SHIFT_CTLX_LINEARMODE 13
#define BIT_MASK_CTLX_LINEARMODE 0x1
#define BIT_CTLX_LINEARMODE(x) (((x) & BIT_MASK_CTLX_LINEARMODE) << BIT_SHIFT_CTLX_LINEARMODE)
#define BIT_INV_CTLX_LINEARMODE (~(BIT_MASK_CTLX_LINEARMODE << BIT_SHIFT_CTLX_LINEARMODE))
#define BIT_SHIFT_CTLX_LOOP_BACK 14
#define BIT_MASK_CTLX_LOOP_BACK 0x1
#define BIT_CTLX_LOOP_BACK(x) (((x) & BIT_MASK_CTLX_LOOP_BACK) << BIT_SHIFT_CTLX_LOOP_BACK)
#define BIT_INV_CTLX_LOOP_BACK (~(BIT_MASK_CTLX_LOOP_BACK << BIT_SHIFT_CTLX_LOOP_BACK))
#define BIT_SHIFT_CTLX_ENDIAN_SWAP 17
#define BIT_MASK_CTLX_ENDIAN_SWAP 0x1
#define BIT_CTLX_ENDIAN_SWAP(x) (((x) & BIT_MASK_CTLX_ENDIAN_SWAP) << BIT_SHIFT_CTLX_ENDIAN_SWAP)
#define BIT_INV_CTLX_ENDIAN_SWAP (~(BIT_MASK_CTLX_ENDIAN_SWAP << BIT_SHIFT_CTLX_ENDIAN_SWAP))
#define BIT_SHIFT_CHCNR03_CH0RE 24
#define BIT_MASK_CHCNR03_CH0RE 0x1
#define BIT_CHCNR03_CH0RE(x) (((x) & BIT_MASK_CHCNR03_CH0RE) << BIT_SHIFT_CHCNR03_CH0RE)
#define BIT_INV_CHCNR03_CH0RE (~(BIT_MASK_CHCNR03_CH0RE << BIT_SHIFT_CHCNR03_CH0RE))
#define BIT_SHIFT_CHCNR03_CH0TE 25
#define BIT_MASK_CHCNR03_CH0TE 0x1
#define BIT_CHCNR03_CH0TE(x) (((x) & BIT_MASK_CHCNR03_CH0TE) << BIT_SHIFT_CHCNR03_CH0TE)
#define BIT_INV_CHCNR03_CH0TE (~(BIT_MASK_CHCNR03_CH0TE << BIT_SHIFT_CHCNR03_CH0TE))
#define BIT_SHIFT_CHCNR03_CH1RE 16
#define BIT_MASK_CHCNR03_CH1RE 0x1
#define BIT_CHCNR03_CH1RE(x) (((x) & BIT_MASK_CHCNR03_CH1RE) << BIT_SHIFT_CHCNR03_CH1RE)
#define BIT_INV_CHCNR03_CH1RE (~(BIT_MASK_CHCNR03_CH1RE << BIT_SHIFT_CHCNR03_CH1RE))
#define BIT_SHIFT_CHCNR03_CH1TE 17
#define BIT_MASK_CHCNR03_CH1TE 0x1
#define BIT_CHCNR03_CH1TE(x) (((x) & BIT_MASK_CHCNR03_CH1TE) << BIT_SHIFT_CHCNR03_CH1TE)
#define BIT_INV_CHCNR03_CH1TE (~(BIT_MASK_CHCNR03_CH1TE << BIT_SHIFT_CHCNR03_CH1TE))
#define BIT_SHIFT_CHCNR03_CH2RE 8
#define BIT_MASK_CHCNR03_CH2RE 0x1
#define BIT_CHCNR03_CH2RE(x) (((x) & BIT_MASK_CHCNR03_CH2RE) << BIT_SHIFT_CHCNR03_CH2RE)
#define BIT_INV_CHCNR03_CH2RE (~(BIT_MASK_CHCNR03_CH2RE << BIT_SHIFT_CHCNR03_CH2RE))
#define BIT_SHIFT_CHCNR03_CH2TE 9
#define BIT_MASK_CHCNR03_CH2TE 0x1
#define BIT_CHCNR03_CH2TE(x) (((x) & BIT_MASK_CHCNR03_CH2TE) << BIT_SHIFT_CHCNR03_CH2TE)
#define BIT_INV_CHCNR03_CH2TE (~(BIT_MASK_CHCNR03_CH2TE << BIT_SHIFT_CHCNR03_CH2TE))
#define BIT_SHIFT_CHCNR03_CH3RE 0
#define BIT_MASK_CHCNR03_CH3RE 0x1
#define BIT_CHCNR03_CH3RE(x) (((x) & BIT_MASK_CHCNR03_CH3RE) << BIT_SHIFT_CHCNR03_CH3RE)
#define BIT_INV_CHCNR03_CH3RE (~(BIT_MASK_CHCNR03_CH3RE << BIT_SHIFT_CHCNR03_CH3RE))
#define BIT_SHIFT_CHCNR03_CH3TE 1
#define BIT_MASK_CHCNR03_CH3TE 0x1
#define BIT_CHCNR03_CH3TE(x) (((x) & BIT_MASK_CHCNR03_CH3TE) << BIT_SHIFT_CHCNR03_CH3TE)
#define BIT_INV_CHCNR03_CH3TE (~(BIT_MASK_CHCNR03_CH3TE << BIT_SHIFT_CHCNR03_CH3TE))
#define BIT_SHIFT_CHCNR03_CH0MUA 26
#define BIT_MASK_CHCNR03_CH0MUA 0x1
#define BIT_CHCNR03_CH0MUA(x) (((x) & BIT_MASK_CHCNR03_CH0MUA) << BIT_SHIFT_CHCNR03_CH0MUA)
#define BIT_INV_CHCNR03_CH0MUA (~(BIT_MASK_CHCNR03_CH0MUA << BIT_SHIFT_CHCNR03_CH0MUA))
#define BIT_SHIFT_CHCNR03_CH0BAND 27
#define BIT_MASK_CHCNR03_CH0BAND 0x1
#define BIT_CHCNR03_CH0BAND(x) (((x) & BIT_MASK_CHCNR03_CH0BAND) << BIT_SHIFT_CHCNR03_CH0BAND)
#define BIT_INV_CHCNR03_CH0BAND (~(BIT_MASK_CHCNR03_CH0BAND << BIT_SHIFT_CHCNR03_CH0BAND))
#define BIT_SHIFT_TSR03_CH0TSA 24
#define BIT_MASK_TSR03_CH0TSA 0x1F
#define BIT_TSR03_CH0TSA(x) (((x) & BIT_MASK_TSR03_CH0TSA) << BIT_SHIFT_TSR03_CH0TSA)
#define BIT_INV_TSR03_CH0TSA (~(BIT_MASK_TSR03_CH0TSA << BIT_SHIFT_TSR03_CH0TSA))
#define BIT_SHIFT_BSIZE03_CH0BSIZE 24
#define BIT_MASK_BSIZE03_CH0BSIZE 0xFF
#define BIT_BSIZE03_CH0BSIZE(x) (((x) & BIT_MASK_BSIZE03_CH0BSIZE) << BIT_SHIFT_BSIZE03_CH0BSIZE)
#define BIT_INV_BSIZE03_CH0BSIZE (~(BIT_MASK_BSIZE03_CH0BSIZE << BIT_SHIFT_BSIZE03_CH0BSIZE))
typedef struct _PCM_CTL_REG_ {
u32 FCNT :8; // Bit 0-7
u32 SlaveMode :1; // Bit 8
u32 FsInv :1; // Bit 9
u32 Rsvd10to11 :1; // Bit 10-11
u32 Pcm_En :1; // Bit 12
u32 LinearMode :1; // Bit 13
u32 LoopBack :1; // Bit 14
u32 Rsvd15to16 :2; // Bit 15-16
u32 EndianSwap :1; // Bit 17
u32 Rsvd18to31 :14; // Bit 18-31
} PCM_CTL_REG, *PPCM_CTL_REG;
typedef struct _PCM_CHCNR03_REG_ {
u32 CH3RE :1; // Bit 0
u32 CH3TE :1; // Bit 1
u32 CH3MuA :1; // Bit 2
u32 CH3Band :1; // Bit 3
u32 CH3SlicSel:4; // Bit 4-7
u32 CH2RE :1; // Bit 8
u32 CH2TE :1; // Bit 9
u32 CH2MuA :1; // Bit 10
u32 CH2Band :1; // Bit 11
u32 CH2SlicSel:4; // Bit 12-15
u32 CH1RE :1; // Bit 16
u32 CH1TE :1; // Bit 17
u32 CH1MuA :1; // Bit 18
u32 CH1Band :1; // Bit 19
u32 CH1SlicSel:4; // Bit 20-23
u32 CH0RE :1; // Bit 24
u32 CH0TE :1; // Bit 25
u32 CH0MuA :1; // Bit 26
u32 CH0Band :1; // Bit 27
u32 CH0SlicSel:4; // Bit 28-31
}PCM_CHCNR03_REG, *PPCM_CHCNR03_REG;
typedef struct _PCM_TSR03_REG_ {
u32 CH3TSA :5; // Bit 0-4
u32 Rsvd5to7 :3; // Bit 5-7
u32 CH2TSA :5; // Bit 8-12
u32 Rsvd13to15:3; // Bit 13-15
u32 CH1TSA :5; // Bit 16-20
u32 Rsvd21to23:3; // Bit 21-23
u32 CH0TSA :5; // Bit 24-28
u32 Rsvd29to31:3; // Bit 29-31
}PCM_TSR03_REG, *PPCM_TSR03_REG;
typedef struct _PCM_BSIZE03_REG_ {
u32 CH3BSize :8; // Bit 0-7
u32 CH2BSize :8; // Bit 8-15
u32 CH1BSize :8; // Bit 16-23
u32 CH0BSize :8; // Bit 24-31
}PCM_BSIZE03_REG, *PPCM_BSIZE03_REG;
typedef struct _PCM_ISR03_REG_ {
u32 CH3RXP1UA :1; // Bit 0
u32 CH3RXP0UA :1; // Bit 1
u32 CH3TXP1UA :1; // Bit 2
u32 CH3TXP0UA :1; // Bit 3
u32 CH3RXP1IP :1; // Bit 4
u32 CH3RXP0IP :1; // Bit 5
u32 CH3TXP1IP :1; // Bit 6
u32 CH3TXP0IP :1; // Bit 7
u32 CH2RXP1UA :1; // Bit 8
u32 CH2RXP0UA :1; // Bit 9
u32 CH2TXP1UA :1; // Bit 10
u32 CH2TXP0UA :1; // Bit 11
u32 CH2RXP1IP :1; // Bit 12
u32 CH2RXP0IP :1; // Bit 13
u32 CH2TXP1IP :1; // Bit 14
u32 CH2TXP0IP :1; // Bit 15
u32 CH1RXP1UA :1; // Bit 16
u32 CH1RXP0UA :1; // Bit 17
u32 CH1TXP1UA :1; // Bit 18
u32 CH1TXP0UA :1; // Bit 19
u32 CH1RXP1IP :1; // Bit 20
u32 CH1RXP0IP :1; // Bit 21
u32 CH1TXP1IP :1; // Bit 22
u32 CH1TXP0IP :1; // Bit 23
u32 CH0RXP1UA :1; // Bit 24
u32 CH0RXP0UA :1; // Bit 25
u32 CH0TXP1UA :1; // Bit 26
u32 CH0TXP0UA :1; // Bit 27
u32 CH0RXP1IP :1; // Bit 28
u32 CH0RXP0IP :1; // Bit 29
u32 CH0TXP1IP :1; // Bit 30
u32 CH0TXP0IP :1; // Bit 31
}PCM_ISR03_REG, *PPCM_ISR03_REG;
typedef enum _PCM_ISR015 {
PcmCh3P1RBU = 0x00000001, //ch0-3
PcmCh3P0RBU = 0x00000002,
PcmCh3P1TBU = 0x00000004,
PcmCh3P0TBU = 0x00000008,
PcmCh3P1ROK = 0x00000010,
PcmCh3P0ROK = 0x00000020,
PcmCh3P1TOK = 0x00000040,
PcmCh3P0TOK = 0x00000080,
PcmCh2P1RBU = 0x00000100,
PcmCh2P0RBU = 0x00000200,
PcmCh2P1TBU = 0x00000400,
PcmCh2P0TBU = 0x00000800,
PcmCh2P1ROK = 0x00001000,
PcmCh2P0ROK = 0x00002000,
PcmCh2P1TOK = 0x00004000,
PcmCh2P0TOK = 0x00008000,
PcmCh1P1RBU = 0x00010000,
PcmCh1P0RBU = 0x00020000,
PcmCh1P1TBU = 0x00040000,
PcmCh1P0TBU = 0x00080000,
PcmCh1P1ROK = 0x00100000,
PcmCh1P0ROK = 0x00200000,
PcmCh1P1TOK = 0x00400000,
PcmCh1P0TOK = 0x00800000,
PcmCh0P1RBU = 0x01000000,
PcmCh0P0RBU = 0x02000000,
PcmCh0P1TBU = 0x04000000,
PcmCh0P0TBU = 0x08000000,
PcmCh0P1ROK = 0x10000000,
PcmCh0P0ROK = 0x20000000,
PcmCh0P1TOK = 0x40000000,
PcmCh0P0TOK = 0x80000000,
PcmCh7P1RBU = 0x00000001, //ch4-7
PcmCh7P0RBU = 0x00000002,
PcmCh7P1TBU = 0x00000004,
PcmCh7P0TBU = 0x00000008,
PcmCh7P1ROK = 0x00000010,
PcmCh7P0ROK = 0x00000020,
PcmCh7P1TOK = 0x00000040,
PcmCh7P0TOK = 0x00000080,
PcmCh6P1RBU = 0x00000100,
PcmCh6P0RBU = 0x00000200,
PcmCh6P1TBU = 0x00000400,
PcmCh6P0TBU = 0x00000800,
PcmCh6P1ROK = 0x00001000,
PcmCh6P0ROK = 0x00002000,
PcmCh6P1TOK = 0x00004000,
PcmCh6P0TOK = 0x00008000,
PcmCh5P1RBU = 0x00010000,
PcmCh5P0RBU = 0x00020000,
PcmCh5P1TBU = 0x00040000,
PcmCh5P0TBU = 0x00080000,
PcmCh5P1ROK = 0x00100000,
PcmCh5P0ROK = 0x00200000,
PcmCh5P1TOK = 0x00400000,
PcmCh5P0TOK = 0x00800000,
PcmCh4P1RBU = 0x01000000,
PcmCh4P0RBU = 0x02000000,
PcmCh4P1TBU = 0x04000000,
PcmCh4P0TBU = 0x08000000,
PcmCh4P1ROK = 0x10000000,
PcmCh4P0ROK = 0x20000000,
PcmCh4P1TOK = 0x40000000,
PcmCh4P0TOK = 0x80000000,
PcmCh11P1RBU = 0x00000001, //ch8-11
PcmCh11P0RBU = 0x00000002,
PcmCh11P1TBU = 0x00000004,
PcmCh11P0TBU = 0x00000008,
PcmCh11P1ROK = 0x00000010,
PcmCh11P0ROK = 0x00000020,
PcmCh11P1TOK = 0x00000040,
PcmCh11P0TOK = 0x00000080,
PcmCh10P1RBU = 0x00000100,
PcmCh10P0RBU = 0x00000200,
PcmCh10P1TBU = 0x00000400,
PcmCh10P0TBU = 0x00000800,
PcmCh10P1ROK = 0x00001000,
PcmCh10P0ROK = 0x00002000,
PcmCh10P1TOK = 0x00004000,
PcmCh10P0TOK = 0x00008000,
PcmCh9P1RBU = 0x00010000,
PcmCh9P0RBU = 0x00020000,
PcmCh9P1TBU = 0x00040000,
PcmCh9P0TBU = 0x00080000,
PcmCh9P1ROK = 0x00100000,
PcmCh9P0ROK = 0x00200000,
PcmCh9P1TOK = 0x00400000,
PcmCh9P0TOK = 0x00800000,
PcmCh8P1RBU = 0x01000000,
PcmCh8P0RBU = 0x02000000,
PcmCh8P1TBU = 0x04000000,
PcmCh8P0TBU = 0x08000000,
PcmCh8P1ROK = 0x10000000,
PcmCh8P0ROK = 0x20000000,
PcmCh8P1TOK = 0x40000000,
PcmCh8P0TOK = 0x80000000,
PcmCh15P1RBU = 0x00000001, //ch12-15
PcmCh15P0RBU = 0x00000002,
PcmCh15P1TBU = 0x00000004,
PcmCh15P0TBU = 0x00000008,
PcmCh15P1ROK = 0x00000010,
PcmCh15P0ROK = 0x00000020,
PcmCh15P1TOK = 0x00000040,
PcmCh15P0TOK = 0x00000080,
PcmCh14P1RBU = 0x00000100,
PcmCh14P0RBU = 0x00000200,
PcmCh14P1TBU = 0x00000400,
PcmCh14P0TBU = 0x00000800,
PcmCh14P1ROK = 0x00001000,
PcmCh14P0ROK = 0x00002000,
PcmCh14P1TOK = 0x00004000,
PcmCh14P0TOK = 0x00008000,
PcmCh13P1RBU = 0x00010000,
PcmCh13P0RBU = 0x00020000,
PcmCh13P1TBU = 0x00040000,
PcmCh13P0TBU = 0x00080000,
PcmCh13P1ROK = 0x00100000,
PcmCh13P0ROK = 0x00200000,
PcmCh13P1TOK = 0x00400000,
PcmCh13P0TOK = 0x00800000,
PcmCh12P1RBU = 0x01000000,
PcmCh12P0RBU = 0x02000000,
PcmCh12P1TBU = 0x04000000,
PcmCh12P0TBU = 0x08000000,
PcmCh12P1ROK = 0x10000000,
PcmCh12P0ROK = 0x20000000,
PcmCh12P1TOK = 0x40000000,
PcmCh12P0TOK = 0x80000000
}PCM_ISR015, *PPCM_ISR015;
VOID
HalPcmOnOffRtl8195a(
IN VOID *Data
);
BOOL
HalPcmInitRtl8195a(
IN VOID *Data
);
BOOL
HalPcmSettingRtl8195a(
IN VOID *Data
);
BOOL
HalPcmEnRtl8195a(
IN VOID *Data
);
BOOL
HalPcmIsrEnAndDisRtl8195a(
IN VOID *Data
);
BOOL
HalPcmDumpRegRtl8195a(
IN VOID *Data
);
BOOL
HalPcmRtl8195a(
IN VOID *Data
);
#endif /* _RTL8195A_PCM_H_ */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,62 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_PWM_H_
#define _RTL8195A_PWM_H_
#include "basic_types.h"
extern void
HAL_Pwm_SetDuty_8195a(
HAL_PWM_ADAPTER *pPwmAdapt,
u32 period,
u32 pulse_width
);
extern HAL_Status
HAL_Pwm_Init_8195a(
HAL_PWM_ADAPTER *pPwmAdapt
);
extern void
HAL_Pwm_Enable_8195a(
HAL_PWM_ADAPTER *pPwmAdapt
);
extern void
HAL_Pwm_Disable_8195a(
HAL_PWM_ADAPTER *pPwmAdapt
);
#ifdef CONFIG_CHIP_E_CUT
extern _LONG_CALL_ void
HAL_Pwm_SetDuty_8195a_V04(
HAL_PWM_ADAPTER *pPwmAdapt,
u32 period,
u32 pulse_width
);
extern _LONG_CALL_ HAL_Status
HAL_Pwm_Init_8195a_V04(
HAL_PWM_ADAPTER *pPwmAdapt
);
extern _LONG_CALL_ void
HAL_Pwm_Enable_8195a_V04(
HAL_PWM_ADAPTER *pPwmAdapt
);
extern _LONG_CALL_ void
HAL_Pwm_Disable_8195a_V04(
HAL_PWM_ADAPTER *pPwmAdapt
);
#endif
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,809 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_SDIO_HOST_H_
#define _RTL8195A_SDIO_HOST_H_
#include "hal_api.h"
#include "osdep_api.h"
#define HAL_SDIO_HOST_READ32(addr) HAL_READ32(SDIO_HOST_REG_BASE, addr)
#define HAL_SDIO_HOST_WRITE32(addr, value) HAL_WRITE32(SDIO_HOST_REG_BASE, addr, value)
#define HAL_SDIO_HOST_READ16(addr) HAL_READ16(SDIO_HOST_REG_BASE, addr)
#define HAL_SDIO_HOST_WRITE16(addr, value) HAL_WRITE16(SDIO_HOST_REG_BASE, addr, value)
#define HAL_SDIO_HOST_READ8(addr) HAL_READ8(SDIO_HOST_REG_BASE, addr)
#define HAL_SDIO_HOST_WRITE8(addr, value) HAL_WRITE8(SDIO_HOST_REG_BASE, addr, value)
/* =============== Register Offset Definition =============== */
#define REG_SDIO_HOST_SDMA_SYS_ADDR 0x00 // 4byte
#define REG_SDIO_HOST_BLK_SIZE 0x04 // 2byte
#define REG_SDIO_HOST_BLK_CNT 0x06 // 2byte
#define REG_SDIO_HOST_ARG 0x08 // 4byte
#define REG_SDIO_HOST_XFER_MODE 0x0C // 2byte
#define REG_SDIO_HOST_CMD 0x0E // 2byte
#define REG_SDIO_HOST_RSP0 0x10 // 4byte
#define REG_SDIO_HOST_RSP2 0x14 // 4byte
#define REG_SDIO_HOST_RSP4 0x18 // 4byte
#define REG_SDIO_HOST_RSP6 0x1C // 4byte
#define REG_SDIO_HOST_BUF_DATA_PORT 0x20 // 4byte
#define REG_SDIO_HOST_PRESENT_STATE 0x24 // 4byte
#define REG_SDIO_HOST_HOST_CTRL 0x28 // 1byte
#define REG_SDIO_HOST_PWR_CTRL 0x29 // 1byte
#define REG_SDIO_HOST_BLK_GAP_CTRL 0x2A // 1byte
#define REG_SDIO_HOST_WAKEUP_CTRL 0x2B // 1byte
#define REG_SDIO_HOST_CLK_CTRL 0x2C // 2byte
#define REG_SDIO_HOST_TIMEOUT_CTRL 0x2E // 1byte
#define REG_SDIO_HOST_SW_RESET 0x2F // 1byte
#define REG_SDIO_HOST_NORMAL_INT_STATUS 0x30 // 2byte
#define REG_SDIO_HOST_ERROR_INT_STATUS 0x32 // 2byte
#define REG_SDIO_HOST_NORMAL_INT_STATUS_EN 0x34 // 2byte
#define REG_SDIO_HOST_ERROR_INT_STATUS_EN 0x36 // 2byte
#define REG_SDIO_HOST_NORMAL_INT_SIG_EN 0x38 // 2byte
#define REG_SDIO_HOST_ERROR_INT_SIG_EN 0x3A // 2byte
#define REG_SDIO_HOST_CAPABILITIES 0x40 // 8byte
#define REG_SDIO_HOST_ADMA_SYS_ADDR 0x58 // 8byte
/* =============================================== */
/* Block Count Register (0x06) */
#define BLK_CNT_REG_MAX 0xFFFF // 65535 blocks
/* Transfer Mode Register (0x0C) */
#define XFER_MODE_DMA_EN BIT0
#define XFER_MODE_BLK_CNT_EN BIT1
#define XFER_MODE_AUTO_CMD12_EN BIT2
#define XFER_MODE_DATA_XFER_DIR BIT4
#define XFER_MODE_MULT_SINGLE_BLK BIT5
/* Present State Register (0x24) */
#define PRES_STATE_CMD_INHIBIT_CMD BIT0
#define PRES_STATE_CMD_INHIBIT_DAT BIT1
#define PRES_STATE_DAT_LINE_ACTIVE BIT2
#define PRES_STATE_CARD_INSERTED BIT16
#define PRES_STATE_DAT0_SIGNAL_LEVEL BIT20
/* Power Control Register (0x29) */
#define PWR_CTRL_SD_BUS_PWR BIT0
/* Clock Control Register (0x2C) */
#define CLK_CTRL_INTERAL_CLK_EN BIT0
#define CLK_CTRL_INTERAL_CLK_STABLE BIT1
#define CLK_CTRL_SD_CLK_EN BIT2
/* Software Reset Register (0x2F) */
#define SW_RESET_FOR_ALL BIT0
#define SW_RESET_FOR_CMD BIT1
#define SW_RESET_FOR_DAT BIT2
/* Normal Interrupt Status (0x30) */
#define NOR_INT_STAT_CMD_COMP BIT0
#define NOR_INT_STAT_XFER_COMP BIT1
#define NOR_INT_STAT_BLK_GAP_EVENT BIT2
#define NOR_INT_STAT_DMA_INT BIT3
#define NOR_INT_STAT_BUF_WR_RDY BIT4
#define NOR_INT_STAT_BUF_RD_RDY BIT5
#define NOR_INT_STAT_CARD_INSERT BIT6
#define NOR_INT_STAT_CARD_REMOVAL BIT7
#define NOR_INT_STAT_CARD_INT BIT8
#define NOR_INT_STAT_ERR_INT BIT15
/* Error Interrupt Status (0x32) */
#define ERR_INT_STAT_CMD_TIMEOUT BIT0
#define ERR_INT_STAT_CMD_CRC BIT1
#define ERR_INT_STAT_CMD_END_BIT BIT2
#define ERR_INT_STAT_CMD_IDX BIT3
#define ERR_INT_STAT_DATA_TIMEOUT BIT4
#define ERR_INT_STAT_DATA_CRC BIT5
