first commit

This commit is contained in:
pvvx 2016-11-09 03:56:41 +03:00
parent 2ee525362e
commit d108756e9b
792 changed files with 336059 additions and 0 deletions

View file

@ -0,0 +1,87 @@
#include "cmsis_os.h"
#include <cJSON.h>
#undef malloc
#define malloc pvPortMalloc
#undef free
#define free vPortFree
/* The data structure for this example
{
"Motion_Sensor" : "i",
"Light" : {
"Red" : "0",
"Green" : "0",
"Blue" : "0",
}
}
*/
static void gen_json_data(int i, int r, int g, int b)
{
cJSON_Hooks memoryHook;
memoryHook.malloc_fn = malloc;
memoryHook.free_fn = free;
cJSON_InitHooks(&memoryHook);
cJSON *IOTJSObject = NULL, *colorJSObject = NULL;
char *iot_json = NULL;
if((IOTJSObject = cJSON_CreateObject()) != NULL) {
cJSON_AddItemToObject(IOTJSObject, "Motion_Sensor", cJSON_CreateNumber(i));
cJSON_AddItemToObject(IOTJSObject, "Light", colorJSObject = cJSON_CreateObject());
cJSON_AddItemToObject(colorJSObject, "Red", cJSON_CreateNumber(r));
cJSON_AddItemToObject(colorJSObject, "Green", cJSON_CreateNumber(g));
cJSON_AddItemToObject(colorJSObject, "Blue", cJSON_CreateNumber(b));
iot_json = cJSON_Print(IOTJSObject);
cJSON_Delete(IOTJSObject);
}
}
static void handle_json_data(char *iot_json)
{
cJSON_Hooks memoryHook;
memoryHook.malloc_fn = malloc;
memoryHook.free_fn = free;
cJSON_InitHooks(&memoryHook);
cJSON *IOTJSObject, *sensorJSObject, *lightJSObject, *redJSObject, *greenJSObject, *blueJSObject;
int sensor_data, red, green, blue;
if((IOTJSObject = cJSON_Parse(iot_json)) != NULL) {
sensorJSObject = cJSON_GetObjectItem(IOTJSObject, "Motion_Sensor");
if(sensorJSObject)
sensor_data = sensorJSObject->valueint;
lightJSObject = cJSON_GetObjectItem(IOTJSObject, "Light");
if(lightJSObject){
redJSObject = cJSON_GetObjectItem(lightJSObject, "Red");
greenJSObject = cJSON_GetObjectItem(lightJSObject, "Green");
blueJSObject = cJSON_GetObjectItem(lightJSObject, "Blue");
if(redJSObject)
red = redJSObject->valueint;
if(greenJSObject)
green = greenJSObject->valueint;
if(blueJSObject)
blue = blueJSObject->valueint;
}
cJSON_Delete(IOTJSObject);
}
}

View file

@ -0,0 +1,39 @@
/******************************************************************************
*
* Copyright(c) 2007 - 2015 Realtek Corporation. All rights reserved.
*
*
******************************************************************************/
#include <platform_opts.h>
#include "main.h"
#if CONFIG_EXAMPLE_UART_ATCMD
#include "uart_atcmd/example_uart_atcmd.h"
#endif
#ifdef CONFIG_EXAMPLE_MDNS
#include <mdns/example_mdns.h>
#endif
/*
Preprocessor of example
*/
void pre_example_entry(void)
{
//
#if defined(CONFIG_EXAMPLE_WLAN_FAST_CONNECT) && CONFIG_EXAMPLE_WLAN_FAST_CONNECT && !CONFIG_EXAMPLE_UART_ATCMD
example_wlan_fast_connect();
#endif
#ifdef CONFIG_EXAMPLE_MDNS
example_mdns();
#endif
}
/*
All of the examples are disabled by default for code size consideration
The configuration is enabled in platform_opts.h
*/
void example_entry(void)
{
#if CONFIG_EXAMPLE_UART_ATCMD
example_uart_atcmd();
#endif
}

View file

@ -0,0 +1,8 @@
#ifndef __EXAMPLE_ENTRY_H__
#define __EXAMPLE_ENTRY_H__
void example_entry(void);
void pre_example_entry(void);
#endif //#ifndef __EXAMPLE_ENTRY_H__

View file

@ -0,0 +1,38 @@
<html>
<head>
<script src="https://cdn.firebase.com/js/client/2.1.1/firebase.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
</head>
<body>
<h1>Realtek Google Nest API example</h1>
<hr />
<h3 style="text-align:center;margin-left:auto;margin-right:auto;">Data To Device</h3>
<h4>Input the value of RGB to change the state of light:</h4>
<p>Red <input type="text" id="redInput" placeholder="Red" />
Green <input type="text" id="greenInput" placeholder="Green" />
Blue <input type="text" id="blueInput" placeholder="Blue" />
<input type="button" value="submit" name="submit" onClick="submit()" />
</p>
<script>
var myDataRef = new Firebase('https://your_firebase_address.firebaseio.com/light');
function submit()
{
var red = $('#redInput').val();
var green = $('#greenInput').val();
var blue = $('#blueInput').val();
myDataRef.set({
Red: red,
Green: green,
Blue: blue
});
};
</script>
</body>
</html>

