This commit is contained in:
pvvx 2017-04-07 17:47:33 +03:00
parent 0cf6a74c39
commit 020aedc9bb
114 changed files with 28699 additions and 2408 deletions

View file

@ -978,7 +978,7 @@
<buildTargets>
<target name="all" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>mingw32-make.exe</buildCommand>
<buildArguments>-s -j</buildArguments>
<buildArguments>-s -j 4</buildArguments>
<buildTarget>all</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>

View file

@ -5,7 +5,7 @@
<provider copy-of="extension" id="org.eclipse.cdt.ui.UserLanguageSettingsProvider"/>
<provider-reference id="org.eclipse.cdt.core.ReferencedProjectsLanguageSettingsProvider" ref="shared-provider"/>
<provider-reference id="org.eclipse.cdt.managedbuilder.core.MBSLanguageSettingsProvider" ref="shared-provider"/>
<provider class="org.eclipse.cdt.managedbuilder.language.settings.providers.GCCBuiltinSpecsDetector" console="false" env-hash="-897121475649177215" id="ilg.gnuarmeclipse.managedbuild.cross.GCCBuiltinSpecsDetector" keep-relative-paths="false" name="CDT GCC Built-in Compiler Settings Cross ARM" parameter="${COMMAND} ${FLAGS} ${cross_toolchain_flags} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<provider class="org.eclipse.cdt.managedbuilder.language.settings.providers.GCCBuiltinSpecsDetector" console="false" env-hash="-899746928891724671" id="ilg.gnuarmeclipse.managedbuild.cross.GCCBuiltinSpecsDetector" keep-relative-paths="false" name="CDT GCC Built-in Compiler Settings Cross ARM" parameter="${COMMAND} ${FLAGS} ${cross_toolchain_flags} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<language-scope id="org.eclipse.cdt.core.gcc"/>
<language-scope id="org.eclipse.cdt.core.g++"/>
</provider>
@ -16,7 +16,7 @@
<provider copy-of="extension" id="org.eclipse.cdt.ui.UserLanguageSettingsProvider"/>
<provider-reference id="org.eclipse.cdt.core.ReferencedProjectsLanguageSettingsProvider" ref="shared-provider"/>
<provider-reference id="org.eclipse.cdt.managedbuilder.core.MBSLanguageSettingsProvider" ref="shared-provider"/>
<provider class="org.eclipse.cdt.managedbuilder.language.settings.providers.GCCBuiltinSpecsDetector" console="false" env-hash="-897121475649177215" id="ilg.gnuarmeclipse.managedbuild.cross.GCCBuiltinSpecsDetector" keep-relative-paths="false" name="CDT GCC Built-in Compiler Settings Cross ARM" parameter="${COMMAND} ${FLAGS} ${cross_toolchain_flags} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<provider class="org.eclipse.cdt.managedbuilder.language.settings.providers.GCCBuiltinSpecsDetector" console="false" env-hash="-899746928891724671" id="ilg.gnuarmeclipse.managedbuild.cross.GCCBuiltinSpecsDetector" keep-relative-paths="false" name="CDT GCC Built-in Compiler Settings Cross ARM" parameter="${COMMAND} ${FLAGS} ${cross_toolchain_flags} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<language-scope id="org.eclipse.cdt.core.gcc"/>
<language-scope id="org.eclipse.cdt.core.g++"/>
</provider>
@ -27,7 +27,7 @@
<provider copy-of="extension" id="org.eclipse.cdt.ui.UserLanguageSettingsProvider"/>
<provider-reference id="org.eclipse.cdt.core.ReferencedProjectsLanguageSettingsProvider" ref="shared-provider"/>
<provider-reference id="org.eclipse.cdt.managedbuilder.core.MBSLanguageSettingsProvider" ref="shared-provider"/>
<provider class="org.eclipse.cdt.managedbuilder.language.settings.providers.GCCBuiltinSpecsDetector" console="false" env-hash="-950027335418731358" id="ilg.gnuarmeclipse.managedbuild.cross.GCCBuiltinSpecsDetector" keep-relative-paths="false" name="CDT GCC Built-in Compiler Settings Cross ARM" parameter="${COMMAND} ${FLAGS} ${cross_toolchain_flags} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<provider class="org.eclipse.cdt.managedbuilder.language.settings.providers.GCCBuiltinSpecsDetector" console="false" env-hash="-952652788661278814" id="ilg.gnuarmeclipse.managedbuild.cross.GCCBuiltinSpecsDetector" keep-relative-paths="false" name="CDT GCC Built-in Compiler Settings Cross ARM" parameter="${COMMAND} ${FLAGS} ${cross_toolchain_flags} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<language-scope id="org.eclipse.cdt.core.gcc"/>
<language-scope id="org.eclipse.cdt.core.g++"/>
</provider>

View file

@ -0,0 +1,346 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* Creates six tasks that operate on three queues as follows:
*
* The first two tasks send and receive an incrementing number to/from a queue.
* One task acts as a producer and the other as the consumer. The consumer is a
* higher priority than the producer and is set to block on queue reads. The queue
* only has space for one item - as soon as the producer posts a message on the
* queue the consumer will unblock, pre-empt the producer, and remove the item.
*
* The second two tasks work the other way around. Again the queue used only has
* enough space for one item. This time the consumer has a lower priority than the
* producer. The producer will try to post on the queue blocking when the queue is
* full. When the consumer wakes it will remove the item from the queue, causing
* the producer to unblock, pre-empt the consumer, and immediately re-fill the
* queue.
*
* The last two tasks use the same queue producer and consumer functions. This time the queue has
* enough space for lots of items and the tasks operate at the same priority. The
* producer will execute, placing items into the queue. The consumer will start
* executing when either the queue becomes full (causing the producer to block) or
* a context switch occurs (tasks of the same priority will time slice).
*
* \page BlockQC blockQ.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V1.00:
+ Reversed the priority and block times of the second two demo tasks so
they operate as per the description above.
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than unsigned long.
Changes from V4.0.2
+ The second set of tasks were created the wrong way around. This has been
corrected.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo program include files. */
#include "BlockQ.h"
#include "print.h"
#define blckqSTACK_SIZE ( ( unsigned short ) configMINIMAL_STACK_SIZE )
#define blckqNUM_TASK_SETS ( 3 )
/* Structure used to pass parameters to the blocking queue tasks. */
typedef struct BLOCKING_QUEUE_PARAMETERS
{
QueueHandle_t xQueue; /*< The queue to be used by the task. */
TickType_t xBlockTime; /*< The block time to use on queue reads/writes. */
volatile short *psCheckVariable; /*< Incremented on each successful cycle to check the task is still running. */
} xBlockingQueueParameters;
/* Task function that creates an incrementing number and posts it on a queue. */
static void vBlockingQueueProducer( void *pvParameters );
/* Task function that removes the incrementing number from a queue and checks that
it is the expected number. */
static void vBlockingQueueConsumer( void *pvParameters );
/* Variables which are incremented each time an item is removed from a queue, and
found to be the expected value.
These are used to check that the tasks are still running. */
static volatile short sBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( short ) 0, ( short ) 0, ( short ) 0 };
/* Variable which are incremented each time an item is posted on a queue. These
are used to check that the tasks are still running. */
static volatile short sBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( short ) 0, ( short ) 0, ( short ) 0 };
/*-----------------------------------------------------------*/
void vStartBlockingQueueTasks( unsigned portBASE_TYPE uxPriority )
{
xBlockingQueueParameters *pxQueueParameters1, *pxQueueParameters2;
xBlockingQueueParameters *pxQueueParameters3, *pxQueueParameters4;
xBlockingQueueParameters *pxQueueParameters5, *pxQueueParameters6;
const unsigned portBASE_TYPE uxQueueSize1 = 1, uxQueueSize5 = 5;
const TickType_t xBlockTime = ( TickType_t ) 1000 / portTICK_PERIOD_MS;
const TickType_t xDontBlock = ( TickType_t ) 0;
/* Create the first two tasks as described at the top of the file. */
/* First create the structure used to pass parameters to the consumer tasks. */
pxQueueParameters1 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Create the queue used by the first two tasks to pass the incrementing number.
Pass a pointer to the queue in the parameter structure. */
pxQueueParameters1->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
/* The consumer is created first so gets a block time as described above. */
pxQueueParameters1->xBlockTime = xBlockTime;
/* Pass in the variable that this task is going to increment so we can check it
is still running. */
pxQueueParameters1->psCheckVariable = &( sBlockingConsumerCount[ 0 ] );
/* Create the structure used to pass parameters to the producer task. */
pxQueueParameters2 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Pass the queue to this task also, using the parameter structure. */
pxQueueParameters2->xQueue = pxQueueParameters1->xQueue;
/* The producer is not going to block - as soon as it posts the consumer will
wake and remove the item so the producer should always have room to post. */
pxQueueParameters2->xBlockTime = xDontBlock;
/* Pass in the variable that this task is going to increment so we can check
it is still running. */
pxQueueParameters2->psCheckVariable = &( sBlockingProducerCount[ 0 ] );
/* Note the producer has a lower priority than the consumer when the tasks are
spawned. */
xTaskCreate( vBlockingQueueConsumer, "QConsB1", blckqSTACK_SIZE, ( void * ) pxQueueParameters1, uxPriority, NULL );
xTaskCreate( vBlockingQueueProducer, "QProdB2", blckqSTACK_SIZE, ( void * ) pxQueueParameters2, tskIDLE_PRIORITY, NULL );
/* Create the second two tasks as described at the top of the file. This uses
the same mechanism but reverses the task priorities. */
pxQueueParameters3 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters3->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
pxQueueParameters3->xBlockTime = xDontBlock;
pxQueueParameters3->psCheckVariable = &( sBlockingProducerCount[ 1 ] );
pxQueueParameters4 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters4->xQueue = pxQueueParameters3->xQueue;
pxQueueParameters4->xBlockTime = xBlockTime;
pxQueueParameters4->psCheckVariable = &( sBlockingConsumerCount[ 1 ] );
xTaskCreate( vBlockingQueueProducer, "QProdB3", blckqSTACK_SIZE, ( void * ) pxQueueParameters3, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueConsumer, "QConsB4", blckqSTACK_SIZE, ( void * ) pxQueueParameters4, uxPriority, NULL );
/* Create the last two tasks as described above. The mechanism is again just
the same. This time both parameter structures are given a block time. */
pxQueueParameters5 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters5->xQueue = xQueueCreate( uxQueueSize5, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
pxQueueParameters5->xBlockTime = xBlockTime;
pxQueueParameters5->psCheckVariable = &( sBlockingProducerCount[ 2 ] );
pxQueueParameters6 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters6->xQueue = pxQueueParameters5->xQueue;
pxQueueParameters6->xBlockTime = xBlockTime;
pxQueueParameters6->psCheckVariable = &( sBlockingConsumerCount[ 2 ] );
xTaskCreate( vBlockingQueueProducer, "QProdB5", blckqSTACK_SIZE, ( void * ) pxQueueParameters5, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueConsumer, "QConsB6", blckqSTACK_SIZE, ( void * ) pxQueueParameters6, tskIDLE_PRIORITY, NULL );
}
/*-----------------------------------------------------------*/
static void vBlockingQueueProducer( void *pvParameters )
{
unsigned short usValue = 0;
xBlockingQueueParameters *pxQueueParameters;
const char * const pcTaskStartMsg = "Blocking queue producer started.\r\n";
const char * const pcTaskErrorMsg = "Could not post on blocking queue\r\n";
short sErrorEverOccurred = pdFALSE;
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
for( ;; )
{
if( xQueueSendToBack( pxQueueParameters->xQueue, ( void * ) &usValue, pxQueueParameters->xBlockTime ) != pdPASS )
{
vPrintDisplayMessage( &pcTaskErrorMsg );
sErrorEverOccurred = pdTRUE;
}
else
{
/* We have successfully posted a message, so increment the variable
used to check we are still running. */
if( sErrorEverOccurred == pdFALSE )
{
( *pxQueueParameters->psCheckVariable )++;
}
/* Increment the variable we are going to post next time round. The
consumer will expect the numbers to follow in numerical order. */
++usValue;
}
}
}
/*-----------------------------------------------------------*/
static void vBlockingQueueConsumer( void *pvParameters )
{
unsigned short usData, usExpectedValue = 0;
xBlockingQueueParameters *pxQueueParameters;
const char * const pcTaskStartMsg = "Blocking queue consumer started.\r\n";
const char * const pcTaskErrorMsg = "Incorrect value received on blocking queue.\r\n";
short sErrorEverOccurred = pdFALSE;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
for( ;; )
{
if( xQueueReceive( pxQueueParameters->xQueue, &usData, pxQueueParameters->xBlockTime ) == pdPASS )
{
if( usData != usExpectedValue )
{
vPrintDisplayMessage( &pcTaskErrorMsg );
/* Catch-up. */
usExpectedValue = usData;
sErrorEverOccurred = pdTRUE;
}
else
{
/* We have successfully received a message, so increment the
variable used to check we are still running. */
if( sErrorEverOccurred == pdFALSE )
{
( *pxQueueParameters->psCheckVariable )++;
}
/* Increment the value we expect to remove from the queue next time
round. */
++usExpectedValue;
}
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreBlockingQueuesStillRunning( void )
{
static short sLastBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( short ) 0, ( short ) 0, ( short ) 0 };
static short sLastBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( short ) 0, ( short ) 0, ( short ) 0 };
portBASE_TYPE xReturn = pdPASS, xTasks;
/* Not too worried about mutual exclusion on these variables as they are 16
bits and we are only reading them. We also only care to see if they have
changed or not.
Loop through each check variable and return pdFALSE if any are found not
to have changed since the last call. */
for( xTasks = 0; xTasks < blckqNUM_TASK_SETS; xTasks++ )
{
if( sBlockingConsumerCount[ xTasks ] == sLastBlockingConsumerCount[ xTasks ] )
{
xReturn = pdFALSE;
}
sLastBlockingConsumerCount[ xTasks ] = sBlockingConsumerCount[ xTasks ];
if( sBlockingProducerCount[ xTasks ] == sLastBlockingProducerCount[ xTasks ] )
{
xReturn = pdFALSE;
}
sLastBlockingProducerCount[ xTasks ] = sBlockingProducerCount[ xTasks ];
}
return xReturn;
}

View file

@ -0,0 +1,258 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* This is a very simple queue test. See the BlockQ. c documentation for a more
* comprehensive version.
*
* Creates two tasks that communicate over a single queue. One task acts as a
* producer, the other a consumer.
*
* The producer loops for three iteration, posting an incrementing number onto the
* queue each cycle. It then delays for a fixed period before doing exactly the
* same again.
*
* The consumer loops emptying the queue. Each item removed from the queue is
* checked to ensure it contains the expected value. When the queue is empty it
* blocks for a fixed period, then does the same again.
*
* All queue access is performed without blocking. The consumer completely empties
* the queue each time it runs so the producer should never find the queue full.
*
* An error is flagged if the consumer obtains an unexpected value or the producer
* find the queue is full.
*
* \page PollQC pollQ.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than unsigned long.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "print.h"
/* Demo program include files. */
#include "PollQ.h"
#define pollqSTACK_SIZE ( ( unsigned short ) configMINIMAL_STACK_SIZE )
/* The task that posts the incrementing number onto the queue. */
static void vPolledQueueProducer( void *pvParameters );
/* The task that empties the queue. */
static void vPolledQueueConsumer( void *pvParameters );
/* Variables that are used to check that the tasks are still running with no errors. */
static volatile short sPollingConsumerCount = 0, sPollingProducerCount = 0;
/*-----------------------------------------------------------*/
void vStartPolledQueueTasks( unsigned portBASE_TYPE uxPriority )
{
static QueueHandle_t xPolledQueue;
const unsigned portBASE_TYPE uxQueueSize = 10;
/* Create the queue used by the producer and consumer. */
xPolledQueue = xQueueCreate( uxQueueSize, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
/* Spawn the producer and consumer. */
xTaskCreate( vPolledQueueConsumer, "QConsNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, NULL );
xTaskCreate( vPolledQueueProducer, "QProdNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, NULL );
}
/*-----------------------------------------------------------*/
static void vPolledQueueProducer( void *pvParameters )
{
unsigned short usValue = 0, usLoop;
QueueHandle_t *pxQueue;
const TickType_t xDelay = ( TickType_t ) 200 / portTICK_PERIOD_MS;
const unsigned short usNumToProduce = 3;
const char * const pcTaskStartMsg = "Polled queue producer started.\r\n";
const char * const pcTaskErrorMsg = "Could not post on polled queue.\r\n";
short sError = pdFALSE;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The queue being used is passed in as the parameter. */
pxQueue = ( QueueHandle_t * ) pvParameters;
for( ;; )
{
for( usLoop = 0; usLoop < usNumToProduce; ++usLoop )
{
/* Send an incrementing number on the queue without blocking. */
if( xQueueSendToBack( *pxQueue, ( void * ) &usValue, ( TickType_t ) 0 ) != pdPASS )
{
/* We should never find the queue full - this is an error. */
vPrintDisplayMessage( &pcTaskErrorMsg );
sError = pdTRUE;
}
else
{
if( sError == pdFALSE )
{
/* If an error has ever been recorded we stop incrementing the
check variable. */
++sPollingProducerCount;
}
/* Update the value we are going to post next time around. */
++usValue;
}
}
/* Wait before we start posting again to ensure the consumer runs and
empties the queue. */
vTaskDelay( xDelay );
}
}
/*-----------------------------------------------------------*/
static void vPolledQueueConsumer( void *pvParameters )
{
unsigned short usData, usExpectedValue = 0;
QueueHandle_t *pxQueue;
const TickType_t xDelay = ( TickType_t ) 200 / portTICK_PERIOD_MS;
const char * const pcTaskStartMsg = "Polled queue consumer started.\r\n";
const char * const pcTaskErrorMsg = "Incorrect value received on polled queue.\r\n";
short sError = pdFALSE;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The queue being used is passed in as the parameter. */
pxQueue = ( QueueHandle_t * ) pvParameters;
for( ;; )
{
/* Loop until the queue is empty. */
while( uxQueueMessagesWaiting( *pxQueue ) )
{
if( xQueueReceive( *pxQueue, &usData, ( TickType_t ) 0 ) == pdPASS )
{
if( usData != usExpectedValue )
{
/* This is not what we expected to receive so an error has
occurred. */
vPrintDisplayMessage( &pcTaskErrorMsg );
sError = pdTRUE;
/* Catch-up to the value we received so our next expected value
should again be correct. */
usExpectedValue = usData;
}
else
{
if( sError == pdFALSE )
{
/* Only increment the check variable if no errors have
occurred. */
++sPollingConsumerCount;
}
}
++usExpectedValue;
}
}
/* Now the queue is empty we block, allowing the producer to place more
items in the queue. */
vTaskDelay( xDelay );
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running with no errors. */
portBASE_TYPE xArePollingQueuesStillRunning( void )
{
static short sLastPollingConsumerCount = 0, sLastPollingProducerCount = 0;
portBASE_TYPE xReturn;
if( ( sLastPollingConsumerCount == sPollingConsumerCount ) ||
( sLastPollingProducerCount == sPollingProducerCount )
)
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
sLastPollingConsumerCount = sPollingConsumerCount;
sLastPollingProducerCount = sPollingProducerCount;
return xReturn;
}