#define ERR_INT_STAT_DATA_END_BIT BIT6
#define ERR_INT_STAT_CUR_LIMIT BIT7
#define ERR_INT_STAT_AUTO_CMD12 BIT8
#define ERR_INT_STAT_ADMA BIT9
/* Normal Interrupt Status Enable (0x34) */
#define NOR_INT_STAT_EN_CMD_COMP BIT0
#define NOR_INT_STAT_EN_XFER_COMP BIT1
#define NOR_INT_STAT_EN_BLK_GAP_EVENT BIT2
#define NOR_INT_STAT_EN_DMA_INT BIT3
#define NOR_INT_STAT_EN_BUF_WR_RDY BIT4
#define NOR_INT_STAT_EN_BUF_RD_RDY BIT5
#define NOR_INT_STAT_EN_CARD_INSERT BIT6
#define NOR_INT_STAT_EN_CARD_REMOVAL BIT7
#define NOR_INT_STAT_EN_CARD_INT BIT8
/* Error Interrupt Status Enable (0x36) */
#define ERR_INT_STAT_EN_CMD_TIMEOUT BIT0
#define ERR_INT_STAT_EN_CMD_CRC BIT1
#define ERR_INT_STAT_EN_CMD_END_BIT BIT2
#define ERR_INT_STAT_EN_CMD_IDX BIT3
#define ERR_INT_STAT_EN_DATA_TIMEOUT BIT4
#define ERR_INT_STAT_EN_DATA_CRC BIT5
#define ERR_INT_STAT_EN_DATA_END_BIT BIT6
#define ERR_INT_STAT_EN_CUR_LIMIT BIT7
#define ERR_INT_STAT_EN_AUTO_CMD BIT8
#define ERR_INT_STAT_EN_ADMA BIT9
/* Normal Interrupt Signal Enable (0x38) */
#define NOR_INT_SIG_EN_CMD_COMP BIT0
#define NOR_INT_SIG_EN_XFER_COMP BIT1
#define NOR_INT_SIG_EN_BLK_GAP_EVENT BIT2
#define NOR_INT_SIG_EN_DMA_INT BIT3
#define NOR_INT_SIG_EN_BUF_WR_RDY BIT4
#define NOR_INT_SIG_EN_BUF_RD_RDY BIT5
#define NOR_INT_SIG_EN_CARD_INSERT BIT6
#define NOR_INT_SIG_EN_CARD_REMOVAL BIT7
#define NOR_INT_SIG_EN_CARD_INT BIT8
/* Error Interrupt Signal Enable (0x3A) */
#define ERR_INT_SIG_EN_CMD_TIMEOUT BIT0
#define ERR_INT_SIG_EN_CMD_CRC BIT1
#define ERR_INT_SIG_EN_CMD_END_BIT BIT2
#define ERR_INT_SIG_EN_CMD_IDX BIT3
#define ERR_INT_SIG_EN_DATA_TIMEOUT BIT4
#define ERR_INT_SIG_EN_DATA_CRC BIT5
#define ERR_INT_SIG_EN_DATA_END_BIT BIT6
#define ERR_INT_SIG_EN_CUR_LIMIT BIT7
#define ERR_INT_SIG_EN_AUTO_CMD BIT8
#define ERR_INT_SIG_EN_ADMA BIT9
/* Capabilities Register (0x40) */
#define CAPA_TIMEOUT_CLK_UNIT BIT7
#define CAPA_ADMA2_SUPPORT BIT19
#define CAPA_HIGH_SPEED_SUPPORT BIT21
#define CAPA_VOLT_SUPPORT_33V BIT24
#define CAPA_VOLT_SUPPORT_30V BIT25
#define CAPA_VOLT_SUPPORT_18V BIT26
#define DATA_BLK_LEN 512
#define SCR_REG_LEN 8 // 64 bits
#define SWITCH_FN_STATUS_LEN 64 // 512 bits
#define SD_STATUS_LEN 64 // 512 bits
#define CSD_REG_LEN 16 // 128 bits
/* Switch Function (CMD6) Group */
#define SWITCH_FN_GRP1_DEFAULT BIT0
#define SWITCH_FN_GRP1_HIGH_SPEED BIT1
#define SWITCH_FN_GRP2_DEFAULT BIT0
#define SWITCH_FN_GRP2_FOR_EC BIT1
#define SWITCH_FN_GRP2_VENDOR_SPECIFIC BIT14
/* Operating Condition (ACMD41) */
#define ACMD41_POLL_INTERVAL 10000 // 10 ms
#define ACMD41_INIT_TIMEOUT 1000000 // 1 sec
/* Card Status (R1) */
#define R1_APP_CMD BIT5
#define R1_WP_VIOLATION BIT26
/* Error Interrupt Recovery */
#define HAL_SDH_RECOVERED 0x10
/* 0x0C */
typedef enum
{
WRITE_OP = 0,
READ_OP = 1
}DATA_OPERATION;
/* 0x0E */
typedef enum
{
CMD_GO_IDLE_STATE = 0,
CMD_ALL_SEND_CID = 2,
CMD_SEND_RELATIVE_ADDR = 3,
CMD_SET_DSR = 4,
CMD_SWITCH_FUNC = 6,
CMD_SELECT_DESELECT_CARD = 7,
CMD_SEND_IF_COND = 8,
CMD_SEND_CSD = 9,
CMD_SEND_CID = 10,
CMD_VOLTAGE_SWITCH = 11,
CMD_STOP_TRANSMISSION = 12,
CMD_SEND_STATUS = 13,
CMD_GO_INACTIVE_STATE = 15,
CMD_SET_BLOCKLEN = 16,
CMD_READ_SINGLE_BLOCK = 17,
CMD_READ_MULTIPLE_BLOCK = 18,
CMD_SET_BLOCK_COUNT = 23,
CMD_WRITE_BLOCK = 24,
CMD_WRITE_MULTIPLE_BLOCK = 25,
CMD_PROGRAM_CSD = 27,
CMD_ERASE_WR_BLK_START = 32,
CMD_ERASE_WR_BLK_END = 33,
CMD_ERASE = 38,
CMD_SD_SEND_OP_COND = 41,
CMD_LOCK_UNLOCK = 42,
CMD_SEND_SCR = 51,
CMD_APP_CMD = 55
}CMD_IDX;
typedef enum
{
NORMAL, // 00b
SUSPEND, // 01b
RESUME, // 10b
ABORT // 11b
}CMD_TYPE;
typedef enum
{
NO_DATA, // 00b
WITH_DATA // 01b
}DATA_PRESENT_SEL;
typedef enum
{
NO_RSP, // 00b
RSP_LEN_136, // 01b
RSP_LEN_48, // 10b
RSP_LEN_48_CHK_BUSY // 11b
}RSP_TYPE;
/* 0x28 */
typedef enum
{
SDMA, // 00b
RESERVED, // 01b
ADMA2_32BIT, // 10b
ADMA2_64BIT // 11b
}HOST_DMA_SELECT;
typedef enum
{
MODE_1_BIT = 0,
MODE_4_BIT = 1
}HOST_DATA_WIDTH;
/* 0x29 */
typedef enum
{
VOLT_33V = 7,// 111b
VOLT_30V = 6,// 110b
VOLT_18V = 5 // 101b
}HOST_SD_BUS_VOLT;
/* 0x2C */
typedef enum
{
BASE_CLK = 0x00,
BASE_CLK_DIVIDED_BY_2 = 0x01,
BASE_CLK_DIVIDED_BY_4 = 0x02,
BASE_CLK_DIVIDED_BY_8 = 0x04,
BASE_CLK_DIVIDED_BY_16 = 0x08,
BASE_CLK_DIVIDED_BY_32 = 0x10,
BASE_CLK_DIVIDED_BY_64 = 0x20,
BASE_CLK_DIVIDED_BY_128 = 0x40,
BASE_CLK_DIVIDED_BY_256 = 0x80
}SD_CLK_DIVISOR;
typedef enum
{
SD_CLK_162KHZ,
SD_CLK_325KHZ,
SD_CLK_650KHZ,
SD_CLK_1_3MHZ,
SD_CLK_2_6MHZ,
SD_CLK_5_2MHZ,
SD_CLK_10_4MHZ,
SD_CLK_20_8MHZ,
SD_CLK_41_6MHZ
}SD_CLK_FREQUENCY;
/* Card Status Register */
typedef enum
{
IDLE, // 0
READY, // 1
IDENTIFICATION, // 2
STAND_BY, // 3
TRANSFER, // 4
SENDING_DATA, // 5
RECEIVE_DATA, // 6
PROGRAMMING, // 7
DISCONNECT, // 8
UNKNOWN = 0xFF
}CURRENT_STATE;
/* OCR Register */
typedef enum
{
VDD_27_28 = BIT15,
VDD_28_29 = BIT16,
VDD_29_30 = BIT17,
VDD_30_31 = BIT18,
VDD_31_32 = BIT19,
VDD_32_33 = BIT20,
VDD_33_34 = BIT21,
VDD_34_35 = BIT22,
VDD_35_36 = BIT23,
CARD_CAPA_STATUS = BIT30,
CARD_PWR_UP_STATUS = BIT31
}OCR_VOLTAGE_PROFILE;
/* SCR Register */
typedef enum
{
SD_VER_10 = 0,
SD_VER_110 = 1,
SD_VER_200 = 2
}PHYSICAL_LAYER_SPEC_VER;
/* CSD Register */
typedef enum
{
CLEAR_WRITE_PROTECT = 0,
SET_WRITE_PROTECT = 1
}TEMPORARY_WRITE_PROTECT_STATUS;
/* Switch Function (CMD6) Status Data Structure Version */
typedef enum
{
BUSY_STATUS_UNDEFINED = 0, // bits [511:376] are defined
BUSY_STATUS_DEFINED = 1 // bits [511:272] are defined
}SWITCH_FN_STATUS_DATA_STRUCTURE_VER;
/* Switch Function (CMD6) Busy Status */
typedef enum
{
READY_STATUS = 0,
BUSY_STATUS = 1
}SWITCH_FN_BUSY_STATUS;
/* Switch Function (CMD6) Mode */
typedef enum
{
CHECK_FN = 0x0,
SWITCH_FN = 0x1
}SWITCH_FN_MODE;
/* Switch Function (CMD6) Group 1 */
typedef enum
{
FN1_DEFAULT = 0x0,
FN1_HIGH_SPEED = 0x1,
FN1_KEEP_CURRENT = 0xF
}SWITCH_FN_GROUP_1;
/* Switch Function (CMD6) Group 2 */
typedef enum
{
FN2_DEFAULT = 0x0,
FN2_FOR_EC = 0x1,
FN2_VENDOR_SPECIFIC = 0xE,
FN2_KEEP_CURRENT = 0xF
}SWITCH_FN_GROUP_2;
typedef enum
{
DESEL_CARD = 0,
SEL_CARD = 1
}CARD_SELECTION;
typedef enum
{
SDSC_ONLY = 0,
SDHC_SUPPORT = 1
}HOST_CAPACITY_SUPPORT;
typedef enum
{
BUS_1_BIT = 0,
BUS_4_BIT = 2
}DATA_BUS_WIDTH;
typedef struct _ADMA2_ATTRIB_
{
u16 Valid:1;
u16 End:1;
u16 Int:1;
u16 Rsvd1:1;
u16 Act1:1;
u16 Act2:1;
u16 Rsvd2:10;
}ADMA2_ATTRIB, *PADMA2_ATTRIB;
typedef struct _ADMA2_DESC_FMT_
{
ADMA2_ATTRIB Attrib1;
u16 Len1;
u32 Addr1;
/* Link to next descriptor (if needed) */
ADMA2_ATTRIB Attrib2;
u16 Len2;
u32 Addr2;
}ADMA2_DESC_FMT, *PADMA2_DESC_FMT;
/* 0x0E */
typedef struct _SDIO_HOST_CMD_FMT_
{
u16 RespType:2;
u16 Rsvd0:1;
u16 CmdCrcChkEn:1;
u16 CmdIdxChkEn:1;
u16 DataPresent:1;
u16 CmdType:2;
u16 CmdIdx:6;
u16 Rsvd1:2;
}SDIO_HOST_CMD_FMT, *PSDIO_HOST_CMD_FMT;
typedef struct _SDIO_HOST_CMD_
{
SDIO_HOST_CMD_FMT CmdFmt;
u32 Arg;
}SDIO_HOST_CMD, *PSDIO_HOST_CMD;
HAL_Status
HalSdioHostInitHostRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostInitCardRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostDeInitRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostEnableRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostDisableRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostIrqInitRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostReadBlocksDmaRtl8195a(
IN VOID *Data,
IN u64 ReadAddr,
IN u32 BlockCnt
);
HAL_Status
HalSdioHostWriteBlocksDmaRtl8195a(
IN VOID *Data,
IN u64 WriteAddr,
IN u32 BlockCnt
);
HAL_Status
HalSdioHostStopTransferRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostGetCardStatusRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostGetSdStatusRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostChangeSdClockRtl8195a(
IN VOID *Data,
IN u8 Frequency
);
HAL_Status
HalSdioHostEraseRtl8195a(
IN VOID *Data,
IN u64 StartAddr,
IN u64 EndAddr
);
HAL_Status
HalSdioHostGetWriteProtectRtl8195a(
IN VOID *Data
);
HAL_Status
HalSdioHostSetWriteProtectRtl8195a(
IN VOID *Data,
IN u8 Setting
);
#ifdef CONFIG_SDIO_HOST_VERIFY
#define HAL_MMC_HOST_READ32(addr) HAL_READ32(SDIO_HOST_REG_BASE, addr)
#define HAL_MMC_HOST_WRITE32(addr, value) HAL_WRITE32(SDIO_HOST_REG_BASE, addr, value)
#define HAL_MMC_HOST_READ16(addr) HAL_READ16(SDIO_HOST_REG_BASE, addr)
#define HAL_MMC_HOST_WRITE16(addr, value) HAL_WRITE16(SDIO_HOST_REG_BASE, addr, value)
#define HAL_MMC_HOST_READ8(addr) HAL_READ8(SDIO_HOST_REG_BASE, addr)
#define HAL_MMC_HOST_WRITE8(addr, value) HAL_WRITE8(SDIO_HOST_REG_BASE, addr, value)
/* RTL8195A Register */
// REG_SOC_HCI_COM_FUNC_EN (0x214)
#define SD_DEVICE_IP_ON_BLK BIT0
#define SD_DEVICE_IP_OFF_BLK BIT1
#define SD_HOST_IP_BLK BIT2
// REG_PESOC_HCI_CLK_CTRL0 (0x240)
#define SD_HOST_CLKEN_IN_CPU_RUN_MODE BIT2
// REG_HCI_PINMUX_CTRL (0x2A0)
#define SD_DEVICE_MODE_PINMUX_EN BIT0
#define SD_HOST_MODE_PINMUX_EN BIT1
// 0x40059000
#define SD_HOST_CARD_DETECT_CIRCUIT BIT10
/* SD Host Register */
#define REG_SDMA_SYS_ADDR_ARG 0x00 // 4byte
#define REG_BLOCK_SIZE 0x04 // 2byte
#define REG_BLOCK_COUNT 0x06 // 2byte
#define REG_ARGUMENT1 0x08 // 4byte
#define REG_TRANSFER_MODE 0x0C // 2byte
#define REG_COMMAND 0x0E // 2byte
#define REG_RESPONSE0 0x10 // 4byte
#define REG_RESPONSE2 0x14 // 4byte
#define REG_RESPONSE4 0x18 // 4byte
#define REG_RESPONSE6 0x1C // 4byte
#define REG_BUFFER_DATA_PORT 0x20 // 4byte
#define REG_PRESENT_STATE 0x24 // 4byte
#define REG_HOST_CONTROL1 0x28 // 1byte
#define REG_POWER_CONTROL 0x29 // 1byte
#define REG_BLOCK_GAP_CONTROL 0x2A // 1byte
#define REG_WAKEUP_CONTROL 0x2B // 1byte
#define REG_CLOCK_CONTROL 0x2C // 2byte
#define REG_TIMEOUT_CONTROL 0x2E // 1byte
#define REG_SW_RESET 0x2F // 1byte
#define REG_NORMAL_INT_STATUS 0x30 // 2byte
#define REG_ERROR_INT_STATUS 0x32 // 2byte
#define REG_NORMAL_INT_STATUS_ENABLE 0x34 // 2byte
#define REG_ERROR_INT_STATUS_ENABLE 0x36 // 2byte
#define REG_NORMAL_INT_SIGNAL_ENABLE 0x38 // 2byte
#define REG_ERROR_INT_SIGNAL_ENABLE 0x3A // 2byte
#define REG_CAPABILITIES 0x40 // 8byte
#define REG_ADMA_ADDRESS 0x58 // 8byte
// Transfer Mode (0x0C)
#define BIT_DMA_EN BIT0
#define BIT_BLK_CNT_EN BIT1
#define BIT_AUTO_CMD12_EN BIT2
#define BIT_AUTO_CMD23_EN BIT3
#define BIT_READ_TRANS BIT4
#define BIT_MULTI_BLK BIT5
// Present State (0x24)
#define BIT_CMD_INHIBIT_CMD BIT0
#define BIT_CMD_INHIBIT_DAT BIT1
#define BIT_CARD_INSERTED BIT16
#define BIT_WRITE_PROTECT_SWITCH_PIN BIT19
// Power Control (0x29)
#define BIT_POWER_33 0xE
#define BIT_POWER_30 0xC
#define BIT_POWER_18 0xA
// Clock Control (0x2C)
#define BIT_INTERNAL_CLK_EN BIT0
#define BIT_INTERNAL_CLK_STABLE BIT1
#define BIT_SD_CLK_EN BIT2
// Software Reset (0x2F)
#define BIT_SW_RESET_ALL BIT0
#define BIT_SW_RESET_CMD_LINE BIT1
#define BIT_SW_RESET_DAT_LINE BIT2
// Norma Interrupt Status (0x30)
#define BIT_COMMAND_COMPLETE BIT0
#define BIT_TRANSFER_COMPLETE BIT1
#define BIT_BLOCK_GAP_EVENT BIT2
#define BIT_DMA_INT BIT3
#define BIT_BUFFER_WRITE_RDY BIT4
#define BIT_BUFFER_READ_RDY BIT5
#define BIT_CARD_INSERTION BIT6
#define BIT_CARD_REMOVAL BIT7
#define BIT_CARD_INT BIT8
#define BIT_ERROR_INT BIT15
// Error Interrupt Status (0x32)
#define BIT_DATA_TIME_OUT_ERROR BIT4
#define BIT_DATA_CRC_ERROR BIT5
#define BIT_ADMA_ERROR BIT9
// Capabilities (0x40)
#define BIT_VDD_33 BIT24
#define BIT_VDD_30 BIT25
#define BIT_VDD_18 BIT26
#define ENABLE 1
#define DISABLE 0
#define ADMA_DESC_NUM 50
#define BUFFER_UNIT_SIZE 512
typedef enum _MMC_HOST_TEST_FUNC_ {
MMC_HOST_TEST_HW_INIT, // 0
MMC_HOST_TEST_CARD_INIT, // 1
MMC_HOST_TEST_SEND_CMD, // 2
MMC_HOST_TEST_DEBUG, // 3
MMC_HOST_TEST_SW_RESET, // 4
MMC_HOST_TEST_READ_SINGLE, // 5
MMC_HOST_TEST_WRITE_SINGLE, // 6
MMC_HOST_TEST_READ_MULTI, // 7
MMC_HOST_TEST_WRITE_MULTI, // 8
MMC_HOST_TEST_SINGLE_LONGRUN, // 9
MMC_HOST_TEST_MULTI_LONGRUN, // 10
MMC_HOST_TEST_CARD_DETECTION, // 11
MMC_HOST_TEST_WRITE_PROTECT, // 12
MMC_HOST_TEST_REGISTER_RW, // 13
SD_HOST_HAL_API_VERIFY = 20,
SD_HOST_ERASE_TEST = 21,
SD_HOST_WP_TEST = 22,
SD_HOST_MB_TEST = 23,
SD_HOST_ADMA_MAX_TEST = 24
}MMC_HOST_TEST_FUNC;
typedef enum _RESPONSE_TYPE_ {
No_Response, // 00b
Response_136, // 01b
Response_48, // 10b
Response_48_Busy // 11b
}RESPONSE_TYPE;
typedef enum _COMMAND_TYPE_ {
Normal, // 00b
Suspend, // 01b
Resume, // 10b
Abort // 11b
}COMMAND_TYPE;
typedef enum _DATA_PRESENT_ {
No_Data_Present, // 00b
Data_Present, // 01b
}DATA_PRESENT;
typedef enum _SUPPLY_VOLTAGE_ {
MMC_VDD_27_28 = BIT15,
MMC_VDD_28_29 = BIT16,
MMC_VDD_29_30 = BIT17,
MMC_VDD_30_31 = BIT18,
MMC_VDD_31_32 = BIT19,
MMC_VDD_32_33 = BIT20,
MMC_VDD_33_34 = BIT21,
MMC_VDD_34_35 = BIT22,
MMC_VDD_35_36 = BIT23,
}SUPPLY_VOLTAGE;
typedef enum _COMMAND_INDEX_ {
GO_IDLE_STATE = 0,
ALL_SEND_CID = 2,
SEND_RELATIVE_ADDR = 3,
SET_BUS_WIDTH = 6,
SELECT_CARD = 7,
SEND_IF_COND = 8,
SEND_CSD = 9,
STOP_TRANSMISSION = 12,
SEND_STATUS = 13,
READ_SINGLE_BLOCK = 17,
READ_MULTIPLE_BLOCK = 18,
WRITE_BLOCK = 24,
WRITE_MULTIPLE_BLOCK = 25,
SD_SEND_OP_COND = 41,
APP_CMD = 55,
}COMMAND_INDEX;
typedef enum _TRANSFER_CONFIG_ {
Read_Data = 0,
Write_Data = 1,
Single_Block = 0,
Multiple_Block = 1,
}TRANSFER_CONFIG;
typedef enum _ERROR_STATUS_ {
General_Error, // 0
CRC_Error, // 1
TIME_OUT_ERROR, // 2
CRC_Error_NeedCMD12, // 3
Transfer_OK // 4
}ERROR_STATUS;
typedef enum _CARD_CURRENT_STATE_ {
IDLE_STATE,
READY_STATE,
IDENT_STATE,
STBY_STATE,
TRAN_STATE,
DATA_STATE,
RCV_STATE,
PRG_STATE,
DIS_STATE,
UNKNOWN_STATE
}CARD_CURRENT_STATE;
typedef struct _COMMAND_FORMAT_
{
u16 Resp_Type:2;
u16 Rsvd0:1;
u16 CMD_CRC_Chk:1;
u16 CMD_Idx_Chk:1;
u16 Data_Present:1;
u16 CMD_Type:2;
u16 CMD_Idx:6;
u16 Rsvd1:2;
}COMMAND_FORMAT, *PCOMMAND_FPRMAT;
typedef struct _MMC_COMMAND
{
COMMAND_FORMAT Cmd_Format;
u32 Arg;
}MMC_COMMAND;
typedef struct _MMC_HOST_
{
u32 OCR_Avail;
u32 Resp[4];
u32 CID[4];
u32 RCA;
}MMC_HOST, *PMMC_HOST;
typedef struct _ADMA_ATTR_
{
u16 Valid:1;
u16 End:1;
u16 Int:1;
u16 Rsvd1:1;
u16 Act1:1;
u16 Act2:1;
u16 Rsvd2:10;
}ADMA_ATTR, *PADMA_ATTR;
// 24 bytes
typedef struct _ADMA_DESC_TABLE_
{
// 1st buffer desc
ADMA_ATTR Attribute1;
u16 Length1;
u32 Address1;
// 2nd buffer desc
ADMA_ATTR Attribute2;
u16 Length2;
u32 Address2;
// 3rd buffer desc
ADMA_ATTR Attribute3;
u16 Length3;
u32 Address3;
}ADMA_DESC_TABLE, *PADMA_DESC_TABLE;
// 1024 bytes
typedef struct _ADMA_BUFFER_
{
u8 Data1[512]; /* 1st buffer */
u8 Data2[512]; /* 2nd buffer */
}ADMA_BUFFER, *PADMA_BUFFER;
VOID
SdHostTestApp(
IN u8 *argv[]
);
#endif // end of "#ifdef CONFIG_SDIO_HOST_VERIFY"
#endif /* #ifndef _RTL8195A_SDIO_HOST_H_ */