View file

@ -0,0 +1,185 @@
#include "cmsis_os.h"
#include "diag.h"
#include "wifi_conf.h"
#include "wifi_ind.h"
#include "google/google_nest.h"
#include <googlenest/example_google.h>
#include "cJSON.h"
osThreadId google_thread_id;
#define malloc pvPortMalloc
#define free vPortFree
void google_data_retrieve(char *response_buf);
void google_data_retrieve(char *response_buf) {
//printf("\r\n\r\n\r\nResponse_buf:\r\n%s\r\n", response_buf);
char *event = NULL;
char *delims = "\n";
char *data = NULL, *backup = NULL;
char *info = NULL;
cJSON_Hooks memoryHook;
event = strtok_r(response_buf, delims, &backup);
data = strtok_r( NULL, delims, &backup );
if (!strncmp(data, "data: ", strlen("data: "))){
info = data + strlen("data: ");
if(info != NULL){
memoryHook.malloc_fn = malloc;
memoryHook.free_fn = free;
cJSON_InitHooks(&memoryHook);
cJSON *infoJSObject, *pathJSObject, *dataJSObject;
cJSON *redJSObject, *greenJSObject, *blueJSObject;
char *red, *green, *blue;
if((infoJSObject = cJSON_Parse(info)) != NULL) {
pathJSObject = cJSON_GetObjectItem(infoJSObject, "path");
dataJSObject = cJSON_GetObjectItem(infoJSObject, "data");
if(dataJSObject != NULL) {
redJSObject = cJSON_GetObjectItem(dataJSObject, "Red");
greenJSObject = cJSON_GetObjectItem(dataJSObject, "Green");
blueJSObject = cJSON_GetObjectItem(dataJSObject, "Blue");
if(redJSObject)
red = redJSObject->valuestring;
if(greenJSObject)
green = greenJSObject->valuestring;
if(blueJSObject)
blue = blueJSObject->valuestring;
printf("\n\rThe latest RGB information: RGB(%s, %s, %s)\n\r", red, green, blue);
cJSON_Delete(dataJSObject);
}
cJSON_Delete(infoJSObject);
}
else
printf("\r\nCannot parse the message to JSON!\r\n");
}
else
printf("\r\n This is the keep alive message or cannot get the information!\r\n");
}
else
printf("\r\nData structure may wrong!\r\n");
}
void gn_todevice_start(void) {
googlenest_context googlenest;
char *googlenest_host = HOST_ADDR;
char *googlenest_uri = "light.json";
printf("\r\nStart connecting to Google Nest Server...\r\n");
memset(&googlenest, 0, sizeof(googlenest_context));
reconnect:
if(gn_connect(&googlenest, googlenest_host, GN_PORT) == 0) {
printf("\r\n Connection is OK!\r\n");
google_retrieve_data_hook_callback(google_data_retrieve);
if(gn_stream(&googlenest, googlenest_uri) != 0){
printf("\r\n Connection is fail! \r\n Start Reconnecting...\r\n");
goto reconnect;
}
gn_close(&googlenest);
}
else{
printf("\r\n Connection is fail! \r\n\r\n\r\n\r\nStart Reconnecting...\r\n");
goto reconnect;
}
}
void gn_fromdevice_start(void) {
googlenest_context googlenest;
char *googlenest_uri = "MotionSensor.json";
cJSON_Hooks memoryHook;
int j = 0;
memoryHook.malloc_fn = malloc;
memoryHook.free_fn = free;
cJSON_InitHooks(&memoryHook);
printf("\r\nStart connecting to Google Nest Server!\r\n");
while(1) {
memset(&googlenest, 0, sizeof(googlenest_context));
if(gn_connect(&googlenest, HOST_ADDR, GN_PORT) == 0) {
cJSON *MSJSObject;
char *data;
if((MSJSObject = cJSON_CreateObject()) != NULL) {
cJSON_AddItemToObject(MSJSObject, "MotionSenser", cJSON_CreateNumber(j++));
data = cJSON_Print(MSJSObject);
cJSON_Delete(MSJSObject);
}
if(gn_put(&googlenest, googlenest_uri, data) == 0)
printf("\n\rUpdate the Motion Sensor's data to %d\n\r", (j-1));
free(data);
gn_close(&googlenest);
}
else{
printf("\n\rConnection failed!\n\r");
break;
}
vTaskDelay(5 * configTICK_RATE_HZ);
}
}
void gn_fromdevice_task(void *arg) {
int i;
printf("\n\r\n\r\n\r\n\r<<<<<<Waiting for 2 mins to connect Wi-Fi>>>>>>>\n\r\n\r\n\r\n\r");
for (i = 0; i<120; i++)
vTaskDelay(1000 / portTICK_PERIOD_MS);
gn_fromdevice_start();
}
void gn_todevice_task(void *arg) {
int i;
printf("\n\r\n\r\n\r\n\r<<<<<<Waiting for 2 mins to connect Wi-Fi>>>>>>>\n\r\n\r\n\r\n\r");
for (i = 0; i<120; i++)
vTaskDelay(1000 / portTICK_PERIOD_MS);
gn_todevice_start();
}
void example_google(char *type) {
if(strcmp(type, "FromDevice") == 0){
osThreadDef_t google_thread;
google_thread.instances = 1;
google_thread.name = "google thread";
google_thread.stacksize = 4096;
google_thread.pthread = (os_pthread)gn_fromdevice_task;
google_thread.tpriority = tskIDLE_PRIORITY+6;
google_thread_id = osThreadCreate(&google_thread, NULL);
}
else if(strcmp(type, "ToDevice") == 0){
osThreadDef_t google_thread;
google_thread.instances = 1;
google_thread.name = "google thread";
google_thread.stacksize = 4096;
google_thread.pthread = (os_pthread)gn_todevice_task;
google_thread.tpriority = tskIDLE_PRIORITY+6;
google_thread_id = osThreadCreate(&google_thread, NULL);
}
}

View file

@ -0,0 +1,10 @@
#ifndef GOOGLE_THREAD_H
#define GOOGLE_THREAD_H
#define HOST_ADDR "your_firebase_address.firebaseio.com"
#define GN_PORT 443
void example_google(char *type);
#endif

View file

@ -0,0 +1,55 @@
#include "FreeRTOS.h"
#include "task.h"
#include <platform/platform_stdlib.h>
#include <mDNS/mDNS.h>
#include <lwip_netconf.h>
#include <lwip/netif.h>
extern struct netif xnetif[];
static void example_mdns_thread(void *param)
{
DNSServiceRef dnsServiceRef = NULL;
TXTRecordRef txtRecord;
unsigned char txt_buf[100]; // use fixed buffer for text record to prevent malloc/free
// Delay to wait for IP by DHCP
vTaskDelay(10000);
printf("\nmDNS Init\n");
if(mDNSResponderInit() == 0) {
printf("mDNS Register service\n");
TXTRecordCreate(&txtRecord, sizeof(txt_buf), txt_buf);
TXTRecordSetValue(&txtRecord, "text1", strlen("text1_content"), "text1_content");
TXTRecordSetValue(&txtRecord, "text2", strlen("text2_content"), "text2_content");
dnsServiceRef = mDNSRegisterService("ameba", "_service1._tcp", "local", 5000, &txtRecord);
TXTRecordDeallocate(&txtRecord);
printf("wait for 30s ... \n");
vTaskDelay(30*1000);
printf("mDNS Update service\n");
TXTRecordCreate(&txtRecord, sizeof(txt_buf), txt_buf);
TXTRecordSetValue(&txtRecord, "text1", strlen("text1_content_new"), "text1_content_new");
mDNSUpdateService(dnsServiceRef, &txtRecord, 0);
TXTRecordDeallocate(&txtRecord);
printf("wait for 30s ... \n");
vTaskDelay(30*1000);
if(dnsServiceRef)
mDNSDeregisterService(dnsServiceRef);
// deregister service before mdns deinit is not necessary
// mDNS deinit will also deregister all services
printf("mDNS Deinit\n");
mDNSResponderDeinit();
}
vTaskDelete(NULL);
}
void example_mdns(void)
{
if(xTaskCreate(example_mdns_thread, ((const char*)"example_mdns_thread"), 1024, NULL, tskIDLE_PRIORITY + 1, NULL) != pdPASS)
printf("\n\r%s xTaskCreate(init_thread) failed", __FUNCTION__);
}

View file

@ -0,0 +1,6 @@
#ifndef EXAMPLE_MDNS_H
#define EXAMPLE_MDNS_H
void example_mdns(void);
#endif /* EXAMPLE_MDNS_H */