View file

@ -0,0 +1,384 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* Creates two tasks that operate on an interrupt driven serial port. A loopback
* connector should be used so that everything that is transmitted is also received.
* The serial port does not use any flow control. On a standard 9way 'D' connector
* pins two and three should be connected together.
*
* The first task repeatedly sends a string to a queue, character at a time. The
* serial port interrupt will empty the queue and transmit the characters. The
* task blocks for a pseudo random period before resending the string.
*
* The second task blocks on a queue waiting for a character to be received.
* Characters received by the serial port interrupt routine are posted onto the
* queue - unblocking the task making it ready to execute. If this is then the
* highest priority task ready to run it will run immediately - with a context
* switch occurring at the end of the interrupt service routine. The task
* receiving characters is spawned with a higher priority than the task
* transmitting the characters.
*
* With the loop back connector in place, one task will transmit a string and the
* other will immediately receive it. The receiving task knows the string it
* expects to receive so can detect an error.
*
* This also creates a third task. This is used to test semaphore usage from an
* ISR and does nothing interesting.
*
* \page ComTestC comtest.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V1.00:
+ The priority of the Rx task has been lowered. Received characters are
now processed (read from the queue) at the idle priority, allowing low
priority tasks to run evenly at times of a high communications overhead.
Changes from V1.01:
+ The Tx task now waits a pseudo random time between transissions.
Previously a fixed period was used but this was not such a good test as
interrupts fired at regular intervals.
Changes From V1.2.0:
+ Use vSerialPutString() instead of single character puts.
+ Only stop the check variable incrementing after two consecutive errors.
Changed from V1.2.5
+ Made the Rx task 2 priorities higher than the Tx task. Previously it was
only 1. This is done to tie in better with the other demo application
tasks.
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than unsigned long.
+ Slight modification to task priorities.
*/
/* Scheduler include files. */
#include <stdlib.h>
#include <string.h>
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "serial.h"
#include "comtest.h"
#include "print.h"
/* The Tx task will transmit the sequence of characters at a pseudo random
interval. This is the maximum and minimum block time between sends. */
#define comTX_MAX_BLOCK_TIME ( ( TickType_t ) 0x15e )
#define comTX_MIN_BLOCK_TIME ( ( TickType_t ) 0xc8 )
#define comMAX_CONSECUTIVE_ERRORS ( 2 )
#define comSTACK_SIZE ( ( unsigned short ) 256 )
#define comRX_RELATIVE_PRIORITY ( 1 )
/* Handle to the com port used by both tasks. */
static xComPortHandle xPort;
/* The transmit function as described at the top of the file. */
static void vComTxTask( void *pvParameters );
/* The receive function as described at the top of the file. */
static void vComRxTask( void *pvParameters );
/* The semaphore test function as described at the top of the file. */
static void vSemTestTask( void * pvParameters );
/* The string that is repeatedly transmitted. */
const char * const pcMessageToExchange = "Send this message over and over again to check communications interrupts. "
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ\r\n";
/* Variables that are incremented on each cycle of each task. These are used to
check that both tasks are still executing. */
volatile short sTxCount = 0, sRxCount = 0, sSemCount = 0;
/* The handle to the semaphore test task. */
static TaskHandle_t xSemTestTaskHandle = NULL;
/*-----------------------------------------------------------*/
void vStartComTestTasks( unsigned portBASE_TYPE uxPriority, eCOMPort ePort, eBaud eBaudRate )
{
const unsigned portBASE_TYPE uxBufferLength = 255;
/* Initialise the com port then spawn both tasks. */
xPort = xSerialPortInit( ePort, eBaudRate, serNO_PARITY, serBITS_8, serSTOP_1, uxBufferLength );
xTaskCreate( vComTxTask, "COMTx", comSTACK_SIZE, NULL, uxPriority, NULL );
xTaskCreate( vComRxTask, "COMRx", comSTACK_SIZE, NULL, uxPriority + comRX_RELATIVE_PRIORITY, NULL );
xTaskCreate( vSemTestTask, "ISRSem", comSTACK_SIZE, NULL, tskIDLE_PRIORITY, &xSemTestTaskHandle );
}
/*-----------------------------------------------------------*/
static void vComTxTask( void *pvParameters )
{
const char * const pcTaskStartMsg = "COM Tx task started.\r\n";
TickType_t xTimeToWait;
/* Stop warnings. */
( void ) pvParameters;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
for( ;; )
{
/* Send the string to the serial port. */
vSerialPutString( xPort, pcMessageToExchange, strlen( pcMessageToExchange ) );
/* We have posted all the characters in the string - increment the variable
used to check that this task is still running, then wait before re-sending
the string. */
sTxCount++;
xTimeToWait = xTaskGetTickCount();
/* Make sure we don't wait too long... */
xTimeToWait %= comTX_MAX_BLOCK_TIME;
/* ...but we do want to wait. */
if( xTimeToWait < comTX_MIN_BLOCK_TIME )
{
xTimeToWait = comTX_MIN_BLOCK_TIME;
}
vTaskDelay( xTimeToWait );
}
} /*lint !e715 !e818 pvParameters is required for a task function even if it is not referenced. */
/*-----------------------------------------------------------*/
static void vComRxTask( void *pvParameters )
{
const char * const pcTaskStartMsg = "COM Rx task started.\r\n";
const char * const pcTaskErrorMsg = "COM read error\r\n";
const char * const pcTaskRestartMsg = "COM resynced\r\n";
const char * const pcTaskTimeoutMsg = "COM Rx timed out\r\n";
const TickType_t xBlockTime = ( TickType_t ) 0xffff / portTICK_PERIOD_MS;
const char *pcExpectedChar;
portBASE_TYPE xGotChar;
char cRxedChar;
short sResyncRequired, sConsecutiveErrors, sLatchedError;
/* Stop warnings. */
( void ) pvParameters;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The first expected character is the first character in the string. */
pcExpectedChar = pcMessageToExchange;
sResyncRequired = pdFALSE;
sConsecutiveErrors = 0;
sLatchedError = pdFALSE;
for( ;; )
{
/* Receive a message from the com port interrupt routine. If a message is
not yet available the call will block the task. */
xGotChar = xSerialGetChar( xPort, &cRxedChar, xBlockTime );
if( xGotChar == pdTRUE )
{
if( sResyncRequired == pdTRUE )
{
/* We got out of sequence and are waiting for the start of the next
transmission of the string. */
if( cRxedChar == '\n' )
{
/* This is the end of the message so we can start again - with
the first character in the string being the next thing we expect
to receive. */
pcExpectedChar = pcMessageToExchange;
sResyncRequired = pdFALSE;
/* Queue a message for printing to say that we are going to try
again. */
vPrintDisplayMessage( &pcTaskRestartMsg );
/* Stop incrementing the check variable, if consecutive errors occur. */
sConsecutiveErrors++;
if( sConsecutiveErrors >= comMAX_CONSECUTIVE_ERRORS )
{
sLatchedError = pdTRUE;
}
}
}
else
{
/* We have received a character, but is it the expected character? */
if( cRxedChar != *pcExpectedChar )
{
/* This was not the expected character so post a message for
printing to say that an error has occurred. We will then wait
to resynchronise. */
vPrintDisplayMessage( &pcTaskErrorMsg );
sResyncRequired = pdTRUE;
}
else
{
/* This was the expected character so next time we will expect
the next character in the string. Wrap back to the beginning
of the string when the null terminator has been reached. */
pcExpectedChar++;
if( *pcExpectedChar == '\0' )
{
pcExpectedChar = pcMessageToExchange;
/* We have got through the entire string without error. */
sConsecutiveErrors = 0;
}
}
}
/* Increment the count that is used to check that this task is still
running. This is only done if an error has never occurred. */
if( sLatchedError == pdFALSE )
{
sRxCount++;
}
}
else
{
vPrintDisplayMessage( &pcTaskTimeoutMsg );
}
}
} /*lint !e715 !e818 pvParameters is required for a task function even if it is not referenced. */
/*-----------------------------------------------------------*/
static void vSemTestTask( void * pvParameters )
{
const char * const pcTaskStartMsg = "ISR Semaphore test started.\r\n";
portBASE_TYPE xError = pdFALSE;
/* Stop warnings. */
( void ) pvParameters;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
for( ;; )
{
if( xSerialWaitForSemaphore( xPort ) )
{
if( xError == pdFALSE )
{
sSemCount++;
}
}
else
{
xError = pdTRUE;
}
}
} /*lint !e715 !e830 !e818 pvParameters not used but function prototype must be standard for task function. */
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreComTestTasksStillRunning( void )
{
static short sLastTxCount = 0, sLastRxCount = 0, sLastSemCount = 0;
portBASE_TYPE xReturn;
/* Not too worried about mutual exclusion on these variables as they are 16
bits and we are only reading them. We also only care to see if they have
changed or not. */
if( ( sTxCount == sLastTxCount ) || ( sRxCount == sLastRxCount ) || ( sSemCount == sLastSemCount ) )
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
sLastTxCount = sTxCount;
sLastRxCount = sRxCount;
sLastSemCount = sSemCount;
return xReturn;
}
/*-----------------------------------------------------------*/
void vComTestUnsuspendTask( void )
{
/* The task that is suspended on the semaphore will be referenced from the
Suspended list as it is blocking indefinitely. This call just checks that
the kernel correctly detects this and does not attempt to unsuspend the
task. */
xTaskResumeFromISR( xSemTestTaskHandle );
}

View file

@ -0,0 +1,241 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* Create a single persistent task which periodically dynamically creates another
* four tasks. The original task is called the creator task, the four tasks it
* creates are called suicidal tasks.
*
* Two of the created suicidal tasks kill one other suicidal task before killing
* themselves - leaving just the original task remaining.
*
* The creator task must be spawned after all of the other demo application tasks
* as it keeps a check on the number of tasks under the scheduler control. The
* number of tasks it expects to see running should never be greater than the
* number of tasks that were in existence when the creator task was spawned, plus
* one set of four suicidal tasks. If this number is exceeded an error is flagged.
*
* \page DeathC death.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than unsigned long.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "death.h"
#include "print.h"
#define deathSTACK_SIZE ( ( unsigned short ) 512 )
/* The task originally created which is responsible for periodically dynamically
creating another four tasks. */
static void vCreateTasks( void *pvParameters );
/* The task function of the dynamically created tasks. */
static void vSuicidalTask( void *pvParameters );
/* A variable which is incremented every time the dynamic tasks are created. This
is used to check that the task is still running. */
static volatile short sCreationCount = 0;
/* Used to store the number of tasks that were originally running so the creator
task can tell if any of the suicidal tasks have failed to die. */
static volatile unsigned portBASE_TYPE uxTasksRunningAtStart = 0;
static const unsigned portBASE_TYPE uxMaxNumberOfExtraTasksRunning = 5;
/* Used to store a handle to the tasks that should be killed by a suicidal task,
before it kills itself. */
TaskHandle_t xCreatedTask1, xCreatedTask2;
/*-----------------------------------------------------------*/
void vCreateSuicidalTasks( unsigned portBASE_TYPE uxPriority )
{
unsigned portBASE_TYPE *puxPriority;
/* Create the Creator tasks - passing in as a parameter the priority at which
the suicidal tasks should be created. */
puxPriority = ( unsigned portBASE_TYPE * ) pvPortMalloc( sizeof( unsigned portBASE_TYPE ) );
*puxPriority = uxPriority;
xTaskCreate( vCreateTasks, "CREATOR", deathSTACK_SIZE, ( void * ) puxPriority, uxPriority, NULL );
/* Record the number of tasks that are running now so we know if any of the
suicidal tasks have failed to be killed. */
uxTasksRunningAtStart = uxTaskGetNumberOfTasks();
}
/*-----------------------------------------------------------*/
static void vSuicidalTask( void *pvParameters )
{
portDOUBLE d1, d2;
TaskHandle_t xTaskToKill;
const TickType_t xDelay = ( TickType_t ) 500 / portTICK_PERIOD_MS;
if( pvParameters != NULL )
{
/* This task is periodically created four times. Tow created tasks are
passed a handle to the other task so it can kill it before killing itself.
The other task is passed in null. */
xTaskToKill = *( TaskHandle_t* )pvParameters;
}
else
{
xTaskToKill = NULL;
}
for( ;; )
{
/* Do something random just to use some stack and registers. */
d1 = 2.4;
d2 = 89.2;
d2 *= d1;
vTaskDelay( xDelay );
if( xTaskToKill != NULL )
{
/* Make sure the other task has a go before we delete it. */
vTaskDelay( ( TickType_t ) 0 );
/* Kill the other task that was created by vCreateTasks(). */
vTaskDelete( xTaskToKill );
/* Kill ourselves. */
vTaskDelete( NULL );
}
}
}/*lint !e818 !e550 Function prototype must be as per standard for task functions. */
/*-----------------------------------------------------------*/
static void vCreateTasks( void *pvParameters )
{
const TickType_t xDelay = ( TickType_t ) 1000 / portTICK_PERIOD_MS;
unsigned portBASE_TYPE uxPriority;
const char * const pcTaskStartMsg = "Create task started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
uxPriority = *( unsigned portBASE_TYPE * ) pvParameters;
vPortFree( pvParameters );
for( ;; )
{
/* Just loop round, delaying then creating the four suicidal tasks. */
vTaskDelay( xDelay );
xTaskCreate( vSuicidalTask, "SUICIDE1", deathSTACK_SIZE, NULL, uxPriority, &xCreatedTask1 );
xTaskCreate( vSuicidalTask, "SUICIDE2", deathSTACK_SIZE, &xCreatedTask1, uxPriority, NULL );
xTaskCreate( vSuicidalTask, "SUICIDE1", deathSTACK_SIZE, NULL, uxPriority, &xCreatedTask2 );
xTaskCreate( vSuicidalTask, "SUICIDE2", deathSTACK_SIZE, &xCreatedTask2, uxPriority, NULL );
++sCreationCount;
}
}
/*-----------------------------------------------------------*/
/* This is called to check that the creator task is still running and that there
are not any more than four extra tasks. */
portBASE_TYPE xIsCreateTaskStillRunning( void )
{
static short sLastCreationCount = 0;
short sReturn = pdTRUE;
unsigned portBASE_TYPE uxTasksRunningNow;
if( sLastCreationCount == sCreationCount )
{
sReturn = pdFALSE;
}
uxTasksRunningNow = uxTaskGetNumberOfTasks();
if( uxTasksRunningNow < uxTasksRunningAtStart )
{
sReturn = pdFALSE;
}
else if( ( uxTasksRunningNow - uxTasksRunningAtStart ) > uxMaxNumberOfExtraTasksRunning )
{
sReturn = pdFALSE;
}
else
{
/* Everything is okay. */
}
return sReturn;
}