View file

@ -0,0 +1,379 @@
#ifndef _RTL8195A_SDR_H
#define _RTL8195A_SDR_H
#define MS_0_CTRL_BASE BSP_MS_I_DRAMC_0_BASE
#define MS_0_CTRL_PHY_BASE (BSP_MS_I_DRAMC_0_BASE)
#define MS_0_WRAP_BASE (MS_0_CTRL_BASE + 0x200)
#define MS_1_CTRL_BASE BSP_MS_I_DRAMC_1_BASE
#define MS_1_CTRL_PHY_BASE (BSP_MS_I_DRAMC_1_BASE)
#define MS_1_WRAP_BASE (MS_1_CTRL_BASE + 0x200)
#define MS_PCTL_CCR_OFFSET 0x000
#define MS_PCTL_DCR_OFFSET 0x004
#define MS_PCTL_IOCR_OFFSET 0x008
#define MS_PCTL_CSR_OFFSET 0x00c
#define MS_PCTL_DRR_OFFSET 0x010
#define MS_PCTL_TPR0_OFFSET 0x014
#define MS_PCTL_TPR1_OFFSET 0x018
#define MS_PCTL_TPR2_OFFSET 0x01c
#define MS_PCTL_MR_OFFSET 0x020
#define MS_PCTL_EMR1_OFFSET 0x024
#define MS_PCTL_EMR2_OFFSET 0x028
#define MS_PCTL_EMR3_OFFSET 0x02c
#define MS_PCTL_CSR2_OFFSET 0x030
#define MS_PCTL_SRST_OFFSET 0x034
#define MS_PCTL_DTR2_OFFSET 0x038
#define MS_PCTL_DTR3_OFFSET 0x03c
#define MS_PCTL_GDLLCR_OFFSET 0x040
#define MS_PCTL_DLLCR0_OFFSET 0x044
#define MS_PCTL_DLLCR1_OFFSET 0x048
#define MS_PCTL_DLLCR2_OFFSET 0x04c
#define MS_PCTL_DLLCR3_OFFSET 0x050
#define MS_PCTL_DLLCR4_OFFSET 0x054
#define MS_PCTL_DLLCR5_OFFSET 0x058
#define MS_PCTL_DLLCR6_OFFSET 0x05c
#define MS_PCTL_DLLCR7_OFFSET 0x060
#define MS_PCTL_DLLCR8_OFFSET 0x064
#define MS_PCTL_DQTR0_OFFSET 0x068
#define MS_PCTL_DQTR1_OFFSET 0x06c
#define MS_PCTL_DQTR2_OFFSET 0x070
#define MS_PCTL_DQTR3_OFFSET 0x074
#define MS_PCTL_DQTR4_OFFSET 0x078
#define MS_PCTL_DQTR5_OFFSET 0x07c
#define MS_PCTL_DQTR6_OFFSET 0x080
#define MS_PCTL_DQTR7_OFFSET 0x084
#define MS_PCTL_DQSTR_OFFSET 0x088
#define MS_PCTL_DQSBTR_OFFSET 0x08c
#define MS_PCTL_ODTCR_OFFSET 0x090
#define MS_PCTL_DTR0_OFFSET 0x094
#define MS_PCTL_DTR1_OFFSET 0x098
#define MS_PCTL_DTAR_OFFSET 0x09c
#define MS_PCTL_ZQCR0_OFFSET 0x0a0
#define MS_PCTL_ZQCR1_OFFSET 0x0a4
#define MS_PCTL_ZQSR_OFFSET 0x0a8
#define MS_PCTL_RSLR0_OFFSET 0x0ac
#define MS_PCTL_RSLR1_OFFSET 0x0b0
#define MS_PCTL_RSLR2_OFFSET 0x0b4
#define MS_PCTL_RSLR3_OFFSET 0x0b8
#define MS_PCTL_RDGR0_OFFSET 0x0bc
#define MS_PCTL_RDGR1_OFFSET 0x0c0
#define MS_PCTL_RDGR2_OFFSET 0x0c4
#define MS_PCTL_RDGR3_OFFSET 0x0c8
#define MS_PCTL_MXSL_OFFSET 0x0cc
#define MS_PCTL_BCR_OFFSET 0x0d0
#define MS_PCTL_BALR0_OFFSET 0x0d4
#define MS_PCTL_BALR1_OFFSET 0x0d8
#define MS_PCTL_BDR0_OFFSET 0x0dc
#define MS_PCTL_BDR1_OFFSET 0x0e0
#define MS_PCTL_BBR_OFFSET 0x0e4
#define MS_PCTL_BSR_OFFSET 0x0e8
#define MS_PCTL_BYR_OFFSET 0x0ec
#define MS_PCTL_BFA_OFFSET 0x0f0
#define MS_PCTL_IDR_OFFSET 0x0f8
#define MS_PCTL_ERR_OFFSET 0x0fc
#define MS_WRAP_SCR_OFFSET 0x224
#define MS_WRAP_QCR_OFFSET 0x230
#define MS_WRAP_PCR_OFFSET 0x234
#define MS_WRAP_QTR0_OFFSET 0x240
#define MS_WRAP_QTR1_OFFSET 0x244
#define MS_WRAP_QTR2_OFFSET 0x248
#define MS_WRAP_QTR3_OFFSET 0x24c
#define MS_WRAP_QTR4_OFFSET 0x250
#define MS_WRAP_QTR5_OFFSET 0x254
#define MS_WRAP_QTR6_OFFSET 0x258
#define MS_WRAP_QTR7_OFFSET 0x25c
#define MS_WRAP_QTR8_OFFSET 0x260
#define MS_WRAP_QTR9_OFFSET 0x264
#define MS_WRAP_QTR10_OFFSET 0x268
#define MS_WRAP_QTR11_OFFSET 0x26c
#define MS_WRAP_QTR12_OFFSET 0x270
#define MS_WRAP_QTR13_OFFSET 0x274
#define MS_WRAP_QTR14_OFFSET 0x278
#define MS_WRAP_QTR15_OFFSET 0x27c
#define MS_PHY_DLY0 0x100
#define MS_PHY_DLY1_RST 0x104
#define MS_PHY_DLY_CLK 0x108
#define MS_PHY_DLY_ST 0x10c
#define MS_PHY_DLY_NUM 0x100
#define PCTL_CCR_INIT_BFO 0
#define PCTL_CCR_INIT_BFW 1
#define PCTL_CCR_DTT_BFO 1
#define PCTL_CCR_DTT_BFW 1
#define PCTL_CCR_BTT_BFO 2
#define PCTL_CCR_BTT_BFW 1
#define PCTL_CCR_DPIT_BFO 3
#define PCTL_CCR_DPIT_BFW 1
#define PCTL_CCR_FLUSH_FIFO_BFO 8
#define PCTL_CCR_FLUSH_FIFO_BFW 1
#define PCTL_DCR_DDR3_BFO 0
#define PCTL_DCR_DDR3_BFW 1
#define PCTL_DCR_SDR_BFO 1
#define PCTL_DCR_SDR_BFW 1
#define PCTL_DCR_DQ32_BFO 4
#define PCTL_DCR_DQ32_BFW 1
#define PCTL_DCR_DFI_RATE_BFO 8
#define PCTL_DCR_DFI_RATE_BFW 3
#define PCTL_IOCR_RD_PIPE_BFO 8
#define PCTL_IOCR_RD_PIPE_BFW 4
#define PCTL_IOCR_TPHY_WD_BFO 12
#define PCTL_IOCR_TPHY_WD_BFW 5
#define PCTL_IOCR_TPHY_WL_BFO 17
#define PCTL_IOCR_TPHY_WL_BFW 3
#define PCTL_IOCR_TPHY_RD_EN_BFO 20
#define PCTL_IOCR_TPHY_RD_EN_BFW 5
#define PCTL_CSR_MEM_IDLE_BFO 8
#define PCTL_CSR_MEM_IDLE_BFW 1
#define PCTL_CSR_DT_IDLE_BFO 9
#define PCTL_CSR_DT_IDLE_BFW 1
#define PCTL_CSR_BIST_IDLE_BFO 10
#define PCTL_CSR_BIST_IDLE_BFW 1
#define PCTL_CSR_DT_FAIL_BFO 11
#define PCTL_CSR_DT_FAIL_BFW 1
#define PCTL_CSR_BT_FAIL_BFO 12
#define PCTL_CSR_BT_FAIL_BFW 1
#define PCTL_DRR_TRFC_BFO 0
#define PCTL_DRR_TRFC_BFW 7
#define PCTL_DRR_TREF_BFO 8
#define PCTL_DRR_TREF_BFW 24
#define PCTL_DRR_REF_NUM_BFO 24
#define PCTL_DRR_REF_NUM_BFW 4
#define PCTL_DRR_REF_DIS_BFO 28
#define PCTL_DRR_REF_DIS_BFW 1
#define PCTL_TPR0_TRP_BFO 0
#define PCTL_TPR0_TRP_BFW 4
#define PCTL_TPR0_TRAS_BFO 4
#define PCTL_TPR0_TRAS_BFW 5
#define PCTL_TPR0_TWR_BFO 9
#define PCTL_TPR0_TWR_BFW 4
#define PCTL_TPR0_TRTP_BFO 13
#define PCTL_TPR0_TRTP_BFW 3
#define PCTL_TPR1_TRRD_BFO 0
#define PCTL_TPR1_TRRD_BFW 4
#define PCTL_TPR1_TRC_BFO 4
#define PCTL_TPR1_TRC_BFW 6
#define PCTL_TPR1_TRCD_BFO 10
#define PCTL_TPR1_TRCD_BFW 4
#define PCTL_TPR1_TCCD_BFO 14
#define PCTL_TPR1_TCCD_BFW 3
#define PCTL_TPR1_TWTR_BFO 17
#define PCTL_TPR1_TWTR_BFW 3
#define PCTL_TPR1_TRTW_BFO 20
#define PCTL_TPR1_TRTW_BFW 4
#define PCTL_TPR2_INIT_REF_NUM_BFO 0
#define PCTL_TPR2_INIT_REF_NUM_BFW 4
#define PCTL_TPR2_INIT_NS_EN_BFO 4
#define PCTL_TPR2_INIT_NS_EN_BFW 1
#define PCTL_TPR2_TMRD_BFO 5
#define PCTL_TPR2_TMRD_BFW 2
#define PCTL_MR_BL_BFO 0
#define PCTL_MR_BL_BFW 3
#define PCTL_MR_BT_BFO 3
#define PCTL_MR_BT_BFW 1
#define PCTL_MR_CAS_BFO 4
#define PCTL_MR_CAS_BFW 3
#define PCTL_MR_OP_BFO 8
#define PCTL_MR_OP_BFW 12
#define PCTL_EMR1_ADDLAT_BFO 3
#define PCTL_EMR1_ADDLAT_BFW 3
#define PCTL_CMD_DPIN_RSTN_BFO 0
#define PCTL_CMD_DPIN_RSTN_BFW 1
#define PCTL_CMD_DPIN_CKE_BFO 1
#define PCTL_CMD_DPIN_CKE_BFW 1
#define PCTL_CMD_DPIN_ODT_BFO 2
#define PCTL_CMD_DPIN_ODT_BFW 1
#define PCTL_BCR_STOP_BFO 0
#define PCTL_BCR_STOP_BFW 1
#define PCTL_BCR_CMP_BFO 1
#define PCTL_BCR_CMP_BFW 1
#define PCTL_BCR_LOOP_BFO 2
#define PCTL_BCR_LOOP_BFW 1
#define PCTL_BCR_DIS_MASK_BFO 3
#define PCTL_BCR_DIS_MASK_BFW 1
#define PCTL_BCR_AT_STOP_BFO 4
#define PCTL_BCR_AT_STOP_BFW 1
#define PCTL_BCR_FLUSH_CMD_BFO 8
#define PCTL_BCR_FLUSH_CMD_BFW 1
#define PCTL_BCR_FLUSH_WD_BFO 9
#define PCTL_BCR_FLUSH_WD_BFW 1
#define PCTL_BCR_FLUSH_RGD_BFO 10
#define PCTL_BCR_FLUSH_RGD_BFW 1
#define PCTL_BCR_FLUSH_RD_BFO 11
#define PCTL_BCR_FLUSH_RD_BFW 1
#define PCTL_BCR_FLUSH_RD_EXPC_BFO 16
#define PCTL_BCR_FLUSH_RD_EXPC_BFW 14
#define PCTL_BST_ERR_FST_TH_BFO 0
#define PCTL_BST_ERR_FST_TH_BFW 12
#define PCTL_BST_ERR_CNT_BFO 16
#define PCTL_BST_ERR_CNT_BFW 14
#define PCTL_BSRAM0_CMD_LEVEL_BFO 0
#define PCTL_BSRAM0_CMD_LEVEL_BFW 12
#define PCTL_BSRAM0_WD_LEVEL_BFO 16
#define PCTL_BSRAM0_WD_LEVEL_BFW 14
#define PCTL_BSRAM1_RG_LEVEL_BFO 0
#define PCTL_BSRAM1_RG_LEVEL_BFW 14
#define PCTL_BSRAM1_RD_LEVEL_BFO 16
#define PCTL_BSRAM1_RD_LEVEL_BFW 14
#define WRAP_MISC_PAGE_SIZE_BFO 0
#define WRAP_MISC_PAGE_SIZE_BFW 4
#define WRAP_MISC_BANK_SIZE_BFO 4
#define WRAP_MISC_BANK_SIZE_BFW 2
#define WRAP_MISC_BST_SIZE_BFO 6
#define WRAP_MISC_BST_SIZE_BFW 2
#define WRAP_MISC_DDR_PARAL_BFO 8
#define WRAP_MISC_DDR_PARAL_BFW 1
struct ms_rxi310_portmap {
volatile unsigned int ccr; /* 0x000 */
volatile unsigned int dcr; /* 0x004 */
volatile unsigned int iocr; /* 0x008 */
volatile unsigned int csr; /* 0x00c */
volatile unsigned int drr; /* 0x010 */
volatile unsigned int tpr0; /* 0x014 */
volatile unsigned int tpr1; /* 0x018 */
volatile unsigned int tpr2; /* 0x01c */
volatile unsigned int mr; /* 0x020 */
volatile unsigned int emr1; /* 0x024 */
volatile unsigned int emr2; /* 0x028 */
volatile unsigned int emr3; /* 0x02c */
volatile unsigned int cdpin; /* 0x030 */
volatile unsigned int tdpin; /* 0x034 */
volatile unsigned int dtr2; /* 0x038 */
volatile unsigned int dtr3; /* 0x03c */
volatile unsigned int gdllcr; /* 0x040 */
volatile unsigned int dllcr0; /* 0x044 */
volatile unsigned int dllcr1; /* 0x048 */
volatile unsigned int dllcr2; /* 0x04c */
volatile unsigned int dllcr3; /* 0x050 */
volatile unsigned int dllcr4; /* 0x054 */
volatile unsigned int dllcr5; /* 0x058 */
volatile unsigned int dllcr6; /* 0x05c */
volatile unsigned int dllcr7; /* 0x060 */
volatile unsigned int dllcr8; /* 0x064 */
volatile unsigned int dqtr0; /* 0x068 */
volatile unsigned int dqtr1; /* 0x06c */
volatile unsigned int dqtr2; /* 0x070 */
volatile unsigned int dqtr3; /* 0x074 */
volatile unsigned int dqtr4; /* 0x078 */
volatile unsigned int dqtr5; /* 0x07c */
volatile unsigned int dqtr6; /* 0x080 */
volatile unsigned int dqtr7; /* 0x084 */
volatile unsigned int dqstr; /* 0x088 */
volatile unsigned int dqsbtr; /* 0x08c */
volatile unsigned int odtcr; /* 0x090 */
volatile unsigned int dtr0; /* 0x094 */
volatile unsigned int dtr1; /* 0x098 */
volatile unsigned int dtar; /* 0x09c */
volatile unsigned int zqcr0; /* 0x0a0 */
volatile unsigned int zqcr1; /* 0x0a4 */
volatile unsigned int zqsr; /* 0x0a8 */
volatile unsigned int rslr0; /* 0x0ac */
volatile unsigned int rslr1; /* 0x0b0 */
volatile unsigned int rslr2; /* 0x0b4 */
volatile unsigned int rslr3; /* 0x0b8 */
volatile unsigned int rdgr0; /* 0x0bc */
volatile unsigned int rdgr1; /* 0x0c0 */
volatile unsigned int rdgr2; /* 0x0c4 */
volatile unsigned int rdgr3; /* 0x0c8 */
volatile unsigned int mxsl; /* 0x0cc */
volatile unsigned int bcr; /* 0x0d0 */
volatile unsigned int bst; /* 0x0d4 */
volatile unsigned int bsram0; /* 0x0d8 */
volatile unsigned int bsram1; /* 0x0dc */
volatile unsigned int bdr1; /* 0x0e0 */
volatile unsigned int bbr; /* 0x0e4 */
volatile unsigned int bsr; /* 0x0e8 */
volatile unsigned int byr; /* 0x0ec */
volatile unsigned int bfa; /* 0x0f0 */
volatile unsigned int pctl_svn; /* 0x0f4 */
volatile unsigned int pctl_idr; /* 0x0f8 */
volatile unsigned int err; /* 0x0fc */
// SDR_PHY CONTROL REGISTER
volatile unsigned int phy_dly0; /* 0x100 */
volatile unsigned int phy_dly1_rst; /* 0x104 */
volatile unsigned int phy_dly_clk; /* 0x108 */
volatile unsigned int phy_dly_st; /* 0x10c */
volatile unsigned int phy_dly_num; /* 0x110 */
volatile unsigned int reserved0[68];
// WRAP CONTROL REGISTER
volatile unsigned int misc; /* 0x224 */
volatile unsigned int cq_ver; /* 0x228 */
volatile unsigned int cq_mon; /* 0x22c */
volatile unsigned int wq_ver; /* 0x230 */
volatile unsigned int wq_mon; /* 0x234 */
volatile unsigned int rq_ver; /* 0x240 */
volatile unsigned int rq_mon; /* 0x244 */
volatile unsigned int reserved1[22];
volatile unsigned int wwrap_idr; /* 0x2a0 */
volatile unsigned int wrap_svn; /* 0x2a4 */
}; //ms_rxi310_portmap
#define QFIFO_CMD_BANK_BFO (35 - QFIFO_CMD_WRRD_BFO) // [38:35]
#define QFIFO_CMD_BANK_BFW 4
#define QFIFO_CMD_PAGE_BFO (20 - QFIFO_CMD_WRRD_BFO) // [34:20]
#define QFIFO_CMD_PAGE_BFW 15
#define QFIFO_CMD_COLU_BFO (7 - QFIFO_CMD_WRRD_BFO) // [19: 7]
#define QFIFO_CMD_COLU_BFW 13 // [19: 7]
#define QFIFO_BST_LEN_BFO (3 - QFIFO_CMD_WRRD_BFO) // [6:3]
#define QFIFO_BST_LEN_BFW 4 // [6:3]
#define QFIFO_CMD_WRRD_BFO 2 // [2], remove bit[1:0]
#define QFIFO_CMD_WRRD_BFW 1 // [2], remove bit[1:0]
//====================================================//
#define REG_SDR_CCR 0x00
#define REG_SDR_DCR 0x04
#define REG_SDR_IOCR 0x08
#define REG_SDR_CSR 0x0C
#define REG_SDR_DRR 0x10
#define REG_SDR_TPR0 0x14
#define REG_SDR_TPR1 0x18
#define REG_SDR_TPR2 0x1C
#define REG_SDR_MR 0x20
#define REG_SDR_EMR1 0x24
#define REG_SDR_EMR2 0x28
#define REG_SDR_EMR3 0x2C
#define REG_SDR_CMD_DPIN 0x30
#define REG_SDR_TIE_DPIN 0x34
#define REG_SDR_BCR 0xD0
#define REG_SDR_BST 0xD4
#define REG_SDR_BSRAM0 0xD8
#define REG_SDR_BSRAM1 0xDC
#define REG_SDR_PCTL_SVN_ID 0xF4
#define REG_SDR_PCTL_IDR 0xF8
#define REG_SDR_DLY0 0x100
#define REG_SDR_DLY1 0x104
#define REG_SDR_DCM_RST 0x104
#define REG_SDR_DLY_CLK_PHA 0x108
#define REG_SDR_DLY_ST 0x10C
#define REG_SDR_MISC 0x224
#define REG_SDR_OCP_WRAP_IDR 0x2A0
#define REG_SDR_OCP_WRAP_VERSION 0x2A4
#endif // end of "#ifndef _RTL8195A_SDR_H"