View file

@ -0,0 +1,106 @@
#include "FreeRTOS.h"
#include "task.h"
#include <platform/platform_stdlib.h>
#include <lwip/sockets.h>
#if LWIP_SOCKET
#define MAX_SOCKETS 10
#define SELECT_TIMEOUT 10
#define SERVER_PORT 5000
#define LISTEN_QLEN 2
static void example_socket_select_thread(void *param)
{
struct sockaddr_in server_addr;
int server_fd = -1;
int socket_used[10];
memset(socket_used, 0, sizeof(socket_used));
if((server_fd = socket(AF_INET, SOCK_STREAM, 0)) >= 0) {
socket_used[server_fd] = 1;
}
else {
printf("socket error\n");
goto exit;
}
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons(SERVER_PORT);
server_addr.sin_addr.s_addr = INADDR_ANY;
if(bind(server_fd, (struct sockaddr *) &server_addr, sizeof(server_addr)) != 0) {
printf("bind error\n");
goto exit;
}
if(listen(server_fd, LISTEN_QLEN) != 0) {
printf("listen error\n");
goto exit;
}
while(1) {
int socket_fd;
unsigned char buf[512];
fd_set read_fds;
struct timeval timeout;
FD_ZERO(&read_fds);
timeout.tv_sec = SELECT_TIMEOUT;
timeout.tv_usec = 0;
for(socket_fd = 0; socket_fd < MAX_SOCKETS; socket_fd ++)
if(socket_used[socket_fd])
FD_SET(socket_fd, &read_fds);
if(select(MAX_SOCKETS, &read_fds, NULL, NULL, &timeout)) {
for(socket_fd = 0; socket_fd < MAX_SOCKETS; socket_fd ++) {
if(socket_used[socket_fd] && FD_ISSET(socket_fd, &read_fds)) {
if(socket_fd == server_fd) {
struct sockaddr_in client_addr;
unsigned int client_addr_size = sizeof(client_addr);
int fd = accept(server_fd, (struct sockaddr *) &client_addr, &client_addr_size);
if(fd >= 0) {
printf("accept socket fd(%d)\n", fd);
socket_used[fd] = 1;
}
else {
printf("accept error\n");
}
}
else {
int read_size = read(socket_fd, buf, sizeof(buf));
if(read_size > 0) {
write(socket_fd, buf, read_size);
}
else {
printf("socket fd(%d) disconnected\n", socket_fd);
socket_used[socket_fd] = 0;
close(socket_fd);
}
}
}
}
}
else {
printf("TCP server: no data in %d seconds\n", SELECT_TIMEOUT);
}
}
exit:
if(server_fd >= 0)
close(server_fd);
vTaskDelete(NULL);
}
void example_socket_select(void)
{
if(xTaskCreate(example_socket_select_thread, ((const char*)"example_socket_select_thread"), 1024, NULL, tskIDLE_PRIORITY + 1, NULL) != pdPASS)
printf("\n\r%s xTaskCreate(init_thread) failed", __FUNCTION__);
}
#endif // LWIP_SOCKET

View file

@ -0,0 +1,6 @@
#ifndef EXAMPLE_SOCKET_SELECT_H
#define EXAMPLE_SOCKET_SELECT_H
void example_socket_select(void);
#endif /* EXAMPLE_SOCKET_SELECT_H */

View file

@ -0,0 +1,13 @@
LWIP SOCKET SELECT EXAMPLE
Description:
TCP server listens on port 5000 and handle socket by select().
Configuration:
[platform_opts.h]
#define CONFIG_EXAMPLE_SOCKET_SELECT 1
Execution:
Can make automatical Wi-Fi connection when booting by using wlan fast connect example.
A socket select example thread will be started automatically when booting.