View file

@ -0,0 +1,616 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* The first test creates three tasks - two counter tasks (one continuous count
* and one limited count) and one controller. A "count" variable is shared
* between all three tasks. The two counter tasks should never be in a "ready"
* state at the same time. The controller task runs at the same priority as
* the continuous count task, and at a lower priority than the limited count
* task.
*
* One counter task loops indefinitely, incrementing the shared count variable
* on each iteration. To ensure it has exclusive access to the variable it
* raises it's priority above that of the controller task before each
* increment, lowering it again to it's original priority before starting the
* next iteration.
*
* The other counter task increments the shared count variable on each
* iteration of it's loop until the count has reached a limit of 0xff - at
* which point it suspends itself. It will not start a new loop until the
* controller task has made it "ready" again by calling vTaskResume ().
* This second counter task operates at a higher priority than controller
* task so does not need to worry about mutual exclusion of the counter
* variable.
*
* The controller task is in two sections. The first section controls and
* monitors the continuous count task. When this section is operational the
* limited count task is suspended. Likewise, the second section controls
* and monitors the limited count task. When this section is operational the
* continuous count task is suspended.
*
* In the first section the controller task first takes a copy of the shared
* count variable. To ensure mutual exclusion on the count variable it
* suspends the continuous count task, resuming it again when the copy has been
* taken. The controller task then sleeps for a fixed period - during which
* the continuous count task will execute and increment the shared variable.
* When the controller task wakes it checks that the continuous count task
* has executed by comparing the copy of the shared variable with its current
* value. This time, to ensure mutual exclusion, the scheduler itself is
* suspended with a call to vTaskSuspendAll (). This is for demonstration
* purposes only and is not a recommended technique due to its inefficiency.
*
* After a fixed number of iterations the controller task suspends the
* continuous count task, and moves on to its second section.
*
* At the start of the second section the shared variable is cleared to zero.
* The limited count task is then woken from it's suspension by a call to
* vTaskResume (). As this counter task operates at a higher priority than
* the controller task the controller task should not run again until the
* shared variable has been counted up to the limited value causing the counter
* task to suspend itself. The next line after vTaskResume () is therefore
* a check on the shared variable to ensure everything is as expected.
*
*
* The second test consists of a couple of very simple tasks that post onto a
* queue while the scheduler is suspended. This test was added to test parts
* of the scheduler not exercised by the first test.
*
*
* The final set of two tasks implements a third test. This simply raises the
* priority of a task while the scheduler is suspended. Again this test was
* added to exercise parts of the code not covered by the first test.
*
* \page Priorities dynamic.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than unsigned long.
+ Added a second, simple test that uses the functions
vQueueReceiveWhenSuspendedTask() and vQueueSendWhenSuspendedTask().
Changes from V3.1.1
+ Added a third simple test that uses the vTaskPrioritySet() function
while the scheduler is suspended.
+ Modified the controller task slightly to test the calling of
vTaskResumeAll() while the scheduler is suspended.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Demo app include files. */
#include "dynamic.h"
#include "print.h"
/* Function that implements the "limited count" task as described above. */
static void vLimitedIncrementTask( void * pvParameters );
/* Function that implements the "continuous count" task as described above. */
static void vContinuousIncrementTask( void * pvParameters );
/* Function that implements the controller task as described above. */
static void vCounterControlTask( void * pvParameters );
/* The simple test functions that check sending and receiving while the
scheduler is suspended. */
static void vQueueReceiveWhenSuspendedTask( void *pvParameters );
static void vQueueSendWhenSuspendedTask( void *pvParameters );
/* The simple test functions that check raising and lowering of task priorities
while the scheduler is suspended. */
static void prvChangePriorityWhenSuspendedTask( void *pvParameters );
static void prvChangePriorityHelperTask( void *pvParameters );
/* Demo task specific constants. */
#define priSTACK_SIZE ( ( unsigned short ) configMINIMAL_STACK_SIZE )
#define priSLEEP_TIME ( ( TickType_t ) 50 )
#define priLOOPS ( 5 )
#define priMAX_COUNT ( ( unsigned long ) 0xff )
#define priNO_BLOCK ( ( TickType_t ) 0 )
#define priSUSPENDED_QUEUE_LENGTH ( 1 )
/*-----------------------------------------------------------*/
/* Handles to the two counter tasks. These could be passed in as parameters
to the controller task to prevent them having to be file scope. */
static TaskHandle_t xContinuousIncrementHandle, xLimitedIncrementHandle, xChangePriorityWhenSuspendedHandle;
/* The shared counter variable. This is passed in as a parameter to the two
counter variables for demonstration purposes. */
static unsigned long ulCounter;
/* Variable used in a similar way by the test that checks the raising and
lowering of task priorities while the scheduler is suspended. */
static unsigned long ulPrioritySetCounter;
/* Variables used to check that the tasks are still operating without error.
Each complete iteration of the controller task increments this variable
provided no errors have been found. The variable maintaining the same value
is therefore indication of an error. */
static unsigned short usCheckVariable = ( unsigned short ) 0;
static portBASE_TYPE xSuspendedQueueSendError = pdFALSE;
static portBASE_TYPE xSuspendedQueueReceiveError = pdFALSE;
static portBASE_TYPE xPriorityRaiseWhenSuspendedError = pdFALSE;
/* Queue used by the second test. */
QueueHandle_t xSuspendedTestQueue;
/*-----------------------------------------------------------*/
/*
* Start the seven tasks as described at the top of the file.
* Note that the limited count task is given a higher priority.
*/
void vStartDynamicPriorityTasks( void )
{
xSuspendedTestQueue = xQueueCreate( priSUSPENDED_QUEUE_LENGTH, sizeof( unsigned long ) );
xTaskCreate( vContinuousIncrementTask, "CONT_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY, &xContinuousIncrementHandle );
xTaskCreate( vLimitedIncrementTask, "LIM_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY + 1, &xLimitedIncrementHandle );
xTaskCreate( vCounterControlTask, "C_CTRL", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vQueueSendWhenSuspendedTask, "SUSP_SEND", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vQueueReceiveWhenSuspendedTask, "SUSP_RECV", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( prvChangePriorityWhenSuspendedTask, "1st_P_CHANGE", priSTACK_SIZE, NULL, tskIDLE_PRIORITY + 1, NULL );
xTaskCreate( prvChangePriorityHelperTask, "2nd_P_CHANGE", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, &xChangePriorityWhenSuspendedHandle );
}
/*-----------------------------------------------------------*/
/*
* Just loops around incrementing the shared variable until the limit has been
* reached. Once the limit has been reached it suspends itself.
*/
static void vLimitedIncrementTask( void * pvParameters )
{
unsigned long *pulCounter;
/* Take a pointer to the shared variable from the parameters passed into
the task. */
pulCounter = ( unsigned long * ) pvParameters;
/* This will run before the control task, so the first thing it does is
suspend - the control task will resume it when ready. */
vTaskSuspend( NULL );
for( ;; )
{
/* Just count up to a value then suspend. */
( *pulCounter )++;
if( *pulCounter >= priMAX_COUNT )
{
vTaskSuspend( NULL );
}
}
}
/*-----------------------------------------------------------*/
/*
* Just keep counting the shared variable up. The control task will suspend
* this task when it wants.
*/
static void vContinuousIncrementTask( void * pvParameters )
{
unsigned long *pulCounter;
unsigned portBASE_TYPE uxOurPriority;
/* Take a pointer to the shared variable from the parameters passed into
the task. */
pulCounter = ( unsigned long * ) pvParameters;
/* Query our priority so we can raise it when exclusive access to the
shared variable is required. */
uxOurPriority = uxTaskPriorityGet( NULL );
for( ;; )
{
/* Raise our priority above the controller task to ensure a context
switch does not occur while we are accessing this variable. */
vTaskPrioritySet( NULL, uxOurPriority + 1 );
( *pulCounter )++;
vTaskPrioritySet( NULL, uxOurPriority );
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
/*
* Controller task as described above.
*/
static void vCounterControlTask( void * pvParameters )
{
unsigned long ulLastCounter;
short sLoops;
short sError = pdFALSE;
const char * const pcTaskStartMsg = "Priority manipulation tasks started.\r\n";
const char * const pcTaskFailMsg = "Priority manipulation Task Failed\r\n";
/* Just to stop warning messages. */
( void ) pvParameters;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
for( ;; )
{
/* Start with the counter at zero. */
ulCounter = ( unsigned long ) 0;
/* First section : */
/* Check the continuous count task is running. */
for( sLoops = 0; sLoops < priLOOPS; sLoops++ )
{
/* Suspend the continuous count task so we can take a mirror of the
shared variable without risk of corruption. */
vTaskSuspend( xContinuousIncrementHandle );
ulLastCounter = ulCounter;
vTaskResume( xContinuousIncrementHandle );
/* Now delay to ensure the other task has processor time. */
vTaskDelay( priSLEEP_TIME );
/* Check the shared variable again. This time to ensure mutual
exclusion the whole scheduler will be locked. This is just for
demo purposes! */
vTaskSuspendAll();
{
if( ulLastCounter == ulCounter )
{
/* The shared variable has not changed. There is a problem
with the continuous count task so flag an error. */
sError = pdTRUE;
xTaskResumeAll();
vPrintDisplayMessage( &pcTaskFailMsg );
vTaskSuspendAll();
}
}
xTaskResumeAll();
}
/* Second section: */
/* Suspend the continuous counter task so it stops accessing the shared variable. */
vTaskSuspend( xContinuousIncrementHandle );
/* Reset the variable. */
ulCounter = ( unsigned long ) 0;
/* Resume the limited count task which has a higher priority than us.
We should therefore not return from this call until the limited count
task has suspended itself with a known value in the counter variable.
The scheduler suspension is not necessary but is included for test
purposes. */
vTaskSuspendAll();
vTaskResume( xLimitedIncrementHandle );
xTaskResumeAll();
/* Does the counter variable have the expected value? */
if( ulCounter != priMAX_COUNT )
{
sError = pdTRUE;
vPrintDisplayMessage( &pcTaskFailMsg );
}
if( sError == pdFALSE )
{
/* If no errors have occurred then increment the check variable. */
portENTER_CRITICAL();
usCheckVariable++;
portEXIT_CRITICAL();
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Resume the continuous count task and do it all again. */
vTaskResume( xContinuousIncrementHandle );
}
}
/*-----------------------------------------------------------*/
static void vQueueSendWhenSuspendedTask( void *pvParameters )
{
static unsigned long ulValueToSend = ( unsigned long ) 0;
const char * const pcTaskStartMsg = "Queue send while suspended task started.\r\n";
const char * const pcTaskFailMsg = "Queue send while suspended failed.\r\n";
/* Just to stop warning messages. */
( void ) pvParameters;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
for( ;; )
{
vTaskSuspendAll();
{
/* We must not block while the scheduler is suspended! */
if( xQueueSend( xSuspendedTestQueue, ( void * ) &ulValueToSend, priNO_BLOCK ) != pdTRUE )
{
if( xSuspendedQueueSendError == pdFALSE )
{
xTaskResumeAll();
vPrintDisplayMessage( &pcTaskFailMsg );
vTaskSuspendAll();
}
xSuspendedQueueSendError = pdTRUE;
}
}
xTaskResumeAll();
vTaskDelay( priSLEEP_TIME );
++ulValueToSend;
}
}
/*-----------------------------------------------------------*/
static void vQueueReceiveWhenSuspendedTask( void *pvParameters )
{
static unsigned long ulExpectedValue = ( unsigned long ) 0, ulReceivedValue;
const char * const pcTaskStartMsg = "Queue receive while suspended task started.\r\n";
const char * const pcTaskFailMsg = "Queue receive while suspended failed.\r\n";
portBASE_TYPE xGotValue;
/* Just to stop warning messages. */
( void ) pvParameters;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
for( ;; )
{
do
{
/* Suspending the scheduler here is fairly pointless and
undesirable for a normal application. It is done here purely
to test the scheduler. The inner xTaskResumeAll() should
never return pdTRUE as the scheduler is still locked by the
outer call. */
vTaskSuspendAll();
{
vTaskSuspendAll();
{
xGotValue = xQueueReceive( xSuspendedTestQueue, ( void * ) &ulReceivedValue, priNO_BLOCK );
}
if( xTaskResumeAll() )
{
xSuspendedQueueReceiveError = pdTRUE;
}
}
xTaskResumeAll();
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
} while( xGotValue == pdFALSE );
if( ulReceivedValue != ulExpectedValue )
{
if( xSuspendedQueueReceiveError == pdFALSE )
{
vPrintDisplayMessage( &pcTaskFailMsg );
}
xSuspendedQueueReceiveError = pdTRUE;
}
++ulExpectedValue;
}
}
/*-----------------------------------------------------------*/
static void prvChangePriorityWhenSuspendedTask( void *pvParameters )
{
const char * const pcTaskStartMsg = "Priority change when suspended task started.\r\n";
const char * const pcTaskFailMsg = "Priority change when suspended task failed.\r\n";
/* Just to stop warning messages. */
( void ) pvParameters;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
for( ;; )
{
/* Start with the counter at 0 so we know what the counter should be
when we check it next. */
ulPrioritySetCounter = ( unsigned long ) 0;
/* Resume the helper task. At this time it has a priority lower than
ours so no context switch should occur. */
vTaskResume( xChangePriorityWhenSuspendedHandle );
/* Check to ensure the task just resumed has not executed. */
portENTER_CRITICAL();
{
if( ulPrioritySetCounter != ( unsigned long ) 0 )
{
xPriorityRaiseWhenSuspendedError = pdTRUE;
vPrintDisplayMessage( &pcTaskFailMsg );
}
}
portEXIT_CRITICAL();
/* Now try raising the priority while the scheduler is suspended. */
vTaskSuspendAll();
{
vTaskPrioritySet( xChangePriorityWhenSuspendedHandle, ( configMAX_PRIORITIES - 1 ) );
/* Again, even though the helper task has a priority greater than
ours, it should not have executed yet because the scheduler is
suspended. */
portENTER_CRITICAL();
{
if( ulPrioritySetCounter != ( unsigned long ) 0 )
{
xPriorityRaiseWhenSuspendedError = pdTRUE;
vPrintDisplayMessage( &pcTaskFailMsg );
}
}
portEXIT_CRITICAL();
}
xTaskResumeAll();
/* Now the scheduler has been resumed the helper task should
immediately preempt us and execute. When it executes it will increment
the ulPrioritySetCounter exactly once before suspending itself.
We should now always find the counter set to 1. */
portENTER_CRITICAL();
{
if( ulPrioritySetCounter != ( unsigned long ) 1 )
{
xPriorityRaiseWhenSuspendedError = pdTRUE;
vPrintDisplayMessage( &pcTaskFailMsg );
}
}
portEXIT_CRITICAL();
/* Delay until we try this again. */
vTaskDelay( priSLEEP_TIME * 2 );
/* Set the priority of the helper task back ready for the next
execution of this task. */
vTaskSuspendAll();
vTaskPrioritySet( xChangePriorityWhenSuspendedHandle, tskIDLE_PRIORITY );
xTaskResumeAll();
}
}
/*-----------------------------------------------------------*/
static void prvChangePriorityHelperTask( void *pvParameters )
{
/* Just to stop warning messages. */
( void ) pvParameters;
for( ;; )
{
/* This is the helper task for prvChangePriorityWhenSuspendedTask().
It has it's priority raised and lowered. When it runs it simply
increments the counter then suspends itself again. This allows
prvChangePriorityWhenSuspendedTask() to know how many times it has
executed. */
ulPrioritySetCounter++;
vTaskSuspend( NULL );
}
}
/*-----------------------------------------------------------*/
/* Called to check that all the created tasks are still running without error. */
portBASE_TYPE xAreDynamicPriorityTasksStillRunning( void )
{
/* Keep a history of the check variables so we know if it has been incremented
since the last call. */
static unsigned short usLastTaskCheck = ( unsigned short ) 0;
portBASE_TYPE xReturn = pdTRUE;
/* Check the tasks are still running by ensuring the check variable
is still incrementing. */
if( usCheckVariable == usLastTaskCheck )
{
/* The check has not incremented so an error exists. */
xReturn = pdFALSE;
}
if( xSuspendedQueueSendError == pdTRUE )
{
xReturn = pdFALSE;
}
if( xSuspendedQueueReceiveError == pdTRUE )
{
xReturn = pdFALSE;
}
if( xPriorityRaiseWhenSuspendedError == pdTRUE )
{
xReturn = pdFALSE;
}
usLastTaskCheck = usCheckVariable;
return xReturn;
}