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,530 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_SSI_H_
#define _RTL8195A_SSI_H_
#define SSI_DUMMY_DATA 0x00 // for master mode, we need to push a Dummy data to TX FIFO for read
#define SSI_CLK_SPI1 (PLATFORM_CLOCK/2)
#define SSI_CLK_SPI0_2 (PLATFORM_CLOCK/4)
/* Parameters of DW_apb_ssi for RTL8195A */
#define SSI_TX_FIFO_DEPTH 64
#define TX_ABW 6 // 1-8, log2(SSI_TX_FIFO_DEPTH)
#define SSI_RX_FIFO_DEPTH 64
#define RX_ABW 6 // 1-8, log2(SSI_RX_FIFO_DEPTH)
#define SSI0_REG_BASE 0x40042000
#define SSI1_REG_BASE 0x40042400
#define SSI2_REG_BASE 0x40042800
/* Memory Map of DW_apb_ssi */
#define REG_DW_SSI_CTRLR0 0x00 // 16 bits
#define REG_DW_SSI_CTRLR1 0x04 // 16 bits
#define REG_DW_SSI_SSIENR 0x08 // 1 bit
#define REG_DW_SSI_MWCR 0x0C // 3 bits
#define REG_DW_SSI_SER 0x10 //
#define REG_DW_SSI_BAUDR 0x14 // 16 bits
#define REG_DW_SSI_TXFTLR 0x18 // TX_ABW
#define REG_DW_SSI_RXFTLR 0x1C // RX_ABW
#define REG_DW_SSI_TXFLR 0x20 //
#define REG_DW_SSI_RXFLR 0x24 //
#define REG_DW_SSI_SR 0x28 // 7 bits
#define REG_DW_SSI_IMR 0x2C //
#define REG_DW_SSI_ISR 0x30 // 6 bits
#define REG_DW_SSI_RISR 0x34 // 6 bits
#define REG_DW_SSI_TXOICR 0x38 // 1 bits
#define REG_DW_SSI_RXOICR 0x3C // 1 bits
#define REG_DW_SSI_RXUICR 0x40 // 1 bits
#define REG_DW_SSI_MSTICR 0x44 // 1 bits
#define REG_DW_SSI_ICR 0x48 // 1 bits
#define REG_DW_SSI_DMACR 0x4C // 2 bits
#define REG_DW_SSI_DMATDLR 0x50 // TX_ABW
#define REG_DW_SSI_DMARDLR 0x54 // RX_ABW
#define REG_DW_SSI_IDR 0x58 // 32 bits
#define REG_DW_SSI_COMP_VERSION 0x5C // 32 bits
#define REG_DW_SSI_DR 0x60 // 16 bits 0x60-0xEC
#define REG_DW_SSI_RX_SAMPLE_DLY 0xF0 // 8 bits
#define REG_DW_SSI_RSVD_0 0xF4 // 32 bits
#define REG_DW_SSI_RSVD_1 0xF8 // 32 bits
#define REG_DW_SSI_RSVD_2 0xFC // 32 bits
// CTRLR0 0x00 // 16 bits, 6.2.1
// DFS Reset Value: 0x7
#define BIT_SHIFT_CTRLR0_DFS 0
#define BIT_MASK_CTRLR0_DFS 0xF
#define BIT_CTRLR0_DFS(x)(((x) & BIT_MASK_CTRLR0_DFS) << BIT_SHIFT_CTRLR0_DFS)
#define BIT_INVC_CTRLR0_DFS (~(BIT_MASK_CTRLR0_DFS << BIT_SHIFT_CTRLR0_DFS))
#define BIT_SHIFT_CTRLR0_FRF 4
#define BIT_MASK_CTRLR0_FRF 0x3
#define BIT_CTRLR0_FRF(x)(((x) & BIT_MASK_CTRLR0_FRF) << BIT_SHIFT_CTRLR0_FRF)
#define BIT_INVC_CTRLR0_FRF (~(BIT_MASK_CTRLR0_FRF << BIT_SHIFT_CTRLR0_FRF))
#define BIT_SHIFT_CTRLR0_SCPH 6
#define BIT_MASK_CTRLR0_SCPH 0x1
#define BIT_CTRLR0_SCPH(x)(((x) & BIT_MASK_CTRLR0_SCPH) << BIT_SHIFT_CTRLR0_SCPH)
#define BIT_INVC_CTRLR0_SCPH (~(BIT_MASK_CTRLR0_SCPH << BIT_SHIFT_CTRLR0_SCPH))
#define BIT_SHIFT_CTRLR0_SCPOL 7
#define BIT_MASK_CTRLR0_SCPOL 0x1
#define BIT_CTRLR0_SCPOL(x)(((x) & BIT_MASK_CTRLR0_SCPOL) << BIT_SHIFT_CTRLR0_SCPOL)
#define BIT_INVC_CTRLR0_SCPOL (~(BIT_MASK_CTRLR0_SCPOL << BIT_SHIFT_CTRLR0_SCPOL))
#define BIT_SHIFT_CTRLR0_TMOD 8
#define BIT_MASK_CTRLR0_TMOD 0x3
#define BIT_CTRLR0_TMOD(x)(((x) & BIT_MASK_CTRLR0_TMOD) << BIT_SHIFT_CTRLR0_TMOD)
#define BIT_INVC_CTRLR0_TMOD (~(BIT_MASK_CTRLR0_TMOD << BIT_SHIFT_CTRLR0_TMOD))
#define BIT_SHIFT_CTRLR0_SLV_OE 10
#define BIT_MASK_CTRLR0_SLV_OE 0x1
#define BIT_CTRLR0_SLV_OE(x)(((x) & BIT_MASK_CTRLR0_SLV_OE) << BIT_SHIFT_CTRLR0_SLV_OE)
#define BIT_INVC_CTRLR0_SLV_OE (~(BIT_MASK_CTRLR0_SLV_OE << BIT_SHIFT_CTRLR0_SLV_OE))
#define BIT_SHIFT_CTRLR0_SRL 11
#define BIT_MASK_CTRLR0_SRL 0x1
#define BIT_CTRLR0_SRL(x)(((x) & BIT_MASK_CTRLR0_SRL) << BIT_SHIFT_CTRLR0_SRL)
#define BIT_INVC_CTRLR0_SRL (~(BIT_MASK_CTRLR0_SRL << BIT_SHIFT_CTRLR0_SRL))
#define BIT_SHIFT_CTRLR0_CFS 12
#define BIT_MASK_CTRLR0_CFS 0xF
#define BIT_CTRLR0_CFS(x)(((x) & BIT_MASK_CTRLR0_CFS) << BIT_SHIFT_CTRLR0_CFS)
#define BIT_INVC_CTRLR0_CFS (~(BIT_MASK_CTRLR0_CFS << BIT_SHIFT_CTRLR0_CFS))
// CTRLR1 0x04 // 16 bits
#define BIT_SHIFT_CTRLR1_NDF 0
#define BIT_MASK_CTRLR1_NDF 0xFFFF
#define BIT_CTRLR1_NDF(x)(((x) & BIT_MASK_CTRLR1_NDF) << BIT_SHIFT_CTRLR1_NDF)
#define BIT_INVC_CTRLR1_NDF (~(BIT_MASK_CTRLR1_NDF << BIT_SHIFT_CTRLR1_NDF))
// SSIENR 0x08 // 1 bit
#define BIT_SHIFT_SSIENR_SSI_EN 0
#define BIT_MASK_SSIENR_SSI_EN 0x1
#define BIT_SSIENR_SSI_EN(x)(((x) & BIT_MASK_SSIENR_SSI_EN) << BIT_SHIFT_SSIENR_SSI_EN)
#define BIT_INVC_SSIENR_SSI_EN (~(BIT_MASK_SSIENR_SSI_EN << BIT_SHIFT_SSIENR_SSI_EN))
// MWCR 0x0c // 3 bits
#define BIT_SHIFT_MWCR_MWMOD 0
#define BIT_MASK_MWCR_MWMOD 0x1
#define BIT_MWCR_MWMOD(x)(((x) & BIT_MASK_MWCR_MWMOD) << BIT_SHIFT_MWCR_MWMOD)
#define BIT_INVC_MWCR_MWMOD (~(BIT_MASK_MWCR_MWMOD << BIT_SHIFT_MWCR_MWMOD))
#define BIT_SHIFT_MWCR_MDD 1
#define BIT_MASK_MWCR_MDD 0x1
#define BIT_MWCR_MDD(x)(((x) & BIT_MASK_MWCR_MDD) << BIT_SHIFT_MWCR_MDD)
#define BIT_INVC_MWCR_MDD (~(BIT_MASK_MWCR_MDD << BIT_SHIFT_MWCR_MDD))
#define BIT_SHIFT_MWCR_MHS 2
#define BIT_MASK_MWCR_MHS 0x1
#define BIT_MWCR_MHS(x)(((x) & BIT_MASK_MWCR_MHS) << BIT_SHIFT_MWCR_MHS)
#define BIT_INVC_MWCR_MHS (~(BIT_MASK_MWCR_MHS << BIT_SHIFT_MWCR_MHS))
// SER 0x10 // Variable Length
#define BIT_SHIFT_SER_SER 0
#define BIT_MASK_SER_SER 0xFF
#define BIT_SER_SER(x)(((x) & BIT_MASK_SER_SER) << BIT_SHIFT_SER_SER)
#define BIT_INVC_SER_SER (~(BIT_MASK_SER_SER << BIT_SHIFT_SER_SER))
// BAUDR 0x14 // 16 bits
#define BIT_SHIFT_BAUDR_SCKDV 0
#define BIT_MASK_BAUDR_SCKDV 0xFFFF
#define BIT_BAUDR_SCKDV(x)(((x) & BIT_MASK_BAUDR_SCKDV) << BIT_SHIFT_BAUDR_SCKDV)
#define BIT_INVC_BAUDR_SCKDV (~(BIT_MASK_BAUDR_SCKDV << BIT_SHIFT_BAUDR_SCKDV))
// TXFLTR 0x18 // Variable Length
#define BIT_SHIFT_TXFTLR_TFT 0
#define BIT_MASK_TXFTLR_TFT 0x3F // (TX_ABW-1):0
#define BIT_TXFTLR_TFT(x)(((x) & BIT_MASK_TXFTLR_TFT) << BIT_SHIFT_TXFTLR_TFT)
#define BIT_INVC_TXFTLR_TFT (~(BIT_MASK_TXFTLR_TFT << BIT_SHIFT_TXFTLR_TFT))
// RXFLTR 0x1c // Variable Length
#define BIT_SHIFT_RXFTLR_RFT 0
#define BIT_MASK_RXFTLR_RFT 0x3F // (RX_ABW-1):0
#define BIT_RXFTLR_RFT(x)(((x) & BIT_MASK_RXFTLR_RFT) << BIT_SHIFT_RXFTLR_RFT)
#define BIT_INVC_RXFTLR_RFT (~(BIT_MASK_RXFTLR_RFT << BIT_SHIFT_RXFTLR_RFT))
// TXFLR 0x20 // see [READ ONLY]
#define BIT_MASK_TXFLR_TXTFL 0x7F // (TX_ABW):0
// RXFLR 0x24 // see [READ ONLY]
#define BIT_MASK_RXFLR_RXTFL 0x7F // (RX_ABW):0
// SR 0x28 // 7 bits [READ ONLY]
#define BIT_SR_BUSY BIT0
#define BIT_SR_TFNF BIT1
#define BIT_SR_TFE BIT2
#define BIT_SR_RFNE BIT3
#define BIT_SR_RFF BIT4
#define BIT_SR_TXE BIT5
#define BIT_SR_DCOL BIT6
// IMR 0x2c // see
#define BIT_SHIFT_IMR_TXEIM 0
#define BIT_MASK_IMR_TXEIM 0x1
// #define BIT_IMR_TXEIM(x)(((x) & BIT_MASK_IMR_TXEIM) << BIT_SHIFT_IMR_TXEIM)
#define BIT_INVC_IMR_TXEIM (~(BIT_MASK_IMR_TXEIM << BIT_SHIFT_IMR_TXEIM))
#define BIT_SHIFT_IMR_TXOIM 1
#define BIT_MASK_IMR_TXOIM 0x1
// #define BIT_IMR_TXOIM(x)(((x) & BIT_MASK_IMR_TXOIM) << BIT_SHIFT_IMR_TXOIM)
#define BIT_INVC_IMR_TXOIM (~(BIT_MASK_IMR_TXOIM << BIT_SHIFT_IMR_TXOIM))
#define BIT_SHIFT_IMR_RXUIM 2
#define BIT_MASK_IMR_RXUIM 0x1
// #define BIT_IMR_RXUIM(x)(((x) & BIT_MASK_IMR_RXUIM) << BIT_SHIFT_IMR_RXUIM)
#define BIT_INVC_IMR_RXUIM (~(BIT_MASK_IMR_RXUIM << BIT_SHIFT_IMR_RXUIM))
#define BIT_SHIFT_IMR_RXOIM 3
#define BIT_MASK_IMR_RXOIM 0x1
// #define BIT_IMR_RXOIM(x)(((x) & BIT_MASK_IMR_RXOIM) << BIT_SHIFT_IMR_RXOIM)
#define BIT_INVC_IMR_RXOIM (~(BIT_MASK_IMR_RXOIM << BIT_SHIFT_IMR_RXOIM))
#define BIT_SHIFT_IMR_RXFIM 4
#define BIT_MASK_IMR_RXFIM 0x1
// #define BIT_IMR_RXFIM(x)(((x) & BIT_MASK_IMR_RXFIM) << BIT_SHIFT_IMR_RXFIM)
#define BIT_INVC_IMR_RXFIM (~(BIT_MASK_IMR_RXFIM << BIT_SHIFT_IMR_RXFIM))
#define BIT_SHIFT_IMR_MSTIM 5
#define BIT_MASK_IMR_MSTIM 0x1
// #define BIT_IMR_MSTIM(x)(((x) & BIT_MASK_IMR_MSTIM) << BIT_SHIFT_IMR_MSTIM)
#define BIT_INVC_IMR_MSTIM (~(BIT_MASK_IMR_MSTIM << BIT_SHIFT_IMR_MSTIM))
#define BIT_IMR_TXEIM BIT0
#define BIT_IMR_TXOIM BIT1
#define BIT_IMR_RXUIM BIT2
#define BIT_IMR_RXOIM BIT3
#define BIT_IMR_RXFIM BIT4
#define BIT_IMR_MSTIM BIT5
// ISR 0x30 // 6 bits [READ ONLY]
#define BIT_ISR_TXEIS BIT0
#define BIT_ISR_TXOIS BIT1
#define BIT_ISR_RXUIS BIT2
#define BIT_ISR_RXOIS BIT3
#define BIT_ISR_RXFIS BIT4
#define BIT_ISR_MSTIS BIT5
// RISR 0x34 // 6 bits [READ ONLY]
#define BIT_RISR_TXEIR BIT0
#define BIT_RISR_TXOIR BIT1
#define BIT_RISR_RXUIR BIT2
#define BIT_RISR_RXOIR BIT3
#define BIT_RISR_RXFIR BIT4
#define BIT_RISR_MSTIR BIT5
// TXOICR 0x38 // 1 bits [READ ONLY]
// RXOICR 0x3c // 1 bits [READ ONLY]
// RXUICR 0x40 // 1 bits [READ ONLY]
// MSTICR 0x44 // 1 bits [READ ONLY]
// ICR 0x48 // 1 bits [READ ONLY]
// DMACR 0x4c // 2 bits
#define BIT_SHIFT_DMACR_RDMAE 0
#define BIT_MASK_DMACR_RDMAE 0x1
#define BIT_DMACR_RDMAE(x)(((x) & BIT_MASK_DMACR_RDMAE) << BIT_SHIFT_DMACR_RDMAE)
#define BIT_INVC_DMACR_RDMAE (~(BIT_MASK_DMACR_RDMAE << BIT_SHIFT_DMACR_RDMAE))
#define BIT_SHIFT_DMACR_TDMAE 1
#define BIT_MASK_DMACR_TDMAE 0x1
#define BIT_DMACR_TDMAE(x)(((x) & BIT_MASK_DMACR_TDMAE) << BIT_SHIFT_DMACR_TDMAE)
#define BIT_INVC_DMACR_TDMAE (~(BIT_MASK_DMACR_TDMAE << BIT_SHIFT_DMACR_TDMAE))
// DMATDLR 0x50
#define BIT_SHIFT_DMATDLR_DMATDL 0
#define BIT_MASK_DMATDLR_DMATDL 0x3F // (TX_ABW-1):0
#define BIT_DMATDLR_DMATDL(x)(((x) & BIT_MASK_DMATDLR_DMATDL) << BIT_SHIFT_DMATDLR_DMATDL)
#define BIT_INVC_DMATDLR_DMATDL (~(BIT_MASK_DMATDLR_DMATDL << BIT_SHIFT_DMATDLR_DMATDL))
// DMARDLR 0x54
#define BIT_SHIFT_DMARDLR_DMARDL 0
#define BIT_MASK_DMARDLR_DMARDL 0x3F // (RX_ABW-1):0
#define BIT_DMARDLR_DMARDL(x)(((x) & BIT_MASK_DMARDLR_DMARDL) << BIT_SHIFT_DMARDLR_DMARDL)
#define BIT_INVC_DMARDLR_DMARDL (~(BIT_MASK_DMARDLR_DMARDL << BIT_SHIFT_DMARDLR_DMARDL))
// IDR 0x58 // 32 bits [READ ONLY]
// COMP_VERSION 0x5c // 32 bits [READ ONLY]
// DR 0x60 // 16 bits 0x60-0xEC
#define BIT_SHIFT_DR_DR 0
#define BIT_MASK_DR_DR 0xFFFF
#define BIT_DR_DR(x)(((x) & BIT_MASK_DR_DR) << BIT_SHIFT_DR_DR)
#define BIT_INVC_DR_DR (~(BIT_MASK_DR_DR << BIT_SHIFT_DR_DR))
// RX_SAMPLE_DLY 0xF0 // 8 bits
#define BIT_SHIFT_RX_SAMPLE_DLY_RSD 0
#define BIT_MASK_RX_SAMPLE_DLY_RSD 0xFFFF
#define BIT_RX_SAMPLE_DLY_RSD(x)(((x) & BIT_MASK_RX_SAMPLE_DLY_RSD) << BIT_SHIFT_RX_SAMPLE_DLY_RSD)
#define BIT_INVC_RX_SAMPLE_DLY_RSD (~(BIT_MASK_RX_SAMPLE_DLY_RSD << BIT_SHIFT_RX_SAMPLE_DLY_RSD))
// RSVD_0 0xF4 // 32 bits
// RSVD_1 0xF8 // 32 bits
// RSVD_2 0xFC // 32 bits
// SSI0 Pinmux
#define BIT_SHIFT_SSI0_PIN_EN 0
#define BIT_MASK_SSI0_PIN_EN 0x1
#define BIT_SSI0_PIN_EN(x)(((x) & BIT_MASK_SSI0_PIN_EN) << BIT_SHIFT_SSI0_PIN_EN)
#define BIT_INVC_SSI0_PIN_EN (~(BIT_MASK_SSI0_PIN_EN << BIT_SHIFT_SSI0_PIN_EN))
#define BIT_SHIFT_SSI0_PIN_SEL 1
#define BIT_MASK_SSI0_PIN_SEL 0x7
#define BIT_SSI0_PIN_SEL(x)(((x) & BIT_MASK_SSI0_PIN_SEL) << BIT_SHIFT_SSI0_PIN_SEL)
#define BIT_INVC_SSI0_PIN_SEL (~(BIT_MASK_SSI0_PIN_SEL << BIT_SHIFT_SSI0_PIN_SEL))
// SSI1 Pinmux
#define BIT_SHIFT_SSI1_PIN_EN 4
#define BIT_MASK_SSI1_PIN_EN 0x1
#define BIT_SSI1_PIN_EN(x)(((x) & BIT_MASK_SSI1_PIN_EN) << BIT_SHIFT_SSI1_PIN_EN)
#define BIT_INVC_SSI1_PIN_EN (~(BIT_MASK_SSI1_PIN_EN << BIT_SHIFT_SSI1_PIN_EN))
#define BIT_SHIFT_SSI1_PIN_SEL 5
#define BIT_MASK_SSI1_PIN_SEL 0x7
#define BIT_SSI1_PIN_SEL(x)(((x) & BIT_MASK_SSI1_PIN_SEL) << BIT_SHIFT_SSI1_PIN_SEL)
#define BIT_INVC_SSI1_PIN_SEL (~(BIT_MASK_SSI1_PIN_SEL << BIT_SHIFT_SSI1_PIN_SEL))
// SSI2 Pinmux
#define BIT_SHIFT_SSI2_PIN_EN 8
#define BIT_MASK_SSI2_PIN_EN 0x1
#define BIT_SSI2_PIN_EN(x)(((x) & BIT_MASK_SSI2_PIN_EN) << BIT_SHIFT_SSI2_PIN_EN)
#define BIT_INVC_SSI2_PIN_EN (~(BIT_MASK_SSI2_PIN_EN << BIT_SHIFT_SSI2_PIN_EN))
#define BIT_SHIFT_SSI2_PIN_SEL 9
#define BIT_MASK_SSI2_PIN_SEL 0x7
#define BIT_SSI2_PIN_SEL(x)(((x) & BIT_MASK_SSI2_PIN_SEL) << BIT_SHIFT_SSI2_PIN_SEL)
#define BIT_INVC_SSI2_PIN_SEL (~(BIT_MASK_SSI2_PIN_SEL << BIT_SHIFT_SSI2_PIN_SEL))
// SSI0 Multiple Chip Selection (Pinmux Select is controlled by BIT_SSI0_PIN_SEL)
#define BIT_SHIFT_SSI0_MULTI_CS_EN 28
#define BIT_MASK_SSI0_MULTI_CS_EN 0x1
#define BIT_SSI0_MULTI_CS_EN(x)(((x) & BIT_MASK_SSI0_MULTI_CS_EN) << BIT_SHIFT_SSI0_MULTI_CS_EN)
#define BIT_INVC_SSI0_MULTI_CS_EN (~(BIT_MASK_SSI0_MULTI_CS_EN << BIT_SHIFT_SSI0_MULTI_CS_EN))
#define HAL_SSI_READ32(SsiIndex, addr) \
HAL_READ32(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr)
#define HAL_SSI_WRITE32(SsiIndex, addr, value) \
HAL_WRITE32(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr, value)
#define HAL_SSI_READ16(SsiIndex, addr) \
HAL_READ16(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr)
#define HAL_SSI_WRITE16(SsiIndex, addr, value) \
HAL_WRITE16(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr, value)
#define HAL_SSI_READ8(SsiIndex, addr) \
HAL_READ8(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr)
#define HAL_SSI_WRITE8(SsiIndex, addr, value) \
HAL_WRITE8(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr, value)
// SSI Pinmux Select
typedef enum _SSI0_PINMUX_SELECT_ {
SSI0_MUX_TO_GPIOE = S0,
SSI0_MUX_TO_GPIOC = S1
}SSI0_PINMUX_SELECT, *PSSI0_PINMUX_SELECT;
typedef enum _SSI1_PINMUX_SELECT_ {
SSI1_MUX_TO_GPIOA = S0,
SSI1_MUX_TO_GPIOB = S1,
SSI1_MUX_TO_GPIOD = S2
}SSI1_PINMUX_SELECT, *PSSI1_PINMUX_SELECT;
typedef enum _SSI2_PINMUX_SELECT_ {
SSI2_MUX_TO_GPIOG = S0,
SSI2_MUX_TO_GPIOE = S1,
SSI2_MUX_TO_GPIOD = S2
}SSI2_PINMUX_SELECT, *PSSI2_PINMUX_SELECT;
typedef enum _SSI0_MULTI_CS_PINMUX_SELECT_ {
SSI0_CS_MUX_TO_GPIOE = S0,
SSI0_CS_MUX_TO_GPIOC = S1
}SSI0_MULTI_CS_PINMUX_SELECT, *PSSI0_MULTI_CS_PINMUX_SELECT;
typedef enum _SSI_CTRLR0_TMOD_ {
TMOD_TR = 0,
TMOD_TO = 1,
TMOD_RO = 2,
TMOD_EEPROM_R = 3
}SSI_CTRLR0_TMOD, *PSSI_CTRLR0_TMOD;
typedef enum _SSI_CTRLR0_SCPOL_ {
SCPOL_INACTIVE_IS_LOW = 0,
SCPOL_INACTIVE_IS_HIGH = 1
}SSI_CTRLR0_SCPOL, *PSSI_CTRLR0_SCPOL;
typedef enum _SSI_CTRLR0_SCPH_ {
SCPH_TOGGLES_IN_MIDDLE = 0,
SCPH_TOGGLES_AT_START = 1
}SSI_CTRLR0_SCPH, *PSSI_CTRLR0_SCPH;
typedef enum _SSI_CTRLR0_DFS_ {
DFS_4_BITS = 3,
DFS_5_BITS = 4,
DFS_6_BITS = 5,
DFS_7_BITS = 6,
DFS_8_BITS = 7,
DFS_9_BITS = 8,
DFS_10_BITS = 9,
DFS_11_BITS = 10,
DFS_12_BITS = 11,
DFS_13_BITS = 12,
DFS_14_BITS = 13,
DFS_15_BITS = 14,
DFS_16_BITS = 15,
}SSI_CTRLR0_DFS, *PSSI_CTRLR0_DFS;
typedef enum _SSI_CTRLR0_CFS_ {
CFS_1_BIT = 0,
CFS_2_BITS = 1,
CFS_3_BITS = 2,
CFS_4_BITS = 3,
CFS_5_BITS = 4,
CFS_6_BITS = 5,
CFS_7_BITS = 6,
CFS_8_BITS = 7,
CFS_9_BITS = 8,
CFS_10_BITS = 9,
CFS_11_BITS = 10,
CFS_12_BITS = 11,
CFS_13_BITS = 12,
CFS_14_BITS = 13,
CFS_15_BITS = 14,
CFS_16_BITS = 15
}SSI_CTRLR0_CFS, *PSSI_CTRLR0_CFS;
typedef enum _SSI_CTRLR0_SLV_OE_ {
SLV_TXD_ENABLE = 0,
SLV_TXD_DISABLE = 1
}SSI_CTRLR0_SLV_OE, *PSSI_CTRLR0_SLV_OE;
typedef enum _SSI_ROLE_SELECT_ {
SSI_SLAVE = 0,
SSI_MASTER = 1
}SSI_ROLE_SELECT, *PSSI_ROLE_SELECT;
typedef enum _SSI_FRAME_FORMAT_ {
FRF_MOTOROLA_SPI = 0,
FRF_TI_SSP = 1,
FRF_NS_MICROWIRE = 2,
FRF_RSVD = 3
}SSI_FRAME_FORMAT, *PSSI_FRAME_FORMAT;
typedef enum _SSI_DMACR_ENABLE_ {
SSI_NODMA = 0,
SSI_RXDMA_ENABLE = 1,
SSI_TXDMA_ENABLE = 2,
SSI_TRDMA_ENABLE = 3
}SSI_DMACR_ENABLE, *PSSI_DMACR_ENABLE;
typedef enum _SSI_MWCR_HANDSHAKE_ {
MW_HANDSHAKE_DISABLE = 0,
MW_HANDSHAKE_ENABLE = 1
}SSI_MWCR_HANDSHAKE, *PSSI_MWCR_HANDSHAKE;
typedef enum _SSI_MWCR_DIRECTION_ {
MW_DIRECTION_SLAVE_TO_MASTER = 0,
MW_DIRECTION_MASTER_TO_SLAVE = 1
}SSI_MWCR_DIRECTION, *PSSI_MWCR_DIRECTION;
typedef enum _SSI_MWCR_TMOD_ {
MW_TMOD_NONSEQUENTIAL = 0,
MW_TMOD_SEQUENTIAL = 1
}SSI_MWCR_TMOD, *PSSI_MWCR_TMOD;
typedef enum _SSI_DATA_TRANSFER_MECHANISM_ {
SSI_DTM_BASIC,
SSI_DTM_INTERRUPT,
SSI_DTM_DMA
}SSI_DATA_TRANSFER_MECHANISM, *PSSI_DATA_TRANSFER_MECHANISM;
_LONG_CALL_ HAL_Status HalSsiPinmuxEnableRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ HAL_Status HalSsiEnableRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ HAL_Status HalSsiDisableRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiInitRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiSetSclkPolarityRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiSetSclkPhaseRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiWriteRtl8195a(VOID *Adaptor, u32 value);
_LONG_CALL_ HAL_Status HalSsiLoadSettingRtl8195a(VOID *Adaptor, VOID *Setting);
_LONG_CALL_ROM_ HAL_Status HalSsiSetInterruptMaskRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiSetDeviceRoleRtl8195a(VOID *Adaptor, u32 Role);
_LONG_CALL_ HAL_Status HalSsiInterruptEnableRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiInterruptDisableRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiReadInterruptRtl8195a(VOID *Adaptor, VOID *RxData, u32 Length);
_LONG_CALL_ROM_ HAL_Status HalSsiSetRxFifoThresholdLevelRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiSetTxFifoThresholdLevelRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiWriteInterruptRtl8195a(VOID *Adaptor, VOID *TxData, u32 Length);
_LONG_CALL_ROM_ HAL_Status HalSsiSetSlaveEnableRegisterRtl8195a(VOID *Adaptor, u32 SlaveIndex);
_LONG_CALL_ROM_ u32 HalSsiBusyRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ u32 HalSsiWriteableRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ u32 HalSsiReadableRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ u32 HalSsiGetInterruptMaskRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ u32 HalSsiGetRxFifoLevelRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiGetTxFifoLevelRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ u32 HalSsiGetStatusRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ u32 HalSsiGetInterruptStatusRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiReadRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiGetRawInterruptStatusRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ u32 HalSsiGetSlaveEnableRegisterRtl8195a(VOID *Adaptor);
_LONG_CALL_ROM_ VOID _SsiReadInterrupt(VOID *Adaptor);
_LONG_CALL_ROM_ VOID _SsiWriteInterrupt(VOID *Adaptor);
_LONG_CALL_ u32 _SsiIrqHandle(VOID *Adaptor);
// ROM code patch
VOID _SsiReadInterruptRtl8195a(VOID *Adapter);
VOID _SsiWriteInterruptRtl8195a(VOID *Adapter);
HAL_Status HalSsiInitRtl8195a_Patch(VOID *Adaptor);
HAL_Status HalSsiPinmuxEnableRtl8195a_Patch(VOID *Adaptor);
HAL_Status HalSsiPinmuxDisableRtl8195a(VOID *Adaptor);
HAL_Status HalSsiDeInitRtl8195a(VOID * Adapter);
HAL_Status HalSsiClockOffRtl8195a(VOID * Adapter);
HAL_Status HalSsiClockOnRtl8195a(VOID * Adapter);
VOID HalSsiSetSclkRtl8195a(VOID *Adapter, u32 ClkRate);
HAL_Status HalSsiIntReadRtl8195a(VOID *Adapter, VOID *RxData, u32 Length);
HAL_Status HalSsiIntWriteRtl8195a(VOID *Adapter, u8 *pTxData, u32 Length);
VOID HalSsiTxFIFOThresholdRtl8195a(VOID *Adaptor, u32 txftl);
HAL_Status HalSsiEnterCriticalRtl8195a(VOID * Data);
HAL_Status HalSsiExitCriticalRtl8195a(VOID * Data);
HAL_Status HalSsiIsTimeoutRtl8195a(u32 StartCount, u32 TimeoutCnt);
HAL_Status HalSsiStopRecvRtl8195a(VOID * Data);
#if CONFIG_CHIP_E_CUT
HAL_Status HalSsiPinmuxEnableRtl8195a_V04(VOID *Adaptor);
HAL_Status HalSsiPinmuxDisableRtl8195a_V04(VOID * Adaptor);
VOID _SsiReadInterruptRtl8195a_V04(VOID *Adapter);
VOID _SsiWriteInterruptRtl8195a_V04(VOID *Adapter);
HAL_Status HalSsiInitRtl8195a_V04(VOID *Adaptor);
HAL_Status HalSsiSetFormatRtl8195a_V04(VOID * Adaptor);
HAL_Status HalSsiDeInitRtl8195a_V04(VOID *Adapter);
HAL_Status HalSsiIntReadRtl8195a_V04(VOID *Adapter, VOID *RxData, u32 Length);
HAL_Status HalSsiIntWriteRtl8195a_V04(VOID *Adapter, u8 *pTxData, u32 Length);
HAL_Status HalSsiClockOffRtl8195a_V04(VOID * Adapter);
HAL_Status HalSsiClockOnRtl8195a_V04(VOID * Adapter);
VOID HalSsiSetSclkRtl8195a_V04(VOID *Adapter, u32 ClkRate);
VOID HalSsiTxGdmaLoadDefRtl8195a_V04(IN VOID * Adapter);
VOID HalSsiRxGdmaLoadDefRtl8195a_V04(IN VOID * Adapter);
VOID HalSsiDmaInitRtl8195a_V04(VOID *Adapter);
HAL_Status HalSsiDmaSendRtl8195a_V04(IN VOID * Adapter, IN u8 * pTxData, IN u32 Length);
HAL_Status HalSsiDmaRecvRtl8195a_V04(IN VOID * Adapter, IN u8 * pRxData, IN u32 Length);
HAL_Status HalSsiDmaSendMultiBlockRtl8195a_V04(VOID * Adapter, u8 * pTxData, u32 Length);
HAL_Status HalSsiDmaRecvMultiBlockRtl8195a_V04(VOID * Adapter, u8 * pRxData, u32 Length);
#endif
#ifdef CONFIG_GDMA_EN
VOID HalSsiTxGdmaLoadDefRtl8195a(VOID *Adapter);
VOID HalSsiRxGdmaLoadDefRtl8195a(VOID *Adapter);
VOID HalSsiDmaInitRtl8195a(VOID *Adapter);
HAL_Status HalSsiDmaSendRtl8195a(VOID *Adapter, u8 *pTxData, u32 Length);
HAL_Status HalSsiDmaRecvRtl8195a(VOID *Adapter, u8 *pRxData, u32 Length);
HAL_Status HalSsiDmaSendMultiBlockRtl8195a(VOID * Adapter, u8 * pRxData, u32 Length);
HAL_Status HalSsiDmaRecvMultiBlockRtl8195a(VOID * Adapter, u8 * pRxData, u32 Length);
#endif // end of "#ifdef CONFIG_GDMA_EN"
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,257 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_TIMER_H_
#define _RTL8195A_TIMER_H_
#define TIMER_TICK_US 31
#define TIMER_LOAD_COUNT_OFF 0x00
#define TIMER_CURRENT_VAL_OFF 0x04
#define TIMER_CTL_REG_OFF 0x08
#define TIMER_EOI_OFF 0x0c
#define TIMER_INT_STATUS_OFF 0x10
#define TIMER_INTERVAL 0x14
#define TIMERS_INT_STATUS_OFF 0xa0
#define TIMERS_EOI_OFF 0xa4
#define TIMERS_RAW_INT_STATUS_OFF 0xa8
#define TIMERS_COMP_VER_OFF 0xac
#define MAX_TIMER_VECTOR_TABLE_NUM 6
#define HAL_TIMER_READ32(addr) (*((volatile u32*)(TIMER_REG_BASE + addr)))//HAL_READ32(TIMER_REG_BASE, addr)
#define HAL_TIMER_WRITE32(addr, value) ((*((volatile u32*)(TIMER_REG_BASE + addr))) = value)//HAL_WRITE32(TIMER_REG_BASE, addr, value)
#define HAL_TIMER_READ16(addr) (*((volatile u16*)(TIMER_REG_BASE + addr)))//HAL_READ16(TIMER_REG_BASE, addr)
#define HAL_TIMER_WRITE16(addr, value) ((*((volatile u16*)(TIMER_REG_BASE + addr))) = value)//HAL_WRITE16(TIMER_REG_BASE, addr, value)
#define HAL_TIMER_READ8(addr) (*((volatile u8*)(TIMER_REG_BASE + addr)))//HAL_READ8(TIMER_REG_BASE, addr)
#define HAL_TIMER_WRITE8(addr, value) ((*((volatile u8*)(TIMER_REG_BASE + addr))) = value)//HAL_WRITE8(TIMER_REG_BASE, addr, value)
_LONG_CALL_ u32
HalGetTimerIdRtl8195a(
IN u32 *TimerID
);
_LONG_CALL_ BOOL
HalTimerInitRtl8195a(
IN VOID *Data
);
_LONG_CALL_ u32
HalTimerReadCountRtl8195a(
IN u32 TimerId
);
_LONG_CALL_ VOID
HalTimerIrqClearRtl8195a(
IN u32 TimerId
);
_LONG_CALL_ VOID
HalTimerDisRtl8195a(
IN u32 TimerId
);
_LONG_CALL_ VOID
HalTimerEnRtl8195a(
IN u32 TimerId
);
_LONG_CALL_ VOID
HalTimerDumpRegRtl8195a(
IN u32 TimerId
);
// ROM Code patch
HAL_Status
HalTimerInitRtl8195a_Patch(
IN VOID *Data
);
u32
HalTimerReadCountRtl8195a_Patch(
IN u32 TimerId
);
VOID
HalTimerReLoadRtl8195a_Patch(
IN u32 TimerId,
IN u32 LoadUs
);
u32
HalTimerReadCountRtl8195a_Patch(
IN u32 TimerId
);
VOID
HalTimerIrqEnRtl8195a(
IN u32 TimerId
);
VOID
HalTimerIrqDisRtl8195a(
IN u32 TimerId
);
VOID
HalTimerClearIsrRtl8195a(
IN u32 TimerId
);
VOID
HalTimerEnRtl8195a_Patch(
IN u32 TimerId
);
VOID
HalTimerDisRtl8195a_Patch(
IN u32 TimerId
);
VOID
HalTimerDeInitRtl8195a_Patch(
IN VOID *Data
);
#if defined(CONFIG_CHIP_C_CUT) || defined(CONFIG_CHIP_E_CUT)
__weak _LONG_CALL_
VOID
HalTimerIrq2To7HandleV02(
IN VOID *Data
);
__weak _LONG_CALL_ROM_
HAL_Status
HalTimerIrqRegisterRtl8195aV02(
IN VOID *Data
);
__weak _LONG_CALL_
HAL_Status
HalTimerInitRtl8195aV02(
IN VOID *Data
);
__weak _LONG_CALL_
u32
HalTimerReadCountRtl8195aV02(
IN u32 TimerId
);
__weak _LONG_CALL_
VOID
HalTimerReLoadRtl8195aV02(
IN u32 TimerId,
IN u32 LoadUs
);
__weak _LONG_CALL_ROM_
HAL_Status
HalTimerIrqUnRegisterRtl8195aV02(
IN VOID *Data
);
__weak _LONG_CALL_
VOID
HalTimerDeInitRtl8195aV02(
IN VOID *Data
);
#endif // end of "#ifdef CONFIG_CHIP_C_CUT"
#ifdef CONFIG_CHIP_E_CUT
_LONG_CALL_ VOID
HalTimerReLoadRtl8195a_V04(
IN u32 TimerId,
IN u32 LoadUs
);
_LONG_CALL_ HAL_Status
HalTimerInitRtl8195a_V04(
IN VOID *Data
);
#endif // #ifdef CONFIG_CHIP_E_CUT
// HAL functions wrapper
#ifndef CONFIG_RELEASE_BUILD_LIBRARIES
static __inline HAL_Status
HalTimerInit(
IN VOID *Data
)
{
#ifdef CONFIG_CHIP_E_CUT
return (HalTimerInitRtl8195a_V04(Data));
#else
return (HalTimerInitRtl8195a_Patch(Data));
#endif
}
static __inline VOID
HalTimerEnable(
IN u32 TimerId
)
{
HalTimerIrqEnRtl8195a(TimerId);
HalTimerEnRtl8195a_Patch(TimerId);
}
static __inline VOID
HalTimerDisable(
IN u32 TimerId
)
{
HalTimerDisRtl8195a_Patch(TimerId);
}
static __inline VOID
HalTimerClearIsr(
IN u32 TimerId
)
{
HalTimerClearIsrRtl8195a(TimerId);
}
static __inline VOID
HalTimerReLoad(
IN u32 TimerId,
IN u32 LoadUs
)
{
#ifdef CONFIG_CHIP_E_CUT
HalTimerReLoadRtl8195a_V04(TimerId, LoadUs);
#else
HalTimerReLoadRtl8195a_Patch(TimerId, LoadUs);
#endif
}
#if defined(CONFIG_CHIP_A_CUT) || defined(CONFIG_CHIP_B_CUT)
static __inline VOID
HalTimerDeInit(
IN VOID *Data
)
{
HalTimerDeInitRtl8195a_Patch(Data);
}
#else
static __inline VOID
HalTimerDeInit(
IN VOID *Data
)
{
HalTimerDeInitRtl8195aV02(Data);
}
#endif // end of "#ifndef CONFIG_CHIP_C_CUT"
#endif // #ifndef CONFIG_RELEASE_BUILD_LIBRARIES
#endif //_RTL8195A_TIMER_H_