View file

@ -0,0 +1,608 @@
/******************************************************************************
*
* Copyright(c) 2007 - 2015 Realtek Corporation. All rights reserved.
*
*
******************************************************************************/
#include "platform_opts.h"
#include "FreeRTOS.h"
#include "task.h"
#include "platform/platform_stdlib.h"
#include "semphr.h"
#include "device.h"
#include "serial_api.h"
#include "at_cmd/log_service.h"
#include "uart_atcmd/example_uart_atcmd.h"
#include "flash_api.h"
#include "device_lock.h"
#if defined(configUSE_WAKELOCK_PMU) && (configUSE_WAKELOCK_PMU == 1)
#include "freertos_pmu.h"
#endif
#include "osdep_api.h"
#include "osdep_service.h"
#include "serial_ex_api.h"
#include "at_cmd/atcmd_wifi.h"
#include "at_cmd/atcmd_lwip.h"
#include "pinmap.h"
#ifdef USE_FLASH_EEP
#include "flash_eep.h"
#endif
#if CONFIG_EXAMPLE_UART_ATCMD
typedef int (*init_done_ptr)(void);
extern init_done_ptr p_wlan_init_done_callback;
extern char log_buf[LOG_SERVICE_BUFLEN];
extern xSemaphoreHandle log_rx_interrupt_sema;
extern void serial_rx_fifo_level(serial_t *obj, SerialFifoLevel FifoLv);
extern int atcmd_wifi_restore_from_flash(void);
extern int atcmd_lwip_restore_from_flash(void);
serial_t at_cmd_sobj;
char at_string[ATSTRING_LEN];
//xSemaphoreHandle at_printf_sema;
_Sema uart_at_dma_tx_sema;
unsigned char gAT_Echo = 1; // default echo on
#define UART_AT_MAX_DELAY_TIME_MS 20
#define UART_AT_DATA UART_SETTING_SECTOR
#define BACKUP_SECTOR FLASH_SYSTEM_DATA_ADDR-0x1000
#define UART_AT_USE_DMA_TX 0
void atcmd_update_partition_info(AT_PARTITION id, AT_PARTITION_OP ops, u8 *data, u16 len){
#ifdef USE_FLASH_EEP
if(id == AT_PARTITION_UART || id == AT_PARTITION_LWIP || id == AT_PARTITION_WIFI) {
if(ops == AT_PARTITION_READ) flash_read_cfg(data, id, len);
else if (ops == AT_PARTITION_WRITE) flash_write_cfg(data, id, len);
else if (ops == AT_PARTITION_ERASE) flash_write_cfg(data, id, 0);
}
#else
flash_t flash;
int size, offset, i;
u32 read_data;
switch(id){
case AT_PARTITION_UART:
size = UART_CONF_DATA_SIZE;
offset = UART_CONF_DATA_OFFSET;
break;
case AT_PARTITION_WIFI:
size = WIFI_CONF_DATA_SIZE;
offset = WIFI_CONF_DATA_OFFSET;
break;
case AT_PARTITION_LWIP:
size = LWIP_CONF_DATA_SIZE;
offset = LWIP_CONF_DATA_OFFSET;
break;
case AT_PARTITION_ALL:
size = 0x1000;
offset = 0;
break;
default:
printf("partition id is invalid!\r\n");
return;
}
device_mutex_lock(RT_DEV_LOCK_FLASH);
if(id == AT_PARTITION_ALL && ops == AT_PARTITION_ERASE){
flash_erase_sector(&flash, UART_SETTING_SECTOR);
goto exit;
}
if(ops == AT_PARTITION_READ){
flash_stream_read(&flash, UART_SETTING_SECTOR+offset, len, data);
goto exit;
}
//erase BACKUP_SECTOR
flash_erase_sector(&flash, UART_SETTING_BACKUP_SECTOR);
if(ops == AT_PARTITION_WRITE){
// backup new data
flash_stream_write(&flash, UART_SETTING_BACKUP_SECTOR+offset, len, data);
}
//backup front data to backup sector
for(i = 0; i < offset; i += sizeof(read_data)){
flash_read_word(&flash, UART_SETTING_SECTOR + i, &read_data);
flash_write_word(&flash, UART_SETTING_BACKUP_SECTOR + i,read_data);
}
//backup rear data
for(i = (offset + size); i < 0x1000; i += sizeof(read_data)){
flash_read_word(&flash, UART_SETTING_SECTOR + i, &read_data);
flash_write_word(&flash, UART_SETTING_BACKUP_SECTOR + i,read_data);
}
//erase UART_SETTING_SECTOR
flash_erase_sector(&flash, UART_SETTING_SECTOR);
//retore data to UART_SETTING_SECTOR from UART_SETTING_BACKUP_SECTOR
for(i = 0; i < 0x1000; i+= sizeof(read_data)){
flash_read_word(&flash, UART_SETTING_BACKUP_SECTOR + i, &read_data);
flash_write_word(&flash, UART_SETTING_SECTOR + i,read_data);
}
//erase BACKUP_SECTOR
flash_erase_sector(&flash, UART_SETTING_BACKUP_SECTOR);
exit:
device_mutex_unlock(RT_DEV_LOCK_FLASH);
return;
#endif
}
int read_uart_atcmd_setting_from_system_data(UART_LOG_CONF* uartconf)
{
// flash_t flash;
UART_LOG_CONF conf;
bool load_default = _TRUE;
// device_mutex_lock(RT_DEV_LOCK_FLASH);
// flash_stream_read(&flash, UART_AT_DATA,sizeof(UART_LOG_CONF), (u8 *)&conf);
atcmd_update_partition_info(AT_PARTITION_UART, AT_PARTITION_READ, (u8 *)&conf, sizeof(UART_LOG_CONF));
do{
if(conf.FlowControl != AUTOFLOW_DISABLE && conf.FlowControl != AUTOFLOW_ENABLE)
break;
if(conf.DataBits != 5
&& conf.DataBits != 6
&& conf.DataBits != 7
&& conf.DataBits != 8) //5, 6, 7, 8
break;
if(conf.Parity != ParityNone && conf.Parity != ParityOdd && conf.Parity != ParityEven)
break;
if(conf.StopBits != 1 && conf.StopBits != 2)
break;
load_default = _FALSE;
}while(0);
if(load_default == _TRUE){
// load default setting
uartconf->BaudRate = UART_BAUD_RATE_38400;
uartconf->DataBits = 8;
uartconf->Parity = ParityNone;
uartconf->StopBits = 1;
uartconf->FlowControl = AUTOFLOW_DISABLE;
}
else{
uartconf->BaudRate = conf.BaudRate;
uartconf->DataBits = conf.DataBits;
uartconf->Parity = conf.Parity;
uartconf->StopBits = conf.StopBits;
uartconf->FlowControl = conf.FlowControl;
}
// device_mutex_unlock(RT_DEV_LOCK_FLASH);
printf("\r\nAT_UART_CONF: %d,%d,%d,%d,%d\r\n",
uartconf->BaudRate,
uartconf->DataBits,
uartconf->StopBits,
uartconf->Parity,
uartconf->FlowControl);
return 0;
}
int write_uart_atcmd_setting_to_system_data(UART_LOG_CONF* uartconf)
{
#if 0
flash_t flash;
u8 data1[sizeof(UART_LOG_CONF)];
u8 data2[sizeof(UART_LOG_CONF)];
u32 data,i;
memset(data2, 0xFF, sizeof(UART_LOG_CONF));
//Get upgraded image 2 addr from offset
device_mutex_lock(RT_DEV_LOCK_FLASH);
flash_stream_read(&flash, UART_AT_DATA,sizeof(UART_LOG_CONF), data1);
if(memcmp(data1,data2,sizeof(UART_LOG_CONF)) == 0){
flash_stream_write(&flash, UART_AT_DATA, sizeof(UART_LOG_CONF),(u8*)uartconf);
}else{
//erase backup sector
flash_erase_sector(&flash, BACKUP_SECTOR);
// backup log uart configuration
flash_stream_write(&flash, BACKUP_SECTOR, sizeof(UART_LOG_CONF),(u8*)uartconf);
//backup system data to backup sector
for(i = sizeof(UART_LOG_CONF); i < 0x1000; i+= 4){
flash_read_word(&flash, UART_AT_DATA + i, &data);
flash_write_word(&flash, BACKUP_SECTOR + i,data);
}
//erase system data
flash_erase_sector(&flash, UART_AT_DATA);
//write data back to system data
for(i = 0; i < 0x1000; i+= 4){
flash_read_word(&flash, BACKUP_SECTOR + i, &data);
flash_write_word(&flash, UART_AT_DATA + i,data);
}
//erase backup sector
flash_erase_sector(&flash, BACKUP_SECTOR);
}
device_mutex_unlock(RT_DEV_LOCK_FLASH);
#else
atcmd_update_partition_info(AT_PARTITION_UART, AT_PARTITION_WRITE, (u8 *)uartconf, sizeof(UART_LOG_CONF));
#endif
return 0;
}
int reset_uart_atcmd_setting(){
#if 0
flash_t flash;
u8 data1[sizeof(UART_LOG_CONF)];
u8 data2[sizeof(UART_LOG_CONF)];
u32 data,i;
memset(data2, 0xFF, sizeof(UART_LOG_CONF));
//Get upgraded image 2 addr from offset
device_mutex_lock(RT_DEV_LOCK_FLASH);
flash_stream_read(&flash, UART_AT_DATA,sizeof(UART_LOG_CONF), data1);
if(memcmp(data1,data2,sizeof(UART_LOG_CONF)) == 0){
;
}else{
//erase backup sector
flash_erase_sector(&flash, BACKUP_SECTOR);
// erase uart configuration
flash_stream_write(&flash, BACKUP_SECTOR, sizeof(UART_LOG_CONF),(u8*)data2);
//backup system data to backup sector
for(i = sizeof(UART_LOG_CONF); i < 0x1000; i+= 4){
flash_read_word(&flash, UART_AT_DATA + i, &data);
flash_write_word(&flash, BACKUP_SECTOR + i,data);
}
//erase system data
flash_erase_sector(&flash, UART_AT_DATA);
//write data back to system data
for(i = 0; i < 0x1000; i+= 4){
flash_read_word(&flash, BACKUP_SECTOR + i, &data);
flash_write_word(&flash, UART_AT_DATA + i,data);
}
//erase backup sector
flash_erase_sector(&flash, BACKUP_SECTOR);
}
device_mutex_unlock(RT_DEV_LOCK_FLASH);
#else
#ifdef USE_FLASH_EEP
flash_write_cfg(NULL, AT_PARTITION_UART, 0);
flash_write_cfg(NULL, AT_PARTITION_WIFI, 0);
flash_write_cfg(NULL, AT_PARTITION_LWIP, 0);
#else
atcmd_update_partition_info(AT_PARTITION_ALL, AT_PARTITION_ERASE, NULL, 0);
#endif
#endif
return 0;
}