View file

@ -0,0 +1,406 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* This file exercises the event mechanism whereby more than one task is
* blocked waiting for the same event.
*
* The demo creates five tasks - four 'event' tasks, and a controlling task.
* The event tasks have various different priorities and all block on reading
* the same queue. The controlling task writes data to the queue, then checks
* to see which of the event tasks read the data from the queue. The
* controlling task has the lowest priority of all the tasks so is guaranteed
* to always get preempted immediately upon writing to the queue.
*
* By selectively suspending and resuming the event tasks the controlling task
* can check that the highest priority task that is blocked on the queue is the
* task that reads the posted data from the queue.
*
* Two of the event tasks share the same priority. When neither of these tasks
* are suspended they should alternate - one reading one message from the queue,
* the other the next message, etc.
*/
/* Standard includes. */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo program include files. */
#include "mevents.h"
#include "print.h"
/* Demo specific constants. */
#define evtSTACK_SIZE ( ( unsigned portBASE_TYPE ) configMINIMAL_STACK_SIZE )
#define evtNUM_TASKS ( 4 )
#define evtQUEUE_LENGTH ( ( unsigned portBASE_TYPE ) 3 )
#define evtNO_DELAY 0
/* Just indexes used to uniquely identify the tasks. Note that two tasks are
'highest' priority. */
#define evtHIGHEST_PRIORITY_INDEX_2 3
#define evtHIGHEST_PRIORITY_INDEX_1 2
#define evtMEDIUM_PRIORITY_INDEX 1
#define evtLOWEST_PRIORITY_INDEX 0
/* Each event task increments one of these counters each time it reads data
from the queue. */
static volatile portBASE_TYPE xTaskCounters[ evtNUM_TASKS ] = { 0, 0, 0, 0 };
/* Each time the controlling task posts onto the queue it increments the
expected count of the task that it expected to read the data from the queue
(i.e. the task with the highest priority that should be blocked on the queue).
xExpectedTaskCounters are incremented from the controlling task, and
xTaskCounters are incremented from the individual event tasks - therefore
comparing xTaskCounters to xExpectedTaskCounters shows whether or not the
correct task was unblocked by the post. */
static portBASE_TYPE xExpectedTaskCounters[ evtNUM_TASKS ] = { 0, 0, 0, 0 };
/* Handles to the four event tasks. These are required to suspend and resume
the tasks. */
static TaskHandle_t xCreatedTasks[ evtNUM_TASKS ];
/* The single queue onto which the controlling task posts, and the four event
tasks block. */
static QueueHandle_t xQueue;
/* Flag used to indicate whether or not an error has occurred at any time.
An error is either the queue being full when not expected, or an unexpected
task reading data from the queue. */
static portBASE_TYPE xHealthStatus = pdPASS;
/*-----------------------------------------------------------*/
/* Function that implements the event task. This is created four times. */
static void prvMultiEventTask( void *pvParameters );
/* Function that implements the controlling task. */
static void prvEventControllerTask( void *pvParameters );
/* This is a utility function that posts data to the queue, then compares
xExpectedTaskCounters with xTaskCounters to ensure everything worked as
expected.
The event tasks all have higher priorities the controlling task. Therefore
the controlling task will always get preempted between writhing to the queue
and checking the task counters.
@param xExpectedTask The index to the task that the controlling task thinks
should be the highest priority task waiting for data, and
therefore the task that will unblock.
@param xIncrement The number of items that should be written to the queue.
*/
static void prvCheckTaskCounters( portBASE_TYPE xExpectedTask, portBASE_TYPE xIncrement );
/* This is just incremented each cycle of the controlling tasks function so
the main application can ensure the test is still running. */
static portBASE_TYPE xCheckVariable = 0;
/*-----------------------------------------------------------*/
void vStartMultiEventTasks( void )
{
/* Create the queue to be used for all the communications. */
xQueue = xQueueCreate( evtQUEUE_LENGTH, ( unsigned portBASE_TYPE ) sizeof( unsigned portBASE_TYPE ) );
/* Start the controlling task. This has the idle priority to ensure it is
always preempted by the event tasks. */
xTaskCreate( prvEventControllerTask, "EvntCTRL", evtSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
/* Start the four event tasks. Note that two have priority 3, one
priority 2 and the other priority 1. */
xTaskCreate( prvMultiEventTask, "Event0", evtSTACK_SIZE, ( void * ) &( xTaskCounters[ 0 ] ), 1, &( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] ) );
xTaskCreate( prvMultiEventTask, "Event1", evtSTACK_SIZE, ( void * ) &( xTaskCounters[ 1 ] ), 2, &( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] ) );
xTaskCreate( prvMultiEventTask, "Event2", evtSTACK_SIZE, ( void * ) &( xTaskCounters[ 2 ] ), 3, &( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] ) );
xTaskCreate( prvMultiEventTask, "Event3", evtSTACK_SIZE, ( void * ) &( xTaskCounters[ 3 ] ), 3, &( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_2 ] ) );
}
/*-----------------------------------------------------------*/
static void prvMultiEventTask( void *pvParameters )
{
portBASE_TYPE *pxCounter;
unsigned portBASE_TYPE uxDummy;
const char * const pcTaskStartMsg = "Multi event task started.\r\n";
/* The variable this task will increment is passed in as a parameter. */
pxCounter = ( portBASE_TYPE * ) pvParameters;
vPrintDisplayMessage( &pcTaskStartMsg );
for( ;; )
{
/* Block on the queue. */
if( xQueueReceive( xQueue, &uxDummy, portMAX_DELAY ) )
{
/* We unblocked by reading the queue - so simply increment
the counter specific to this task instance. */
( *pxCounter )++;
}
else
{
xHealthStatus = pdFAIL;
}
}
}
/*-----------------------------------------------------------*/
static void prvEventControllerTask( void *pvParameters )
{
const char * const pcTaskStartMsg = "Multi event controller task started.\r\n";
portBASE_TYPE xDummy = 0;
/* Just to stop warnings. */
( void ) pvParameters;
vPrintDisplayMessage( &pcTaskStartMsg );
for( ;; )
{
/* All tasks are blocked on the queue. When a message is posted one of
the two tasks that share the highest priority should unblock to read
the queue. The next message written should unblock the other task with
the same high priority, and so on in order. No other task should
unblock to read data as they have lower priorities. */
prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_2, 1 );
prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_2, 1 );
prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
/* For the rest of these tests we don't need the second 'highest'
priority task - so it is suspended. */
vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_2 ] );
/* Now suspend the other highest priority task. The medium priority
task will then be the task with the highest priority that remains
blocked on the queue. */
vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
/* This time, when we post onto the queue we will expect the medium
priority task to unblock and preempt us. */
prvCheckTaskCounters( evtMEDIUM_PRIORITY_INDEX, 1 );
/* Now try resuming the highest priority task while the scheduler is
suspended. The task should start executing as soon as the scheduler
is resumed - therefore when we post to the queue again, the highest
priority task should again preempt us. */
vTaskSuspendAll();
vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
xTaskResumeAll();
prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
/* Now we are going to suspend the high and medium priority tasks. The
low priority task should then preempt us. Again the task suspension is
done with the whole scheduler suspended just for test purposes. */
vTaskSuspendAll();
vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
vTaskSuspend( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] );
xTaskResumeAll();
prvCheckTaskCounters( evtLOWEST_PRIORITY_INDEX, 1 );
/* Do the same basic test another few times - selectively suspending
and resuming tasks and each time calling prvCheckTaskCounters() passing
to the function the number of the task we expected to be unblocked by
the post. */
vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
vTaskSuspendAll(); /* Just for test. */
vTaskSuspendAll(); /* Just for test. */
vTaskSuspendAll(); /* Just for even more test. */
vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
xTaskResumeAll();
xTaskResumeAll();
xTaskResumeAll();
prvCheckTaskCounters( evtLOWEST_PRIORITY_INDEX, 1 );
vTaskResume( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] );
prvCheckTaskCounters( evtMEDIUM_PRIORITY_INDEX, 1 );
vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
prvCheckTaskCounters( evtHIGHEST_PRIORITY_INDEX_1, 1 );
/* Now a slight change, first suspend all tasks. */
vTaskSuspend( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
vTaskSuspend( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] );
vTaskSuspend( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] );
/* Now when we resume the low priority task and write to the queue 3
times. We expect the low priority task to service the queue three
times. */
vTaskResume( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] );
prvCheckTaskCounters( evtLOWEST_PRIORITY_INDEX, evtQUEUE_LENGTH );
/* Again suspend all tasks (only the low priority task is not suspended
already). */
vTaskSuspend( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] );
/* This time we are going to suspend the scheduler, resume the low
priority task, then resume the high priority task. In this state we
will write to the queue three times. When the scheduler is resumed
we expect the high priority task to service all three messages. */
vTaskSuspendAll();
{
vTaskResume( xCreatedTasks[ evtLOWEST_PRIORITY_INDEX ] );
vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_1 ] );
for( xDummy = 0; xDummy < evtQUEUE_LENGTH; xDummy++ )
{
if( xQueueSend( xQueue, &xDummy, evtNO_DELAY ) != pdTRUE )
{
xHealthStatus = pdFAIL;
}
}
/* The queue should not have been serviced yet!. The scheduler
is still suspended. */
if( memcmp( ( void * ) xExpectedTaskCounters, ( void * ) xTaskCounters, sizeof( xExpectedTaskCounters ) ) )
{
xHealthStatus = pdFAIL;
}
}
xTaskResumeAll();
/* We should have been preempted by resuming the scheduler - so by the
time we are running again we expect the high priority task to have
removed three items from the queue. */
xExpectedTaskCounters[ evtHIGHEST_PRIORITY_INDEX_1 ] += evtQUEUE_LENGTH;
if( memcmp( ( void * ) xExpectedTaskCounters, ( void * ) xTaskCounters, sizeof( xExpectedTaskCounters ) ) )
{
xHealthStatus = pdFAIL;
}
/* The medium priority and second high priority tasks are still
suspended. Make sure to resume them before starting again. */
vTaskResume( xCreatedTasks[ evtMEDIUM_PRIORITY_INDEX ] );
vTaskResume( xCreatedTasks[ evtHIGHEST_PRIORITY_INDEX_2 ] );
/* Just keep incrementing to show the task is still executing. */
xCheckVariable++;
}
}
/*-----------------------------------------------------------*/
static void prvCheckTaskCounters( portBASE_TYPE xExpectedTask, portBASE_TYPE xIncrement )
{
portBASE_TYPE xDummy = 0;
/* Write to the queue the requested number of times. The data written is
not important. */
for( xDummy = 0; xDummy < xIncrement; xDummy++ )
{
if( xQueueSend( xQueue, &xDummy, evtNO_DELAY ) != pdTRUE )
{
/* Did not expect to ever find the queue full. */
xHealthStatus = pdFAIL;
}
}
/* All the tasks blocked on the queue have a priority higher than the
controlling task. Writing to the queue will therefore have caused this
task to be preempted. By the time this line executes the event task will
have executed and incremented its counter. Increment the expected counter
to the same value. */
( xExpectedTaskCounters[ xExpectedTask ] ) += xIncrement;
/* Check the actual counts and expected counts really are the same. */
if( memcmp( ( void * ) xExpectedTaskCounters, ( void * ) xTaskCounters, sizeof( xExpectedTaskCounters ) ) )
{
/* The counters were not the same. This means a task we did not expect
to unblock actually did unblock. */
xHealthStatus = pdFAIL;
}
}
/*-----------------------------------------------------------*/
portBASE_TYPE xAreMultiEventTasksStillRunning( void )
{
static portBASE_TYPE xPreviousCheckVariable = 0;
/* Called externally to periodically check that this test is still
operational. */
if( xPreviousCheckVariable == xCheckVariable )
{
xHealthStatus = pdFAIL;
}
xPreviousCheckVariable = xCheckVariable;
return xHealthStatus;
}

View file

@ -0,0 +1,166 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* Creates eight tasks, each of which flash an LED at a different rate. The first
* LED flashes every 125ms, the second every 250ms, the third every 375ms, etc.
*
* The LED flash tasks provide instant visual feedback. They show that the scheduler
* is still operational.
*
* The PC port uses the standard parallel port for outputs, the Flashlite 186 port
* uses IO port F.
*
* \page flashC flash.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than unsigned long.
Changes from V2.1.1
+ The stack size now uses configMINIMAL_STACK_SIZE.
+ String constants made file scope to decrease stack depth on 8051 port.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "partest.h"
#include "flash.h"
#include "print.h"
#define ledSTACK_SIZE configMINIMAL_STACK_SIZE
/* Structure used to pass parameters to the LED tasks. */
typedef struct LED_PARAMETERS
{
unsigned portBASE_TYPE uxLED; /*< The output the task should use. */
TickType_t xFlashRate; /*< The rate at which the LED should flash. */
} xLEDParameters;
/* The task that is created eight times - each time with a different xLEDParaemtes
structure passed in as the parameter. */
static void vLEDFlashTask( void *pvParameters );
/* String to print if USE_STDIO is defined. */
const char * const pcTaskStartMsg = "LED flash task started.\r\n";
/*-----------------------------------------------------------*/
void vStartLEDFlashTasks( unsigned portBASE_TYPE uxPriority )
{
unsigned portBASE_TYPE uxLEDTask;
xLEDParameters *pxLEDParameters;
const unsigned portBASE_TYPE uxNumOfLEDs = 8;
const TickType_t xFlashRate = 125;
/* Create the eight tasks. */
for( uxLEDTask = 0; uxLEDTask < uxNumOfLEDs; ++uxLEDTask )
{
/* Create and complete the structure used to pass parameters to the next
created task. */
pxLEDParameters = ( xLEDParameters * ) pvPortMalloc( sizeof( xLEDParameters ) );
pxLEDParameters->uxLED = uxLEDTask;
pxLEDParameters->xFlashRate = ( xFlashRate + ( xFlashRate * ( TickType_t ) uxLEDTask ) );
pxLEDParameters->xFlashRate /= portTICK_PERIOD_MS;
/* Spawn the task. */
xTaskCreate( vLEDFlashTask, "LEDx", ledSTACK_SIZE, ( void * ) pxLEDParameters, uxPriority, ( TaskHandle_t * ) NULL );
}
}
/*-----------------------------------------------------------*/
static void vLEDFlashTask( void *pvParameters )
{
xLEDParameters *pxParameters;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
pxParameters = ( xLEDParameters * ) pvParameters;
for(;;)
{
/* Delay for half the flash period then turn the LED on. */
vTaskDelay( pxParameters->xFlashRate / ( TickType_t ) 2 );
vParTestToggleLED( pxParameters->uxLED );
/* Delay for half the flash period then turn the LED off. */
vTaskDelay( pxParameters->xFlashRate / ( TickType_t ) 2 );
vParTestToggleLED( pxParameters->uxLED );
}
}

View file

@ -0,0 +1,369 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
Changes from V1.2.3
+ The created tasks now include calls to tskYIELD(), allowing them to be used
with the cooperative scheduler.
*/
/**
* Creates eight tasks, each of which loops continuously performing an (emulated)
* floating point calculation.
*
* All the tasks run at the idle priority and never block or yield. This causes
* all eight tasks to time slice with the idle task. Running at the idle priority
* means that these tasks will get pre-empted any time another task is ready to run
* or a time slice occurs. More often than not the pre-emption will occur mid
* calculation, creating a good test of the schedulers context switch mechanism - a
* calculation producing an unexpected result could be a symptom of a corruption in
* the context of a task.
*
* \page FlopC flop.c
* \ingroup DemoFiles
* <HR>
*/
#include <stdlib.h>
#include <math.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "print.h"
/* Demo program include files. */
#include "flop.h"
#define mathSTACK_SIZE ( ( unsigned short ) 512 )
#define mathNUMBER_OF_TASKS ( 8 )
/* Four tasks, each of which performs a different floating point calculation.
Each of the four is created twice. */
static void vCompetingMathTask1( void *pvParameters );
static void vCompetingMathTask2( void *pvParameters );
static void vCompetingMathTask3( void *pvParameters );
static void vCompetingMathTask4( void *pvParameters );
/* These variables are used to check that all the tasks are still running. If a
task gets a calculation wrong it will
stop incrementing its check variable. */
static volatile unsigned short usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
/*-----------------------------------------------------------*/
void vStartMathTasks( unsigned portBASE_TYPE uxPriority )
{
xTaskCreate( vCompetingMathTask1, "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask2, "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask3, "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask4, "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask1, "Math5", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask2, "Math6", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask3, "Math7", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask4, "Math8", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
}
/*-----------------------------------------------------------*/
static void vCompetingMathTask1( void *pvParameters )
{
portDOUBLE d1, d2, d3, d4;
volatile unsigned short *pusTaskCheckVariable;
const portDOUBLE dAnswer = ( 123.4567 + 2345.6789 ) * -918.222;
const char * const pcTaskStartMsg = "Math task 1 started.\r\n";
const char * const pcTaskFailMsg = "Math task 1 failed.\r\n";
short sError = pdFALSE;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for(;;)
{
d1 = 123.4567;
d2 = 2345.6789;
d3 = -918.222;
d4 = ( d1 + d2 ) * d3;
taskYIELD();
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( fabs( d4 - dAnswer ) > 0.001 )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
taskYIELD();
}
}
/*-----------------------------------------------------------*/
static void vCompetingMathTask2( void *pvParameters )
{
portDOUBLE d1, d2, d3, d4;
volatile unsigned short *pusTaskCheckVariable;
const portDOUBLE dAnswer = ( -389.38 / 32498.2 ) * -2.0001;
const char * const pcTaskStartMsg = "Math task 2 started.\r\n";
const char * const pcTaskFailMsg = "Math task 2 failed.\r\n";
short sError = pdFALSE;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for( ;; )
{
d1 = -389.38;
d2 = 32498.2;
d3 = -2.0001;
d4 = ( d1 / d2 ) * d3;
taskYIELD();
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( fabs( d4 - dAnswer ) > 0.001 )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know
this task is still running okay. */
( *pusTaskCheckVariable )++;
}
taskYIELD();
}
}
/*-----------------------------------------------------------*/
static void vCompetingMathTask3( void *pvParameters )
{
portDOUBLE *pdArray, dTotal1, dTotal2, dDifference;
volatile unsigned short *pusTaskCheckVariable;
const unsigned short usArraySize = 250;
unsigned short usPosition;
const char * const pcTaskStartMsg = "Math task 3 started.\r\n";
const char * const pcTaskFailMsg = "Math task 3 failed.\r\n";
short sError = pdFALSE;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) );
/* Keep filling an array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
dTotal1 = 0.0;
dTotal2 = 0.0;
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
pdArray[ usPosition ] = ( portDOUBLE ) usPosition + 5.5;
dTotal1 += ( portDOUBLE ) usPosition + 5.5;
}
taskYIELD();
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
dTotal2 += pdArray[ usPosition ];
}
dDifference = dTotal1 - dTotal2;
if( fabs( dDifference ) > 0.001 )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
taskYIELD();
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
static void vCompetingMathTask4( void *pvParameters )
{
portDOUBLE *pdArray, dTotal1, dTotal2, dDifference;
volatile unsigned short *pusTaskCheckVariable;
const unsigned short usArraySize = 250;
unsigned short usPosition;
const char * const pcTaskStartMsg = "Math task 4 started.\r\n";
const char * const pcTaskFailMsg = "Math task 4 failed.\r\n";
short sError = pdFALSE;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) );
/* Keep filling an array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
dTotal1 = 0.0;
dTotal2 = 0.0;
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
pdArray[ usPosition ] = ( portDOUBLE ) usPosition * 12.123;
dTotal1 += ( portDOUBLE ) usPosition * 12.123;
}
taskYIELD();
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
dTotal2 += pdArray[ usPosition ];
}
dDifference = dTotal1 - dTotal2;
if( fabs( dDifference ) > 0.001 )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
taskYIELD();
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreMathsTaskStillRunning( void )
{
/* Keep a history of the check variables so we know if they have been incremented
since the last call. */
static unsigned short usLastTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
portBASE_TYPE xReturn = pdTRUE, xTask;
/* Check the maths tasks are still running by ensuring their check variables
are still incrementing. */
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
{
if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
{
/* The check has not incremented so an error exists. */
xReturn = pdFALSE;
}
usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
}
return xReturn;
}