View file

@ -0,0 +1,716 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_UART_H_
#define _RTL8195A_UART_H_
#define MAX_UART_INDEX 2
#define RUART_DLL_OFF 0x00
#define RUART_DLM_OFF 0x04 //RW, DLAB = 1
#define RUART_INTERRUPT_EN_REG_OFF 0x04 //RW, DLAB = 0
// Define Interrupt Enable Bit
typedef enum {
RU_IER_ERBFI = BIT0, // Enable Received Data Available Interrupt
RU_IER_ETBEI = BIT1, // Enable Transmit Holding Register Empty Interrupt
RU_IER_ELSI = BIT2, // Enable Receiver Line Status Interrupt
RU_IER_EDSSI = BIT3, // Enable Modem Status Interrupt
RU_IER_PTIME = BIT7 // Programmable THRE Interrupt Mode Enable
} RUART_INT_EN;
#define RUART_IER_ERBI BIT0 //BIT0, Enable Received Data Available Interrupt (rx trigger)
#define RUART_IER_ETBEI BIT1 //BIT1, Enable Transmitter FIFO Empty Interrupt (tx fifo empty)
#define RUART_IER_ELSI BIT2 //BIT2, Enable Receiver Line Status Interrupt (receiver line status)
#define RUART_IER_EDSSI BIT3 //BIT3, Enable Modem Status Interrupt (modem status transition)
#define RUART_IER_PTIME BIT7 //*BIT7 PTIME, Programmable THRE Interrupt Mode Enable
#define RUART_INT_ID_REG_OFF 0x08 //[R]
// define Log UART Interrupt Indication ID
/*
IIR[3:0]:
0000 = modem status
0001 = no interrupt pending
0010 = THR empty
0100 = received data available
0110 = receiver line status
0111 = busy detect
1100 = character timeout
*/
typedef enum {
RU_IIR_MODEM_STATUS = 0, //Clear to send or data set ready or ring indicator or data carrier detect.
RU_IIR_NO_PENDING = 1,
RU_IIR_THR_EMPTY = 2, // TX FIFO level lower than threshold or FIFO empty
RU_IIR_RX_RDY = 4, // RX data ready
RU_IIR_RX_LINE_STATUS = 6, // Overrun/parity/framing errors or break interrupt
RU_IIR_BUSY = 7,
RU_IIR_CHAR_TIMEOUT = 12 // timeout: Rx data ready but no read
} RUART_INT_ID;
#define RUART_IIR_INT_PEND 0x01
#define RUART_IIR_INT_ID (0x07<<1) //011(3), 010(2), 110(6), 001(1), 000(0)
#define RUART_FIFO_CTL_REG_OFF 0x08 //[W]
// Define FIFO Control Register Bits
typedef enum {
RU_FCR_FIFO_EN = BIT0, // FIFO Enable.
RU_FCR_RST_RX = BIT1, // RCVR FIFO Reset, self clear
RU_FCR_RST_TX = BIT2, // XMIT FIFO Reset, self clear
RU_FCR_TX_TRIG_EMP = 0, // TX Empty Trigger: FIFO empty
RU_FCR_TX_TRIG_2CH = BIT4, // TX Empty Trigger: 2 characters in the FIFO
RU_FCR_TX_TRIG_QF = BIT5, // TX Empty Trigger: FIFO 1/4 full
RU_FCR_TX_TRIG_HF = (BIT5|BIT4), // TX Empty Trigger: FIFO 1/2 full
RU_FCR_TX_TRIG_MASK = (BIT5|BIT4), // TX Empty Trigger Bit Mask
RU_FCR_RX_TRIG_1CH = 0, // RCVR Trigger: 1 character in the FIFO
RU_FCR_RX_TRIG_QF = BIT6, // RCVR Trigger: FIFO 1/4 full
RU_FCR_RX_TRIG_HF = BIT7, // RCVR Trigger: FIFO 1/2 full
RU_FCR_RX_TRIG_AF = (BIT7|BIT6), // RCVR Trigger: FIFO 2 less than full
RU_FCR_RX_TRIG_MASK = (BIT7|BIT6) // RCVR Trigger bits Mask
} RUART_FIFO_CTRL;
#define RUART_FIFO_CTL_REG_FIFO_ENABLE BIT0 //BIT0, FIFO Enable
#define RUART_FIFO_CTL_REG_CLEAR_RXFIFO BIT1 //BIT1, Write 1 clear
#define RUART_FIFO_CTL_REG_CLEAR_TXFIFO BIT2 //BIT2, Write 1 clear
#define RUART_FIFO_CTL_REG_DMA_ENABLE BIT3 //BIT3 DMAM, DMA Mode
#define RUART_FIFO_CTL_REG_TET (0x03<<4) //BIT4..5 TET, TX Empty Trigger: 00 = FIFO empty, 01 = 2 characters in the FIFO, 10 = FIFO 1/4 full, 11 = FIFO 1/2 full
#define RUART_FIFO_CTL_REG_RT (0x03<<6) //BIT6..7 RT, RCVR Trigger: 00 = FIFO empty, 01 = 2 characters in the FIFO, 10 = FIFO 1/4 full, 11 = FIFO 1/2 full
#define FIFO_CTL_DEFAULT_WITH_FIFO_DMA 0xC9
#define FIFO_CTL_DEFAULT_WITH_FIFO 0xC1
#define RUART_MODEM_CTL_REG_OFF 0x10
#define RUART_MCR_DTR BIT0 //BIT0, Data Terminal Ready (DTR)
#define RUART_MCR_RTS BIT1 //*BIT1 Request to Send (RTS)
#define RUART_MCR_OUT1 BIT2 //*BIT2 User designated Output 1 (OUT1)
#define RUART_MCR_OUT2 BIT3 //*BIT3 User designated Output 2 (OUT2)
#define RUART_MCR_LOOPBACK BIT4 //*BIT4, LoopBack Bit (LOOPBACK)
#define RUART_MCL_AUTOFLOW_ENABLE BIT5 //BIT5, 0x20
#define RUART_LINE_CTL_REG_OFF 0x0C
// Define Line Control Register Bits
typedef enum {
RU_LCR_DLS_5B = 0, // Data Length: 5 bits
RU_LCR_DLS_6B = BIT0, // Data Length: 6 bits
RU_LCR_DLS_7B = BIT1, // Data Length: 7 bits
RU_LCR_DLS_8B = (BIT1|BIT0), // Data Length: 7 bits
RU_LCR_STOP_1B = 0, // Number of stop bits: 1
RU_LCR_STOP_2B = BIT2, // Number of stop bits: 1.5(data len=5) or 2
RU_LCR_PARITY_NONE = 0, // Parity Enable: 0
RU_LCR_PARITY_ODD = BIT3, // Parity Enable: 1, Even Parity: 0
RU_LCR_PARITY_EVEN = (BIT4|BIT3), // Parity Enable: 1, Even Parity: 1
RU_LCR_BC = BIT6, // Break Control Bit
RU_LCR_DLAB = BIT7 // Divisor Latch Access Bit
} RUART_LINE_CTRL;
//*BIT6 Break Control Bit (BC)
//*BIT4 Even Parity Select (EPS)
//*BIT3 Parity Enable (PEN)
//*BIT2 Number of stop bits (STOP)
//*BIT1..0 Data Length Select (DLS)
#define RUART_LINE_CTL_REG_DLAB_ENABLE BIT7 //BIT7, 0x80
#define RUART_LINE_STATUS_REG_OFF 0x14
// Define Line Status Bit
typedef enum {
RU_LSR_DR = BIT0, // Data Ready bit
RU_LSR_OE = BIT1, // Overrun error bit
RU_LSR_PE = BIT2, // Parity Error bit
RU_LSR_FE = BIT3, // Framing Error bit
RU_LSR_BI = BIT4, // Break Interrupt bit
RU_LSR_THRE = BIT5, // Transmit Holding Register Empty bit(IER_PTIME=0)
RU_LSR_FIFOF = BIT5, // Transmit FIFO Full bit(IER_PTIME=1)
RU_LSR_TEMT = BIT6, // Transmitter Empty bit
RU_LSR_RFE = BIT7 // Receiver FIFO Error bit
} RUART_LINE_STATUS;
#define RUART_LINE_STATUS_REG_DR BIT0 //BIT0, Data Ready indicator
#define RUART_LINE_STATUS_ERR_OVERRUN BIT1 //BIT1, Over Run
#define RUART_LINE_STATUS_ERR_PARITY BIT2 //BIT2, Parity error
#define RUART_LINE_STATUS_ERR_FRAMING BIT3 //BIT3, Framing error
#define RUART_LINE_STATUS_ERR_BREAK BIT4 //BIT4, Break interrupt error
#define RUART_LINE_STATUS_REG_THRE BIT5 //BIT5, 0x20, Transmit Holding Register Empty Interrupt enable
#define RUART_LINE_STATUS_REG_TEMT BIT6 //BIT6, 0x40, Transmitter Empty indicator(bit)
#define RUART_LINE_STATUS_ERR_RXFIFO BIT7 //BIT7, RX FIFO error
#define RUART_LINE_STATUS_ERR (RUART_LINE_STATUS_ERR_OVERRUN|RUART_LINE_STATUS_ERR_PARITY| \
RUART_LINE_STATUS_ERR_FRAMING|RUART_LINE_STATUS_ERR_BREAK| \
RUART_LINE_STATUS_ERR_RXFIFO) //Line status error
#define RUART_MODEM_STATUS_REG_OFF 0x18 //Modem Status Register
//* BIT7 Data Carrier Detect (DCD)
//* BIT6 Ring Indicator (RI)
//* BIT5 Data Set Ready (DSR)
//* BIT4 Clear to Send (CTS)
//* BIT3 Delta Data Carrier Detect (DDCD)
//* BIT2 Trailing Edge of Ring Indicator (TERI)
//* BIT1 Delta Data Set Ready (DDSR)
//* BIT0 Delta Clear to Send (DCTS)
#define RUART_SCRATCH_PAD_REG_OFF 0x1C //Scratch Pad Register
#define RUART_SP_REG_RXBREAK_INT_STATUS BIT7 //BIT7, 0x80, Write 1 clear
#define RUART_SP_REG_DBG_SEL (0x0F<<8) //[11:8], Debug port selection
#define RUART_SP_REG_XFACTOR_ADJ (0x7FF<<16) //[26:16]
#define RUART_STS_REG_OFF 0x20
#define RUART_STS_REG_RESET_RCV BIT3 //BIT3, 0x08, Reset Uart Receiver
#define RUART_STS_REG_XFACTOR 0xF<<4
#define RUART_REV_BUF_REG_OFF 0x24 //Receiver Buffer Register
#define RUART_TRAN_HOLD_REG_OFF 0x24 //Transmitter Holding Register
#define RUART_MISC_CTL_REG_OFF 0x28
#define RUART_TXDMA_BURSTSIZE_MASK 0xF8 //7:3
#define RUART_RXDMA_BURSTSIZE_MASK 0x1F00 //12:8
#define RUART_DEBUG_REG_OFF 0x3C
// RUART_LINE_CTL_REG_OFF (0x0C)
#define BIT_SHIFT_LCR_WLS 0 // word length select: 0: 7 bits, 1: 8bits
#define BIT_MASK_LCR_WLS_8BITS 0x1
#define BIT_LCR_WLS(x)(((x) & BIT_MASK_LCR_WLS_8BITS) << BIT_SHIFT_LCR_WLS)
#define BIT_CLR_LCR_WLS (~(BIT_MASK_LCR_WLS_8BITS << BIT_SHIFT_LCR_WLS))
#define BIT_SHIFT_LCR_STB 2 // Stop bit select: 0: no stop bit, 1: 1 stop bit
#define BIT_MASK_LCR_STB_EN 0x1
#define BIT_LCR_STB_EN(x)(((x) & BIT_MASK_LCR_STB_EN) << BIT_SHIFT_LCR_STB)
#define BIT_INVC_LCR_STB_EN (~(BIT_MASK_LCR_STB_EN << BIT_SHIFT_LCR_STB))
#define BIT_SHIFT_LCR_PARITY_EN 3
#define BIT_MASK_LCR_PARITY_EN 0x1
#define BIT_LCR_PARITY_EN(x)(((x) & BIT_MASK_LCR_PARITY_EN) << BIT_SHIFT_LCR_PARITY_EN)
#define BIT_INVC_LCR_PARITY_EN (~(BIT_MASK_LCR_PARITY_EN << BIT_SHIFT_LCR_PARITY_EN))
#define BIT_SHIFT_LCR_PARITY_TYPE 4
#define BIT_MASK_LCR_PARITY_TYPE 0x1
#define BIT_LCR_PARITY_TYPE(x)(((x) & BIT_MASK_LCR_PARITY_TYPE) << BIT_SHIFT_LCR_PARITY_TYPE)
#define BIT_INVC_LCR_PARITY_TYPE (~(BIT_MASK_LCR_PARITY_TYPE << BIT_SHIFT_LCR_PARITY_TYPE))
#define BIT_SHIFT_LCR_STICK_PARITY_EN 5
#define BIT_MASK_LCR_STICK_PARITY_EN 0x1
#define BIT_LCR_STICK_PARITY_EN(x)(((x) & BIT_MASK_LCR_STICK_PARITY_EN) << BIT_SHIFT_LCR_STICK_PARITY_EN)
#define BIT_INVC_LCR_STICK_PARITY_EN (~(BIT_MASK_LCR_STICK_PARITY_EN << BIT_SHIFT_LCR_STICK_PARITY_EN))
#define BIT_SHIFT_LCR_BREAK_CTRL 6
#define BIT_MASK_LCR_BREAK_CTRL 0x1
#define BIT_UART_LCR_BREAK_CTRL ((BIT_MASK_LCR_BREAK_CTRL) << BIT_SHIFT_LCR_BREAK_CTRL)
#define RUART_BAUD_RATE_2400 2400
#define RUART_BAUD_RATE_4800 4800
#define RUART_BAUD_RATE_9600 9600
#define RUART_BAUD_RATE_19200 19200
#define RUART_BAUD_RATE_38400 38400
#define RUART_BAUD_RATE_57600 57600
#define RUART_BAUD_RATE_115200 115200
#define RUART_BAUD_RATE_921600 921600
#define RUART_BAUD_RATE_1152000 1152000
#define HAL_RUART_READ32(UartIndex, addr) \
HAL_READ32(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr)
#define HAL_RUART_WRITE32(UartIndex, addr, value) \
HAL_WRITE32(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr, value)
#define HAL_RUART_READ16(UartIndex, addr) \
HAL_READ16(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr)
#define HAL_RUART_WRITE16(UartIndex, addr, value) \
HAL_WRITE16(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr, value)
#define HAL_RUART_READ8(UartIndex, addr) \
HAL_READ8(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr)
#define HAL_RUART_WRITE8(UartIndex, addr, value) \
HAL_WRITE8(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr, value)
#define UART_OVSR_POOL_MIN 1000
#define UART_OVSR_POOL_MAX 2090
#define DIVISOR_RESOLUTION 10
#define JITTER_LIMIT 100
#define UART_SCLK (200000000*5/12)
typedef struct _RUART_SPEED_SETTING_ {
u32 BaudRate;
u32 Ovsr;
u32 Div;
u32 Ovsr_adj;
#if defined(E_CUT_ROM_DOMAIN) || (!defined(CONFIG_RELEASE_BUILD_LIBRARIES))
u8 Ovsr_adj_max_bits; // 9: No parity, 10: with Parity
u8 Ovsr_adj_bits;
u16 *Ovsr_adj_map;
u32 max_err; // 10 ~ 100: 30
u32 Ovsr_min; // 10 ~ 20: 1000
u32 Ovsr_max; // 10 ~ 20: 2000
u32 divisor_resolution; // 1 ~ 20: 10
u32 jitter_lim; // 50 ~ 100: 100
u32 sclk; // 83.33333 MHz
#endif
}RUART_SPEED_SETTING, *PRUART_SPEED_SETTING;
typedef enum _UART_RXFIFO_TRIGGER_LEVEL_ {
OneByte = 0x00, // 1
FourBytes = 0x01, // 4
EightBytes = 0x10, // 8
FourteenBytes = 0x11 // 14
}UART_RXFIFO_TRIGGER_LEVEL, *PUART_RXFIFO_TRIGGER_LEVEL;
typedef enum _RUART0_PINMUX_SELECT_ {
RUART0_MUX_TO_GPIOC = S0,
RUART0_MUX_TO_GPIOE = S1,
RUART0_MUX_TO_GPIOA = S2
}RUART0_PINMUX_SELECT, *PRUART0_PINMUX_SELECT;
typedef enum _RUART1_PINMUX_SELECT_ {
RUART1_MUX_TO_GPIOD = S0,
RUART1_MUX_TO_GPIOE = S1,
RUART1_MUX_TO_GPIOB = S2
}RUART1_PINMUX_SELECT, *PRUART1_PINMUX_SELECT;
typedef enum _RUART2_PINMUX_SELECT_ {
RUART2_MUX_TO_GPIOA = S0,
RUART2_MUX_TO_GPIOC = S1,
RUART2_MUX_TO_GPIOD = S2
}RUART2_PINMUX_SELECT, *PRUART2_PINMUX_SELECT;
typedef enum _RUART_FLOW_CONTROL_ {
AUTOFLOW_DISABLE = 0,
AUTOFLOW_ENABLE = 1
}RUART_FLOW_CONTROL, *PRUART_FLOW_CONTROL;
typedef enum _RUART_WORD_LEN_SEL_ {
RUART_WLS_7BITS = 0,
RUART_WLS_8BITS = 1
}RUART_WORD_LEN_SEL, *PRUART_WORD_LEN_SEL;
typedef enum _RUART_STOP_BITS_ {
RUART_STOP_BIT_1 = 0,
RUART_STOP_BIT_2 = 1
}RUART_STOP_BITS, *PRUART_STOP_BITS;
typedef enum _RUART_PARITY_CONTROL_ {
RUART_PARITY_DISABLE = 0,
RUART_PARITY_ENABLE = 1
}RUART_PARITY_CONTROL, *PRUART_PARITY_CONTROL;
typedef enum _RUART_PARITY_TYPE_ {
RUART_ODD_PARITY = 0,
RUART_EVEN_PARITY = 1
}RUART_PARITY_TYPE, *PRUART_PARITY_TYPE;
typedef enum _RUART_STICK_PARITY_CONTROL_ {
RUART_STICK_PARITY_DISABLE = 0,
RUART_STICK_PARITY_ENABLE = 1
}RUART_STICK_PARITY_CONTROL, *PRUART_STICK_PARITY_CONTROL;
typedef enum _UART_INT_ID_ {
ModemStatus = 0,
TxFifoEmpty = 1,
ReceiverDataAvailable = 2,
ReceivLineStatus = 3,
TimeoutIndication = 6
}UART_INT_ID, *PUART_INT_ID;
typedef enum _HAL_UART_State_
{
HAL_UART_STATE_NULL = 0x00, // UART hardware not been initial yet
HAL_UART_STATE_READY = 0x10, // UART is initialed, ready to use
HAL_UART_STATE_BUSY = 0x20, // UART hardware is busy on configuration
HAL_UART_STATE_BUSY_TX = 0x21, // UART is buzy on TX
HAL_UART_STATE_BUSY_RX = 0x22, // UART is busy on RX
HAL_UART_STATE_BUSY_TX_RX = 0x23, // UART is busy on TX an RX
HAL_UART_STATE_TIMEOUT = 0x30, // Transfer timeout
HAL_UART_STATE_ERROR = 0x40 // UART Error
}HAL_UART_State, *PHAL_UART_State;
typedef enum _HAL_UART_Status_
{
HAL_UART_STATUS_OK = 0x00, // Transfer OK
HAL_UART_STATUS_TIMEOUT = 0x01, // Transfer Timeout
HAL_UART_STATUS_ERR_OVERRUN = 0x02, // RX Over run
HAL_UART_STATUS_ERR_PARITY = 0x04, // Parity error
HAL_UART_STATUS_ERR_FRAM = 0x08, // Framing Error
HAL_UART_STATUS_ERR_BREAK = 0x10, // Break Interrupt
HAL_UART_STATUS_ERR_PARA = 0x20, // Parameter error
HAL_UART_STATUS_ERR_RXFIFO = 0x80, // RX FIFO error
}HAL_UART_Status, *PHAL_UART_Status;
u32
HalRuartGetDebugValueRtl8195a(
IN VOID* Data,
IN u32 DbgSel
);
#if 0
u32
FindElementIndex(
u32 Element,
u32* Array
);
#endif
VOID
RuartResetRxFifoRtl8195a(
IN u8 UartIndex
);
#if 0
VOID
RuartBusDomainEnableRtl8195a(
IN u8 UartIndex
);
#endif
HAL_Status
HalRuartResetRxFifoRtl8195a(
IN VOID *Data
);
HAL_Status
HalRuartInitRtl8195a(
IN VOID *Data
);
VOID
HalRuartDeInitRtl8195a(
IN VOID *Data ///< RUART Adapter
);
HAL_Status
HalRuartPutCRtl8195a(
IN VOID *Data,
IN u8 TxData
);
u32
HalRuartSendRtl8195a(
IN VOID *Data,
IN u8 *pTxData,
IN u32 Length,
IN u32 Timeout
);
HAL_Status
HalRuartIntSendRtl8195a(
IN VOID *Data, // PHAL_RUART_ADAPTER
IN u8 *pTxData, // the Buffer to be send
IN u32 Length // the length of data to be send
);
HAL_Status
HalRuartDmaSendRtl8195a(
IN VOID *Data, // PHAL_RUART_ADAPTER
IN u8 *pTxData, // the Buffer to be send
IN u32 Length // the length of data to be send
);
HAL_Status
HalRuartStopSendRtl8195a(
IN VOID *Data // PHAL_RUART_ADAPTER
);
HAL_Status
HalRuartGetCRtl8195a(
IN VOID *Data,
OUT u8 *pRxByte
);
u32
HalRuartRecvRtl8195a(
IN VOID *Data,
IN u8 *pRxData,
IN u32 Length,
IN u32 Timeout
);
HAL_Status
HalRuartIntRecvRtl8195a(
IN VOID *Data, ///< RUART Adapter
IN u8 *pRxData, ///< Rx buffer
IN u32 Length // buffer length
);
HAL_Status
HalRuartDmaRecvRtl8195a(
IN VOID *Data, ///< RUART Adapter
IN u8 *pRxData, ///< Rx buffer
IN u32 Length // buffer length
);
HAL_Status
HalRuartStopRecvRtl8195a(
IN VOID *Data // PHAL_RUART_ADAPTER
);
u8
HalRuartGetIMRRtl8195a(
IN VOID *Data
);
_LONG_CALL_ROM_ VOID
HalRuartSetIMRRtl8195a(
IN VOID *Data
);
VOID
HalRuartDmaInitRtl8195a(
IN VOID *Data
);
VOID
HalRuartRTSCtrlRtl8195a(
IN VOID *Data,
IN BOOLEAN RtsCtrl
);
VOID
HalRuartRegIrqRtl8195a(
IN VOID *Data
);
VOID
HalRuartIntEnableRtl8195a(
IN VOID *Data
);
VOID
HalRuartIntDisableRtl8195a(
IN VOID *Data
);
VOID
HalRuartAdapterLoadDefRtl8195a(
IN VOID *pAdp,
IN u8 UartIdx
);
VOID
HalRuartTxGdmaLoadDefRtl8195a(
IN VOID *pAdp,
IN VOID *pCfg
);
VOID
HalRuartRxGdmaLoadDefRtl8195a(
IN VOID *pAdp,
IN VOID *pCfg
);
_LONG_CALL_ HAL_Status HalRuartIntSendRtl8195aV02(
IN VOID *Data, // PHAL_RUART_ADAPTER
IN u8 *pTxData, // the Buffer to be send
IN u32 Length // the length of data to be send
);
_LONG_CALL_ HAL_Status
HalRuartIntRecvRtl8195aV02(
IN VOID *Data, ///< RUART Adapter
IN u8 *pRxData, ///< Rx buffer
IN u32 Length // buffer length
);
_LONG_CALL_ s32
FindElementIndex_v02(
u32 Element, ///< RUART Baudrate
u32* Array, ///< Pre-defined Baudrate Array
u32 ElementNo
);
_LONG_CALL_ HAL_Status HalRuartInitRtl8195a_v02(IN VOID *Data);
// New added function 2015/04/20
HAL_Status
HalRuartResetTxFifoRtl8195a(
IN VOID *Data ///< RUART Adapter
);
HAL_Status
HalRuartResetRxFifoRtl8195a_Patch(
IN VOID *Data ///< RUART Adapter
);
HAL_Status
HalRuartResetTRxFifoRtl8195a(
IN VOID *Data ///< RUART Adapter
);
HAL_Status
HalRuartSetBaudRateRtl8195a(
IN VOID *Data
);
HAL_Status
HalRuartEnableRtl8195a(
IN VOID *Data
);
HAL_Status
HalRuartDisableRtl8195a(
IN VOID *Data
);
HAL_Status
HalRuartFlowCtrlRtl8195a(
IN VOID *Data
);
u32
_UartTxDmaIrqHandle_Patch(
IN VOID *Data
);
u32
_UartRxDmaIrqHandle_Patch(
IN VOID *Data
);
HAL_Status
HalRuartDmaSendRtl8195a_Patch(
IN VOID *Data,
IN u8 *pTxData,
IN u32 Length
);
HAL_Status
HalRuartDmaRecvRtl8195a_Patch(
IN VOID *Data,
IN u8 *pRxData,
IN u32 Length
);
HAL_Status
HalRuartMultiBlkDmaSendRtl8195a(
IN VOID *Data,
IN u8 *pTxData,
IN u32 Length
);
HAL_Status
HalRuartMultiBlkDmaRecvRtl8195a(
IN VOID *Data,
IN u8 *pRxData,
IN u32 Length
);
HAL_Status
RuartIsTimeout (
u32 StartCount,
u32 TimeoutCnt
);
HAL_Status
HalRuartStopRecvRtl8195a_Patch(
IN VOID *Data
);
HAL_Status
HalRuartStopSendRtl8195a_Patch(
IN VOID *Data
);
VOID
HalRuartEnterCriticalRtl8195a(
IN VOID *Data
);
VOID
HalRuartExitCriticalRtl8195a(
IN VOID *Data
);
#if CONFIG_CHIP_E_CUT
_LONG_CALL_ HAL_Status
HalRuartResetTxFifoRtl8195a_V04(
IN VOID *Data ///< RUART Adapter
);
_LONG_CALL_ HAL_Status
HalRuartResetRxFifoRtl8195a_V04(
IN VOID *Data ///< RUART Adapter
);
_LONG_CALL_ HAL_Status
HalRuartResetTRxFifoRtl8195a_V04(
IN VOID *Data ///< RUART Adapter
);
_LONG_CALL_ HAL_Status
HalRuartSetBaudRateRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartInitRtl8195a_V04(
IN VOID *Data ///< RUART Adapter
);
_LONG_CALL_ HAL_Status
HalRuartEnableRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartDisableRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartFlowCtrlRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ u32
_UartTxDmaIrqHandle_V04(
IN VOID *Data
);
_LONG_CALL_ u32
_UartRxDmaIrqHandle_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartDmaSendRtl8195a_V04(
IN VOID *Data,
IN u8 *pTxData,
IN u32 Length
);
_LONG_CALL_ HAL_Status
HalRuartDmaRecvRtl8195a_V04(
IN VOID *Data,
IN u8 *pRxData,
IN u32 Length
);
_LONG_CALL_ HAL_Status
HalRuartMultiBlkDmaSendRtl8195a_V04(
IN VOID *Data,
IN u8 *pTxData,
IN u32 Length
);
_LONG_CALL_ HAL_Status
HalRuartMultiBlkDmaRecvRtl8195a_V04(
IN VOID *Data,
IN u8 *pRxData,
IN u32 Length
);
_LONG_CALL_ HAL_Status
HalRuartStopRecvRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartStopSendRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ VOID
HalRuartEnterCriticalRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ VOID
HalRuartExitCriticalRtl8195a_V04(
IN VOID *Data
);
#endif // #if CONFIG_CHIP_E_CUT
#endif

View file

@ -0,0 +1,432 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_USB_H_
#define _RTL8195A_USB_H_
// common command for USB
#define USB_CMD_TX_ETH 0x83 // request to TX a 802.3 packet
#define USB_CMD_TX_WLN 0x81 // request to TX a 802.11 packet
#define USB_CMD_H2C 0x11 // H2C(host to device) command packet
#define USB_CMD_MEMRD 0x51 // request to read a block of memory data
#define USB_CMD_MEMWR 0x53 // request to write a block of memory
#define USB_CMD_MEMST 0x55 // request to set a block of memory with a value
#define USB_CMD_STARTUP 0x61 // request to jump to the start up function
#define USB_CMD_RX_ETH 0x82 // indicate a RX 802.3 packet
#define USB_CMD_RX_WLN 0x80 // indicate a RX 802.11 packet
#define USB_CMD_C2H 0x10 // C2H(device to host) command packet
#define USB_CMD_MEMRD_RSP 0x50 // response to memory block read command
#define USB_CMD_MEMWR_RSP 0x52 // response to memory write command
#define USB_CMD_MEMST_RSP 0x54 // response to memory set command
#define USB_CMD_STARTED 0x60 // indicate the program has jumped to the given function
// TODO: This data structer just for test, we should modify it for the normal driver
typedef struct _USB_TX_DESC{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 rsvd0:24;
#else
u32 rsvd0:24;
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 rsvd1;
// u4Byte 3
u32 rsvd2;
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} USB_TX_DESC, *PUSB_TX_DESC;
#define SIZE_USB_TX_DESC sizeof(USB_TX_DESC)
// TX Desc for Memory Write command
typedef struct _USB_TX_DESC_MW{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 reply:1; // bit[8], request to send a reply message
u32 rsvd0:23;
#else
u32 rsvd0:23;
u32 reply:1; // bit[8], request to send a reply message
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 start_addr; // memory write start address
// u4Byte 3
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 write_len:16; // bit[15:0], the length to write
u32 rsvd2:16; // bit[31:16]
#else
u32 rsvd2:16; // bit[31:16]
u32 write_len:16; // bit[15:0], the length to write
#endif
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} USB_TX_DESC_MW, *PUSB_TX_DESC_MW;
// TX Desc for Memory Read command
typedef struct _USB_TX_DESC_MR{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 rsvd0:24;
#else
u32 rsvd0:24;
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 start_addr; // memory write start address
// u4Byte 3
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 read_len:16; // bit[15:0], the length to read
u32 rsvd2:16; // bit[31:16]
#else
u32 rsvd2:16; // bit[31:16]
u32 read_len:16; // bit[15:0], the length to read
#endif
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} USB_TX_DESC_MR, *PUSB_TX_DESC_MR;
// TX Desc for Memory Set command
typedef struct _USB_TX_DESC_MS{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 data:8; // bit[8:15], the value to be written to the memory
u32 reply:1; // bit[16], request to send a reply message
u32 rsvd0:15;
#else
u32 rsvd0:15;
u32 reply:1; // bit[16], request to send a reply message
u32 data:8; // bit[8:15], the value to be written to the memory
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 start_addr; // memory write start address
// u4Byte 3
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 write_len:16; // bit[15:0], the length to write
u32 rsvd2:16; // bit[31:16]
#else
u32 rsvd2:16; // bit[31:16]
u32 write_len:16; // bit[15:0], the length to write
#endif
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} USB_TX_DESC_MS, *PUSB_TX_DESC_MS;
// TX Desc for Jump to Start command
typedef struct _USB_TX_DESC_JS{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 rsvd0:24;
#else
u32 rsvd0:24;
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 start_fun; // the pointer of the startup function
// u4Byte 3
u32 rsvd2;
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} USB_TX_DESC_JS, *PUSB_TX_DESC_JS;
typedef struct _USB_RX_DESC{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 pkt_len:16; // bit[15:0], the packet size
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 rsvd0:6; // bit[29:24]
u32 icv:1; // bit[30], ICV error
u32 crc:1; // bit[31], CRC error
#else
u32 crc:1; // bit[31], CRC error
u32 icv:1; // bit[30], ICV error
u32 rsvd0:6; // bit[29:24]
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 pkt_len:16; // bit[15:0], the packet size
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the type of this packet
u32 rsvd1:24; // bit[31:8]
#else
u32 rsvd1:24; // bit[31:8]
u32 type:8; // bit[7:0], the type of this packet
#endif
// u4Byte 2
u32 rsvd2;
// u4Byte 3
u32 rsvd3;
// u4Byte 4
u32 rsvd4;
// u4Byte 5
u32 rsvd5;
} USB_RX_DESC, *PUSB_RX_DESC;
// For memory read command
typedef struct _USB_RX_DESC_MR{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 pkt_len:16; // bit[15:0], the packet size
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 rsvd0:8; // bit[31:24]
#else
u32 rsvd0:8; // bit[31:24]
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 pkt_len:16; // bit[15:0], the packet size
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the type of this packet
u32 rsvd1:24; // bit[31:8]
#else
u32 rsvd1:24; // bit[31:8]
u32 type:8; // bit[7:0], the type of this packet
#endif
// u4Byte 2
u32 start_addr;
// u4Byte 3
u32 rsvd2;
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} USB_RX_DESC_MR, *PUSB_RX_DESC_MR;
// For memory write reply command
typedef struct _USB_RX_DESC_MW{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 pkt_len:16; // bit[15:0], the packet size
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 rsvd0:8; // bit[31:24]
#else
u32 rsvd0:8; // bit[31:24]
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 pkt_len:16; // bit[15:0], the packet size
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the type of this packet
u32 rsvd1:24; // bit[31:8]
#else
u32 rsvd1:24; // bit[31:8]
u32 type:8; // bit[7:0], the type of this packet
#endif
// u4Byte 2
u32 start_addr;
// u4Byte 3
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 write_len:16; // bit[15:0], the type of this packet
u32 result:8; // bit[23:16], the result of memory write command
u32 rsvd2:8; // bit[31:24]
#else
u32 rsvd2:8; // bit[31:24]
u32 result:8; // bit[23:16], the result of memory write command
u32 write_len:16; // bit[15:0], the type of this packet
#endif
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} USB_RX_DESC_MW, *PUSB_RX_DESC_MW;
// For memory set reply command
typedef struct _USB_RX_DESC_MS{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 pkt_len:16; // bit[15:0], the packet size
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 rsvd0:8; // bit[31:24]
#else
u32 rsvd0:8; // bit[31:24]
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 pkt_len:16; // bit[15:0], the packet size
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the type of this packet
u32 rsvd1:24; // bit[31:8]
#else
u32 rsvd1:24; // bit[31:8]
u32 type:8; // bit[7:0], the type of this packet
#endif
// u4Byte 2
u32 start_addr;
// u4Byte 3
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 write_len:16; // bit[15:0], the type of this packet
u32 result:8; // bit[23:16], the result of memory write command
u32 rsvd2:8; // bit[31:24]
#else
u32 rsvd2:8; // bit[31:24]
u32 result:8; // bit[23:16], the result of memory write command
u32 write_len:16; // bit[15:0], the type of this packet
#endif
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} USB_RX_DESC_MS, *PUSB_RX_DESC_MS;
// For firmware ready reply command
typedef struct _USB_RX_DESC_FS{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 pkt_len:16; // bit[15:0], the packet size
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 rsvd0:8; // bit[31:24]
#else
u32 rsvd0:8; // bit[31:24]
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 pkt_len:16; // bit[15:0], the packet size
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the type of this packet
u32 rsvd1:24; // bit[31:8]
#else
u32 rsvd1:24; // bit[31:8]
u32 type:8; // bit[7:0], the type of this packet
#endif
// u4Byte 2
u32 rsvd2;
// u4Byte 3
u32 rsvd3;
// u4Byte 4
u32 rsvd4;
// u4Byte 5
u32 rsvd5;
} USB_RX_DESC_FS, *PUSB_RX_DESC_FS;
#define SIZE_USB_RX_DESC sizeof(USB_RX_DESC)
#endif // #ifndef _RTL8195A_USB_H_

View file

@ -0,0 +1,86 @@
/*
* Routines to access hardware
*
* Copyright (c) 2014 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_WDT_H_
#define _RTL8195A_WDT_H_
#define WDGTIMERELY (10*1024) //us
typedef struct _WDG_REG_ {
u16 WdgScalar;
u8 WdgEnByte;
u8 WdgClear:1;
u8 WdgCunLimit:4;
u8 Rsvd:1;
u8 WdgMode:1;
u8 WdgToISR:1;
}WDG_REG, *PWDG_REG;
typedef struct _WDG_ADAPTER_ {
WDG_REG Ctrl;
IRQ_HANDLE IrqHandle;
TIMER_ADAPTER WdgGTimer;
VOID (*UserCallback)(u32 callback_id); // User callback function
u32 callback_id;
}WDG_ADAPTER, *PWDG_ADAPTER;
typedef enum _WDG_CNTLMT_ {
CNT1H = 0,
CNT3H = 1,
CNT7H = 2,
CNTFH = 3,
CNT1FH = 4,
CNT3FH = 5,
CNT7FH = 6,
CNTFFH = 7,
CNT1FFH = 8,
CNT3FFH = 9,
CNT7FFH = 10,
CNTFFFH = 11
}WDG_CNTLMT, *PWDG_CNTLMT;
typedef enum _WDG_MODE_ {
INT_MODE = 0,
RESET_MODE = 1
}WDG_MODE, *PWDG_MODE;
extern VOID
WDGInitial(
IN u32 Period
);
extern VOID
WDGIrqInitial(
VOID
);
extern VOID
WDGIrqInitial(
VOID
);
extern VOID
WDGStop(
VOID
);
extern VOID
WDGRefresh(
VOID
);
extern VOID
WDGIrqCallBackReg(
IN VOID *CallBack,
IN u32 Id
);
#endif //_RTL8195A_WDT_H_