#if defined(configUSE_WAKELOCK_PMU) && (configUSE_WAKELOCK_PMU == 1)
#include "gpio_irq_api.h"
#define UART_AT_RX_WAKE UART_RX
void gpio_uart_at_rx_irq_callback (uint32_t id, gpio_irq_event event)
{
/* WAKELOCK_LOGUART is also handled in log service.
* It is release after a complete command is sent.
**/
//acquire_wakelock(WAKELOCK_LOGUART);
}
void uart_at_rx_wakeup()
{
gpio_irq_t gpio_rx_wake;
gpio_irq_init(&gpio_rx_wake, UART_AT_RX_WAKE, gpio_uart_at_rx_irq_callback, 0);
gpio_irq_set(&gpio_rx_wake, IRQ_FALL, 1); // Falling Edge Trigger
gpio_irq_enable(&gpio_rx_wake);
}
#endif
void uart_atcmd_reinit(UART_LOG_CONF* uartconf){
serial_baud(&at_cmd_sobj,uartconf->BaudRate);
serial_format(&at_cmd_sobj, uartconf->DataBits, (SerialParity)uartconf->Parity, uartconf->StopBits);
// set flow control, only support RTS and CTS concurrent mode
// rxflow and tx flow is fixed by hardware
#define rxflow UART_RTS
#define txflow UART_CTS
if(uartconf->FlowControl){
pin_mode(txflow, PullDown); //init CTS in low
serial_set_flow_control(&at_cmd_sobj, FlowControlRTSCTS, rxflow, txflow);
}
else
serial_set_flow_control(&at_cmd_sobj, FlowControlNone, rxflow, txflow);
}
void uart_at_send_string(char *str)
{
unsigned int i=0;
while (str[i] != '\0') {
serial_putc(&at_cmd_sobj, str[i]);
i++;
}
}
#if UART_AT_USE_DMA_TX
static void uart_at_send_buf_done(uint32_t id)
{
//serial_t *sobj = (serial_t *)id;
RtlUpSemaFromISR(&uart_at_dma_tx_sema);
}
#endif
void uart_at_send_buf(u8 *buf, u32 len)
{
unsigned char *st_p=buf;
if(!len || (!buf)){
return;
}
#if UART_AT_USE_DMA_TX
int ret;
while(RtlDownSema(&uart_at_dma_tx_sema) == pdTRUE){
ret = serial_send_stream_dma(&at_cmd_sobj, st_p, len);
if(ret != HAL_OK){
RtlUpSema(&uart_at_dma_tx_sema);
return;
}else{
return;
}
}
#else
while(len){
serial_putc(&at_cmd_sobj, *st_p);
st_p++;
len--;
}
#endif
}
/*
void uart_at_lock(void)
{
RtlDownSema(&at_printf_sema);
}
void uart_at_unlock(void)
{
RtlUpSema(&at_printf_sema);
}
void uart_at_lock_init(){
RtlInitSema(&at_printf_sema, 1);
}
*/
void uart_irq(uint32_t id, SerialIrq event)
{
serial_t *sobj = (serial_t *)id;
unsigned char rc=0;
static unsigned char temp_buf[LOG_SERVICE_BUFLEN] = "\0";
static unsigned int buf_count = 0;
static unsigned char combo_key = 0;
static u32 last_tickcnt = 0; //to check if any data lost
static bool is_data_cmd = _FALSE; // to mark if it's a data command
static u32 data_sz = 0, data_cmd_sz =0; // command will send to log handler until "data_cmd_sz" characters are received
if(event == RxIrq) {
rc = serial_getc(sobj);
if(atcmd_lwip_is_tt_mode()){
log_buf[atcmd_lwip_tt_datasize++] = rc;
atcmd_lwip_tt_lasttickcnt = xTaskGetTickCountFromISR();
if(atcmd_lwip_tt_datasize == 1)
RtlUpSemaFromISR((_Sema *)&atcmd_lwip_tt_sema);
return;
}
if(buf_count == 4){
// if this is a data command with hex data, then '\n' should not be treated
// as the end of command
if(strncmp(temp_buf, "ATPT", C_NUM_AT_CMD)==0){
is_data_cmd = _TRUE;
}
}
if(buf_count > C_NUM_AT_CMD && is_data_cmd == _TRUE){
if(data_cmd_sz == 0){
if(data_sz == 0){
if(rc == ','){
//first delimeter, ATxx=[sz],....
char str[10]={0};
char size_pos = C_NUM_AT_CMD + C_NUM_AT_CMD_DLT;
memcpy(str, &temp_buf[size_pos], buf_count-size_pos);
data_sz = atoi(str); //get data size
}
}else{
if(rc == ':'){ //data will start after this delimeter ':'
strncpy(log_buf, (char *)temp_buf, buf_count);
memset(temp_buf,'\0',buf_count);
last_tickcnt = xTaskGetTickCountFromISR();
data_cmd_sz = buf_count + 1 + data_sz;
}
}
}
if(data_cmd_sz){
if((!gAT_Echo) && (rtw_systime_to_ms(xTaskGetTickCountFromISR() - last_tickcnt) > UART_AT_MAX_DELAY_TIME_MS)){
uart_at_send_string("\r\nERROR:data timeout\r\n\n# ");
memset(log_buf, 0, buf_count);
is_data_cmd = _FALSE;
data_sz = 0;
data_cmd_sz = 0;
buf_count=0;
last_tickcnt = 0;
return;
}
last_tickcnt = xTaskGetTickCountFromISR();
log_buf[buf_count++]=rc;
if(gAT_Echo == 1){
serial_putc(sobj, rc);
}
if(buf_count >= data_cmd_sz){
log_buf[data_cmd_sz - data_sz - 1] = '\0'; //for log service handler parse to get command parameter, replace ":" with "\0"
is_data_cmd = _FALSE;
data_sz = 0;
data_cmd_sz = 0;
buf_count=0;
last_tickcnt = 0;
RtlUpSemaFromISR((_Sema *)&log_rx_interrupt_sema);
}
return;
}
}
if (rc == KEY_ESC) {
combo_key = 1;
}
else if (combo_key == 1){
if (rc == KEY_LBRKT) {
combo_key = 2;
}
else{
combo_key = 0;
}
}
else if (combo_key == 2){
//if ((rc=='A')|| rc=='B'){//up and down
//}
combo_key=0;
}
else if(rc == KEY_ENTER){
if(buf_count>0){
memset(log_buf,'\0',LOG_SERVICE_BUFLEN);
strncpy(log_buf,(char *)&temp_buf[0],buf_count);
RtlUpSemaFromISR((_Sema *)&log_rx_interrupt_sema);
memset(temp_buf,'\0',buf_count);
is_data_cmd = _FALSE;
data_sz = 0;
data_cmd_sz = 0;
buf_count=0;
last_tickcnt = 0;
}else{
uart_at_send_string(STR_END_OF_ATCMD_RET);
}
}
else if(rc == KEY_BS){
if(buf_count>0){
buf_count--;
temp_buf[buf_count] = '\0';
if(gAT_Echo == 1){
serial_putc(sobj, rc);
serial_putc(sobj, ' ');
serial_putc(sobj, rc);
}
}
}
else{
// skip characters until "A"
if((buf_count == 0) && (rc != 'A')){
if(gAT_Echo == 1){
uart_at_send_string("\r\nERROR:command should start with 'A'"STR_END_OF_ATCMD_RET);
}
return;
}
if(buf_count < (LOG_SERVICE_BUFLEN - 1)){
temp_buf[buf_count] = rc;
buf_count++;
if(gAT_Echo == 1){
serial_putc(sobj, rc);
}
}
else if(buf_count == (LOG_SERVICE_BUFLEN - 1)){
temp_buf[buf_count] = '\0';
if(gAT_Echo == 1){
uart_at_send_string("\r\nERROR:exceed size limit"STR_END_OF_ATCMD_RET);
}
}
}
}
}
void uart_atcmd_main(void)
{
UART_LOG_CONF uartconf;
read_uart_atcmd_setting_from_system_data(&uartconf);
serial_init(&at_cmd_sobj,UART_TX,UART_RX);
serial_baud(&at_cmd_sobj,uartconf.BaudRate);
serial_format(&at_cmd_sobj, uartconf.DataBits, (SerialParity)uartconf.Parity, uartconf.StopBits);
serial_rx_fifo_level(&at_cmd_sobj, FifoLvHalf);
// set flow control, only support RTS and CTS concurrent mode
// rxflow and tx flow is fixed by hardware
#define rxflow UART_RTS
#define txflow UART_CTS
if(uartconf.FlowControl){
pin_mode(txflow, PullDown); //init CTS in low
serial_set_flow_control(&at_cmd_sobj, FlowControlRTSCTS, rxflow, txflow);
}
else
serial_set_flow_control(&at_cmd_sobj, FlowControlNone, rxflow, txflow);
/*uart_at_lock_init();*/
#if UART_AT_USE_DMA_TX
RtlInitSema(&uart_at_dma_tx_sema, 1);
#endif
#if UART_AT_USE_DMA_TX
serial_send_comp_handler(&at_cmd_sobj, (void*)uart_at_send_buf_done, (uint32_t)&at_cmd_sobj);
#endif
serial_irq_handler(&at_cmd_sobj, uart_irq, (uint32_t)&at_cmd_sobj);
serial_irq_set(&at_cmd_sobj, RxIrq, 1);
#if defined(configUSE_WAKELOCK_PMU) && (configUSE_WAKELOCK_PMU == 1)
uart_at_rx_wakeup();
#endif
}
static void uart_atcmd_thread(void *param)
{
p_wlan_init_done_callback = NULL;
#if CONFIG_DEBUG_LOG > 3
ConfigDebugErr = -1;
ConfigDebugInfo = ~_DBG_SPI_FLASH_;
ConfigDebugWarn = -1;
CfgSysDebugErr = -1;
CfgSysDebugInfo = -1;
CfgSysDebugWarn = -1;
#endif
atcmd_wifi_restore_from_flash();
atcmd_lwip_restore_from_flash();
vTaskDelay(20); //rtw_msleep_os(20);
uart_atcmd_main();
at_printf("\r\nAT COMMAND READY");
if(atcmd_lwip_is_tt_mode())
at_printf(STR_END_OF_ATDATA_RET);
else
at_printf(STR_END_OF_ATCMD_RET);
_AT_DBG_MSG(AT_FLAG_COMMON, AT_DBG_ALWAYS, STR_END_OF_ATCMD_RET);
vTaskDelete(NULL);
}
int uart_atcmd_module_init(void){
#if CONFIG_DEBUG_LOG > 3
printf("Time at start %d ms.\n", xTaskGetTickCount());
#endif
if(xTaskCreate(uart_atcmd_thread, ((const char*)"uart_atcmd_thread"), 1024, NULL, tskIDLE_PRIORITY + 1 , NULL) != pdPASS) // tskIDLE_PRIORITY + 1
printf("\n\r%s xTaskCreate(uart_atcmd_thread) failed", __FUNCTION__);
return 0;
}
void example_uart_atcmd(void)
{
//if(xTaskCreate(uart_atcmd_thread, ((const char*)"uart_atcmd_thread"), 1024, NULL, tskIDLE_PRIORITY + 1 , NULL) != pdPASS)
// printf("\n\r%s xTaskCreate(uart_atcmd_thread) failed", __FUNCTION__);
p_wlan_init_done_callback = uart_atcmd_module_init;
return;
}
#endif