View file

@ -0,0 +1,365 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
Changes from V1.2.3
+ The created tasks now include calls to tskYIELD(), allowing them to be used
with the cooperative scheduler.
*/
/**
* This does the same as flop. c, but uses variables of type long instead of
* type double.
*
* As with flop. c, the tasks created in this file are a good test of the
* scheduler context switch mechanism. The processor has to access 32bit
* variables in two or four chunks (depending on the processor). The low
* priority of these tasks means there is a high probability that a context
* switch will occur mid calculation. See the flop. c documentation for
* more information.
*
* \page IntegerC integer.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V1.2.1
+ The constants used in the calculations are larger to ensure the
optimiser does not truncate them to 16 bits.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "print.h"
/* Demo program include files. */
#include "integer.h"
#define intgSTACK_SIZE ( ( unsigned short ) 256 )
#define intgNUMBER_OF_TASKS ( 8 )
/* Four tasks, each of which performs a different calculation on four byte
variables. Each of the four is created twice. */
static void vCompeteingIntMathTask1( void *pvParameters );
static void vCompeteingIntMathTask2( void *pvParameters );
static void vCompeteingIntMathTask3( void *pvParameters );
static void vCompeteingIntMathTask4( void *pvParameters );
/* These variables are used to check that all the tasks are still running. If a
task gets a calculation wrong it will stop incrementing its check variable. */
static volatile unsigned short usTaskCheck[ intgNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
/*-----------------------------------------------------------*/
void vStartIntegerMathTasks( unsigned portBASE_TYPE uxPriority )
{
xTaskCreate( vCompeteingIntMathTask1, "IntMath1", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask2, "IntMath2", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask3, "IntMath3", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask4, "IntMath4", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask1, "IntMath5", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask2, "IntMath6", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask3, "IntMath7", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask4, "IntMath8", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
}
/*-----------------------------------------------------------*/
static void vCompeteingIntMathTask1( void *pvParameters )
{
long l1, l2, l3, l4;
short sError = pdFALSE;
volatile unsigned short *pusTaskCheckVariable;
const long lAnswer = ( ( long ) 74565L + ( long ) 1234567L ) * ( long ) -918L;
const char * const pcTaskStartMsg = "Integer math task 1 started.\r\n";
const char * const pcTaskFailMsg = "Integer math task 1 failed.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for(;;)
{
l1 = ( long ) 74565L;
l2 = ( long ) 1234567L;
l3 = ( long ) -918L;
l4 = ( l1 + l2 ) * l3;
taskYIELD();
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( l4 != lAnswer )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
static void vCompeteingIntMathTask2( void *pvParameters )
{
long l1, l2, l3, l4;
short sError = pdFALSE;
volatile unsigned short *pusTaskCheckVariable;
const long lAnswer = ( ( long ) -389000L / ( long ) 329999L ) * ( long ) -89L;
const char * const pcTaskStartMsg = "Integer math task 2 started.\r\n";
const char * const pcTaskFailMsg = "Integer math task 2 failed.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for( ;; )
{
l1 = -389000L;
l2 = 329999L;
l3 = -89L;
l4 = ( l1 / l2 ) * l3;
taskYIELD();
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( l4 != lAnswer )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
static void vCompeteingIntMathTask3( void *pvParameters )
{
long *plArray, lTotal1, lTotal2;
short sError = pdFALSE;
volatile unsigned short *pusTaskCheckVariable;
const unsigned short usArraySize = ( unsigned short ) 250;
unsigned short usPosition;
const char * const pcTaskStartMsg = "Integer math task 3 started.\r\n";
const char * const pcTaskFailMsg = "Integer math task 3 failed.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Create the array we are going to use for our check calculation. */
plArray = ( long * ) pvPortMalloc( ( size_t ) 250 * sizeof( long ) );
/* Keep filling the array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
lTotal1 = ( long ) 0;
lTotal2 = ( long ) 0;
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
plArray[ usPosition ] = ( long ) usPosition + ( long ) 5;
lTotal1 += ( long ) usPosition + ( long ) 5;
}
taskYIELD();
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
lTotal2 += plArray[ usPosition ];
}
if( lTotal1 != lTotal2 )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
taskYIELD();
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
static void vCompeteingIntMathTask4( void *pvParameters )
{
long *plArray, lTotal1, lTotal2;
short sError = pdFALSE;
volatile unsigned short *pusTaskCheckVariable;
const unsigned short usArraySize = 250;
unsigned short usPosition;
const char * const pcTaskStartMsg = "Integer math task 4 started.\r\n";
const char * const pcTaskFailMsg = "Integer math task 4 failed.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Create the array we are going to use for our check calculation. */
plArray = ( long * ) pvPortMalloc( ( size_t ) 250 * sizeof( long ) );
/* Keep filling the array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
lTotal1 = ( long ) 0;
lTotal2 = ( long ) 0;
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
plArray[ usPosition ] = ( long ) usPosition * ( long ) 12;
lTotal1 += ( long ) usPosition * ( long ) 12;
}
taskYIELD();
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
lTotal2 += plArray[ usPosition ];
}
if( lTotal1 != lTotal2 )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
taskYIELD();
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreIntegerMathsTaskStillRunning( void )
{
/* Keep a history of the check variables so we know if they have been incremented
since the last call. */
static unsigned short usLastTaskCheck[ intgNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
portBASE_TYPE xReturn = pdTRUE, xTask;
/* Check the maths tasks are still running by ensuring their check variables
are still incrementing. */
for( xTask = 0; xTask < intgNUMBER_OF_TASKS; xTask++ )
{
if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
{
/* The check has not incremented so an error exists. */
xReturn = pdFALSE;
}
usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
}
return xReturn;
}

View file

@ -0,0 +1,144 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* Manages a queue of strings that are waiting to be displayed. This is used to
* ensure mutual exclusion of console output.
*
* A task wishing to display a message will call vPrintDisplayMessage (), with a
* pointer to the string as the parameter. The pointer is posted onto the
* xPrintQueue queue.
*
* The task spawned in main. c blocks on xPrintQueue. When a message becomes
* available it calls pcPrintGetNextMessage () to obtain a pointer to the next
* string, then uses the functions defined in the portable layer FileIO. c to
* display the message.
*
* <b>NOTE:</b>
* Using console IO can disrupt real time performance - depending on the port.
* Standard C IO routines are not designed for real time applications. While
* standard IO is useful for demonstration and debugging an alternative method
* should be used if you actually require console IO as part of your application.
*
* \page PrintC print.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than unsigned long.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "queue.h"
/* Demo program include files. */
#include "print.h"
static QueueHandle_t xPrintQueue;
/*-----------------------------------------------------------*/
void vPrintInitialise( void )
{
const unsigned portBASE_TYPE uxQueueSize = 20;
/* Create the queue on which errors will be reported. */
xPrintQueue = xQueueCreate( uxQueueSize, ( unsigned portBASE_TYPE ) sizeof( char * ) );
}
/*-----------------------------------------------------------*/
void vPrintDisplayMessage( const char * const * ppcMessageToSend )
{
#ifdef USE_STDIO
xQueueSend( xPrintQueue, ( void * ) ppcMessageToSend, ( TickType_t ) 0 );
#else
/* Stop warnings. */
( void ) ppcMessageToSend;
#endif
}
/*-----------------------------------------------------------*/
const char *pcPrintGetNextMessage( TickType_t xPrintRate )
{
char *pcMessage;
if( xQueueReceive( xPrintQueue, &pcMessage, xPrintRate ) == pdPASS )
{
return pcMessage;
}
else
{
return NULL;
}
}

View file

@ -0,0 +1,323 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* Creates two sets of two tasks. The tasks within a set share a variable, access
* to which is guarded by a semaphore.
*
* Each task starts by attempting to obtain the semaphore. On obtaining a
* semaphore a task checks to ensure that the guarded variable has an expected
* value. It then clears the variable to zero before counting it back up to the
* expected value in increments of 1. After each increment the variable is checked
* to ensure it contains the value to which it was just set. When the starting
* value is again reached the task releases the semaphore giving the other task in
* the set a chance to do exactly the same thing. The starting value is high
* enough to ensure that a tick is likely to occur during the incrementing loop.
*
* An error is flagged if at any time during the process a shared variable is
* found to have a value other than that expected. Such an occurrence would
* suggest an error in the mutual exclusion mechanism by which access to the
* variable is restricted.
*
* The first set of two tasks poll their semaphore. The second set use blocking
* calls.
*
* \page SemTestC semtest.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V1.2.0:
+ The tasks that operate at the idle priority now use a lower expected
count than those running at a higher priority. This prevents the low
priority tasks from signaling an error because they have not been
scheduled enough time for each of them to count the shared variable to
the high value.
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than unsigned long.
Changes from V2.1.1
+ The stack size now uses configMINIMAL_STACK_SIZE.
+ String constants made file scope to decrease stack depth on 8051 port.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Demo app include files. */
#include "semtest.h"
#include "print.h"
/* The value to which the shared variables are counted. */
#define semtstBLOCKING_EXPECTED_VALUE ( ( unsigned long ) 0xfff )
#define semtstNON_BLOCKING_EXPECTED_VALUE ( ( unsigned long ) 0xff )
#define semtstSTACK_SIZE configMINIMAL_STACK_SIZE
#define semtstNUM_TASKS ( 4 )
#define semtstDELAY_FACTOR ( ( TickType_t ) 10 )
/* The task function as described at the top of the file. */
static void prvSemaphoreTest( void *pvParameters );
/* Structure used to pass parameters to each task. */
typedef struct SEMAPHORE_PARAMETERS
{
SemaphoreHandle_t xSemaphore;
volatile unsigned long *pulSharedVariable;
TickType_t xBlockTime;
} xSemaphoreParameters;
/* Variables used to check that all the tasks are still running without errors. */
static volatile short sCheckVariables[ semtstNUM_TASKS ] = { 0 };
static volatile short sNextCheckVariable = 0;
/* Strings to print if USE_STDIO is defined. */
const char * const pcPollingSemaphoreTaskError = "Guarded shared variable in unexpected state.\r\n";
const char * const pcSemaphoreTaskStart = "Guarded shared variable task started.\r\n";
/*-----------------------------------------------------------*/
void vStartSemaphoreTasks( unsigned portBASE_TYPE uxPriority )
{
xSemaphoreParameters *pxFirstSemaphoreParameters, *pxSecondSemaphoreParameters;
const TickType_t xBlockTime = ( TickType_t ) 100;
/* Create the structure used to pass parameters to the first two tasks. */
pxFirstSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
if( pxFirstSemaphoreParameters != NULL )
{
/* Create the semaphore used by the first two tasks. */
vSemaphoreCreateBinary( pxFirstSemaphoreParameters->xSemaphore );
if( pxFirstSemaphoreParameters->xSemaphore != NULL )
{
/* Create the variable which is to be shared by the first two tasks. */
pxFirstSemaphoreParameters->pulSharedVariable = ( unsigned long * ) pvPortMalloc( sizeof( unsigned long ) );
/* Initialise the share variable to the value the tasks expect. */
*( pxFirstSemaphoreParameters->pulSharedVariable ) = semtstNON_BLOCKING_EXPECTED_VALUE;
/* The first two tasks do not block on semaphore calls. */
pxFirstSemaphoreParameters->xBlockTime = ( TickType_t ) 0;
/* Spawn the first two tasks. As they poll they operate at the idle priority. */
xTaskCreate( prvSemaphoreTest, "PolSEM1", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( TaskHandle_t * ) NULL );
xTaskCreate( prvSemaphoreTest, "PolSEM2", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( TaskHandle_t * ) NULL );
}
}
/* Do exactly the same to create the second set of tasks, only this time
provide a block time for the semaphore calls. */
pxSecondSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
if( pxSecondSemaphoreParameters != NULL )
{
vSemaphoreCreateBinary( pxSecondSemaphoreParameters->xSemaphore );
if( pxSecondSemaphoreParameters->xSemaphore != NULL )
{
pxSecondSemaphoreParameters->pulSharedVariable = ( unsigned long * ) pvPortMalloc( sizeof( unsigned long ) );
*( pxSecondSemaphoreParameters->pulSharedVariable ) = semtstBLOCKING_EXPECTED_VALUE;
pxSecondSemaphoreParameters->xBlockTime = xBlockTime / portTICK_PERIOD_MS;
xTaskCreate( prvSemaphoreTest, "BlkSEM1", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( TaskHandle_t * ) NULL );
xTaskCreate( prvSemaphoreTest, "BlkSEM2", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( TaskHandle_t * ) NULL );
}
}
}
/*-----------------------------------------------------------*/
static void prvSemaphoreTest( void *pvParameters )
{
xSemaphoreParameters *pxParameters;
volatile unsigned long *pulSharedVariable, ulExpectedValue;
unsigned long ulCounter;
short sError = pdFALSE, sCheckVariableToUse;
/* See which check variable to use. sNextCheckVariable is not semaphore
protected! */
portENTER_CRITICAL();
sCheckVariableToUse = sNextCheckVariable;
sNextCheckVariable++;
portEXIT_CRITICAL();
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcSemaphoreTaskStart );
/* A structure is passed in as the parameter. This contains the shared
variable being guarded. */
pxParameters = ( xSemaphoreParameters * ) pvParameters;
pulSharedVariable = pxParameters->pulSharedVariable;
/* If we are blocking we use a much higher count to ensure loads of context
switches occur during the count. */
if( pxParameters->xBlockTime > ( TickType_t ) 0 )
{
ulExpectedValue = semtstBLOCKING_EXPECTED_VALUE;
}
else
{
ulExpectedValue = semtstNON_BLOCKING_EXPECTED_VALUE;
}
for( ;; )
{
/* Try to obtain the semaphore. */
if( xSemaphoreTake( pxParameters->xSemaphore, pxParameters->xBlockTime ) == pdPASS )
{
/* We have the semaphore and so expect any other tasks using the
shared variable to have left it in the state we expect to find
it. */
if( *pulSharedVariable != ulExpectedValue )
{
vPrintDisplayMessage( &pcPollingSemaphoreTaskError );
sError = pdTRUE;
}
/* Clear the variable, then count it back up to the expected value
before releasing the semaphore. Would expect a context switch or
two during this time. */
for( ulCounter = ( unsigned long ) 0; ulCounter <= ulExpectedValue; ulCounter++ )
{
*pulSharedVariable = ulCounter;
if( *pulSharedVariable != ulCounter )
{
if( sError == pdFALSE )
{
vPrintDisplayMessage( &pcPollingSemaphoreTaskError );
}
sError = pdTRUE;
}
}
/* Release the semaphore, and if no errors have occurred increment the check
variable. */
if( xSemaphoreGive( pxParameters->xSemaphore ) == pdFALSE )
{
vPrintDisplayMessage( &pcPollingSemaphoreTaskError );
sError = pdTRUE;
}
if( sError == pdFALSE )
{
if( sCheckVariableToUse < semtstNUM_TASKS )
{
( sCheckVariables[ sCheckVariableToUse ] )++;
}
}
/* If we have a block time then we are running at a priority higher
than the idle priority. This task takes a long time to complete
a cycle (deliberately so to test the guarding) so will be starving
out lower priority tasks. Block for some time to allow give lower
priority tasks some processor time. */
vTaskDelay( pxParameters->xBlockTime * semtstDELAY_FACTOR );
}
else
{
if( pxParameters->xBlockTime == ( TickType_t ) 0 )
{
/* We have not got the semaphore yet, so no point using the
processor. We are not blocking when attempting to obtain the
semaphore. */
taskYIELD();
}
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreSemaphoreTasksStillRunning( void )
{
static short sLastCheckVariables[ semtstNUM_TASKS ] = { 0 };
portBASE_TYPE xTask, xReturn = pdTRUE;
for( xTask = 0; xTask < semtstNUM_TASKS; xTask++ )
{
if( sLastCheckVariables[ xTask ] == sCheckVariables[ xTask ] )
{
xReturn = pdFALSE;
}
sLastCheckVariables[ xTask ] = sCheckVariables[ xTask ];
}
return xReturn;
}