View file

@ -0,0 +1,389 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "platform_autoconf.h"
#include "diag.h"
#include "rtl8195a_adc.h"
#include "hal_adc.h"
#ifdef CONFIG_ADC_EN
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CInit8195a
//
// Description:
// To initialize I2C module by using the given data.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the DeInit process.
// _EXIT_SUCCESS if the initialization succeeded.
// _EXIT_FAILURE if the initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-04-02.
//
//---------------------------------------------------------------------------------------------------
RTK_STATUS
HalADCInit8195a(
IN VOID *Data
)
{
PHAL_ADC_INIT_DAT pHalAdcInitData = (PHAL_ADC_INIT_DAT)Data;
u32 AdcTempDat;
u8 AdcTempIdx = pHalAdcInitData->ADCIdx;
/* Enable ADC power cut */
/*
AdcTempDat = HAL_ADC_READ32(REG_ADC_POWER);
AdcTempDat |= BIT_ADC_PWR_AUTO;
HAL_ADC_WRITE32(REG_ADC_POWER, AdcTempDat);
*/
/* ADC Control register set-up*/
AdcTempDat = 0;
AdcTempDat |= (BIT_CTRL_ADC_COMP_ONLY(pHalAdcInitData->ADCCompOnly) |
BIT_CTRL_ADC_ONESHOT(pHalAdcInitData->ADCOneShotEn) |
BIT_CTRL_ADC_OVERWRITE(pHalAdcInitData->ADCOverWREn) |
BIT_CTRL_ADC_ENDIAN(pHalAdcInitData->ADCEndian) |
BIT_CTRL_ADC_BURST_SIZE(pHalAdcInitData->ADCBurstSz) |
BIT_CTRL_ADC_THRESHOLD(pHalAdcInitData->ADCOneShotTD) |
BIT_CTRL_ADC_DBG_SEL(pHalAdcInitData->ADCDbgSel));
HAL_ADC_WRITE32(REG_ADC_CONTROL,AdcTempDat);
DBG_8195A_ADC_LVL(HAL_ADC_LVL,"REG_ADC_CONTROL:%x\n", HAL_ADC_READ32(REG_ADC_CONTROL));
/* ADC compare value and compare method setting*/
switch (AdcTempIdx) {
case ADC0_SEL:
AdcTempDat = HAL_ADC_READ32(REG_ADC_COMP_VALUE_L);
AdcTempDat &= ~(BIT_ADC_COMP_TH_0(0xFFFF));
AdcTempDat |= BIT_CTRL_ADC_COMP_TH_0(pHalAdcInitData->ADCCompTD);
HAL_ADC_WRITE32(REG_ADC_COMP_VALUE_L, AdcTempDat);
break;
case ADC1_SEL:
AdcTempDat = HAL_ADC_READ32(REG_ADC_COMP_VALUE_L);
AdcTempDat &= ~(BIT_ADC_COMP_TH_1(0xFFFF));
AdcTempDat |= BIT_CTRL_ADC_COMP_TH_1(pHalAdcInitData->ADCCompTD);
HAL_ADC_WRITE32(REG_ADC_COMP_VALUE_L, AdcTempDat);
break;
case ADC2_SEL:
AdcTempDat = HAL_ADC_READ32(REG_ADC_COMP_VALUE_H);
AdcTempDat &= ~(BIT_ADC_COMP_TH_2(0xFFFF));
AdcTempDat |= BIT_CTRL_ADC_COMP_TH_2(pHalAdcInitData->ADCCompTD);
HAL_ADC_WRITE32(REG_ADC_COMP_VALUE_H, AdcTempDat);
break;
case ADC3_SEL:
AdcTempDat = HAL_ADC_READ32(REG_ADC_COMP_VALUE_H);
AdcTempDat &= ~(BIT_ADC_COMP_TH_3(0xFFFF));
AdcTempDat |= BIT_CTRL_ADC_COMP_TH_3(pHalAdcInitData->ADCCompTD);
HAL_ADC_WRITE32(REG_ADC_COMP_VALUE_H, AdcTempDat);
break;
default:
return _EXIT_FAILURE;
}
/* ADC compare mode setting */
AdcTempDat = HAL_ADC_READ32(REG_ADC_COMP_SET);
AdcTempDat &= (~(0x01 << pHalAdcInitData->ADCIdx));
AdcTempDat |= (BIT_CTRL_ADC_COMP_0_EN(pHalAdcInitData->ADCCompCtrl) <<
pHalAdcInitData->ADCIdx);
HAL_ADC_WRITE32(REG_ADC_COMP_SET, AdcTempDat);
/* ADC audio mode set-up */
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD0);
AdcTempDat &= ~(BIT_ADC_AUDIO_EN);
AdcTempDat |= BIT_CTRL_ADC_AUDIO_EN(pHalAdcInitData->ADCAudioEn);
HAL_ADC_WRITE32(REG_ADC_ANAPAR_AD0, AdcTempDat);
/* ADC enable manually setting */
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD0);
AdcTempDat &= ~(BIT_ADC_EN_MANUAL);
AdcTempDat |= BIT_CTRL_ADC_EN_MANUAL(pHalAdcInitData->ADCEnManul);
HAL_ADC_WRITE32(REG_ADC_ANAPAR_AD0, AdcTempDat);
/* ADC analog parameter 0 */
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD0);
DBG_ADC_INFO("AD0:%x\n", AdcTempDat);
//AdcTempDat |= (BIT0);
if (pHalAdcInitData->ADCInInput == 1){
AdcTempDat &= (~BIT14);
}
else {
AdcTempDat |= (BIT14);
}
AdcTempDat &= (~(BIT3|BIT2));
/* Adjust VCM for C-Cut*/
#ifdef CONFIG_CHIP_C_CUT
AdcTempDat |= (BIT22);
#endif
HAL_ADC_WRITE32(REG_ADC_ANAPAR_AD0, AdcTempDat);
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD0);
DBG_ADC_INFO("AD0:%x\n", AdcTempDat);
/* ADC analog parameter 1 */
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD1);
AdcTempDat &= (~BIT1);
AdcTempDat |= (BIT2|BIT0);
HAL_ADC_WRITE32(REG_ADC_ANAPAR_AD1, AdcTempDat);
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD1);
DBG_ADC_INFO("AD1:%x\n", AdcTempDat);
/* ADC analog parameter 2 */
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD2);
DBG_ADC_INFO("AD2:%x\n", AdcTempDat);
AdcTempDat = 0x67884400;
HAL_ADC_WRITE32(REG_ADC_ANAPAR_AD2, AdcTempDat);
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD2);
DBG_ADC_INFO("AD2:%x\n", AdcTempDat);
/* ADC analog parameter 3 */
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD3);
DBG_ADC_INFO("AD3:%x\n", AdcTempDat);
AdcTempDat = 0x77780039;
HAL_ADC_WRITE32(REG_ADC_ANAPAR_AD3, AdcTempDat);
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD3);
DBG_ADC_INFO("AD3:%x\n", AdcTempDat);
/* ADC analog parameter 4 */
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD4);
DBG_ADC_INFO("AD4:%x\n", AdcTempDat);
AdcTempDat = 0x0004d501;
HAL_ADC_WRITE32(REG_ADC_ANAPAR_AD4, AdcTempDat);
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD4);
DBG_ADC_INFO("AD4:%x\n", AdcTempDat);
/* ADC analog parameter 5 */
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD5);
DBG_ADC_INFO("AD5:%x\n", AdcTempDat);
AdcTempDat = 0x1E010800;
HAL_ADC_WRITE32(REG_ADC_ANAPAR_AD5, AdcTempDat);
AdcTempDat = HAL_ADC_READ32(REG_ADC_ANAPAR_AD5);
DBG_ADC_INFO("AD5:%x\n", AdcTempDat);
return _EXIT_SUCCESS;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CInit8195a
//
// Description:
// To initialize I2C module by using the given data.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the DeInit process.
// _EXIT_SUCCESS if the initialization succeeded.
// _EXIT_FAILURE if the initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-04-02.
//
//---------------------------------------------------------------------------------------------------
RTK_STATUS
HalADCDeInit8195a(
IN VOID *Data
)
{
u32 AdcTempDat;
AdcTempDat = HAL_ADC_READ32(REG_ADC_POWER);
AdcTempDat &= ~(BIT_ADC_PWR_AUTO);
HAL_ADC_WRITE32(REG_ADC_POWER, AdcTempDat);
return _EXIT_SUCCESS;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CIntrCtrl8195a
//
// Description:
// Modify the I2C interrupt mask according to the given value
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the enable process.
// _EXIT_SUCCESS if the de-initialization succeeded.
// _EXIT_FAILURE if the de-initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-02-18.
//
//---------------------------------------------------------------------------------------------------
RTK_STATUS
HalADCEnableRtl8195a(
IN VOID *Data
){
//PHAL_ADC_INIT_DAT pHalAdcInitData = (PHAL_ADC_INIT_DAT)Data;
u32 AdcTempDat;
DBG_ADC_INFO("HalADCEnableRtl8195a\n");
AdcTempDat = HAL_ADC_READ32(REG_ADC_POWER);
AdcTempDat &= (~BIT_ADC_PWR_AUTO);
AdcTempDat |= 0x02;
HAL_ADC_WRITE32(REG_ADC_POWER, AdcTempDat);
AdcTempDat |= 0x04;
HAL_ADC_WRITE32(REG_ADC_POWER, AdcTempDat);
AdcTempDat &= (~0x08);
HAL_ADC_WRITE32(REG_ADC_POWER, AdcTempDat);
AdcTempDat = (u32)HAL_ADC_READ32(REG_ADC_POWER);
DBG_ADC_INFO("HalADCEnableRtl8195a, power reg:%x\n",AdcTempDat);
return _EXIT_SUCCESS;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CIntrCtrl8195a
//
// Description:
// Modify the I2C interrupt mask according to the given value
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the enable process.
// _EXIT_SUCCESS if the de-initialization succeeded.
// _EXIT_FAILURE if the de-initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-02-18.
//
//---------------------------------------------------------------------------------------------------
RTK_STATUS
HalADCIntrCtrl8195a(
IN VOID *Data
){
PHAL_ADC_INIT_DAT pHalAdcInitData = (PHAL_ADC_INIT_DAT)Data;
HAL_ADC_WRITE32(REG_ADC_INTR_EN, pHalAdcInitData->ADCIntrMSK);
return _EXIT_SUCCESS;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CReceiveRtl8195a
//
// Description:
// Directly read one data byte a I2C data fifo.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The first data fifo content.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-02-18.
//
//---------------------------------------------------------------------------------------------------
u32
HalADCReceiveRtl8195a(
IN VOID *Data
){
u32 AdcTempDat;
AdcTempDat = HAL_ADC_READ32(REG_ADC_FIFO_READ);
return (AdcTempDat);
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CReadRegRtl8195a
//
// Description:
// Directly read a I2C register according to the register offset.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
// [in] I2CReg -
// The I2C register offset.
//
// Return:
// The register content in u32 format.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-02-18.
//
//---------------------------------------------------------------------------------------------------
u32
HalADCReadRegRtl8195a(
IN VOID *Data,
IN u8 I2CReg
){
u32 AdcTempDat;
AdcTempDat = HAL_ADC_READ32(I2CReg);
return (AdcTempDat);
}
#endif // CONFIG_ADC_EN

View file

@ -0,0 +1,269 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "rtl8195a.h"
#include "rtl8195a_dac.h"
#include "hal_dac.h"
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalDACInit8195a
//
// Description:
// To initialize DAC module by using the given data.
//
// Arguments:
// [in] VOID *Data -
// The DAC parameter data struct.
//
// Return:
// The status of the DeInit process.
// _EXIT_SUCCESS if the initialization succeeded.
// _EXIT_FAILURE if the initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-04-15.
//
//---------------------------------------------------------------------------------------------------
RTK_STATUS
HalDACInit8195a(
IN VOID *Data
){
PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)Data;
u32 DacTempDat;
u8 DacTempIdx = pHalDacInitData->DACIdx;
/* Enable DAC power cut */
DacTempDat = HAL_DAC_READ32(0, REG_DAC_PWR_CTRL);
DacTempDat |= BIT_DAC_PWR_AUTO;
HAL_DAC_WRITE32(0, REG_DAC_PWR_CTRL, DacTempDat);
/* Disable DAC module first */
HAL_DAC_WRITE32(DacTempIdx, REG_DAC_CTRL, 0);
/* Setup DAC module */
DacTempDat = 0;
DacTempDat |= (BIT_CTRL_DAC_SPEED(pHalDacInitData->DACDataRate) |
BIT_CTRL_DAC_ENDIAN(pHalDacInitData->DACEndian) |
BIT_CTRL_DAC_FILTER_SETTLE(pHalDacInitData->DACFilterSet) |
BIT_CTRL_DAC_BURST_SIZE(pHalDacInitData->DACBurstSz) |
BIT_CTRL_DAC_DBG_SEL(pHalDacInitData->DACDbgSel) |
BIT_CTRL_DAC_DSC_DBG_SEL(pHalDacInitData->DACDscDbgSel) |
BIT_CTRL_DAC_BYPASS_DSC(pHalDacInitData->DACBPDsc) |
BIT_CTRL_DAC_DELTA_SIGMA(pHalDacInitData->DACDeltaSig));
HAL_DAC_WRITE32(DacTempIdx, REG_DAC_CTRL, DacTempDat);
return _EXIT_SUCCESS;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CInit8195a
//
// Description:
// To initialize I2C module by using the given data.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the DeInit process.
// _EXIT_SUCCESS if the initialization succeeded.
// _EXIT_FAILURE if the initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-04-02.
//
//---------------------------------------------------------------------------------------------------
RTK_STATUS
HalDACDeInit8195a(
IN VOID *Data
){
PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)Data;
u32 DacTempDat;
DacTempDat = HAL_DAC_READ32(pHalDacInitData->DACIdx, REG_DAC_CTRL);
DacTempDat &= (~BIT_DAC_FIFO_EN);
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC_CTRL ,DacTempDat);
return _EXIT_SUCCESS;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CIntrCtrl8195a
//
// Description:
// Modify the I2C interrupt mask according to the given value
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the enable process.
// _EXIT_SUCCESS if the de-initialization succeeded.
// _EXIT_FAILURE if the de-initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-02-18.
//
//---------------------------------------------------------------------------------------------------
RTK_STATUS
HalDACEnableRtl8195a(
IN VOID *Data
){
PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)Data;
u32 DacTempDat;
u8 DacTempIdx = pHalDacInitData->DACIdx;
DacTempDat = HAL_DAC_READ32(DacTempIdx, REG_DAC_CTRL);
DacTempDat &= (~BIT_DAC_FIFO_EN);
DacTempDat |= BIT_CTRL_DAC_FIFO_EN(pHalDacInitData->DACEn);
HAL_DAC_WRITE32(DacTempIdx, REG_DAC_CTRL, DacTempDat);
return _EXIT_SUCCESS;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CIntrCtrl8195a
//
// Description:
// Modify the I2C interrupt mask according to the given value
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the enable process.
// _EXIT_SUCCESS if the de-initialization succeeded.
// _EXIT_FAILURE if the de-initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-02-18.
//
//---------------------------------------------------------------------------------------------------
RTK_STATUS
HalDACIntrCtrl8195a(
IN VOID *Data
){
PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)Data;
HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC_INTR_CTRL, pHalDacInitData->DACIntrMSK);
return _EXIT_SUCCESS;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CReceiveRtl8195a
//
// Description:
// Directly read one data byte a I2C data fifo.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The first data fifo content.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-02-18.
//
//---------------------------------------------------------------------------------------------------
u8
HalDACSendRtl8195a(
IN VOID *Data
){
return (0);
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalDACReadRegRtl8195a
//
// Description:
//
//
// Arguments:
// [in] VOID *Data -
// The DAC parameter data struct.
// [in] I2CReg -
// The DAC register offset.
//
// Return:
// The DAC register content in u32 format.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-04-15.
//
//---------------------------------------------------------------------------------------------------
u32
HalDACReadRegRtl8195a(
IN VOID *Data,
IN u8 I2CReg
){
PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)Data;
//DBG_8195A_DAC("dac read reg idx:%x\n",pHalDacInitData->DACIdx);
//DBG_8195A_DAC("dac read reg offset:%x\n",I2CReg);
return (u32)HAL_DAC_READ32(pHalDacInitData->DACIdx, I2CReg);
}

View file

@ -0,0 +1,295 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "rtl8195a.h"
#include "rtl8195a_gdma.h"
#include "hal_gdma.h"
#ifdef CONFIG_GDMA_EN
#ifndef CONFIG_CHIP_E_CUT
BOOL
HalGdmaChBlockSetingRtl8195a_Patch(
IN VOID *Data
)
{
PHAL_GDMA_ADAPTER pHalGdmaAdapter = (PHAL_GDMA_ADAPTER) Data;
PGDMA_CH_LLI_ELE pLliEle;
struct GDMA_CH_LLI *pGdmaChLli;
struct BLOCK_SIZE_LIST *pGdmaChBkLi;
u32 MultiBlockCount = pHalGdmaAdapter->MaxMuliBlock;
u32 CtlxLow, CtlxUp, CfgxLow, CfgxUp;
u8 GdmaIndex = pHalGdmaAdapter->GdmaIndex;
u8 ChNum = pHalGdmaAdapter->ChNum;
u32 ChEn = pHalGdmaAdapter->ChEn;
u8 GdmaChIsrBitmap = (ChEn & 0xFF);
u8 PendingIsrIndex;
pLliEle = pHalGdmaAdapter->pLlix->pLliEle;
pGdmaChLli = pHalGdmaAdapter->pLlix->pNextLli;
pGdmaChBkLi = pHalGdmaAdapter->pBlockSizeList;
//4 1) Check chanel is avaliable
if (HAL_GDMAX_READ32(GdmaIndex, REG_GDMA_CH_EN) & ChEn) {
//4 Disable Channel
DBG_GDMA_WARN("Channel had used; Disable Channel!!!!\n");
HalGdmaChDisRtl8195a(Data);
}
//4 2) Check if there are the pending isr; TFR, Block, Src Tran, Dst Tran, Error
for (PendingIsrIndex=0; PendingIsrIndex<5;PendingIsrIndex++) {
u32 PendRaw, PendStstus;
PendRaw = HAL_GDMAX_READ32(GdmaIndex,
(REG_GDMA_RAW_INT_BASE + PendingIsrIndex*8));
PendStstus = HAL_GDMAX_READ32(GdmaIndex,
(REG_GDMA_STATUS_INT_BASE + PendingIsrIndex*8));
if ((PendRaw & GdmaChIsrBitmap) || (PendStstus & GdmaChIsrBitmap)) {
//4 Clear Pending Isr
HAL_GDMAX_WRITE32(GdmaIndex,
(REG_GDMA_CLEAR_INT_BASE + PendingIsrIndex*8),
(PendStstus & (GdmaChIsrBitmap))
);
}
}
//4 Fill in SARx register
HAL_GDMAX_WRITE32(GdmaIndex,
(REG_GDMA_CH_SAR + ChNum*REG_GDMA_CH_OFF),
(pHalGdmaAdapter->ChSar)
);
//4 Fill in DARx register
HAL_GDMAX_WRITE32(GdmaIndex,
(REG_GDMA_CH_DAR + ChNum*REG_GDMA_CH_OFF),
(pHalGdmaAdapter->ChDar)
);
//4 3) Process CTLx
CtlxLow = HAL_GDMAX_READ32(GdmaIndex,
(REG_GDMA_CH_CTL + ChNum*REG_GDMA_CH_OFF));
//4 Clear Config low register bits
CtlxLow &= (BIT_INVC_CTLX_LO_INT_EN &
BIT_INVC_CTLX_LO_DST_TR_WIDTH &
BIT_INVC_CTLX_LO_SRC_TR_WIDTH &
BIT_INVC_CTLX_LO_DINC &
BIT_INVC_CTLX_LO_SINC &
BIT_INVC_CTLX_LO_DEST_MSIZE &
BIT_INVC_CTLX_LO_SRC_MSIZE &
BIT_INVC_CTLX_LO_TT_FC &
BIT_INVC_CTLX_LO_LLP_DST_EN &
BIT_INVC_CTLX_LO_LLP_SRC_EN);
CtlxUp = HAL_GDMAX_READ32(GdmaIndex,
(REG_GDMA_CH_CTL + ChNum*REG_GDMA_CH_OFF + 4));
//4 Clear Config upper register bits
CtlxUp &= (BIT_INVC_CTLX_UP_BLOCK_BS &
BIT_INVC_CTLX_UP_DONE);
CtlxLow = BIT_CTLX_LO_INT_EN(pHalGdmaAdapter->GdmaCtl.IntEn) |
BIT_CTLX_LO_DST_TR_WIDTH(pHalGdmaAdapter->GdmaCtl.DstTrWidth) |
BIT_CTLX_LO_SRC_TR_WIDTH(pHalGdmaAdapter->GdmaCtl.SrcTrWidth) |
BIT_CTLX_LO_DINC(pHalGdmaAdapter->GdmaCtl.Dinc) |
BIT_CTLX_LO_SINC(pHalGdmaAdapter->GdmaCtl.Sinc) |
BIT_CTLX_LO_DEST_MSIZE(pHalGdmaAdapter->GdmaCtl.DestMsize) |
BIT_CTLX_LO_SRC_MSIZE(pHalGdmaAdapter->GdmaCtl.SrcMsize) |
BIT_CTLX_LO_TT_FC(pHalGdmaAdapter->GdmaCtl.TtFc) |
BIT_CTLX_LO_LLP_DST_EN(pHalGdmaAdapter->GdmaCtl.LlpDstEn) |
BIT_CTLX_LO_LLP_SRC_EN(pHalGdmaAdapter->GdmaCtl.LlpSrcEn) |
CtlxLow;
CtlxUp = BIT_CTLX_UP_BLOCK_BS(pGdmaChBkLi->BlockSize) |
BIT_CTLX_UP_DONE(pHalGdmaAdapter->GdmaCtl.Done) |
CtlxUp;
//4 Fill in CTLx register
HAL_GDMAX_WRITE32(GdmaIndex,
(REG_GDMA_CH_CTL + ChNum*REG_GDMA_CH_OFF),
CtlxLow
);
HAL_GDMAX_WRITE32(GdmaIndex,
(REG_GDMA_CH_CTL + ChNum*REG_GDMA_CH_OFF +4),
CtlxUp
);
//4 4) Program CFGx
CfgxLow = HAL_GDMAX_READ32(GdmaIndex,
(REG_GDMA_CH_CFG + ChNum*REG_GDMA_CH_OFF));
CfgxLow &= (BIT_INVC_CFGX_LO_CH_PRIOR &
BIT_INVC_CFGX_LO_CH_SUSP &
BIT_INVC_CFGX_LO_HS_SEL_DST &
BIT_INVC_CFGX_LO_HS_SEL_SRC &
BIT_INVC_CFGX_LO_LOCK_CH_L &
BIT_INVC_CFGX_LO_LOCK_B_L &
BIT_INVC_CFGX_LO_LOCK_CH &
BIT_INVC_CFGX_LO_LOCK_B &
BIT_INVC_CFGX_LO_RELOAD_SRC &
BIT_INVC_CFGX_LO_RELOAD_DST);
CfgxUp = HAL_GDMAX_READ32(GdmaIndex,
(REG_GDMA_CH_CFG + ChNum*REG_GDMA_CH_OFF + 4));
CfgxUp &= (BIT_INVC_CFGX_UP_FIFO_MODE &
BIT_INVC_CFGX_UP_DS_UPD_EN &
BIT_INVC_CFGX_UP_SS_UPD_EN &
BIT_INVC_CFGX_UP_SRC_PER &
BIT_INVC_CFGX_UP_DEST_PER);
CfgxLow = BIT_CFGX_LO_CH_PRIOR(pHalGdmaAdapter->GdmaCfg.ChPrior) |
BIT_CFGX_LO_CH_SUSP(pHalGdmaAdapter->GdmaCfg.ChSusp) |
BIT_CFGX_LO_HS_SEL_DST(pHalGdmaAdapter->GdmaCfg.HsSelDst) |
BIT_CFGX_LO_HS_SEL_SRC(pHalGdmaAdapter->GdmaCfg.HsSelSrc) |
BIT_CFGX_LO_LOCK_CH_L(pHalGdmaAdapter->GdmaCfg.LockChL) |
BIT_CFGX_LO_LOCK_B_L(pHalGdmaAdapter->GdmaCfg.LockBL) |
BIT_CFGX_LO_LOCK_CH(pHalGdmaAdapter->GdmaCfg.LockCh) |
BIT_CFGX_LO_LOCK_B(pHalGdmaAdapter->GdmaCfg.LockB) |
BIT_CFGX_LO_RELOAD_SRC(pHalGdmaAdapter->GdmaCfg.ReloadSrc) |
BIT_CFGX_LO_RELOAD_DST(pHalGdmaAdapter->GdmaCfg.ReloadDst) |
CfgxLow;
CfgxUp = BIT_CFGX_UP_FIFO_MODE(pHalGdmaAdapter->GdmaCfg.FifoMode) |
BIT_CFGX_UP_DS_UPD_EN(pHalGdmaAdapter->GdmaCfg.DsUpdEn) |
BIT_CFGX_UP_SS_UPD_EN(pHalGdmaAdapter->GdmaCfg.SsUpdEn) |
BIT_CFGX_UP_SRC_PER(pHalGdmaAdapter->GdmaCfg.SrcPer) |
BIT_CFGX_UP_DEST_PER(pHalGdmaAdapter->GdmaCfg.DestPer) |
CfgxUp;
HAL_GDMAX_WRITE32(GdmaIndex,
(REG_GDMA_CH_CFG + ChNum*REG_GDMA_CH_OFF),
CfgxLow
);
HAL_GDMAX_WRITE32(GdmaIndex,
(REG_GDMA_CH_CFG + ChNum*REG_GDMA_CH_OFF +4),
CfgxUp
);
//4 Check 4 Bytes Alignment
if ((u32)(pLliEle) & 0x3) {
DBG_GDMA_WARN("LLi Addr: 0x%x not 4 bytes alignment!!!!\n",
pHalGdmaAdapter->pLli);
return _FALSE;
}
HAL_GDMAX_WRITE32(GdmaIndex,
(REG_GDMA_CH_LLP + ChNum*REG_GDMA_CH_OFF),
pLliEle
);
//4 Update the first llp0
pLliEle->CtlxLow = CtlxLow;
pLliEle->CtlxUp = CtlxUp;
pLliEle->Llpx = (u32)pGdmaChLli->pLliEle;
DBG_GDMA_INFO("Block Count %d\n", MultiBlockCount);
pGdmaChBkLi = pGdmaChBkLi->pNextBlockSiz;
while (MultiBlockCount > 1) {
MultiBlockCount--;
DBG_GDMA_INFO("Block Count %d\n", MultiBlockCount);
pLliEle = pGdmaChLli->pLliEle;
if (NULL == pLliEle) {
DBG_GDMA_ERR("pLliEle Null Point!!!!!\n");
return _FALSE;
}
//4 Clear the last element llp enable bit
if (1 == MultiBlockCount) {
if (((pHalGdmaAdapter->Rsvd4to7) & 0x01) == 1){
CtlxLow &= (BIT_INVC_CTLX_LO_LLP_DST_EN &
BIT_INVC_CTLX_LO_LLP_SRC_EN);
}
}
//4 Update block size for transfer
CtlxUp &= (BIT_INVC_CTLX_UP_BLOCK_BS);
CtlxUp |= BIT_CTLX_UP_BLOCK_BS(pGdmaChBkLi->BlockSize);
//4 Update tje Lli and Block size list point to next llp
pGdmaChLli = pGdmaChLli->pNextLli;
pGdmaChBkLi = pGdmaChBkLi->pNextBlockSiz;
//4 Updatethe Llpx context
pLliEle->CtlxLow = CtlxLow;
pLliEle->CtlxUp = CtlxUp;
pLliEle->Llpx = (u32)(pGdmaChLli->pLliEle);
}
return _TRUE;
}
u32
HalGdmaQueryDArRtl8195a(
IN VOID *Data
)
{
PHAL_GDMA_ADAPTER pHalGdmaAdapter = (PHAL_GDMA_ADAPTER) Data;
u8 GdmaIndex = pHalGdmaAdapter->GdmaIndex;
u8 ChNum = pHalGdmaAdapter->ChNum;
u32 dar;
dar = HAL_GDMAX_READ32(GdmaIndex,
(REG_GDMA_CH_DAR + ChNum*REG_GDMA_CH_OFF));
return dar;
}
u32
HalGdmaQuerySArRtl8195a(
IN VOID *Data
)
{
PHAL_GDMA_ADAPTER pHalGdmaAdapter = (PHAL_GDMA_ADAPTER) Data;
u8 GdmaIndex = pHalGdmaAdapter->GdmaIndex;
u8 ChNum = pHalGdmaAdapter->ChNum;
u32 dar;
dar = HAL_GDMAX_READ32(GdmaIndex,
(REG_GDMA_CH_SAR + ChNum*REG_GDMA_CH_OFF));
return dar;
}
BOOL
HalGdmaQueryChEnRtl8195a (
IN VOID *Data
)
{
PHAL_GDMA_ADAPTER pHalGdmaAdapter = Data;
if (HAL_GDMAX_READ32(pHalGdmaAdapter->GdmaIndex, REG_GDMA_CH_EN) & (pHalGdmaAdapter->ChEn)) {
return 1;
} else {
return 0;
}
}
#endif
#endif // CONFIG_GDMA_EN

View file

@ -0,0 +1,56 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "rtl8195a.h"
#include "hal_gpio.h"
#include "rtl8195a_gpio.h"
#include "gpio_irq_api.h"
#ifdef CONFIG_GPIO_EN
extern PHAL_GPIO_ADAPTER _pHAL_Gpio_Adapter;
/**
* @brief Clear the pending interrupt of a specified pin
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval None
*/
HAL_Status
HAL_GPIO_ClearISR_8195a(
HAL_GPIO_PIN *GPIO_Pin
)
{
u8 port_num;
u8 pin_num;
HAL_GPIO_PIN_MODE pin_mode;
port_num = HAL_GPIO_GET_PORT_BY_NAME(GPIO_Pin->pin_name);
pin_num = HAL_GPIO_GET_PIN_BY_NAME(GPIO_Pin->pin_name);
pin_mode = GPIO_Pin->pin_mode;
if ((pin_mode & HAL_GPIO_PIN_INT_MODE)==0 || (port_num != GPIO_PORT_A)) {
DBG_GPIO_WARN("HAL_GPIO_ClearISR_8195a: This pin(%x:%x) is'nt an interrupt pin\n", GPIO_Pin->pin_name, GPIO_Pin->pin_mode);
return HAL_ERR_PARA;
}
if (GPIO_Lock() != HAL_OK) {
return HAL_BUSY;
}
// Clear pending interrupt before unmask it
HAL_WRITE32(GPIO_REG_BASE, GPIO_PORTA_EOI, (1<<pin_num));
GPIO_UnLock();
return HAL_OK;
}
#endif // CONFIG_GPIO_EN