View file

@ -0,0 +1,73 @@
#ifndef __EXAMPLE_UART_ATCMD_H__
#define __EXAMPLE_UART_ATCMD_H__
/******************************************************************************
*
* Copyright(c) 2007 - 2015 Realtek Corporation. All rights reserved.
*
*
******************************************************************************/
#if CONFIG_EXAMPLE_UART_ATCMD
#include "FreeRTOS.h"
#include "semphr.h"
#include "osdep_api.h"
#define UART_TX PA_4
#define UART_RX PA_0
#define UART_RTS PA_2
#define UART_CTS PA_1
#define KEY_ENTER 0xd
#define KEY_BS 0x8
#define KEY_ESC 0x1B
#define KEY_LBRKT 0x5B
void uart_at_lock(void);
void uart_at_unlock(void);
void uart_at_send_string(char *str);
void uart_at_send_buf(u8 *buf, u32 len);
void example_uart_atcmd(void);
#include "at_cmd/atcmd_wifi.h"
void uart_atcmd_reinit(UART_LOG_CONF* uartconf);
int write_uart_atcmd_setting_to_system_data(UART_LOG_CONF* uartconf);
extern u8 key_2char2num(u8 hch, u8 lch);
static void at_hex2str(const u8 *start, u32 size, u8 *out, u32 out_size)
{
int index, index2;
u8 *buf, *line;
if(!start ||(size==0)||(!out)||(out_size==0))
return;
buf = (u8*)start;
line = (u8*)out;
for (index = 0, index2=0; (index < size)&&(index2<out_size); index++, index2+=2)
{
sprintf((char *)line+index2, "%02x", (u8) buf[index]);
}
return;
}
static void at_str2hex(const u8 *start, u32 size, u8 *out, u32 out_size)
{
int index, index2;
u8 *buf, *line;
if(!start ||(size==0))
return;
buf = (u8*)start;
line = (u8*)out;
for (index=0, index2=0; index<size; index+=2, index2++){
line[index2] = key_2char2num(buf[index], buf[index+1]);
}
return;
}
#endif //#if CONFIG_EXAMPLE_UART_ATCMD
#endif //#ifndef __EXAMPLE_UART_ATCMD_H__