View file

@ -0,0 +1,332 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This is a version of BlockQ.c that uses the alternative (Alt) API.
*
* Creates six tasks that operate on three queues as follows:
*
* The first two tasks send and receive an incrementing number to/from a queue.
* One task acts as a producer and the other as the consumer. The consumer is a
* higher priority than the producer and is set to block on queue reads. The queue
* only has space for one item - as soon as the producer posts a message on the
* queue the consumer will unblock, pre-empt the producer, and remove the item.
*
* The second two tasks work the other way around. Again the queue used only has
* enough space for one item. This time the consumer has a lower priority than the
* producer. The producer will try to post on the queue blocking when the queue is
* full. When the consumer wakes it will remove the item from the queue, causing
* the producer to unblock, pre-empt the consumer, and immediately re-fill the
* queue.
*
* The last two tasks use the same queue producer and consumer functions. This time the queue has
* enough space for lots of items and the tasks operate at the same priority. The
* producer will execute, placing items into the queue. The consumer will start
* executing when either the queue becomes full (causing the producer to block) or
* a context switch occurs (tasks of the same priority will time slice).
*
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo program include files. */
#include "AltBlckQ.h"
#define blckqSTACK_SIZE configMINIMAL_STACK_SIZE
#define blckqNUM_TASK_SETS ( 3 )
/* Structure used to pass parameters to the blocking queue tasks. */
typedef struct BLOCKING_QUEUE_PARAMETERS
{
QueueHandle_t xQueue; /*< The queue to be used by the task. */
TickType_t xBlockTime; /*< The block time to use on queue reads/writes. */
volatile short *psCheckVariable; /*< Incremented on each successful cycle to check the task is still running. */
} xBlockingQueueParameters;
/* Task function that creates an incrementing number and posts it on a queue. */
static portTASK_FUNCTION_PROTO( vBlockingQueueProducer, pvParameters );
/* Task function that removes the incrementing number from a queue and checks that
it is the expected number. */
static portTASK_FUNCTION_PROTO( vBlockingQueueConsumer, pvParameters );
/* Variables which are incremented each time an item is removed from a queue, and
found to be the expected value.
These are used to check that the tasks are still running. */
static volatile short sBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( uint16_t ) 0, ( uint16_t ) 0, ( uint16_t ) 0 };
/* Variable which are incremented each time an item is posted on a queue. These
are used to check that the tasks are still running. */
static volatile short sBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( uint16_t ) 0, ( uint16_t ) 0, ( uint16_t ) 0 };
/*-----------------------------------------------------------*/
void vStartAltBlockingQueueTasks( UBaseType_t uxPriority )
{
xBlockingQueueParameters *pxQueueParameters1, *pxQueueParameters2;
xBlockingQueueParameters *pxQueueParameters3, *pxQueueParameters4;
xBlockingQueueParameters *pxQueueParameters5, *pxQueueParameters6;
const UBaseType_t uxQueueSize1 = 1, uxQueueSize5 = 5;
const TickType_t xBlockTime = ( TickType_t ) 1000 / portTICK_PERIOD_MS;
const TickType_t xDontBlock = ( TickType_t ) 0;
/* Create the first two tasks as described at the top of the file. */
/* First create the structure used to pass parameters to the consumer tasks. */
pxQueueParameters1 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Create the queue used by the first two tasks to pass the incrementing number.
Pass a pointer to the queue in the parameter structure. */
pxQueueParameters1->xQueue = xQueueCreate( uxQueueSize1, ( UBaseType_t ) sizeof( uint16_t ) );
/* The consumer is created first so gets a block time as described above. */
pxQueueParameters1->xBlockTime = xBlockTime;
/* Pass in the variable that this task is going to increment so we can check it
is still running. */
pxQueueParameters1->psCheckVariable = &( sBlockingConsumerCount[ 0 ] );
/* Create the structure used to pass parameters to the producer task. */
pxQueueParameters2 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Pass the queue to this task also, using the parameter structure. */
pxQueueParameters2->xQueue = pxQueueParameters1->xQueue;
/* The producer is not going to block - as soon as it posts the consumer will
wake and remove the item so the producer should always have room to post. */
pxQueueParameters2->xBlockTime = xDontBlock;
/* Pass in the variable that this task is going to increment so we can check
it is still running. */
pxQueueParameters2->psCheckVariable = &( sBlockingProducerCount[ 0 ] );
/* Note the producer has a lower priority than the consumer when the tasks are
spawned. */
xTaskCreate( vBlockingQueueConsumer, "QConsB1", blckqSTACK_SIZE, ( void * ) pxQueueParameters1, uxPriority, NULL );
xTaskCreate( vBlockingQueueProducer, "QProdB2", blckqSTACK_SIZE, ( void * ) pxQueueParameters2, tskIDLE_PRIORITY, NULL );
/* Create the second two tasks as described at the top of the file. This uses
the same mechanism but reverses the task priorities. */
pxQueueParameters3 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters3->xQueue = xQueueCreate( uxQueueSize1, ( UBaseType_t ) sizeof( uint16_t ) );
pxQueueParameters3->xBlockTime = xDontBlock;
pxQueueParameters3->psCheckVariable = &( sBlockingProducerCount[ 1 ] );
pxQueueParameters4 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters4->xQueue = pxQueueParameters3->xQueue;
pxQueueParameters4->xBlockTime = xBlockTime;
pxQueueParameters4->psCheckVariable = &( sBlockingConsumerCount[ 1 ] );
xTaskCreate( vBlockingQueueConsumer, "QProdB3", blckqSTACK_SIZE, ( void * ) pxQueueParameters3, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueProducer, "QConsB4", blckqSTACK_SIZE, ( void * ) pxQueueParameters4, uxPriority, NULL );
/* Create the last two tasks as described above. The mechanism is again just
the same. This time both parameter structures are given a block time. */
pxQueueParameters5 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters5->xQueue = xQueueCreate( uxQueueSize5, ( UBaseType_t ) sizeof( uint16_t ) );
pxQueueParameters5->xBlockTime = xBlockTime;
pxQueueParameters5->psCheckVariable = &( sBlockingProducerCount[ 2 ] );
pxQueueParameters6 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters6->xQueue = pxQueueParameters5->xQueue;
pxQueueParameters6->xBlockTime = xBlockTime;
pxQueueParameters6->psCheckVariable = &( sBlockingConsumerCount[ 2 ] );
xTaskCreate( vBlockingQueueProducer, "QProdB5", blckqSTACK_SIZE, ( void * ) pxQueueParameters5, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueConsumer, "QConsB6", blckqSTACK_SIZE, ( void * ) pxQueueParameters6, tskIDLE_PRIORITY, NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vBlockingQueueProducer, pvParameters )
{
uint16_t usValue = 0;
xBlockingQueueParameters *pxQueueParameters;
short sErrorEverOccurred = pdFALSE;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Alt blocking queue producer task started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
for( ;; )
{
if( xQueueAltSendToBack( pxQueueParameters->xQueue, ( void * ) &usValue, pxQueueParameters->xBlockTime ) != pdPASS )
{
sErrorEverOccurred = pdTRUE;
}
else
{
/* We have successfully posted a message, so increment the variable
used to check we are still running. */
if( sErrorEverOccurred == pdFALSE )
{
( *pxQueueParameters->psCheckVariable )++;
}
/* Increment the variable we are going to post next time round. The
consumer will expect the numbers to follow in numerical order. */
++usValue;
}
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vBlockingQueueConsumer, pvParameters )
{
uint16_t usData, usExpectedValue = 0;
xBlockingQueueParameters *pxQueueParameters;
short sErrorEverOccurred = pdFALSE;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Alt blocking queue consumer task started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
for( ;; )
{
if( xQueueAltReceive( pxQueueParameters->xQueue, &usData, pxQueueParameters->xBlockTime ) == pdPASS )
{
if( usData != usExpectedValue )
{
/* Catch-up. */
usExpectedValue = usData;
sErrorEverOccurred = pdTRUE;
}
else
{
/* We have successfully received a message, so increment the
variable used to check we are still running. */
if( sErrorEverOccurred == pdFALSE )
{
( *pxQueueParameters->psCheckVariable )++;
}
/* Increment the value we expect to remove from the queue next time
round. */
++usExpectedValue;
}
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreAltBlockingQueuesStillRunning( void )
{
static short sLastBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( uint16_t ) 0, ( uint16_t ) 0, ( uint16_t ) 0 };
static short sLastBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( uint16_t ) 0, ( uint16_t ) 0, ( uint16_t ) 0 };
BaseType_t xReturn = pdPASS, xTasks;
/* Not too worried about mutual exclusion on these variables as they are 16
bits and we are only reading them. We also only care to see if they have
changed or not.
Loop through each check variable to and return pdFALSE if any are found not
to have changed since the last call. */
for( xTasks = 0; xTasks < blckqNUM_TASK_SETS; xTasks++ )
{
if( sBlockingConsumerCount[ xTasks ] == sLastBlockingConsumerCount[ xTasks ] )
{
xReturn = pdFALSE;
}
sLastBlockingConsumerCount[ xTasks ] = sBlockingConsumerCount[ xTasks ];
if( sBlockingProducerCount[ xTasks ] == sLastBlockingProducerCount[ xTasks ] )
{
xReturn = pdFALSE;
}
sLastBlockingProducerCount[ xTasks ] = sBlockingProducerCount[ xTasks ];
}
return xReturn;
}

View file

@ -0,0 +1,549 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This is a version of BlockTim.c that uses the light weight API.
*
* This file contains some test scenarios that ensure tasks do not exit queue
* send or receive functions prematurely. A description of the tests is
* included within the code.
*/
/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo includes. */
#include "AltBlock.h"
/* Task priorities. */
#define bktPRIMARY_PRIORITY ( 3 )
#define bktSECONDARY_PRIORITY ( 2 )
/* Task behaviour. */
#define bktQUEUE_LENGTH ( 5 )
#define bktSHORT_WAIT ( ( ( TickType_t ) 20 ) / portTICK_PERIOD_MS )
#define bktPRIMARY_BLOCK_TIME ( 10 )
#define bktALLOWABLE_MARGIN ( 12 )
#define bktTIME_TO_BLOCK ( 175 )
#define bktDONT_BLOCK ( ( TickType_t ) 0 )
#define bktRUN_INDICATOR ( ( UBaseType_t ) 0x55 )
/* The queue on which the tasks block. */
static QueueHandle_t xTestQueue;
/* Handle to the secondary task is required by the primary task for calls
to vTaskSuspend/Resume(). */
static TaskHandle_t xSecondary;
/* Used to ensure that tasks are still executing without error. */
static BaseType_t xPrimaryCycles = 0, xSecondaryCycles = 0;
static BaseType_t xErrorOccurred = pdFALSE;
/* Provides a simple mechanism for the primary task to know when the
secondary task has executed. */
static volatile UBaseType_t xRunIndicator;
/* The two test tasks. Their behaviour is commented within the files. */
static void vPrimaryBlockTimeTestTask( void *pvParameters );
static void vSecondaryBlockTimeTestTask( void *pvParameters );
/*-----------------------------------------------------------*/
void vCreateAltBlockTimeTasks( void )
{
/* Create the queue on which the two tasks block. */
xTestQueue = xQueueCreate( bktQUEUE_LENGTH, sizeof( BaseType_t ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xTestQueue, "AltBlockQueue" );
/* Create the two test tasks. */
xTaskCreate( vPrimaryBlockTimeTestTask, "FBTest1", configMINIMAL_STACK_SIZE, NULL, bktPRIMARY_PRIORITY, NULL );
xTaskCreate( vSecondaryBlockTimeTestTask, "FBTest2", configMINIMAL_STACK_SIZE, NULL, bktSECONDARY_PRIORITY, &xSecondary );
}
/*-----------------------------------------------------------*/
static void vPrimaryBlockTimeTestTask( void *pvParameters )
{
BaseType_t xItem, xData;
TickType_t xTimeWhenBlocking;
TickType_t xTimeToBlock, xBlockedTime;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Alt primary block time test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
( void ) pvParameters;
for( ;; )
{
/*********************************************************************
Test 1
Simple block time wakeup test on queue receives. */
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* The queue is empty. Attempt to read from the queue using a block
time. When we wake, ensure the delta in time is as expected. */
xTimeToBlock = bktPRIMARY_BLOCK_TIME << xItem;
/* A critical section is used to minimise the jitter in the time
measurements. */
portENTER_CRITICAL();
{
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after xTimeToBlock having not received
anything on the queue. */
if( xQueueAltReceive( xTestQueue, &xData, xTimeToBlock ) != errQUEUE_EMPTY )
{
xErrorOccurred = pdTRUE;
}
/* How long were we blocked for? */
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
}
portEXIT_CRITICAL();
if( xBlockedTime < xTimeToBlock )
{
/* Should not have blocked for less than we requested. */
xErrorOccurred = pdTRUE;
}
if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
{
/* Should not have blocked for longer than we requested,
although we would not necessarily run as soon as we were
unblocked so a margin is allowed. */
xErrorOccurred = pdTRUE;
}
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/*********************************************************************
Test 2
Simple block time wakeup test on queue sends.
First fill the queue. It should be empty so all sends should pass. */
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
if( xQueueAltSendToBack( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
}
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* The queue is full. Attempt to write to the queue using a block
time. When we wake, ensure the delta in time is as expected. */
xTimeToBlock = bktPRIMARY_BLOCK_TIME << xItem;
portENTER_CRITICAL();
{
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after xTimeToBlock having not received
anything on the queue. */
if( xQueueAltSendToBack( xTestQueue, &xItem, xTimeToBlock ) != errQUEUE_FULL )
{
xErrorOccurred = pdTRUE;
}
/* How long were we blocked for? */
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
}
portEXIT_CRITICAL();
if( xBlockedTime < xTimeToBlock )
{
/* Should not have blocked for less than we requested. */
xErrorOccurred = pdTRUE;
}
if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
{
/* Should not have blocked for longer than we requested,
although we would not necessarily run as soon as we were
unblocked so a margin is allowed. */
xErrorOccurred = pdTRUE;
}
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/*********************************************************************
Test 3
Wake the other task, it will block attempting to post to the queue.
When we read from the queue the other task will wake, but before it
can run we will post to the queue again. When the other task runs it
will find the queue still full, even though it was woken. It should
recognise that its block time has not expired and return to block for
the remains of its block time.
Wake the other task so it blocks attempting to post to the already
full queue. */
xRunIndicator = 0;
vTaskResume( xSecondary );
/* We need to wait a little to ensure the other task executes. */
while( xRunIndicator != bktRUN_INDICATOR )
{
/* The other task has not yet executed. */
vTaskDelay( bktSHORT_WAIT );
}
/* Make sure the other task is blocked on the queue. */
vTaskDelay( bktSHORT_WAIT );
xRunIndicator = 0;
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* Now when we make space on the queue the other task should wake
but not execute as this task has higher priority. */
if( xQueueAltReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Now fill the queue again before the other task gets a chance to
execute. If the other task had executed we would find the queue
full ourselves, and the other task have set xRunIndicator. */
if( xQueueAltSendToBack( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed. */
xErrorOccurred = pdTRUE;
}
/* Raise the priority of the other task so it executes and blocks
on the queue again. */
vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
/* The other task should now have re-blocked without exiting the
queue function. */
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed outside of the
queue function. */
xErrorOccurred = pdTRUE;
}
/* Set the priority back down. */
vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
}
/* Let the other task timeout. When it unblockes it will check that it
unblocked at the correct time, then suspend itself. */
while( xRunIndicator != bktRUN_INDICATOR )
{
vTaskDelay( bktSHORT_WAIT );
}
vTaskDelay( bktSHORT_WAIT );
xRunIndicator = 0;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/*********************************************************************
Test 4
As per test 3 - but with the send and receive the other way around.
The other task blocks attempting to read from the queue.
Empty the queue. We should find that it is full. */
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
if( xQueueAltReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
}
/* Wake the other task so it blocks attempting to read from the
already empty queue. */
vTaskResume( xSecondary );
/* We need to wait a little to ensure the other task executes. */
while( xRunIndicator != bktRUN_INDICATOR )
{
vTaskDelay( bktSHORT_WAIT );
}
vTaskDelay( bktSHORT_WAIT );
xRunIndicator = 0;
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* Now when we place an item on the queue the other task should
wake but not execute as this task has higher priority. */
if( xQueueAltSendToBack( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Now empty the queue again before the other task gets a chance to
execute. If the other task had executed we would find the queue
empty ourselves, and the other task would be suspended. */
if( xQueueAltReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed. */
xErrorOccurred = pdTRUE;
}
/* Raise the priority of the other task so it executes and blocks
on the queue again. */
vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
/* The other task should now have re-blocked without exiting the
queue function. */
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed outside of the
queue function. */
xErrorOccurred = pdTRUE;
}
vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
}
/* Let the other task timeout. When it unblockes it will check that it
unblocked at the correct time, then suspend itself. */
while( xRunIndicator != bktRUN_INDICATOR )
{
vTaskDelay( bktSHORT_WAIT );
}
vTaskDelay( bktSHORT_WAIT );
xPrimaryCycles++;
}
}
/*-----------------------------------------------------------*/
static void vSecondaryBlockTimeTestTask( void *pvParameters )
{
TickType_t xTimeWhenBlocking, xBlockedTime;
BaseType_t xData;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Alt secondary block time test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
( void ) pvParameters;
for( ;; )
{
/*********************************************************************
Test 1 and 2
This task does does not participate in these tests. */
vTaskSuspend( NULL );
/*********************************************************************
Test 3
The first thing we do is attempt to read from the queue. It should be
full so we block. Note the time before we block so we can check the
wake time is as per that expected. */
portENTER_CRITICAL();
{
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after bktTIME_TO_BLOCK having not received
anything on the queue. */
xData = 0;
xRunIndicator = bktRUN_INDICATOR;
if( xQueueAltSendToBack( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_FULL )
{
xErrorOccurred = pdTRUE;
}
/* How long were we inside the send function? */
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
}
portEXIT_CRITICAL();
/* We should not have blocked for less time than bktTIME_TO_BLOCK. */
if( xBlockedTime < bktTIME_TO_BLOCK )
{
xErrorOccurred = pdTRUE;
}
/* We should of not blocked for much longer than bktALLOWABLE_MARGIN
either. A margin is permitted as we would not necessarily run as
soon as we unblocked. */
if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
{
xErrorOccurred = pdTRUE;
}
/* Suspend ready for test 3. */
xRunIndicator = bktRUN_INDICATOR;
vTaskSuspend( NULL );
/*********************************************************************
Test 4
As per test three, but with the send and receive reversed. */
portENTER_CRITICAL();
{
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after bktTIME_TO_BLOCK having not received
anything on the queue. */
xRunIndicator = bktRUN_INDICATOR;
if( xQueueAltReceive( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_EMPTY )
{
xErrorOccurred = pdTRUE;
}
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
}
portEXIT_CRITICAL();
/* We should not have blocked for less time than bktTIME_TO_BLOCK. */
if( xBlockedTime < bktTIME_TO_BLOCK )
{
xErrorOccurred = pdTRUE;
}
/* We should of not blocked for much longer than bktALLOWABLE_MARGIN
either. A margin is permitted as we would not necessarily run as soon
as we unblocked. */
if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
{
xErrorOccurred = pdTRUE;
}
xRunIndicator = bktRUN_INDICATOR;
xSecondaryCycles++;
}
}
/*-----------------------------------------------------------*/
BaseType_t xAreAltBlockTimeTestTasksStillRunning( void )
{
static BaseType_t xLastPrimaryCycleCount = 0, xLastSecondaryCycleCount = 0;
BaseType_t xReturn = pdPASS;
/* Have both tasks performed at least one cycle since this function was
last called? */
if( xPrimaryCycles == xLastPrimaryCycleCount )
{
xReturn = pdFAIL;
}
if( xSecondaryCycles == xLastSecondaryCycleCount )
{
xReturn = pdFAIL;
}
if( xErrorOccurred == pdTRUE )
{
xReturn = pdFAIL;
}
xLastSecondaryCycleCount = xSecondaryCycles;
xLastPrimaryCycleCount = xPrimaryCycles;
return xReturn;
}