View file

@ -0,0 +1,543 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "rtl8195a.h"
#ifdef CONFIG_I2C_EN
/* Used only for A~C Version */
#ifndef CONFIG_CHIP_E_CUT
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CSendRtl8195a
//
// Description:
// Send one byte to the I2C internal fifo, it will generate START and STOP bit
// automatically.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// _EXIT_SUCCESS if the sending succeeded.
// _EXIT_FAILURE if the sending failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-02-18.
//
//---------------------------------------------------------------------------------------------------
HAL_Status
HalI2CSendRtl8195a_Patch(
IN VOID *Data
){
PHAL_I2C_INIT_DAT pHalI2CInitData = (PHAL_I2C_INIT_DAT)Data;
u8 I2CIdx = pHalI2CInitData->I2CIdx;
u8 *pDat = pHalI2CInitData->I2CRWData;
u8 I2CCmd = pHalI2CInitData->I2CCmd;
u8 I2CStop = pHalI2CInitData->I2CStop;
u8 I2CReSTR= pHalI2CInitData->I2CReSTR;
DBG_I2C_INFO("HalI2CSendRtl8195a\n");
DBG_I2C_INFO("I2C Index: %x\n",I2CIdx);
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_DATA_CMD,
*(pDat) |
BIT_CTRL_IC_DATA_CMD_RESTART(I2CReSTR)|
BIT_CTRL_IC_DATA_CMD_CMD(I2CCmd) |
BIT_CTRL_IC_DATA_CMD_STOP(I2CStop));
return (HAL_OK);
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CInit8195a
//
// Description:
// To initialize I2C module by using the given data.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the DeInit process.
// _EXIT_SUCCESS if the initialization succeeded.
// _EXIT_FAILURE if the initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-04-02.
//
//---------------------------------------------------------------------------------------------------
HAL_Status
HalI2CMassSendRtl8195a_Patch(
IN VOID *Data
){
PHAL_I2C_INIT_DAT pHalI2CInitData = (PHAL_I2C_INIT_DAT)Data;
u8 I2CIdx = pHalI2CInitData->I2CIdx;
u8 I2CCmd = pHalI2CInitData->I2CCmd;
u8 I2CDatLen = pHalI2CInitData->I2CDataLen;
u8 *pDat = pHalI2CInitData->I2CRWData;
u8 I2CStopSet = pHalI2CInitData->I2CStop;
u8 I2CSTP;
u8 I2CReSRT = 0;
u8 DatCnt = 0;
/* Send I2C data one by one. The STOP bit is only used for the last byte.*/
for (DatCnt = 0; DatCnt < I2CDatLen; DatCnt++)
{
I2CSTP = 0;
if ((DatCnt == (I2CDatLen - 1)) && (I2CStopSet != 0)) {
I2CSTP = 1;
}
if ((DatCnt == 0) && ((pHalI2CInitData->RSVD0 & BIT0) != 0)) {
I2CReSRT = 1;
}
else {
I2CReSRT = 0;
}
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_DATA_CMD,
*(pDat+DatCnt) |
BIT_CTRL_IC_DATA_CMD_CMD(I2CCmd) |
BIT_CTRL_IC_DATA_CMD_RESTART(I2CReSRT) |
BIT_CTRL_IC_DATA_CMD_STOP(I2CSTP));
}
return HAL_OK;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CInit8195a
//
// Description:
// To initialize I2C module by using the given data.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the DeInit process.
// _EXIT_SUCCESS if the initialization succeeded.
// _EXIT_FAILURE if the initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-04-02.
//
//---------------------------------------------------------------------------------------------------
HAL_Status
HalI2CInit8195a_Patch(
IN VOID *Data
)
{
PHAL_I2C_INIT_DAT pHalI2CInitData = (PHAL_I2C_INIT_DAT)Data;
u8 Master;
u8 I2CIdx;
u8 SpdMd;
u8 AddrMd;
u8 ReSTR;
u8 StartByte;
u8 Specical;
u8 GC;
u16 I2CAckAddr;
u16 SdaHd;
u8 SdaSetup;
u8 RXTL;
u8 TXTL;
u8 SlvNoAck;
u32 INTRMsk;
u8 TxDMARqLv;
u8 RxDMARqLv;
u32 I2CTmp;
/* Get the I2C parameters*/
I2CIdx = pHalI2CInitData->I2CIdx;
SpdMd = pHalI2CInitData->I2CSpdMod;
AddrMd = pHalI2CInitData->I2CAddrMod;
I2CAckAddr = pHalI2CInitData->I2CAckAddr;
Master = pHalI2CInitData->I2CMaster;
SdaHd = pHalI2CInitData->I2CSdaHd;
SdaSetup = pHalI2CInitData->I2CSetup;
ReSTR = pHalI2CInitData->I2CReSTR;
GC = pHalI2CInitData->I2CGC;
StartByte = pHalI2CInitData->I2CStartB;
SlvNoAck = pHalI2CInitData->I2CSlvNoAck;
RXTL = pHalI2CInitData->I2CRXTL;
TXTL = pHalI2CInitData->I2CTXTL;
TxDMARqLv = pHalI2CInitData->I2CTxDMARqLv;
RxDMARqLv = pHalI2CInitData->I2CRxDMARqLv;
/* Disable the IC first */
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_ENABLE,BIT_CTRL_IC_ENABLE(0));
/* Master case*/
if (Master) {
/*RESTART MUST be set in these condition in Master mode.
But it might be NOT compatible in old slaves.*/
if ((AddrMd == I2C_ADDR_10BIT) || (SpdMd == I2C_HS_MODE))
ReSTR = 1;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_CON,
(BIT_CTRL_IC_CON_IC_SLAVE_DISABLE(1) |
BIT_CTRL_IC_CON_IC_RESTART_EN(ReSTR) |
BIT_CTRL_IC_CON_IC_10BITADDR_MASTER(AddrMd) |
BIT_CTRL_IC_CON_SPEED(SpdMd) |
BIT_CTRL_IC_CON_MASTER_MODE(Master)));
DBG_I2C_INFO("Init master, IC_CON%d[%2x]: %x\n", I2CIdx, REG_DW_I2C_IC_CON, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_CON));
/* To set target addr.*/
Specical = 0;
if ((GC!=0) || (StartByte!=0))
Specical = 1;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_TAR,
(BIT_CTRL_IC_TAR_IC_10BITADDR_MASTER(AddrMd) |
BIT_CTRL_IC_TAR_SPECIAL(Specical) |
BIT_CTRL_IC_TAR_GC_OR_START(StartByte) |
BIT_CTRL_IC_TAR(I2CAckAddr)));
/* To Set I2C clock*/
HalI2CSetCLKRtl8195a_Patch(pHalI2CInitData);
DBG_I2C_INFO("Init master, IC_TAR%d[%2x]: %x\n", I2CIdx, REG_DW_I2C_IC_TAR, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_TAR));
} /*if (Master)*/
else {
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_CON,
BIT_CTRL_IC_CON_IC_10BITADDR_SLAVE(AddrMd) |
BIT_CTRL_IC_CON_IC_SLAVE_DISABLE(Master) |
BIT_CTRL_IC_CON_SPEED(SpdMd)|
BIT_CTRL_IC_CON_MASTER_MODE(Master));
DBG_I2C_INFO("Init slave, IC_CON%d[%2x]: %x\n", I2CIdx, REG_DW_I2C_IC_CON, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_CON));
/* To set slave addr. */
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SAR,BIT_CTRL_IC_SAR(I2CAckAddr));
DBG_I2C_INFO("Init slave, IC_SAR%d[%2x]: %x\n", I2CIdx, REG_DW_I2C_IC_SAR, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_SAR));
/* To set slave no ack */
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SLV_DATA_NACK_ONLY,BIT_CTRL_IC_SLV_DATA_NACK_ONLY(SlvNoAck));
/* Set ack general call. */
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_ACK_GENERAL_CALL,BIT_CTRL_IC_ACK_GENERAL_CALL(pHalI2CInitData->I2CSlvAckGC));
DBG_I2C_INFO("Init slave, I2C_IC_ACK_GC%d[%2x]: %x\n", I2CIdx, REG_DW_I2C_IC_ACK_GENERAL_CALL, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_ACK_GENERAL_CALL));
/* to set SDA hold time */
//HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SDA_HOLD,BIT_CTRL_IC_SDA_HOLD(SdaHd));
//4
/* to set SDA setup time */
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SDA_SETUP,BIT_CTRL_IC_SDA_SETUP(SdaSetup));
}
/* to set SDA hold time */
INTRMsk = HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_CON);
if (BIT_GET_IC_CON_SPEED(INTRMsk) == I2C_SS_MODE) {
I2CTmp = HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_SS_SCL_LCNT);
} else if (BIT_GET_IC_CON_SPEED(INTRMsk) == I2C_FS_MODE) {
I2CTmp = HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_FS_SCL_LCNT);
} else {
I2CTmp = HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_HS_SCL_LCNT);
}
if (Master) {
if (SdaHd > (I2CTmp -2)) {
I2CTmp = I2CTmp -2;
if (I2CTmp < 1) {
I2CTmp = 1 + 1;
}
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SDA_HOLD,BIT_CTRL_IC_SDA_HOLD(I2CTmp));
} else {
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SDA_HOLD,BIT_CTRL_IC_SDA_HOLD(SdaHd));
}
} else {
if (SdaHd > (I2CTmp -2)) {
I2CTmp = I2CTmp -2;
if (I2CTmp < 7) {
I2CTmp = 7 + 1;
}
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SDA_HOLD,BIT_CTRL_IC_SDA_HOLD(I2CTmp));
} else {
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SDA_HOLD,BIT_CTRL_IC_SDA_HOLD(SdaHd));
}
}
//DBG_8195A("SDA:%x\n", HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_SDA_HOLD));
/* To set TX_Empty Level */
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_TX_TL,TXTL);
/* To set RX_Full Level */
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_RX_TL,RXTL);
/* To set TX/RX FIFO level */
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_DMA_TDLR,TxDMARqLv);
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_DMA_RDLR,RxDMARqLv);
DBG_I2C_INFO("Init i2c dev, I2C_IC_DMA_TDLR%d[%2x]: %x\n", I2CIdx, REG_DW_I2C_IC_DMA_TDLR, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_DMA_TDLR));
DBG_I2C_INFO("Init i2c dev, I2C_IC_DMA_RDLR%d[%2x]: %x\n", I2CIdx, REG_DW_I2C_IC_DMA_RDLR, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_DMA_RDLR));
/*I2C Clear all interrupts first*/
HalI2CClrAllIntrRtl8195a(pHalI2CInitData);
/*I2C Disable all interrupts first*/
INTRMsk = pHalI2CInitData->I2CIntrMSK;
pHalI2CInitData->I2CIntrMSK = 0;
HalI2CIntrCtrl8195a(pHalI2CInitData);
pHalI2CInitData->I2CIntrMSK = INTRMsk;
return HAL_OK;
}
//---------------------------------------------------------------------------------------------------
//Function Name:
// HalI2CSetCLKRtl8195a
//
// Description:
// To set I2C bus clock rate.
//
// Arguments:
// [in] VOID *Data -
// The I2C parameter data struct.
//
// Return:
// The status of the enable process.
// _EXIT_SUCCESS if the de-initialization succeeded.
// _EXIT_FAILURE if the de-initialization failed.
//
// Note:
// None
//
// See Also:
// NA
//
// Author:
// By Jason Deng, 2014-02-18.
//
//---------------------------------------------------------------------------------------------------
HAL_Status
HalI2CSetCLKRtl8195a_Patch(
IN VOID *Data
)
{
PHAL_I2C_INIT_DAT pHalI2CInitData = (PHAL_I2C_INIT_DAT)Data;
u8 SpdMd = pHalI2CInitData->I2CSpdMod;
u32 I2CClk = pHalI2CInitData->I2CClk;
u8 I2CIdx = pHalI2CInitData->I2CIdx;
u32 ICHLcnt;
u32 ICHtime;
u32 ICLtime;
/* Get the IC-Clk setting first for the following process*/
#ifdef CONFIG_FPGA
u32 IcClk = SYSTEM_CLK/1000000;
#else
u32 IcClk;
u32 ClkSELTmp = 0;
u32 CpuClkTmp = 0;
#if defined(CONFIG_CHIP_A_CUT)
CpuClkTmp = StartupHalGetCpuClk();
#elif (defined(CONFIG_CHIP_B_CUT) || defined(CONFIG_CHIP_C_CUT))
CpuClkTmp = HalGetCpuClk();
#endif
DBG_I2C_INFO("%s, CPU Clk:%x\n",__func__, CpuClkTmp);
ClkSELTmp = HAL_READ32(PERI_ON_BASE, REG_PESOC_CLK_SEL);
ClkSELTmp &= (~(BIT_PESOC_PERI_SCLK_SEL(3)));
HAL_WRITE32(PERI_ON_BASE,REG_PESOC_CLK_SEL,ClkSELTmp);
IcClk = (CpuClkTmp/1000000)>>1;
#if 0
if ((I2CClk > 0) && (I2CClk <= 400)) {
ClkSELTmp &= (~(BIT_PESOC_PERI_SCLK_SEL(3)));
HAL_WRITE32(PERI_ON_BASE,REG_PESOC_CLK_SEL,ClkSELTmp);
IcClk = ClkSELTmp/1000000; /*actually it's 12.5MHz*/
}
else {
ClkSELTmp &= (~(BIT_PESOC_PERI_SCLK_SEL(3)));
HAL_WRITE32(PERI_ON_BASE,REG_PESOC_CLK_SEL,ClkSELTmp);
IcClk = 100;
}
#endif
#endif
switch (SpdMd)
{
case I2C_SS_MODE:
{
ICHtime = ((1000000/I2CClk)*I2C_SS_MIN_SCL_HTIME)/(I2C_SS_MIN_SCL_HTIME+I2C_SS_MIN_SCL_LTIME);
ICLtime = ((1000000/I2CClk)*I2C_SS_MIN_SCL_LTIME)/(I2C_SS_MIN_SCL_HTIME+I2C_SS_MIN_SCL_LTIME);
ICHLcnt = (ICHtime * IcClk)/1000;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SS_SCL_HCNT,ICHLcnt);
DBG_I2C_INFO("IC_SS_SCL_HCNT%d[%2x]: %x\n", I2CIdx,
REG_DW_I2C_IC_SS_SCL_HCNT, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_SS_SCL_HCNT));
ICHLcnt = (ICLtime * IcClk)/1000;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SS_SCL_LCNT,ICHLcnt);
DBG_I2C_INFO("IC_SS_SCL_LCNT%d[%2x]: %x\n", I2CIdx,
REG_DW_I2C_IC_SS_SCL_LCNT, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_SS_SCL_LCNT));
break;
}
case I2C_FS_MODE:
{
ICHtime = ((1000000/I2CClk)*I2C_FS_MIN_SCL_HTIME)/(I2C_FS_MIN_SCL_HTIME+I2C_FS_MIN_SCL_LTIME);
ICLtime = ((1000000/I2CClk)*I2C_FS_MIN_SCL_LTIME)/(I2C_FS_MIN_SCL_HTIME+I2C_FS_MIN_SCL_LTIME);
ICHLcnt = (ICHtime * IcClk)/1000;
if (ICHLcnt>4)/*this part is according to the fine-tune result*/
ICHLcnt -= 4;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_FS_SCL_HCNT,ICHLcnt);
DBG_I2C_INFO("IC_FS_SCL_HCNT%d[%2x]: %x\n", I2CIdx,
REG_DW_I2C_IC_FS_SCL_HCNT, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_FS_SCL_HCNT));
ICHLcnt = (ICLtime * IcClk)/1000;
if (ICHLcnt>3)/*this part is according to the fine-tune result*/
ICHLcnt -= 3;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_FS_SCL_LCNT,ICHLcnt);
DBG_I2C_INFO("IC_FS_SCL_LCNT%d[%2x]: %x\n", I2CIdx,
REG_DW_I2C_IC_FS_SCL_LCNT, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_FS_SCL_LCNT));
break;
}
case I2C_HS_MODE:
{
ICHLcnt = 400;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SS_SCL_HCNT,ICHLcnt);
ICHLcnt = 470;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_SS_SCL_LCNT,ICHLcnt);
ICHLcnt = 60;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_FS_SCL_HCNT,ICHLcnt);
ICHLcnt = 130;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_FS_SCL_LCNT,ICHLcnt);
ICHtime = ((1000000/I2CClk)*I2C_HS_MIN_SCL_HTIME_100)/(I2C_HS_MIN_SCL_HTIME_100+I2C_HS_MIN_SCL_LTIME_100);
ICLtime = ((1000000/I2CClk)*I2C_HS_MIN_SCL_LTIME_100)/(I2C_HS_MIN_SCL_HTIME_100+I2C_HS_MIN_SCL_LTIME_100);
DBG_I2C_INFO("ICHtime:%x\n",ICHtime);
DBG_I2C_INFO("ICLtime:%x\n",ICLtime);
ICHLcnt = (ICHtime * IcClk)/1000;
if (ICHLcnt>8)/*this part is according to the fine-tune result*/
ICHLcnt -= 3;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_HS_SCL_HCNT,ICHLcnt);
DBG_I2C_INFO("IC_HS_SCL_HCNT%d[%2x]: %x\n", I2CIdx,
REG_DW_I2C_IC_HS_SCL_HCNT, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_HS_SCL_HCNT));
ICHLcnt = (ICLtime * IcClk)/1000;
if (ICHLcnt>6)/*this part is according to the fine-tune result*/
ICHLcnt -= 6;
HAL_I2C_WRITE32(I2CIdx,REG_DW_I2C_IC_HS_SCL_LCNT,ICHLcnt);
DBG_I2C_INFO("IC_HS_SCL_LCNT%d[%2x]: %x\n", I2CIdx,
REG_DW_I2C_IC_HS_SCL_LCNT, HAL_I2C_READ32(I2CIdx,REG_DW_I2C_IC_HS_SCL_LCNT));
break;
}
default:
break;
}
return HAL_OK;
}
HAL_Status
HalI2CEnableRtl8195a_Patch(
IN VOID *Data
){
PHAL_I2C_INIT_DAT pHalI2CInitData = (PHAL_I2C_INIT_DAT)Data;
u8 I2CIdx = pHalI2CInitData->I2CIdx;
u8 I2CICEn = pHalI2CInitData->I2CEn;
u32 I2CTimeoutCount;
u32 I2CStartCount;
/* Enable I2C module */
HAL_I2C_WRITE32(I2CIdx, REG_DW_I2C_IC_ENABLE, BIT_CTRL_IC_ENABLE(I2CICEn));
I2CTimeoutCount = ((10000/pHalI2CInitData->I2CClk) /TIMER_TICK_US) +1;
I2CStartCount = HalTimerOp.HalTimerReadCount(1);
if (!I2CICEn) {
while (HAL_I2C_READ32(I2CIdx, REG_DW_I2C_IC_ENABLE_STATUS) & BIT_IC_ENABLE_STATUS_IC_EN) {
if (HAL_TIMEOUT == I2CIsTimeout(I2CStartCount, I2CTimeoutCount)) {
return HAL_TIMEOUT;
}
}
} else {
while (!(HAL_I2C_READ32(I2CIdx, REG_DW_I2C_IC_ENABLE_STATUS) & BIT_IC_ENABLE_STATUS_IC_EN)) {
if (HAL_TIMEOUT == I2CIsTimeout(I2CStartCount, I2CTimeoutCount)) {
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
#endif
#endif // CONFIG_I2C_EN

View file

@ -0,0 +1,398 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "rtl8195a.h"
#include "rtl8195a_i2s.h"
#include "hal_i2s.h"
#ifdef CONFIG_I2S_EN
extern void *
_memset( void *s, int c, SIZE_T n );
RTK_STATUS
HalI2SInitRtl8195a_Patch(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
//u8 I2SEn;
u8 I2SMaster;
u8 I2SWordLen;
u8 I2SChNum;
u8 I2SPageNum;
u16 I2SPageSize;
u16 I2SRate;
u32 I2STxIntrMSK;
u32 I2SRxIntrMSK;
u8 I2STRxAct;
u8 *I2STxData;
u8 *I2SRxData;
u32 Tmp;
I2SIdx = pHalI2SInitData->I2SIdx;
//I2SEn = pHalI2SInitData->I2SEn;
I2SMaster = pHalI2SInitData->I2SMaster;
I2SWordLen = pHalI2SInitData->I2SWordLen;
I2SChNum = pHalI2SInitData->I2SChNum;
I2SPageNum = pHalI2SInitData->I2SPageNum;
I2SPageSize = pHalI2SInitData->I2SPageSize;
I2SRate = pHalI2SInitData->I2SRate;
I2STRxAct = pHalI2SInitData->I2STRxAct;
I2STxData = pHalI2SInitData->I2STxData;
I2SRxData = pHalI2SInitData->I2SRxData;
/* Disable the I2S first, and reset to default */
HAL_I2S_WRITE32(I2SIdx, REG_I2S_CTL, BIT_CTRL_CTLX_I2S_EN(0) |
BIT_CTRL_CTLX_I2S_SW_RSTN(1));
HAL_I2S_WRITE32(I2SIdx, REG_I2S_CTL, BIT_CTRL_CTLX_I2S_EN(0) |
BIT_CTRL_CTLX_I2S_SW_RSTN(0));
HAL_I2S_WRITE32(I2SIdx, REG_I2S_CTL, BIT_CTRL_CTLX_I2S_EN(0) |
BIT_CTRL_CTLX_I2S_SW_RSTN(1));
Tmp = HAL_I2S_READ32(I2SIdx, REG_I2S_CTL);
Tmp |= BIT_CTRL_CTLX_I2S_ENDIAN_SWAP(1);
if (I2SRate & 0x10)
{
Tmp |= BIT_CTRL_CTLX_I2S_CLK_SRC(1);
}
Tmp |= (BIT_CTRL_CTLX_I2S_WL(I2SWordLen) | BIT_CTRL_CTLX_I2S_CH_NUM(I2SChNum) |
BIT_CTRL_CTLX_I2S_SLAVE_MODE(I2SMaster) | BIT_CTRL_CTLX_I2S_TRX_ACT(I2STRxAct));
/* set 44.1khz clock source, word length, channel number, master or slave, trx act */
HAL_I2S_WRITE32(I2SIdx, REG_I2S_CTL, Tmp);
Tmp = BIT_CTRL_SETTING_I2S_PAGE_SZ(I2SPageSize) | BIT_CTRL_SETTING_I2S_PAGE_NUM(I2SPageNum) |
BIT_CTRL_SETTING_I2S_SAMPLE_RATE(I2SRate);
/* set page size, page number, sample rate */
HAL_I2S_WRITE32(I2SIdx, REG_I2S_SETTING, Tmp);
/* need tx rx buffer? need rx page own bit */
if (I2STxData != NULL) {
HAL_I2S_WRITE32(I2SIdx, REG_I2S_TX_PAGE_PTR, (u32)I2STxData);
}
if (I2SRxData != NULL) {
HAL_I2S_WRITE32(I2SIdx, REG_I2S_RX_PAGE_PTR, (u32)I2SRxData);
}
pHalI2SInitData->I2STxIdx = 0;
pHalI2SInitData->I2SRxIdx = 0;
pHalI2SInitData->I2SHWTxIdx = 0;
pHalI2SInitData->I2SHWRxIdx = 0;
/* I2S Clear all interrupts first */
HalI2SClrAllIntrRtl8195a(pHalI2SInitData);
/* I2S Disable all interrupts first */
I2STxIntrMSK = pHalI2SInitData->I2STxIntrMSK;
I2SRxIntrMSK = pHalI2SInitData->I2SRxIntrMSK;
pHalI2SInitData->I2STxIntrMSK = 0;
pHalI2SInitData->I2SRxIntrMSK = 0;
HalI2SIntrCtrlRtl8195a(pHalI2SInitData);
pHalI2SInitData->I2STxIntrMSK = I2STxIntrMSK;
pHalI2SInitData->I2SRxIntrMSK = I2SRxIntrMSK;
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SSetRateRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u32 reg_value;
I2SIdx = pHalI2SInitData->I2SIdx;
reg_value = HAL_I2S_READ32(I2SIdx, REG_I2S_CTL);
reg_value &= ~(BIT_MASK_CTLX_I2S_CLK_SRC << BIT_SHIFT_CTLX_I2S_CLK_SRC);
if (pHalI2SInitData->I2SRate & 0x10)
{
reg_value |= BIT_CTRL_CTLX_I2S_CLK_SRC(1);
}
HAL_I2S_WRITE32(I2SIdx, REG_I2S_CTL, reg_value);
reg_value = HAL_I2S_READ32(I2SIdx, REG_I2S_SETTING);
reg_value &= ~(BIT_MASK_SETTING_I2S_SAMPLE_RATE << BIT_SHIFT_SETTING_I2S_SAMPLE_RATE);
reg_value |= BIT_CTRL_SETTING_I2S_SAMPLE_RATE(pHalI2SInitData->I2SRate);
HAL_I2S_WRITE32(I2SIdx, REG_I2S_SETTING, reg_value);
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SSetWordLenRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u32 reg_value;
I2SIdx = pHalI2SInitData->I2SIdx;
reg_value = HAL_I2S_READ32(I2SIdx, REG_I2S_CTL);
reg_value &= ~(BIT_MASK_CTLX_I2S_WL << BIT_SHIFT_CTLX_I2S_WL);
reg_value |= BIT_CTRL_CTLX_I2S_WL(pHalI2SInitData->I2SWordLen);
HAL_I2S_WRITE32(I2SIdx, REG_I2S_CTL, reg_value);
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SSetChNumRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u32 reg_value;
I2SIdx = pHalI2SInitData->I2SIdx;
reg_value = HAL_I2S_READ32(I2SIdx, REG_I2S_CTL);
reg_value &= ~(BIT_MASK_CTLX_I2S_CH_NUM << BIT_SHIFT_CTLX_I2S_CH_NUM);
reg_value |= BIT_CTRL_CTLX_I2S_CH_NUM(pHalI2SInitData->I2SChNum);
HAL_I2S_WRITE32(I2SIdx, REG_I2S_CTL, reg_value);
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SSetPageNumRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u32 reg_value;
I2SIdx = pHalI2SInitData->I2SIdx;
reg_value = HAL_I2S_READ32(I2SIdx, REG_I2S_SETTING);
reg_value &= ~(BIT_MASK_SETTING_I2S_PAGE_NUM << BIT_SHIFT_SETTING_I2S_PAGE_NUM);
reg_value |= BIT_CTRL_SETTING_I2S_PAGE_NUM(pHalI2SInitData->I2SPageNum);
HAL_I2S_WRITE32(I2SIdx, REG_I2S_SETTING, reg_value);
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SSetPageSizeRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u32 reg_value;
I2SIdx = pHalI2SInitData->I2SIdx;
reg_value = HAL_I2S_READ32(I2SIdx, REG_I2S_SETTING);
reg_value &= ~(BIT_MASK_SETTING_I2S_PAGE_SZ << BIT_SHIFT_SETTING_I2S_PAGE_SZ);
reg_value |= BIT_CTRL_SETTING_I2S_PAGE_SZ(pHalI2SInitData->I2SPageSize);
HAL_I2S_WRITE32(I2SIdx, REG_I2S_SETTING, reg_value);
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SSetDirectionRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u32 reg_value;
I2SIdx = pHalI2SInitData->I2SIdx;
reg_value = HAL_I2S_READ32(I2SIdx, REG_I2S_CTL);
reg_value &= ~(BIT_MASK_CTLX_I2S_TRX_ACT << BIT_SHIFT_CTLX_I2S_TRX_ACT);
reg_value |= BIT_CTRL_CTLX_I2S_TRX_ACT(pHalI2SInitData->I2STRxAct);
HAL_I2S_WRITE32(I2SIdx, REG_I2S_CTL, reg_value);
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SSetDMABufRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u32 reg_value;
u32 page_num;
I2SIdx = pHalI2SInitData->I2SIdx;
reg_value = HAL_I2S_READ32(I2SIdx, REG_I2S_SETTING);
reg_value &= ~(BIT_MASK_SETTING_I2S_PAGE_SZ << BIT_SHIFT_SETTING_I2S_PAGE_SZ);
reg_value &= ~(BIT_MASK_SETTING_I2S_PAGE_NUM << BIT_SHIFT_SETTING_I2S_PAGE_NUM);
reg_value |= BIT_CTRL_SETTING_I2S_PAGE_SZ(pHalI2SInitData->I2SPageSize);
reg_value |= BIT_CTRL_SETTING_I2S_PAGE_NUM(pHalI2SInitData->I2SPageNum);
HAL_I2S_WRITE32(I2SIdx, REG_I2S_SETTING, reg_value);
page_num = pHalI2SInitData->I2SPageNum + 1;
if (pHalI2SInitData->I2STxData) {
HAL_I2S_WRITE32(I2SIdx, REG_I2S_TX_PAGE_PTR, (uint32_t)pHalI2SInitData->I2STxData);
pHalI2SInitData->I2STxIntrMSK = (1<<page_num) - 1;
} else {
pHalI2SInitData->I2STxIntrMSK = 0;
}
if (pHalI2SInitData->I2SRxData) {
HAL_I2S_WRITE32(I2SIdx, REG_I2S_RX_PAGE_PTR, (uint32_t)pHalI2SInitData->I2SRxData);
pHalI2SInitData->I2SRxIntrMSK = (1<<page_num) - 1;
} else {
pHalI2SInitData->I2SRxIntrMSK = 0;
}
// According to the page number to modify the ISR mask
HalI2SIntrCtrlRtl8195a(pHalI2SInitData);
return _EXIT_SUCCESS;
}
u8
HalI2SGetTxPageRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u16 I2STxIdx = pHalI2SInitData->I2STxIdx;
u32 reg;
I2SIdx = pHalI2SInitData->I2SIdx;
reg = HAL_I2S_READ32(I2SIdx, REG_I2S_TX_PAGE0_OWN+(I2STxIdx<<2));
if ((reg & (1<<31)) == 0) {
return I2STxIdx;
} else {
return 0xFF;
}
}
u8
HalI2SGetRxPageRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u16 I2SRxIdx = pHalI2SInitData->I2SRxIdx;
u32 reg;
I2SIdx = pHalI2SInitData->I2SIdx;
reg = HAL_I2S_READ32(I2SIdx, REG_I2S_RX_PAGE0_OWN+(I2SRxIdx << 2));
if ((reg & (1<<31)) == 0) {
return I2SRxIdx;
} else {
return 0xFF;
}
}
RTK_STATUS
HalI2SPageSendRtl8195a(
IN VOID *Data,
IN u8 PageIdx
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u16 I2STxIdx = pHalI2SInitData->I2STxIdx;
u8 I2SPageNum = pHalI2SInitData->I2SPageNum;
u8 I2SIdx;
if (I2STxIdx != PageIdx) {
DBG_I2S_ERR("HalI2SPageSendRtl8195a: UnExpected Page Index. TxPage=%d, Expected:%d\r\n",
PageIdx, I2STxIdx);
}
I2SIdx = pHalI2SInitData->I2SIdx;
HAL_I2S_WRITE32(I2SIdx, REG_I2S_TX_PAGE0_OWN + 4 * PageIdx, BIT_PAGE_I2S_OWN_BIT);
I2STxIdx = PageIdx + 1;
if (I2STxIdx > I2SPageNum) {
I2STxIdx = 0;
}
pHalI2SInitData->I2STxIdx = I2STxIdx;
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SPageRecvRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u16 I2SRxIdx = pHalI2SInitData->I2SRxIdx;
u8 I2SPageNum = pHalI2SInitData->I2SPageNum;
u32 reg;
u8 I2SIdx;
I2SIdx = pHalI2SInitData->I2SIdx;
reg = HAL_I2S_READ32(I2SIdx, REG_I2S_RX_PAGE0_OWN+(I2SRxIdx << 2));
if ((reg & (1<<31)) != 0) {
DBG_I2S_ERR("HalI2SPageRecvRtl8195a: No Idle Rx Page\r\n");
return _EXIT_FAILURE;
}
HAL_I2S_WRITE32(I2SIdx, REG_I2S_RX_PAGE0_OWN+(I2SRxIdx<<2), 1<<31);
I2SRxIdx += 1;
if (I2SRxIdx > I2SPageNum) {
I2SRxIdx = 0;
}
pHalI2SInitData->I2SRxIdx = I2SRxIdx;
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SClearAllOwnBitRtl8195a(
IN VOID *Data
)
{
PHAL_I2S_INIT_DAT pHalI2SInitData = (PHAL_I2S_INIT_DAT)Data;
u8 I2SIdx;
u32 i;
I2SIdx = pHalI2SInitData->I2SIdx;
for (i=0;i<4;i++) {
HAL_I2S_WRITE32(I2SIdx, REG_I2S_TX_PAGE0_OWN+(i<<2), 0);
HAL_I2S_WRITE32(I2SIdx, REG_I2S_RX_PAGE0_OWN+(i<<2), 0);
}
return _EXIT_SUCCESS;
}
RTK_STATUS
HalI2SDMACtrlRtl8195a(
IN VOID *Data
)
{
return _EXIT_SUCCESS;
}
#endif // CONFIG_I2S_EN