View file

@ -0,0 +1,212 @@
/******************************************************************************
*
* Copyright(c) 2007 - 2015 Realtek Corporation. All rights reserved.
*
*
******************************************************************************/
/** @file
This example demonstrate how to implement wifi fast reconnection
**/
#include <platform_opts.h>
#if defined(CONFIG_EXAMPLE_WLAN_FAST_CONNECT) && CONFIG_EXAMPLE_WLAN_FAST_CONNECT
#include <wlan_fast_connect/example_wlan_fast_connect.h>
#include "task.h"
#include <platform/platform_stdlib.h>
#include <wifi/wifi_conf.h>
#include "flash_api.h"
#include <lwip_netconf.h>
#ifdef USE_FLASH_EEP
#include "flash_eep.h"
#include "feep_config.h"
#endif
write_reconnect_ptr p_write_reconnect_ptr;
extern void fATW0(void *arg);
extern void fATW1(void *arg);
extern void fATW2(void *arg);
extern void fATWC(void *arg);
/*
* Usage:
* wifi connection indication trigger this function to save current
* wifi profile in flash
*
* Condition:
* CONFIG_EXAMPLE_WLAN_FAST_CONNECT flag is set
*/
int wlan_write_reconnect_data_to_flash(u8 *data, uint32_t len)
{
if(data == NULL || len < sizeof(struct wlan_fast_reconnect)) return -1;
DBG_8195A("WiFi connected at start %d ms\n", xTaskGetTickCount());
#ifdef USE_FLASH_EEP
flash_write_cfg(data, FEEP_ID_WIFI_CFG, sizeof(struct wlan_fast_reconnect));
#else
struct wlan_fast_reconnect read_data = {0};
flash_t flash;
if(!data) return -1;
flash_stream_read(&flash, FAST_RECONNECT_DATA, sizeof(struct wlan_fast_reconnect), (u8 *) &read_data);
//wirte it to flash if different content: SSID, Passphrase, Channel, Security type
if(memcmp(data, (u8 *) &read_data, sizeof(struct wlan_fast_reconnect)) != 0) {
DBG_8195A(" %s():not the same ssid/passphrase/channel, write new profile to flash\n", __func__);
flash_erase_sector(&flash, FAST_RECONNECT_DATA);
flash_stream_write(&flash, FAST_RECONNECT_DATA, len, (uint8_t *) data);
}
#endif
return 0;
}
/*
* Usage:
* After wifi init done, waln driver call this function to check whether
* auto-connect is required.
*
* This function read previous saved wlan profile in flash and execute connection.
*
* Condition:
* CONFIG_EXAMPLE_WLAN_FAST_CONNECT flag is set
*/
//scan_buf_arg scan_buf;
int wlan_init_done_callback()
{
flash_t flash;
struct wlan_fast_reconnect *data;
uint32_t channel;
uint8_t pscan_config;
char key_id[2] = {0};
// wifi_disable_powersave();
#if CONFIG_AUTO_RECONNECT
//setup reconnection flag
// u8 mode;
// if(wifi_get_autoreconnect(&mode) > 0 && mode != 1)
wifi_set_autoreconnect(1); // (not work if lib_wlan_mp.a ?)
#endif
DBG_8195A("WiFi Init after %d ms\n", xTaskGetTickCount());
data = (struct wlan_fast_reconnect *)rtw_zmalloc(sizeof(struct wlan_fast_reconnect));
if(data) {
#ifdef USE_FLASH_EEP
if (flash_read_cfg(data, FEEP_ID_WIFI_CFG, sizeof(struct wlan_fast_reconnect)) == sizeof(struct wlan_fast_reconnect)) {
#else
flash_stream_read(&flash, FAST_RECONNECT_DATA, sizeof(struct wlan_fast_reconnect), (uint8_t *)data);
if(*((uint32_t *) data) != ~0x0) {
#endif
#if 1 // not use AT
#if 0
//set partial scan for entering to listen beacon quickly
channel = data->channel & 0xFF;
pscan_config = PSCAN_ENABLE |PSCAN_FAST_SURVEY; // PSCAN_SIMPLE_CONFIG |
if(wifi_set_pscan_chan((uint8_t *)&channel, &pscan_config, 1) < 0)
printf("Wifi set partial scan channel fail!\n");
// rtw_network_info_t *wifi;
// SC_connect_to_candidate_AP
// SC_parse_scan_result_and_connect();
if (wifi_connect(data->psk_essid, data->security_type, data->psk_passphrase, strlen(data->psk_essid), strlen(data->psk_passphrase), RTW_SECURITY_OPEN, NULL) == RTW_SUCCESS) {
#else
//set partial scan for entering to listen beacon quickly
channel = data->channel & 0xFF;
pscan_config = PSCAN_ENABLE |PSCAN_FAST_SURVEY; // PSCAN_SIMPLE_CONFIG |
if(wifi_set_pscan_chan((uint8_t *)&channel, &pscan_config, 1) < 0)
printf("Wifi set partial scan channel fail!\n");
// channel = data->channel & 0xFF;
wifi_set_channel(1); //channel);
// wifi_set_channel_plan(channel);
// pscan_config = PSCAN_ENABLE | PSCAN_FAST_SURVEY; // PSCAN_SIMPLE_CONFIG |
// wifi_set_pscan_chan((uint8_t *)&channel, &pscan_config, 1);
// DiagPrintf("\nScan end at start %d ms.\n", xTaskGetTickCount());
// u8 bssid[ETH_ALEN] = { 0x1a,0xfe,0x34,0x99,0xad,0x1d };
u8 bssid[ETH_ALEN] = { 0xbc,0xae,0xc5,0xeb,0x09,0x90 };
// if (wifi_connect(data->psk_essid, data->security_type, data->psk_passphrase, strlen(data->psk_essid), strlen(data->psk_passphrase), RTW_SECURITY_OPEN, NULL) == RTW_SUCCESS) {
if (wifi_connect_bssid(bssid, data->psk_essid, data->security_type, data->psk_passphrase, ETH_ALEN, strlen(data->psk_essid), strlen(data->psk_passphrase), data->channel>>28, NULL) == RTW_SUCCESS) {
#endif
// DBG_8195A("WiFi connected at start %dms\n", xTaskGetTickCount());
#if CONFIG_LWIP_LAYER
#ifdef USE_FLASH_EEP
dhcp_cfg *p = (dhcp_cfg *)&data;
p->mode = 3;
extern struct netif xnetif[NET_IF_NUM];
struct netif * pnetif = &xnetif[0];
if(flash_read_cfg(p, FEEP_ID_DHCP_CFG, sizeof(dhcp_cfg)) > 1) {
rtl_printf("Read dhcp_config: mode = %d, ip:%p, msk:%p, gw:%p\n", p->mode, p->ip, p->mask, p->gw);
if(p->mode == 2) {
netif_set_addr(pnetif, (ip_addr_t *)&p->ip, (ip_addr_t *)&p->mask, (ip_addr_t *)&p->gw);
dhcps_init(pnetif);
}
else if(p->mode) LwIP_DHCP(0, DHCP_START);
}
else LwIP_DHCP(0, DHCP_START);
if(p->mode == 3 && pnetif->ip_addr.addr != 0) {
p->mode = 2;
p->ip = pnetif->ip_addr.addr;
p->gw = pnetif->gw.addr;
p->mask = pnetif->netmask.addr;
flash_write_cfg(p, FEEP_ID_DHCP_CFG, sizeof(dhcp_cfg));
rtl_printf("Write dhcp_config: mode = %d, ip:%p, msk:%p, gw:%p\n", p->mode, p->ip, p->mask, p->gw);
}
#else
LwIP_DHCP(0, DHCP_START);
#endif //#if USE_FLASH_EEP
#endif //#if CONFIG_LWIP_LAYER
#if CONFIG_WLAN_CONNECT_CB
connect_start();
#endif
}
#else
// flash_read_cfg(psk_essid, 0x5731, sizeof(psk_essid));
memcpy(psk_essid, data->psk_essid, sizeof(data->psk_essid));
// flash_read_cfg(psk_passphrase, 0x5732, sizeof(psk_passphrase));
memcpy(psk_passphrase, data->psk_passphrase, sizeof(data->psk_passphrase));
// flash_read_cfg(wpa_global_PSK, 0x5733, sizeof(wpa_global_PSK));
memcpy(wpa_global_PSK, data->wpa_global_PSK, sizeof(data->wpa_global_PSK));
//set partial scan for entering to listen beacon quickly
pscan_config = PSCAN_ENABLE | PSCAN_FAST_SURVEY;
channel = data->channel & 0xFF;
wifi_set_pscan_chan((uint8_t *)&channel, &pscan_config, 1);
//set wifi connect
switch(data->security_type){
case RTW_SECURITY_OPEN:
fATW0((char*)psk_essid);
break;
case RTW_SECURITY_WEP_PSK:
fATW0((char*)psk_essid);
fATW1((char*)psk_passphrase);
sprintf(key_id,"%d",(char) (data->channel>>28));
fATW2(key_id);
break;
case RTW_SECURITY_WPA_TKIP_PSK:
case RTW_SECURITY_WPA2_AES_PSK:
fATW0((char*)psk_essid);
fATW1((char*)psk_passphrase);
break;
default:
break;
}
fATWC(NULL);
#endif // use AT
}
rtw_mfree(data);
}
return 0;
}
void example_wlan_fast_connect()
{
// Call back from wlan driver after wlan init done
p_wlan_init_done_callback = wlan_init_done_callback;
// Call back from application layer after wifi_connection success
p_write_reconnect_ptr = wlan_write_reconnect_data_to_flash;
}
#endif // defined(CONFIG_EXAMPLE_WLAN_FAST_CONNECT) && CONFIG_EXAMPLE_WLAN_FAST_CONNECT