View file

@ -0,0 +1,275 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This is a version of PollQ.c that uses the alternative (Alt) API.
*
* Creates two tasks that communicate over a single queue. One task acts as a
* producer, the other a consumer.
*
* The producer loops for three iteration, posting an incrementing number onto the
* queue each cycle. It then delays for a fixed period before doing exactly the
* same again.
*
* The consumer loops emptying the queue. Each item removed from the queue is
* checked to ensure it contains the expected value. When the queue is empty it
* blocks for a fixed period, then does the same again.
*
* All queue access is performed without blocking. The consumer completely empties
* the queue each time it runs so the producer should never find the queue full.
*
* An error is flagged if the consumer obtains an unexpected value or the producer
* find the queue is full.
*/
/*
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than uint32_t.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo program include files. */
#include "AltPollQ.h"
#define pollqSTACK_SIZE configMINIMAL_STACK_SIZE
#define pollqQUEUE_SIZE ( 10 )
#define pollqPRODUCER_DELAY ( ( TickType_t ) 200 / portTICK_PERIOD_MS )
#define pollqCONSUMER_DELAY ( pollqPRODUCER_DELAY - ( TickType_t ) ( 20 / portTICK_PERIOD_MS ) )
#define pollqNO_DELAY ( ( TickType_t ) 0 )
#define pollqVALUES_TO_PRODUCE ( ( BaseType_t ) 3 )
#define pollqINITIAL_VALUE ( ( BaseType_t ) 0 )
/* The task that posts the incrementing number onto the queue. */
static portTASK_FUNCTION_PROTO( vPolledQueueProducer, pvParameters );
/* The task that empties the queue. */
static portTASK_FUNCTION_PROTO( vPolledQueueConsumer, pvParameters );
/* Variables that are used to check that the tasks are still running with no
errors. */
static volatile BaseType_t xPollingConsumerCount = pollqINITIAL_VALUE, xPollingProducerCount = pollqINITIAL_VALUE;
/*-----------------------------------------------------------*/
void vStartAltPolledQueueTasks( UBaseType_t uxPriority )
{
static QueueHandle_t xPolledQueue;
/* Create the queue used by the producer and consumer. */
xPolledQueue = xQueueCreate( pollqQUEUE_SIZE, ( UBaseType_t ) sizeof( uint16_t ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xPolledQueue, "AltPollQueue" );
/* Spawn the producer and consumer. */
xTaskCreate( vPolledQueueConsumer, "QConsNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, ( TaskHandle_t * ) NULL );
xTaskCreate( vPolledQueueProducer, "QProdNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, ( TaskHandle_t * ) NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vPolledQueueProducer, pvParameters )
{
uint16_t usValue = ( uint16_t ) 0;
BaseType_t xError = pdFALSE, xLoop;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Alt polling queue producer task started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
for( ;; )
{
for( xLoop = 0; xLoop < pollqVALUES_TO_PRODUCE; xLoop++ )
{
/* Send an incrementing number on the queue without blocking. */
if( xQueueAltSendToBack( *( ( QueueHandle_t * ) pvParameters ), ( void * ) &usValue, pollqNO_DELAY ) != pdPASS )
{
/* We should never find the queue full so if we get here there
has been an error. */
xError = pdTRUE;
}
else
{
if( xError == pdFALSE )
{
/* If an error has ever been recorded we stop incrementing the
check variable. */
portENTER_CRITICAL();
xPollingProducerCount++;
portEXIT_CRITICAL();
}
/* Update the value we are going to post next time around. */
usValue++;
}
}
/* Wait before we start posting again to ensure the consumer runs and
empties the queue. */
vTaskDelay( pollqPRODUCER_DELAY );
}
} /*lint !e818 Function prototype must conform to API. */
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vPolledQueueConsumer, pvParameters )
{
uint16_t usData, usExpectedValue = ( uint16_t ) 0;
BaseType_t xError = pdFALSE;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Alt blocking queue consumer task started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
for( ;; )
{
/* Loop until the queue is empty. */
while( uxQueueMessagesWaiting( *( ( QueueHandle_t * ) pvParameters ) ) )
{
if( xQueueAltReceive( *( ( QueueHandle_t * ) pvParameters ), &usData, pollqNO_DELAY ) == pdPASS )
{
if( usData != usExpectedValue )
{
/* This is not what we expected to receive so an error has
occurred. */
xError = pdTRUE;
/* Catch-up to the value we received so our next expected
value should again be correct. */
usExpectedValue = usData;
}
else
{
if( xError == pdFALSE )
{
/* Only increment the check variable if no errors have
occurred. */
portENTER_CRITICAL();
xPollingConsumerCount++;
portEXIT_CRITICAL();
}
}
/* Next time round we would expect the number to be one higher. */
usExpectedValue++;
}
}
/* Now the queue is empty we block, allowing the producer to place more
items in the queue. */
vTaskDelay( pollqCONSUMER_DELAY );
}
} /*lint !e818 Function prototype must conform to API. */
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running with no errors. */
BaseType_t xAreAltPollingQueuesStillRunning( void )
{
BaseType_t xReturn;
/* Check both the consumer and producer poll count to check they have both
been changed since out last trip round. We do not need a critical section
around the check variables as this is called from a higher priority than
the other tasks that access the same variables. */
if( ( xPollingConsumerCount == pollqINITIAL_VALUE ) ||
( xPollingProducerCount == pollqINITIAL_VALUE )
)
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
/* Set the check variables back down so we know if they have been
incremented the next time around. */
xPollingConsumerCount = pollqINITIAL_VALUE;
xPollingProducerCount = pollqINITIAL_VALUE;
return xReturn;
}

View file

@ -0,0 +1,587 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This file implements the same demo and test as GenQTest.c, but uses the
* light weight API in place of the fully featured API.
*
* See the comments at the top of GenQTest.c for a description.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
/* Demo program include files. */
#include "AltQTest.h"
#define genqQUEUE_LENGTH ( 5 )
#define genqNO_BLOCK ( 0 )
#define genqMUTEX_LOW_PRIORITY ( tskIDLE_PRIORITY )
#define genqMUTEX_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define genqMUTEX_MEDIUM_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define genqMUTEX_HIGH_PRIORITY ( tskIDLE_PRIORITY + 3 )
/*-----------------------------------------------------------*/
/*
* Tests the behaviour of the xQueueAltSendToFront() and xQueueAltSendToBack()
* macros by using both to fill a queue, then reading from the queue to
* check the resultant queue order is as expected. Queue data is also
* peeked.
*/
static void prvSendFrontAndBackTest( void *pvParameters );
/*
* The following three tasks are used to demonstrate the mutex behaviour.
* Each task is given a different priority to demonstrate the priority
* inheritance mechanism.
*
* The low priority task obtains a mutex. After this a high priority task
* attempts to obtain the same mutex, causing its priority to be inherited
* by the low priority task. The task with the inherited high priority then
* resumes a medium priority task to ensure it is not blocked by the medium
* priority task while it holds the inherited high priority. Once the mutex
* is returned the task with the inherited priority returns to its original
* low priority, and is therefore immediately preempted by first the high
* priority task and then the medium prioroity task before it can continue.
*/
static void prvLowPriorityMutexTask( void *pvParameters );
static void prvMediumPriorityMutexTask( void *pvParameters );
static void prvHighPriorityMutexTask( void *pvParameters );
/*-----------------------------------------------------------*/
/* Flag that will be latched to pdTRUE should any unexpected behaviour be
detected in any of the tasks. */
static BaseType_t xErrorDetected = pdFALSE;
/* Counters that are incremented on each cycle of a test. This is used to
detect a stalled task - a test that is no longer running. */
static volatile uint32_t ulLoopCounter = 0;
static volatile uint32_t ulLoopCounter2 = 0;
/* The variable that is guarded by the mutex in the mutex demo tasks. */
static volatile uint32_t ulGuardedVariable = 0;
/* Handles used in the mutext test to suspend and resume the high and medium
priority mutex test tasks. */
static TaskHandle_t xHighPriorityMutexTask, xMediumPriorityMutexTask;
/*-----------------------------------------------------------*/
void vStartAltGenericQueueTasks( UBaseType_t uxPriority )
{
QueueHandle_t xQueue;
SemaphoreHandle_t xMutex;
/* Create the queue that we are going to use for the
prvSendFrontAndBackTest demo. */
xQueue = xQueueCreate( genqQUEUE_LENGTH, sizeof( uint32_t ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xQueue, "Alt_Gen_Test_Queue" );
/* Create the demo task and pass it the queue just created. We are
passing the queue handle by value so it does not matter that it is
declared on the stack here. */
xTaskCreate( prvSendFrontAndBackTest, "FGenQ", configMINIMAL_STACK_SIZE, ( void * ) xQueue, uxPriority, NULL );
/* Create the mutex used by the prvMutexTest task. */
xMutex = xSemaphoreCreateMutex();
/* vQueueAddToRegistry() adds the mutex to the registry, if one is
in use. The registry is provided as a means for kernel aware
debuggers to locate mutex and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( ( QueueHandle_t ) xMutex, "Alt_Q_Mutex" );
/* Create the mutex demo tasks and pass it the mutex just created. We are
passing the mutex handle by value so it does not matter that it is declared
on the stack here. */
xTaskCreate( prvLowPriorityMutexTask, "FMuLow", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_LOW_PRIORITY, NULL );
xTaskCreate( prvMediumPriorityMutexTask, "FMuMed", configMINIMAL_STACK_SIZE, NULL, genqMUTEX_MEDIUM_PRIORITY, &xMediumPriorityMutexTask );
xTaskCreate( prvHighPriorityMutexTask, "FMuHigh", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_HIGH_PRIORITY, &xHighPriorityMutexTask );
}
/*-----------------------------------------------------------*/
static void prvSendFrontAndBackTest( void *pvParameters )
{
uint32_t ulData, ulData2;
QueueHandle_t xQueue;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Alt queue SendToFront/SendToBack/Peek test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
xQueue = ( QueueHandle_t ) pvParameters;
for( ;; )
{
/* The queue is empty, so sending an item to the back of the queue
should have the same efect as sending it to the front of the queue.
First send to the front and check everything is as expected. */
xQueueAltSendToFront( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
xErrorDetected = pdTRUE;
}
if( xQueueAltReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* The data we sent to the queue should equal the data we just received
from the queue. */
if( ulLoopCounter != ulData )
{
xErrorDetected = pdTRUE;
}
/* Then do the same, sending the data to the back, checking everything
is as expected. */
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
xQueueAltSendToBack( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
xErrorDetected = pdTRUE;
}
if( xQueueAltReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
/* The data we sent to the queue should equal the data we just received
from the queue. */
if( ulLoopCounter != ulData )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Place 2, 3, 4 into the queue, adding items to the back of the queue. */
for( ulData = 2; ulData < 5; ulData++ )
{
xQueueAltSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK );
}
/* Now the order in the queue should be 2, 3, 4, with 2 being the first
thing to be read out. Now add 1 then 0 to the front of the queue. */
if( uxQueueMessagesWaiting( xQueue ) != 3 )
{
xErrorDetected = pdTRUE;
}
ulData = 1;
xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
ulData = 0;
xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
/* Now the queue should be full, and when we read the data out we
should receive 0, 1, 2, 3, 4. */
if( uxQueueMessagesWaiting( xQueue ) != 5 )
{
xErrorDetected = pdTRUE;
}
if( xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
if( xQueueAltSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Check the data we read out is in the expected order. */
for( ulData = 0; ulData < genqQUEUE_LENGTH; ulData++ )
{
/* Try peeking the data first. */
if( xQueueAltPeek( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulData != ulData2 )
{
xErrorDetected = pdTRUE;
}
/* Now try receiving the data for real. The value should be the
same. Clobber the value first so we know we really received it. */
ulData2 = ~ulData2;
if( xQueueAltReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulData != ulData2 )
{
xErrorDetected = pdTRUE;
}
}
/* The queue should now be empty again. */
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Our queue is empty once more, add 10, 11 to the back. */
ulData = 10;
if( xQueueAltSendToBack( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
ulData = 11;
if( xQueueAltSendToBack( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 2 )
{
xErrorDetected = pdTRUE;
}
/* Now we should have 10, 11 in the queue. Add 7, 8, 9 to the
front. */
for( ulData = 9; ulData >= 7; ulData-- )
{
if( xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
}
/* Now check that the queue is full, and that receiving data provides
the expected sequence of 7, 8, 9, 10, 11. */
if( uxQueueMessagesWaiting( xQueue ) != 5 )
{
xErrorDetected = pdTRUE;
}
if( xQueueAltSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
if( xQueueAltSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Check the data we read out is in the expected order. */
for( ulData = 7; ulData < ( 7 + genqQUEUE_LENGTH ); ulData++ )
{
if( xQueueAltReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulData != ulData2 )
{
xErrorDetected = pdTRUE;
}
}
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
ulLoopCounter++;
}
}
/*-----------------------------------------------------------*/
static void prvLowPriorityMutexTask( void *pvParameters )
{
SemaphoreHandle_t xMutex = ( SemaphoreHandle_t ) pvParameters;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Fast mutex with priority inheritance test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
( void ) pvParameters;
for( ;; )
{
/* Take the mutex. It should be available now. */
if( xSemaphoreAltTake( xMutex, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* Set our guarded variable to a known start value. */
ulGuardedVariable = 0;
/* Our priority should be as per that assigned when the task was
created. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now unsuspend the high priority task. This will attempt to take the
mutex, and block when it finds it cannot obtain it. */
vTaskResume( xHighPriorityMutexTask );
/* We should now have inherited the prioritoy of the high priority task,
as by now it will have attempted to get the mutex. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* We can attempt to set our priority to the test priority - between the
idle priority and the medium/high test priorities, but our actual
prioroity should remain at the high priority. */
vTaskPrioritySet( NULL, genqMUTEX_TEST_PRIORITY );
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now unsuspend the medium priority task. This should not run as our
inherited priority is above that of the medium priority task. */
vTaskResume( xMediumPriorityMutexTask );
/* If the did run then it will have incremented our guarded variable. */
if( ulGuardedVariable != 0 )
{
xErrorDetected = pdTRUE;
}
/* When we give back the semaphore our priority should be disinherited
back to the priority to which we attempted to set ourselves. This means
that when the high priority task next blocks, the medium priority task
should execute and increment the guarded variable. When we next run
both the high and medium priority tasks will have been suspended again. */
if( xSemaphoreAltGive( xMutex ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* Check that the guarded variable did indeed increment... */
if( ulGuardedVariable != 1 )
{
xErrorDetected = pdTRUE;
}
/* ... and that our priority has been disinherited to
genqMUTEX_TEST_PRIORITY. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_TEST_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Set our priority back to our original priority ready for the next
loop around this test. */
vTaskPrioritySet( NULL, genqMUTEX_LOW_PRIORITY );
/* Just to show we are still running. */
ulLoopCounter2++;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static void prvMediumPriorityMutexTask( void *pvParameters )
{
( void ) pvParameters;
for( ;; )
{
/* The medium priority task starts by suspending itself. The low
priority task will unsuspend this task when required. */
vTaskSuspend( NULL );
/* When this task unsuspends all it does is increment the guarded
variable, this is so the low priority task knows that it has
executed. */
ulGuardedVariable++;
}
}
/*-----------------------------------------------------------*/
static void prvHighPriorityMutexTask( void *pvParameters )
{
SemaphoreHandle_t xMutex = ( SemaphoreHandle_t ) pvParameters;
( void ) pvParameters;
for( ;; )
{
/* The high priority task starts by suspending itself. The low
priority task will unsuspend this task when required. */
vTaskSuspend( NULL );
/* When this task unsuspends all it does is attempt to obtain
the mutex. It should find the mutex is not available so a
block time is specified. */
if( xSemaphoreAltTake( xMutex, portMAX_DELAY ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* When we eventually obtain the mutex we just give it back then
return to suspend ready for the next test. */
if( xSemaphoreAltGive( xMutex ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreAltGenericQueueTasksStillRunning( void )
{
static uint32_t ulLastLoopCounter = 0, ulLastLoopCounter2 = 0;
/* If the demo task is still running then we expect the loopcounters to
have incremented since this function was last called. */
if( ulLastLoopCounter == ulLoopCounter )
{
xErrorDetected = pdTRUE;
}
if( ulLastLoopCounter2 == ulLoopCounter2 )
{
xErrorDetected = pdTRUE;
}
ulLastLoopCounter = ulLoopCounter;
ulLastLoopCounter2 = ulLoopCounter2;
/* Errors detected in the task itself will have latched xErrorDetected
to true. */
return !xErrorDetected;
}