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,359 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "rtl8195a.h"
#include "rtl8195a_pcm.h"
#include "hal_pcm.h"
extern void *
_memset( void *s, int c, SIZE_T n );
VOID
HalPcmOnOffRtl8195a (
IN VOID *Data
)
{
PHAL_PCM_ADAPTER pHalPcmAdapter = (PHAL_PCM_ADAPTER) Data;
//todo on off pcm
}
//default sampling rate 8khz, linear, 10ms frame size, time slot 0 , tx+rx
// master mode, enable endian swap
// Question: need local tx/rx page?
BOOL
HalPcmInitRtl8195a(
IN VOID *Data
)
{
PHAL_PCM_ADAPTER pHalPcmAdapter = (PHAL_PCM_ADAPTER) Data;
_memset((void *)pHalPcmAdapter, 0, sizeof(HAL_PCM_ADAPTER));
//4 1) Initial PcmChCNR03 Register
pHalPcmAdapter->PcmChCNR03.CH0MuA = 0;
pHalPcmAdapter->PcmChCNR03.CH0Band = 0;
//4 1) Initial PcmTSR03 Register
pHalPcmAdapter->PcmTSR03.CH0TSA = 0;
//4 1) Initial PcmBSize03 Register
pHalPcmAdapter->PcmBSize03.CH0BSize = 39; // 40word= 8khz*0.01s*1ch*2byte/4byte
//4 2) Initial Ctl Register
pHalPcmAdapter->PcmCtl.Pcm_En = 1;
pHalPcmAdapter->PcmCtl.SlaveMode = 0;
pHalPcmAdapter->PcmCtl.FsInv = 0;
pHalPcmAdapter->PcmCtl.LinearMode = 0;
pHalPcmAdapter->PcmCtl.LoopBack = 0;
pHalPcmAdapter->PcmCtl.EndianSwap = 1;
return _TRUE;
}
BOOL
HalPcmSettingRtl8195a(
IN VOID *Data
)
{
PHAL_PCM_ADAPTER pHalPcmAdapter = (PHAL_PCM_ADAPTER) Data;
u8 PcmIndex = pHalPcmAdapter->PcmIndex;
u8 PcmCh = pHalPcmAdapter->PcmCh;
u32 RegCtl, RegChCNR03, RegTSR03, RegBSize03;
u32 Isr03;
PcmCh=0;
//4 1) Check Pcm index is avaliable
if (HAL_PCMX_READ32(PcmIndex, REG_PCM_CHCNR03) & (BIT24|BIT25)) {
//4 Pcm index is running, stop first
DBG_8195A_DMA("Error, PCM %d ch%d is running; stop first!\n", PcmIndex, PcmCh);
return _FALSE;
}
//4 2) Check if there are the pending isr
Isr03 = HAL_PCMX_READ32(PcmIndex, REG_PCM_ISR03);
Isr03 &= 0xff000000;
//4 Clear Pending Isr
HAL_PCMX_WRITE32(PcmIndex, REG_PCM_ISR03, Isr03);
//}
//4 3) Process RegCtl
RegCtl = HAL_PCMX_READ32(PcmIndex, REG_PCM_CTL);
//4 Clear Ctl register bits
RegCtl &= ( BIT_INV_CTLX_SLAVE_SEL &
BIT_INV_CTLX_FSINV &
BIT_INV_CTLX_PCM_EN &
BIT_INV_CTLX_LINEARMODE &
BIT_INV_CTLX_LOOP_BACK &
BIT_INV_CTLX_ENDIAN_SWAP);
RegCtl = BIT_CTLX_SLAVE_SEL(pHalPcmAdapter->PcmCtl.SlaveMode) |
BIT_CTLX_FSINV(pHalPcmAdapter->PcmCtl.FsInv) |
BIT_CTLX_PCM_EN(pHalPcmAdapter->PcmCtl.Pcm_En) |
BIT_CTLX_LINEARMODE(pHalPcmAdapter->PcmCtl.LinearMode) |
BIT_CTLX_LOOP_BACK(pHalPcmAdapter->PcmCtl.LoopBack) |
BIT_CTLX_ENDIAN_SWAP(pHalPcmAdapter->PcmCtl.EndianSwap) |
RegCtl;
HAL_PCMX_WRITE32(PcmIndex, REG_PCM_CTL, RegCtl);
//4 4) Program ChCNR03 Register
RegChCNR03 = HAL_PCMX_READ32(PcmIndex, REG_PCM_CHCNR03);
RegChCNR03 &= (BIT_INV_CHCNR03_CH0RE &
BIT_INV_CHCNR03_CH0TE &
BIT_INV_CHCNR03_CH0MUA &
BIT_INV_CHCNR03_CH0BAND);
RegChCNR03 = BIT_CHCNR03_CH0RE(pHalPcmAdapter->PcmChCNR03.CH0RE) |
BIT_CHCNR03_CH0TE(pHalPcmAdapter->PcmChCNR03.CH0TE) |
BIT_CHCNR03_CH0MUA(pHalPcmAdapter->PcmChCNR03.CH0MuA) |
BIT_CHCNR03_CH0BAND(pHalPcmAdapter->PcmChCNR03.CH0Band) |
RegChCNR03;
DBG_8195A_DMA("RegChCNR03 data:0x%x\n", RegChCNR03);
HAL_PCMX_WRITE32(PcmIndex, REG_PCM_CHCNR03, RegChCNR03);
// time slot
RegTSR03 = HAL_PCMX_READ32(PcmIndex, REG_PCM_TSR03);
RegTSR03 &= (BIT_INV_TSR03_CH0TSA);
RegTSR03 = BIT_TSR03_CH0TSA(pHalPcmAdapter->PcmTSR03.CH0TSA) |
RegTSR03;
DBG_8195A_DMA("RegTSR03 data:0x%x\n", RegTSR03);
HAL_PCMX_WRITE32(PcmIndex, REG_PCM_TSR03, RegTSR03);
// buffer size
RegBSize03 = HAL_PCMX_READ32(PcmIndex, REG_PCM_BSIZE03);
RegBSize03 &= (BIT_INV_BSIZE03_CH0BSIZE);
RegBSize03 = BIT_BSIZE03_CH0BSIZE(pHalPcmAdapter->PcmBSize03.CH0BSize) |
RegBSize03;
DBG_8195A_DMA("RegBSize03 data:0x%x\n", RegBSize03);
HAL_PCMX_WRITE32(PcmIndex, REG_PCM_BSIZE03, RegBSize03);
return _TRUE;
}
BOOL
HalPcmEnRtl8195a(
IN VOID *Data
)
{
PHAL_PCM_ADAPTER pHalPcmAdapter = (PHAL_PCM_ADAPTER) Data;
u8 PcmIndex = pHalPcmAdapter->PcmIndex;
u8 PcmCh = pHalPcmAdapter->PcmCh;
u32 RegChCNR03;
PcmCh=0;
pHalPcmAdapter->Enable = 1;
//4 1) Check Pcm index is avaliable
RegChCNR03 = HAL_PCMX_READ32(PcmIndex, REG_PCM_CHCNR03);
if (RegChCNR03 & (BIT24|BIT25)) {
//4 Pcm index is running, stop first
DBG_8195A_DMA("Error, PCM %d ch%d is running; stop first!\n", PcmIndex, PcmCh);
return _FALSE;
}
HAL_PCMX_WRITE32(PcmIndex, REG_PCM_CHCNR03, RegChCNR03|BIT24|BIT25);
pHalPcmAdapter->PcmChCNR03.CH0RE = 1;
pHalPcmAdapter->PcmChCNR03.CH0TE = 1;
return _TRUE;
}
BOOL
HalPcmDisRtl8195a(
IN VOID *Data
)
{
PHAL_PCM_ADAPTER pHalPcmAdapter = (PHAL_PCM_ADAPTER) Data;
u8 PcmIndex = pHalPcmAdapter->PcmIndex;
u8 PcmCh = pHalPcmAdapter->PcmCh;
u32 RegChCNR03;
PcmCh=0;
pHalPcmAdapter->Enable = 0;
RegChCNR03 = HAL_PCMX_READ32(PcmIndex, REG_PCM_CHCNR03);
HAL_PCMX_WRITE32(PcmIndex, REG_PCM_CHCNR03, RegChCNR03&(~(BIT24|BIT25)));
pHalPcmAdapter->PcmChCNR03.CH0RE = 0;
pHalPcmAdapter->PcmChCNR03.CH0TE = 0;
return _TRUE;
}
BOOL
HalPcmIsrEnAndDisRtl8195a (
IN VOID *Data
)
{
/*
PHAL_GDMA_ADAPTER pHalGdmaAdapter = (PHAL_GDMA_ADAPTER) Data;
u32 IsrMask, Addr, IsrCtrl;
u8 IsrTypeIndex = 0;
for (IsrTypeIndex=0; IsrTypeIndex<5; IsrTypeIndex++) {
if (BIT_(IsrTypeIndex) & pHalGdmaAdapter->GdmaIsrType) {
Addr = (REG_GDMA_MASK_INT_BASE + IsrTypeIndex*8);
IsrMask = HAL_GDMAX_READ32(pHalGdmaAdapter->GdmaIndex, Addr);
IsrCtrl = ((pHalGdmaAdapter->IsrCtrl)?(pHalGdmaAdapter->ChEn | IsrMask):
((~pHalGdmaAdapter->ChEn) & IsrMask));
HAL_GDMAX_WRITE32(pHalGdmaAdapter->GdmaIndex,
Addr,
IsrCtrl
);
}
}
*/
return _TRUE;
}
BOOL
HalPcmDumpRegRtl8195a (
IN VOID *Data
)
{
/*
PHAL_GDMA_ADAPTER pHalGdmaAdapter = Data;
HAL_GDMAX_WRITE32(pHalGdmaAdapter->GdmaIndex,
REG_GDMA_CH_EN,
(HAL_GDMAX_READ32(pHalGdmaAdapter->GdmaIndex, REG_GDMA_CH_EN)|
(pHalGdmaAdapter->ChEn))
);
*/
return _TRUE;
}
BOOL
HalPcmRtl8195a (
IN VOID *Data
)
{
/* PHAL_GDMA_ADAPTER pHalGdmaAdapter = (PHAL_GDMA_ADAPTER) Data;
HAL_GDMAX_WRITE32(pHalGdmaAdapter->GdmaIndex,
REG_GDMA_CH_EN,
(HAL_GDMAX_READ32(pHalGdmaAdapter->GdmaIndex, REG_GDMA_CH_EN)&
~(pHalGdmaAdapter->ChEn))
);
*/
return _TRUE;
}
/*
u8
HalGdmaChIsrCleanRtl8195a (
IN VOID *Data
)
{
PHAL_GDMA_ADAPTER pHalGdmaAdapter = (PHAL_GDMA_ADAPTER) Data;
u32 IsrStatus;
u8 IsrTypeIndex = 0, IsrActBitMap = 0;
for (IsrTypeIndex=0; IsrTypeIndex<5; IsrTypeIndex++) {
IsrStatus = HAL_GDMAX_READ32(pHalGdmaAdapter->GdmaIndex,
(REG_GDMA_RAW_INT_BASE + IsrTypeIndex*8));
// DBG_8195A_DMA("Isr Type %d: Isr Status 0x%x\n", IsrTypeIndex, IsrStatus);
IsrStatus = (IsrStatus & (pHalGdmaAdapter->ChEn & 0xFF));
if (BIT_(IsrTypeIndex) & pHalGdmaAdapter->GdmaIsrType) {
HAL_GDMAX_WRITE32(pHalGdmaAdapter->GdmaIndex,
(REG_GDMA_CLEAR_INT_BASE+ (IsrTypeIndex*8)),
(IsrStatus)// & (pHalGdmaAdapter->ChEn & 0xFF))
);
IsrActBitMap |= BIT_(IsrTypeIndex);
}
}
return IsrActBitMap;
}
VOID
HalGdmaChCleanAutoSrcRtl8195a (
IN VOID *Data
)
{
u32 CfgxLow;
PHAL_GDMA_ADAPTER pHalGdmaAdapter = (PHAL_GDMA_ADAPTER) Data;
CfgxLow = HAL_GDMAX_READ32(pHalGdmaAdapter->GdmaIndex,
(REG_GDMA_CH_CFG + pHalGdmaAdapter->ChNum*REG_GDMA_CH_OFF));
CfgxLow &= BIT_INVC_CFGX_LO_RELOAD_SRC;
HAL_GDMAX_WRITE32(pHalGdmaAdapter->GdmaIndex,
(REG_GDMA_CH_CFG + pHalGdmaAdapter->ChNum*REG_GDMA_CH_OFF),
CfgxLow
);
DBG_8195A_DMA("CFG Low data:0x%x\n",
HAL_GDMAX_READ32(pHalGdmaAdapter->GdmaIndex, (REG_GDMA_CH_CFG + pHalGdmaAdapter->ChNum*REG_GDMA_CH_OFF)));
}
VOID
HalGdmaChCleanAutoDstRtl8195a (
IN VOID *Data
)
{
u32 CfgxLow;
PHAL_GDMA_ADAPTER pHalGdmaAdapter = (PHAL_GDMA_ADAPTER) Data;
CfgxLow = HAL_GDMAX_READ32(pHalGdmaAdapter->GdmaIndex,
(REG_GDMA_CH_CFG + pHalGdmaAdapter->ChNum*REG_GDMA_CH_OFF));
CfgxLow &= BIT_INVC_CFGX_LO_RELOAD_DST;
HAL_GDMAX_WRITE32(pHalGdmaAdapter->GdmaIndex,
(REG_GDMA_CH_CFG + pHalGdmaAdapter->ChNum*REG_GDMA_CH_OFF),
CfgxLow
);
DBG_8195A_DMA("CFG Low data:0x%x\n",
HAL_GDMAX_READ32(pHalGdmaAdapter->GdmaIndex, (REG_GDMA_CH_CFG + pHalGdmaAdapter->ChNum*REG_GDMA_CH_OFF)));
}
*/

View file

@ -0,0 +1,219 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "rtl8195a.h"
#include "hal_peri_on.h"
#ifdef CONFIG_PWM_EN
#include "rtl8195a_pwm.h"
#include "hal_pwm.h"
extern HAL_PWM_ADAPTER PWMPin[];
extern HAL_TIMER_OP HalTimerOp;
/**
* @brief Configure a G-Timer to generate a tick with certain time.
*
* @param pwm_id: the PWM pin index
* @param tick_time: the time (micro-second) of a tick
*
* @retval None
*/
void
Pwm_SetTimerTick_8195a(
HAL_PWM_ADAPTER *pPwmAdapt,
u32 tick_time
)
{
TIMER_ADAPTER TimerAdapter;
if (tick_time <= MIN_GTIMER_TIMEOUT) {
tick_time = MIN_GTIMER_TIMEOUT;
}
else {
tick_time = (((tick_time-1)/TIMER_TICK_US)+1) * TIMER_TICK_US;
}
// Initial a G-Timer for the PWM pin
if (pPwmAdapt->tick_time != tick_time) {
TimerAdapter.IrqDis = 1; // Disable Irq
TimerAdapter.IrqHandle.IrqFun = (IRQ_FUN) NULL;
TimerAdapter.IrqHandle.IrqNum = TIMER2_7_IRQ;
TimerAdapter.IrqHandle.Priority = 10;
TimerAdapter.IrqHandle.Data = (u32)NULL;
TimerAdapter.TimerId = pPwmAdapt->gtimer_id;
TimerAdapter.TimerIrqPriority = 0;
TimerAdapter.TimerLoadValueUs = tick_time-1;
TimerAdapter.TimerMode = 1; // auto-reload with user defined value
HalTimerOp.HalTimerInit((VOID*) &TimerAdapter);
pPwmAdapt->tick_time = tick_time;
DBG_PWM_INFO("%s: Timer_Id=%d Count=%d\n", __FUNCTION__, pPwmAdapt->gtimer_id, tick_time);
}
}
/**
* @brief Set the duty ratio of the PWM pin.
*
* @param pwm_id: the PWM pin index
* @param period: the period time, in micro-second.
* @param pulse_width: the pulse width time, in micro-second.
*
* @retval None
*/
void
HAL_Pwm_SetDuty_8195a(
HAL_PWM_ADAPTER *pPwmAdapt,
u32 period,
u32 pulse_width
)
{
u32 RegAddr;
u32 RegValue;
u32 period_tick;
u32 pulsewidth_tick;
u32 tick_time;
u8 timer_id;
u8 pwm_id;
pwm_id = pPwmAdapt->pwm_id;
// Adjust the tick time to a proper value
if (period < (MIN_GTIMER_TIMEOUT*2)) {
DBG_PWM_ERR ("HAL_Pwm_SetDuty_8195a: Invalid PWM period(%d), too short!!\n", period);
tick_time = MIN_GTIMER_TIMEOUT;
period = MIN_GTIMER_TIMEOUT*2;
}
else {
tick_time = period / 0x3fc; // a duty cycle be devided into 1020 ticks
if (tick_time < MIN_GTIMER_TIMEOUT) {
tick_time = MIN_GTIMER_TIMEOUT;
}
}
Pwm_SetTimerTick_8195a(pPwmAdapt, tick_time);
tick_time = pPwmAdapt->tick_time;
#if 0
// Check if current tick time needs adjustment
if ((pPwmAdapt->tick_time << 12) <= period) {
// need a longger tick time
}
else if ((pPwmAdapt->tick_time >> 2) >= period) {
// need a shorter tick time
}
#endif
period_tick = period/tick_time;
if (period_tick == 0) {
period_tick = 1;
}
if (pulse_width >= period) {
// pulse_width = period-1;
pulse_width = period;
}
pulsewidth_tick = pulse_width/tick_time;
if (pulsewidth_tick == 0) {
// pulsewidth_tick = 1;
}
timer_id = pPwmAdapt->gtimer_id;
pPwmAdapt->period = period_tick & 0x3ff;
pPwmAdapt->pulsewidth = pulsewidth_tick & 0x3ff;
RegAddr = REG_PERI_PWM0_CTRL + (pwm_id*4);
RegValue = BIT31 | (timer_id<<24) | (pulsewidth_tick<<12) | period_tick;
HAL_WRITE32(PERI_ON_BASE, RegAddr, RegValue);
}
/**
* @brief Initializes and enable a PWM control pin.
*
* @param pwm_id: the PWM pin index
* @param sel: pin mux selection
* @param timer_id: the G-timer index assigned to this PWM
*
* @retval HAL_Status
*/
HAL_Status
HAL_Pwm_Init_8195a(
HAL_PWM_ADAPTER *pPwmAdapt
)
{
u32 pwm_id;
u32 pin_sel;
pwm_id = pPwmAdapt->pwm_id;
pin_sel = pPwmAdapt->sel;
// Initial a G-Timer for the PWM pin
Pwm_SetTimerTick_8195a(pPwmAdapt, MIN_GTIMER_TIMEOUT);
// Set default duty ration
HAL_Pwm_SetDuty_8195a(pPwmAdapt, 20000, 10000);
// Configure the Pin Mux
PinCtrl((PWM0+pwm_id), pin_sel, 1);
return HAL_OK;
}
/**
* @brief Enable a PWM control pin.
*
* @param pwm_id: the PWM pin index
*
* @retval None
*/
void
HAL_Pwm_Enable_8195a(
HAL_PWM_ADAPTER *pPwmAdapt
)
{
u32 pwm_id;
pwm_id = pPwmAdapt->pwm_id;
// Configure the Pin Mux
if (!pPwmAdapt->enable) {
PinCtrl((PWM0+pwm_id), pPwmAdapt->sel, 1);
HalTimerOp.HalTimerEn(pPwmAdapt->gtimer_id);
pPwmAdapt->enable = 1;
}
}
/**
* @brief Disable a PWM control pin.
*
* @param pwm_id: the PWM pin index
*
* @retval None
*/
void
HAL_Pwm_Disable_8195a(
HAL_PWM_ADAPTER *pPwmAdapt
)
{
u32 pwm_id;
pwm_id = pPwmAdapt->pwm_id;
// Configure the Pin Mux
if (pPwmAdapt->enable) {
PinCtrl((PWM0+pwm_id), pPwmAdapt->sel, 0);
HalTimerOp.HalTimerDis(pPwmAdapt->gtimer_id);
pPwmAdapt->enable = 0;
}
}
#endif //CONFIG_PWM_EN

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,342 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#include "rtl8195a.h"
#include "rtl8195a_timer.h"
#ifdef CONFIG_TIMER_EN
extern u32 gTimerRecord;
extern IRQ_FUN Timer2To7VectorTable[MAX_TIMER_VECTOR_TABLE_NUM];
#ifdef CONFIG_CHIP_A_CUT
HAL_RAM_BSS_SECTION u32 gTimerRecord;
#endif
#if defined(CONFIG_CHIP_C_CUT) || defined(CONFIG_CHIP_E_CUT)
extern u32 Timer2To7HandlerData[MAX_TIMER_VECTOR_TABLE_NUM];
#else
u32 Timer2To7HandlerData[MAX_TIMER_VECTOR_TABLE_NUM];
#endif
VOID
HalTimerIrq2To7Handle_Patch(
IN VOID *Data
)
{
u32 TimerIrqStatus = 0, CheckIndex;
IRQ_FUN pHandler;
TimerIrqStatus = HAL_TIMER_READ32(TIMERS_INT_STATUS_OFF);
DBG_TIMER_INFO("%s:TimerIrqStatus: 0x%x\n",__FUNCTION__, TimerIrqStatus);
for (CheckIndex = 2; CheckIndex<8; CheckIndex++) {
//3 Check IRQ status bit and Timer X IRQ enable bit
if ((TimerIrqStatus & BIT_(CheckIndex)) &&
(HAL_TIMER_READ32(TIMER_INTERVAL*CheckIndex + TIMER_CTL_REG_OFF) & BIT0)) {
//3 Execute Timer callback function
pHandler = Timer2To7VectorTable[CheckIndex-2];
if (pHandler != NULL) {
pHandler((void*)Timer2To7HandlerData[CheckIndex-2]);
}
//3 Clear Timer ISR
HAL_TIMER_READ32(TIMER_INTERVAL*CheckIndex + TIMER_EOI_OFF);
}
}
}
HAL_Status
HalTimerIrqRegisterRtl8195a_Patch(
IN VOID *Data
)
{
PTIMER_ADAPTER pHalTimerAdap = (PTIMER_ADAPTER) Data;
IRQ_HANDLE TimerIrqHandle;
//IRQ_FUN BackUpIrqFun = NULL;
if (pHalTimerAdap->TimerId > 7) {
DBG_TIMER_ERR("%s: No Support Timer ID %d!\r\n", __FUNCTION__, pHalTimerAdap->TimerId);
return HAL_ERR_PARA;
}
else {
if (pHalTimerAdap->TimerId > 1) {
TimerIrqHandle.IrqNum = TIMER2_7_IRQ;
TimerIrqHandle.IrqFun = (IRQ_FUN) HalTimerIrq2To7Handle_Patch;
Timer2To7VectorTable[pHalTimerAdap->TimerId-2] =
(IRQ_FUN) pHalTimerAdap->IrqHandle.IrqFun;
Timer2To7HandlerData[pHalTimerAdap->TimerId-2] =
(uint32_t) pHalTimerAdap->IrqHandle.Data;
}
else {
TimerIrqHandle.IrqNum = (pHalTimerAdap->TimerId ? TIMER1_IRQ : TIMER0_IRQ);
TimerIrqHandle.IrqFun = (IRQ_FUN) pHalTimerAdap->IrqHandle.IrqFun;
}
TimerIrqHandle.Data = (u32)pHalTimerAdap;
InterruptRegister(&TimerIrqHandle);
}
return HAL_OK;
}
#if defined(CONFIG_CHIP_A_CUT) || defined(CONFIG_CHIP_B_CUT)
// Patch for A/B Cut
HAL_Status
HalTimerInitRtl8195a_Patch(
IN VOID *Data
)
{
PTIMER_ADAPTER pHalTimerAdap = (PTIMER_ADAPTER) Data;
HAL_Status ret=HAL_OK;
u32 ControlReg;
if ((gTimerRecord & (1<<pHalTimerAdap->TimerId)) != 0) {
DBG_TIMER_ERR ("%s:Error! Timer %d is occupied!\r\n", __FUNCTION__, pHalTimerAdap->TimerId);
return HAL_BUSY;
}
//4 1) Config Timer Setting
ControlReg = ((u32)pHalTimerAdap->TimerMode<<1)|((u32)pHalTimerAdap->IrqDis<<2);
/*
set TimerControlReg
0: Timer enable (0,disable; 1,enable)
1: Timer Mode (0, free-running mode; 1, user-defined count mode)
2: Timer Interrupt Mask (0, not masked; 1,masked)
*/
HAL_TIMER_WRITE32((TIMER_INTERVAL*pHalTimerAdap->TimerId + TIMER_CTL_REG_OFF),
ControlReg);
if (pHalTimerAdap->TimerMode) {
//User-defined Mode
HalTimerReLoadRtl8195a_Patch(pHalTimerAdap->TimerId ,pHalTimerAdap->TimerLoadValueUs);
}
else {
// set TimerLoadCount Register
HAL_TIMER_WRITE32((TIMER_INTERVAL*pHalTimerAdap->TimerId + TIMER_LOAD_COUNT_OFF),
0xFFFFFFFF);
}
//4 2) Setting Timer IRQ
if (!pHalTimerAdap->IrqDis) {
if (pHalTimerAdap->IrqHandle.IrqFun != NULL) {
//4 2.1) Initial TimerIRQHandle
ret = HalTimerIrqRegisterRtl8195a_Patch(pHalTimerAdap);
if (HAL_OK != ret) {
DBG_TIMER_ERR ("%s: Timer %d Register IRQ Err!\r\n", __FUNCTION__, pHalTimerAdap->TimerId);
return ret;
}
//4 2.2) Enable TimerIRQ for Platform
InterruptEn((PIRQ_HANDLE)&pHalTimerAdap->IrqHandle);
}
else {
DBG_TIMER_ERR ("%s: Timer %d ISR Handler is NULL!\r\n", __FUNCTION__, pHalTimerAdap->TimerId);
return HAL_ERR_PARA;
}
}
//4 4) Enable Timer
// HAL_TIMER_WRITE32((TIMER_INTERVAL*pHalTimerAdap->TimerId + TIMER_CTL_REG_OFF),
// (ControlReg|0x1));
gTimerRecord |= (1<<pHalTimerAdap->TimerId);
return ret;
}
#elif defined(CONFIG_CHIP_C_CUT)
// Patch for C Cut
HAL_Status
HalTimerInitRtl8195a_Patch(
IN VOID *Data
)
{
PTIMER_ADAPTER pHalTimerAdap = (PTIMER_ADAPTER) Data;
HAL_Status ret=HAL_OK;
ret = HalTimerInitRtl8195aV02(Data);
// Patch the Rom code to load the correct count value
if (pHalTimerAdap->TimerMode) {
//User-defined Mode
HalTimerReLoadRtl8195a_Patch(pHalTimerAdap->TimerId ,pHalTimerAdap->TimerLoadValueUs);
}
return ret;
}
#endif
#if defined(CONFIG_CHIP_A_CUT) || defined(CONFIG_CHIP_B_CUT)
HAL_Status
HalTimerIrqUnRegisterRtl8195a_Patch(
IN VOID *Data
)
{
PTIMER_ADAPTER pHalTimerAdap = (PTIMER_ADAPTER) Data;
PIRQ_HANDLE pTimerIrqHandle;
u32 i;
pTimerIrqHandle = &pHalTimerAdap->IrqHandle;
if (pHalTimerAdap->TimerId > 7) {
DBG_TIMER_ERR("%s:Error: No Support Timer ID!\n", __FUNCTION__);
return HAL_ERR_PARA;
}
else {
if (pHalTimerAdap->TimerId > 1) {
pTimerIrqHandle->IrqNum = TIMER2_7_IRQ;
Timer2To7VectorTable[pHalTimerAdap->TimerId-2] = NULL;
for (i=0;i<MAX_TIMER_VECTOR_TABLE_NUM;i++) {
if (Timer2To7VectorTable[i] != NULL) {
break;
}
}
if (i == MAX_TIMER_VECTOR_TABLE_NUM) {
// All timer UnRegister Interrupt
InterruptDis((PIRQ_HANDLE)&pHalTimerAdap->IrqHandle);
InterruptUnRegister(pTimerIrqHandle);
}
}
else {
pTimerIrqHandle->IrqNum = (pHalTimerAdap->TimerId ? TIMER1_IRQ : TIMER0_IRQ);
InterruptUnRegister(pTimerIrqHandle);
}
}
return HAL_OK;
}
VOID
HalTimerDeInitRtl8195a_Patch(
IN VOID *Data
)
{
PTIMER_ADAPTER pHalTimerAdap = (PTIMER_ADAPTER) Data;
u32 timer_id;
timer_id = pHalTimerAdap->TimerId;
HalTimerDisRtl8195a (timer_id);
if (!pHalTimerAdap->IrqDis) {
if (pHalTimerAdap->IrqHandle.IrqFun != NULL) {
HalTimerIrqUnRegisterRtl8195a_Patch(pHalTimerAdap);
}
}
gTimerRecord &= ~(1<<pHalTimerAdap->TimerId);
}
u32
HalTimerReadCountRtl8195a_Patch(
IN u32 TimerId
)
{
u32 TimerCountOld;
u32 TimerCountNew;
u32 TimerRDCnt;
TimerRDCnt = 0;
TimerCountOld = HAL_TIMER_READ32(TimerId*TIMER_INTERVAL + TIMER_CURRENT_VAL_OFF);
while(1) {
TimerCountNew = HAL_TIMER_READ32(TimerId*TIMER_INTERVAL + TIMER_CURRENT_VAL_OFF);
if (TimerCountOld == TimerCountNew) {
return (u32)TimerCountOld;
}
else {
TimerRDCnt++;
TimerCountOld = TimerCountNew;
if (TimerRDCnt >= 2){
return (u32)TimerCountOld;
}
}
}
}
#endif // #if defined(CONFIG_CHIP_A_CUT) || defined(CONFIG_CHIP_B_CUT)
#if defined(CONFIG_CHIP_A_CUT) || defined(CONFIG_CHIP_B_CUT) || defined(CONFIG_CHIP_C_CUT)
VOID
HalTimerReLoadRtl8195a_Patch(
IN u32 TimerId,
IN u32 LoadUs
)
{
u32 LoadCount = 0;
u32 ms125; // how many 125ms
u32 remain_us;
ms125 = LoadUs/125000;
remain_us = LoadUs - (ms125*125000);
LoadCount = ms125 * (GTIMER_CLK_HZ/8);
LoadCount += (remain_us*GTIMER_CLK_HZ)/1000000;
if (LoadCount == 0) {
LoadCount = 1;
}
// DBG_TIMER_INFO("%s: Load Count=0x%x\r\n", __FUNCTION__, LoadCount);
// set TimerLoadCount Register
HAL_TIMER_WRITE32((TIMER_INTERVAL*TimerId + TIMER_LOAD_COUNT_OFF),
LoadCount);
}
#endif // #if defined(CONFIG_CHIP_A_CUT) || defined(CONFIG_CHIP_B_CUT) || defined(CONFIG_CHIP_C_CUT)
VOID
HalTimerIrqEnRtl8195a(
IN u32 TimerId
)
{
HAL_TIMER_WRITE32((TIMER_INTERVAL*TimerId + TIMER_CTL_REG_OFF),
HAL_TIMER_READ32(TIMER_INTERVAL*TimerId + TIMER_CTL_REG_OFF) & (~(BIT2)));
}
VOID
HalTimerIrqDisRtl8195a(
IN u32 TimerId
)
{
HAL_TIMER_WRITE32((TIMER_INTERVAL*TimerId + TIMER_CTL_REG_OFF),
HAL_TIMER_READ32(TIMER_INTERVAL*TimerId + TIMER_CTL_REG_OFF) | (BIT2));
}
VOID
HalTimerClearIsrRtl8195a(
IN u32 TimerId
)
{
HAL_TIMER_READ32(TIMER_INTERVAL*TimerId + TIMER_EOI_OFF);
}
VOID
HalTimerEnRtl8195a_Patch(
IN u32 TimerId
)
{
HAL_TIMER_WRITE32((TIMER_INTERVAL*TimerId + TIMER_CTL_REG_OFF),
HAL_TIMER_READ32(TIMER_INTERVAL*TimerId + TIMER_CTL_REG_OFF) | (BIT0));
}
VOID
HalTimerDisRtl8195a_Patch(
IN u32 TimerId
)
{
// Disable Timer will alos disable the IRQ, so need to re-enable the IRQ when re-enable the timer
HAL_TIMER_WRITE32((TIMER_INTERVAL*TimerId + TIMER_CTL_REG_OFF),
HAL_TIMER_READ32(TIMER_INTERVAL*TimerId + TIMER_CTL_REG_OFF) & (~BIT0));
}
#endif // CONFIG_TIMER_EN

File diff suppressed because it is too large Load diff