View file

@ -0,0 +1,50 @@
#ifndef __EXAMPLE_FAST_RECONNECTION_H__
#define __EXAMPLE_FAST_RECONNECTION_H__
/******************************************************************************
*
* Copyright(c) 2007 - 2015 Realtek Corporation. All rights reserved.
*
*
******************************************************************************/
#include "FreeRTOS.h"
#include <autoconf.h>
#include "main.h"
#define IW_PASSPHRASE_MAX_SIZE 64
//#define FAST_RECONNECT_DATA (0x80000 - 0x1000)
#define NDIS_802_11_LENGTH_SSID 32
#define A_SHA_DIGEST_LEN 20
struct wlan_fast_reconnect {
unsigned char psk_essid[NDIS_802_11_LENGTH_SSID + 4];
unsigned char psk_passphrase[IW_PASSPHRASE_MAX_SIZE + 1];
unsigned char wpa_global_PSK[A_SHA_DIGEST_LEN * 2];
uint32_t channel;
uint32_t security_type;
#if ATCMD_VER == ATVER_2
uint8_t enable;
#endif
};
typedef int (*wlan_init_done_ptr)(void);
typedef int (*write_reconnect_ptr)(uint8_t *data, uint32_t len);
//Variable
extern unsigned char psk_essid[NET_IF_NUM][NDIS_802_11_LENGTH_SSID+4];
extern unsigned char psk_passphrase[NET_IF_NUM][IW_PASSPHRASE_MAX_SIZE + 1];
extern unsigned char wpa_global_PSK[NET_IF_NUM][A_SHA_DIGEST_LEN * 2];
extern unsigned char psk_passphrase64[IW_PASSPHRASE_MAX_SIZE + 1];
//Function
extern wlan_init_done_ptr p_wlan_init_done_callback;
extern write_reconnect_ptr p_write_reconnect_ptr;
void example_wlan_fast_connect(void);
#endif //#ifndef __EXAMPLE_FAST_RECONNECTION_H__

View file

@ -0,0 +1,111 @@
#include "FreeRTOS.h"
#include "task.h"
#include <platform_stdlib.h>
#include "xml.h"
static void example_xml_thread(void *param)
{
/* Create XML document
* <Home:Light xmlns:Home="http://www.home.com" xmlns="http://www.device.com" fw_ver="1.0.0">
* <Power>on</Power>
* <Color>
* <Red>255</Red>
* <Green>255</Green>
* <Blud>255</Blue>
* </Color>
* </Home:Light>
*/
struct xml_node *light_node, *power_node, *color_node, *red_node, *green_node, *blue_node;
// Creates element with (prefix, tag name, namespace uri), add element and text node as child
light_node = xml_new_element("Home", "Light", "http://www.home.com");
power_node = xml_new_element(NULL, "Power", NULL);
xml_add_child(power_node, xml_new_text("on"));
color_node = xml_new_element(NULL, "Color", NULL);
red_node = xml_new_element(NULL, "Red", NULL);
xml_add_child(red_node, xml_new_text("255"));
green_node = xml_new_element(NULL, "Green", NULL);
xml_add_child(green_node, xml_new_text("255"));
blue_node = xml_new_element(NULL, "Blue", NULL);
xml_add_child(blue_node, xml_new_text("255"));
xml_add_child(light_node, power_node);
xml_add_child(light_node, color_node);
xml_add_child(color_node, red_node);
xml_add_child(color_node, green_node);
xml_add_child(color_node, blue_node);
// Add or modify attributes
xml_set_attribute(light_node, "xmlns", "http://www.device.com");
xml_set_attribute(light_node, "fw_ver", "1.0.0");
// Dump XML document to memory buffer, equal to xml_dump_tree_ex(node, NULL, 0, 0);
char *dump_buf = xml_dump_tree(light_node);
printf("\n%s\n", dump_buf);
// Free dump buffer
xml_free(dump_buf);
// Dump XML document to memory buffer with prolog, new line, aligment
dump_buf = xml_dump_tree_ex(light_node, "<?xml version=\"1.0\"?>", 1, 4);
printf("\n%s\n", dump_buf);
xml_free(dump_buf);
// Delete XML tree to free memory
xml_delete_tree(light_node);
/* Parse XML document */
char *doc = "\
<?xml version=\"1.0\"?>\
<!--sensor example-->\
<Home:Sensor>\
<Thermostat>\
<Mode>auto</Mode>\
<Temperature unit=\"celsius\">25.5</Temperature>\
</Thermostat>\
</Home:Sensor>";
// Parse document buffer to XML tree. Prolog will be dropped
struct xml_node *root = xml_parse(doc, strlen(doc));
if(root) {
dump_buf = xml_dump_tree_ex(root, NULL, 1, 4);
printf("\n%s\n", dump_buf);
xml_free(dump_buf);
// Search by XPath, prefix and name in path should be matched
struct xml_node_set *set = xml_find_path(root, "/Home:Sensor/Thermostat/Temperature");
if(set->count) {
printf("\nFind %d element by %s\n", set->count, "/Home:Sensor/Thermostat/Temperature");
// Get XML tree search result 0
struct xml_node *temperature_node = set->node[0];
if(xml_is_text(temperature_node->child)) {
// Get text
printf("Temperature[0] is %s\n", temperature_node->child->text);
}
// Get attribute
char *unit = xml_get_attribute(temperature_node, "unit");
printf("Unit is \"%s\"\n", unit);
// Free attribute search result
xml_free(unit);
}
// Delete XML tree search result to free memory
xml_delete_set(set);
xml_delete_tree(root);
}
else {
printf("Xml parse failed\n");
}
vTaskDelete(NULL);
}
void example_xml(void)
{
if(xTaskCreate(example_xml_thread, ((const char*)"example_xml_thread"), 1024, NULL, tskIDLE_PRIORITY + 1, NULL) != pdPASS)
printf("\n\r%s xTaskCreate(init_thread) failed", __FUNCTION__);
}

View file

@ -0,0 +1,6 @@
#ifndef EXAMPLE_XML_H
#define EXAMPLE_XML_H
void example_xml(void);
#endif /* EXAMPLE_XML_H */

View file

@ -0,0 +1,13 @@
XML EXAMPLE
Description:
The creation of a light XML document is used as the example of XML document generation.
The processing of a sensor XML document is used as the example of XML document parsing.
Configuration:
[platform_opts.h]
#define CONFIG_EXAMPLE_XML 1
Execution:
An XML example thread will be started automatically when booting.