View file

@ -0,0 +1,324 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Creates six tasks that operate on three queues as follows:
*
* The first two tasks send and receive an incrementing number to/from a queue.
* One task acts as a producer and the other as the consumer. The consumer is a
* higher priority than the producer and is set to block on queue reads. The queue
* only has space for one item - as soon as the producer posts a message on the
* queue the consumer will unblock, pre-empt the producer, and remove the item.
*
* The second two tasks work the other way around. Again the queue used only has
* enough space for one item. This time the consumer has a lower priority than the
* producer. The producer will try to post on the queue blocking when the queue is
* full. When the consumer wakes it will remove the item from the queue, causing
* the producer to unblock, pre-empt the consumer, and immediately re-fill the
* queue.
*
* The last two tasks use the same queue producer and consumer functions. This time the queue has
* enough space for lots of items and the tasks operate at the same priority. The
* producer will execute, placing items into the queue. The consumer will start
* executing when either the queue becomes full (causing the producer to block) or
* a context switch occurs (tasks of the same priority will time slice).
*
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo program include files. */
#include "BlockQ.h"
#define blckqSTACK_SIZE configMINIMAL_STACK_SIZE
#define blckqNUM_TASK_SETS ( 3 )
/* Structure used to pass parameters to the blocking queue tasks. */
typedef struct BLOCKING_QUEUE_PARAMETERS
{
QueueHandle_t xQueue; /*< The queue to be used by the task. */
TickType_t xBlockTime; /*< The block time to use on queue reads/writes. */
volatile short *psCheckVariable; /*< Incremented on each successful cycle to check the task is still running. */
} xBlockingQueueParameters;
/* Task function that creates an incrementing number and posts it on a queue. */
static portTASK_FUNCTION_PROTO( vBlockingQueueProducer, pvParameters );
/* Task function that removes the incrementing number from a queue and checks that
it is the expected number. */
static portTASK_FUNCTION_PROTO( vBlockingQueueConsumer, pvParameters );
/* Variables which are incremented each time an item is removed from a queue, and
found to be the expected value.
These are used to check that the tasks are still running. */
static volatile short sBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( uint16_t ) 0, ( uint16_t ) 0, ( uint16_t ) 0 };
/* Variable which are incremented each time an item is posted on a queue. These
are used to check that the tasks are still running. */
static volatile short sBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( uint16_t ) 0, ( uint16_t ) 0, ( uint16_t ) 0 };
/*-----------------------------------------------------------*/
void vStartBlockingQueueTasks( UBaseType_t uxPriority )
{
xBlockingQueueParameters *pxQueueParameters1, *pxQueueParameters2;
xBlockingQueueParameters *pxQueueParameters3, *pxQueueParameters4;
xBlockingQueueParameters *pxQueueParameters5, *pxQueueParameters6;
const UBaseType_t uxQueueSize1 = 1, uxQueueSize5 = 5;
const TickType_t xBlockTime = ( TickType_t ) 1000 / portTICK_PERIOD_MS;
const TickType_t xDontBlock = ( TickType_t ) 0;
/* Create the first two tasks as described at the top of the file. */
/* First create the structure used to pass parameters to the consumer tasks. */
pxQueueParameters1 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Create the queue used by the first two tasks to pass the incrementing number.
Pass a pointer to the queue in the parameter structure. */
pxQueueParameters1->xQueue = xQueueCreate( uxQueueSize1, ( UBaseType_t ) sizeof( uint16_t ) );
/* The consumer is created first so gets a block time as described above. */
pxQueueParameters1->xBlockTime = xBlockTime;
/* Pass in the variable that this task is going to increment so we can check it
is still running. */
pxQueueParameters1->psCheckVariable = &( sBlockingConsumerCount[ 0 ] );
/* Create the structure used to pass parameters to the producer task. */
pxQueueParameters2 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Pass the queue to this task also, using the parameter structure. */
pxQueueParameters2->xQueue = pxQueueParameters1->xQueue;
/* The producer is not going to block - as soon as it posts the consumer will
wake and remove the item so the producer should always have room to post. */
pxQueueParameters2->xBlockTime = xDontBlock;
/* Pass in the variable that this task is going to increment so we can check
it is still running. */
pxQueueParameters2->psCheckVariable = &( sBlockingProducerCount[ 0 ] );
/* Note the producer has a lower priority than the consumer when the tasks are
spawned. */
xTaskCreate( vBlockingQueueConsumer, "QConsB1", blckqSTACK_SIZE, ( void * ) pxQueueParameters1, uxPriority, NULL );
xTaskCreate( vBlockingQueueProducer, "QProdB2", blckqSTACK_SIZE, ( void * ) pxQueueParameters2, tskIDLE_PRIORITY, NULL );
/* Create the second two tasks as described at the top of the file. This uses
the same mechanism but reverses the task priorities. */
pxQueueParameters3 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters3->xQueue = xQueueCreate( uxQueueSize1, ( UBaseType_t ) sizeof( uint16_t ) );
pxQueueParameters3->xBlockTime = xDontBlock;
pxQueueParameters3->psCheckVariable = &( sBlockingProducerCount[ 1 ] );
pxQueueParameters4 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters4->xQueue = pxQueueParameters3->xQueue;
pxQueueParameters4->xBlockTime = xBlockTime;
pxQueueParameters4->psCheckVariable = &( sBlockingConsumerCount[ 1 ] );
xTaskCreate( vBlockingQueueConsumer, "QConsB3", blckqSTACK_SIZE, ( void * ) pxQueueParameters3, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueProducer, "QProdB4", blckqSTACK_SIZE, ( void * ) pxQueueParameters4, uxPriority, NULL );
/* Create the last two tasks as described above. The mechanism is again just
the same. This time both parameter structures are given a block time. */
pxQueueParameters5 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters5->xQueue = xQueueCreate( uxQueueSize5, ( UBaseType_t ) sizeof( uint16_t ) );
pxQueueParameters5->xBlockTime = xBlockTime;
pxQueueParameters5->psCheckVariable = &( sBlockingProducerCount[ 2 ] );
pxQueueParameters6 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters6->xQueue = pxQueueParameters5->xQueue;
pxQueueParameters6->xBlockTime = xBlockTime;
pxQueueParameters6->psCheckVariable = &( sBlockingConsumerCount[ 2 ] );
xTaskCreate( vBlockingQueueProducer, "QProdB5", blckqSTACK_SIZE, ( void * ) pxQueueParameters5, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueConsumer, "QConsB6", blckqSTACK_SIZE, ( void * ) pxQueueParameters6, tskIDLE_PRIORITY, NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vBlockingQueueProducer, pvParameters )
{
uint16_t usValue = 0;
xBlockingQueueParameters *pxQueueParameters;
short sErrorEverOccurred = pdFALSE;
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
for( ;; )
{
if( xQueueSend( pxQueueParameters->xQueue, ( void * ) &usValue, pxQueueParameters->xBlockTime ) != pdPASS )
{
sErrorEverOccurred = pdTRUE;
}
else
{
/* We have successfully posted a message, so increment the variable
used to check we are still running. */
if( sErrorEverOccurred == pdFALSE )
{
( *pxQueueParameters->psCheckVariable )++;
}
/* Increment the variable we are going to post next time round. The
consumer will expect the numbers to follow in numerical order. */
++usValue;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vBlockingQueueConsumer, pvParameters )
{
uint16_t usData, usExpectedValue = 0;
xBlockingQueueParameters *pxQueueParameters;
short sErrorEverOccurred = pdFALSE;
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
for( ;; )
{
if( xQueueReceive( pxQueueParameters->xQueue, &usData, pxQueueParameters->xBlockTime ) == pdPASS )
{
if( usData != usExpectedValue )
{
/* Catch-up. */
usExpectedValue = usData;
sErrorEverOccurred = pdTRUE;
}
else
{
/* We have successfully received a message, so increment the
variable used to check we are still running. */
if( sErrorEverOccurred == pdFALSE )
{
( *pxQueueParameters->psCheckVariable )++;
}
/* Increment the value we expect to remove from the queue next time
round. */
++usExpectedValue;
}
#if configUSE_PREEMPTION == 0
{
if( pxQueueParameters->xBlockTime == 0 )
{
taskYIELD();
}
}
#endif
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreBlockingQueuesStillRunning( void )
{
static short sLastBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( uint16_t ) 0, ( uint16_t ) 0, ( uint16_t ) 0 };
static short sLastBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( uint16_t ) 0, ( uint16_t ) 0, ( uint16_t ) 0 };
BaseType_t xReturn = pdPASS, xTasks;
/* Not too worried about mutual exclusion on these variables as they are 16
bits and we are only reading them. We also only care to see if they have
changed or not.
Loop through each check variable to and return pdFALSE if any are found not
to have changed since the last call. */
for( xTasks = 0; xTasks < blckqNUM_TASK_SETS; xTasks++ )
{
if( sBlockingConsumerCount[ xTasks ] == sLastBlockingConsumerCount[ xTasks ] )
{
xReturn = pdFALSE;
}
sLastBlockingConsumerCount[ xTasks ] = sBlockingConsumerCount[ xTasks ];
if( sBlockingProducerCount[ xTasks ] == sLastBlockingProducerCount[ xTasks ] )
{
xReturn = pdFALSE;
}
sLastBlockingProducerCount[ xTasks ] = sBlockingProducerCount[ xTasks ];
}
return xReturn;
}

View file

@ -0,0 +1,857 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Tests the extra queue functionality introduced in FreeRTOS.org V4.5.0 -
* including xQueueSendToFront(), xQueueSendToBack(), xQueuePeek() and
* mutex behaviour.
*
* See the comments above the prvSendFrontAndBackTest() and
* prvLowPriorityMutexTask() prototypes below for more information.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
/* Demo program include files. */
#include "GenQTest.h"
#define genqQUEUE_LENGTH ( 5 )
#define genqNO_BLOCK ( 0 )
#define genqMUTEX_LOW_PRIORITY ( tskIDLE_PRIORITY )
#define genqMUTEX_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define genqMUTEX_MEDIUM_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define genqMUTEX_HIGH_PRIORITY ( tskIDLE_PRIORITY + 3 )
#define genqINTERRUPT_MUTEX_GIVE_PERIOD_MS ( 100 )
/*-----------------------------------------------------------*/
/*
* Tests the behaviour of the xQueueSendToFront() and xQueueSendToBack()
* macros by using both to fill a queue, then reading from the queue to
* check the resultant queue order is as expected. Queue data is also
* peeked.
*/
static void prvSendFrontAndBackTest( void *pvParameters );
/*
* The following three tasks are used to demonstrate the mutex behaviour.
* Each task is given a different priority to demonstrate the priority
* inheritance mechanism.
*
* The low priority task obtains a mutex. After this a high priority task
* attempts to obtain the same mutex, causing its priority to be inherited
* by the low priority task. The task with the inherited high priority then
* resumes a medium priority task to ensure it is not blocked by the medium
* priority task while it holds the inherited high priority. Once the mutex
* is returned the task with the inherited priority returns to its original
* low priority, and is therefore immediately preempted by first the high
* priority task and then the medium prioroity task before it can continue.
*/
static void prvLowPriorityMutexTask( void *pvParameters );
static void prvMediumPriorityMutexTask( void *pvParameters );
static void prvHighPriorityMutexTask( void *pvParameters );
/*
* Exercises the priority inheritance when a task takes two mutexes, returning
* them in a different order to which they were taken.
*/
static void prvTakeTwoMutexesReturnInDifferentOrder( SemaphoreHandle_t xMutex, SemaphoreHandle_t xLocalMutex );
/*
* Exercises the priority inheritance when a task takes two mutexes, returning
* them in the same order in which they were taken.
*/
static void prvTakeTwoMutexesReturnInSameOrder( SemaphoreHandle_t xMutex, SemaphoreHandle_t xLocalMutex );
/*
* Task that receives an a mutex that is given from an interrupt - although
* generally mutexes should not be used given in interrupts (and definitely
* never taken in an interrupt) there are some circumstances when it may be
* desirable. NOTE: This function is not declared static to prevent compiler
* warnings being generated in demos where the function is declared but not
* used.
*/
void vInterruptMutexTask( void *pvParameters );
/*-----------------------------------------------------------*/
/* Flag that will be latched to pdTRUE should any unexpected behaviour be
detected in any of the tasks. */
static volatile BaseType_t xErrorDetected = pdFALSE;
/* Counters that are incremented on each cycle of a test. This is used to
detect a stalled task - a test that is no longer running. */
static volatile uint32_t ulLoopCounter = 0;
static volatile uint32_t ulLoopCounter2 = 0;
/* The variable that is guarded by the mutex in the mutex demo tasks. */
static volatile uint32_t ulGuardedVariable = 0;
/* Handles used in the mutext test to suspend and resume the high and medium
priority mutex test tasks. */
static TaskHandle_t xHighPriorityMutexTask, xMediumPriorityMutexTask;
/* A mutex which is given from an interrupt - although generally mutexes should
not be used given in interrupts (and definitely never taken in an interrupt)
there are some circumstances when it may be desirable. */
static SemaphoreHandle_t xISRMutex = NULL;
/*-----------------------------------------------------------*/
void vStartGenericQueueTasks( UBaseType_t uxPriority )
{
QueueHandle_t xQueue;
SemaphoreHandle_t xMutex;
xISRMutex = xSemaphoreCreateMutex();
configASSERT( xISRMutex );
/* Create the queue that we are going to use for the
prvSendFrontAndBackTest demo. */
xQueue = xQueueCreate( genqQUEUE_LENGTH, sizeof( uint32_t ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xQueue, "Gen_Queue_Test" );
/* Create the demo task and pass it the queue just created. We are
passing the queue handle by value so it does not matter that it is
declared on the stack here. */
xTaskCreate( prvSendFrontAndBackTest, "GenQ", configMINIMAL_STACK_SIZE, ( void * ) xQueue, uxPriority, NULL );
/* Create the mutex used by the prvMutexTest task. */
xMutex = xSemaphoreCreateMutex();
/* vQueueAddToRegistry() adds the mutex to the registry, if one is
in use. The registry is provided as a means for kernel aware
debuggers to locate mutexes and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( ( QueueHandle_t ) xMutex, "Gen_Queue_Mutex" );
/* Create the mutex demo tasks and pass it the mutex just created. We are
passing the mutex handle by value so it does not matter that it is declared
on the stack here. */
xTaskCreate( prvLowPriorityMutexTask, "MuLow", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_LOW_PRIORITY, NULL );
xTaskCreate( prvMediumPriorityMutexTask, "MuMed", configMINIMAL_STACK_SIZE, NULL, genqMUTEX_MEDIUM_PRIORITY, &xMediumPriorityMutexTask );
xTaskCreate( prvHighPriorityMutexTask, "MuHigh", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_HIGH_PRIORITY, &xHighPriorityMutexTask );
/* Only when the windows simulator is being used - create the task that
receives a mutex from an interrupt. */
#ifdef _WINDOWS_
{
xTaskCreate( vInterruptMutexTask, "IntMu", configMINIMAL_STACK_SIZE, NULL, genqMUTEX_MEDIUM_PRIORITY, NULL );
}
#endif /* __WINDOWS__ */
}
/*-----------------------------------------------------------*/
static void prvSendFrontAndBackTest( void *pvParameters )
{
uint32_t ulData, ulData2;
QueueHandle_t xQueue;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Queue SendToFront/SendToBack/Peek test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
xQueue = ( QueueHandle_t ) pvParameters;
for( ;; )
{
/* The queue is empty, so sending an item to the back of the queue
should have the same efect as sending it to the front of the queue.
First send to the front and check everything is as expected. */
xQueueSendToFront( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
xErrorDetected = pdTRUE;
}
if( xQueueReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* The data we sent to the queue should equal the data we just received
from the queue. */
if( ulLoopCounter != ulData )
{
xErrorDetected = pdTRUE;
}
/* Then do the same, sending the data to the back, checking everything
is as expected. */
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
xQueueSendToBack( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
xErrorDetected = pdTRUE;
}
if( xQueueReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
/* The data we sent to the queue should equal the data we just received
from the queue. */
if( ulLoopCounter != ulData )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Place 2, 3, 4 into the queue, adding items to the back of the queue. */
for( ulData = 2; ulData < 5; ulData++ )
{
xQueueSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK );
}
/* Now the order in the queue should be 2, 3, 4, with 2 being the first
thing to be read out. Now add 1 then 0 to the front of the queue. */
if( uxQueueMessagesWaiting( xQueue ) != 3 )
{
xErrorDetected = pdTRUE;
}
ulData = 1;
xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
ulData = 0;
xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
/* Now the queue should be full, and when we read the data out we
should receive 0, 1, 2, 3, 4. */
if( uxQueueMessagesWaiting( xQueue ) != 5 )
{
xErrorDetected = pdTRUE;
}
if( xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
if( xQueueSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Check the data we read out is in the expected order. */
for( ulData = 0; ulData < genqQUEUE_LENGTH; ulData++ )
{
/* Try peeking the data first. */
if( xQueuePeek( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulData != ulData2 )
{
xErrorDetected = pdTRUE;
}
/* Now try receiving the data for real. The value should be the
same. Clobber the value first so we know we really received it. */
ulData2 = ~ulData2;
if( xQueueReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulData != ulData2 )
{
xErrorDetected = pdTRUE;
}
}
/* The queue should now be empty again. */
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Our queue is empty once more, add 10, 11 to the back. */
ulData = 10;
if( xQueueSend( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
ulData = 11;
if( xQueueSend( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 2 )
{
xErrorDetected = pdTRUE;
}
/* Now we should have 10, 11 in the queue. Add 7, 8, 9 to the
front. */
for( ulData = 9; ulData >= 7; ulData-- )
{
if( xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
}
/* Now check that the queue is full, and that receiving data provides
the expected sequence of 7, 8, 9, 10, 11. */
if( uxQueueMessagesWaiting( xQueue ) != 5 )
{
xErrorDetected = pdTRUE;
}
if( xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
if( xQueueSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Check the data we read out is in the expected order. */
for( ulData = 7; ulData < ( 7 + genqQUEUE_LENGTH ); ulData++ )
{
if( xQueueReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulData != ulData2 )
{
xErrorDetected = pdTRUE;
}
}
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
ulLoopCounter++;
}
}
/*-----------------------------------------------------------*/
static void prvTakeTwoMutexesReturnInDifferentOrder( SemaphoreHandle_t xMutex, SemaphoreHandle_t xLocalMutex )
{
/* Take the mutex. It should be available now. */
if( xSemaphoreTake( xMutex, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* Set the guarded variable to a known start value. */
ulGuardedVariable = 0;
/* This task's priority should be as per that assigned when the task was
created. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now unsuspend the high priority task. This will attempt to take the
mutex, and block when it finds it cannot obtain it. */
vTaskResume( xHighPriorityMutexTask );
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Ensure the task is reporting its priority as blocked and not
suspended (as it would have done in versions up to V7.5.3). */
#if( INCLUDE_eTaskGetState == 1 )
{
configASSERT( eTaskGetState( xHighPriorityMutexTask ) == eBlocked );
}
#endif /* INCLUDE_eTaskGetState */
/* The priority of the high priority task should now have been inherited
as by now it will have attempted to get the mutex. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Attempt to set the priority of this task to the test priority -
between the idle priority and the medium/high test priorities, but the
actual priority should remain at the high priority. */
vTaskPrioritySet( NULL, genqMUTEX_TEST_PRIORITY );
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now unsuspend the medium priority task. This should not run as the
inherited priority of this task is above that of the medium priority
task. */
vTaskResume( xMediumPriorityMutexTask );
/* If the medium priority task did run then it will have incremented the
guarded variable. */
if( ulGuardedVariable != 0 )
{
xErrorDetected = pdTRUE;
}
/* Take the local mutex too, so two mutexes are now held. */
if( xSemaphoreTake( xLocalMutex, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* When the semaphore is given back the priority of this task should not
yet be disinherited because the local mutex is still held. This is a
simplification to allow FreeRTOS to be integrated with middleware that
attempts to hold multiple mutexes without bloating the code with complex
algorithms. It is possible that the high priority mutex task will
execute as it shares a priority with this task. */
if( xSemaphoreGive( xMutex ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* The guarded variable is only incremented by the medium priority task,
which still should not have executed as this task should remain at the
higher priority, ensure this is the case. */
if( ulGuardedVariable != 0 )
{
xErrorDetected = pdTRUE;
}
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now also give back the local mutex, taking the held count back to 0.
This time the priority of this task should be disinherited back to the
priority to which it was set while the mutex was held. This means
the medium priority task should execute and increment the guarded
variable. When this task next runs both the high and medium priority
tasks will have been suspended again. */
if( xSemaphoreGive( xLocalMutex ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Check the guarded variable did indeed increment... */
if( ulGuardedVariable != 1 )
{
xErrorDetected = pdTRUE;
}
/* ... and that the priority of this task has been disinherited to
genqMUTEX_TEST_PRIORITY. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_TEST_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Set the priority of this task back to its original value, ready for
the next loop around this test. */
vTaskPrioritySet( NULL, genqMUTEX_LOW_PRIORITY );
}
/*-----------------------------------------------------------*/
static void prvTakeTwoMutexesReturnInSameOrder( SemaphoreHandle_t xMutex, SemaphoreHandle_t xLocalMutex )
{
/* Take the mutex. It should be available now. */
if( xSemaphoreTake( xMutex, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* Set the guarded variable to a known start value. */
ulGuardedVariable = 0;
/* This task's priority should be as per that assigned when the task was
created. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now unsuspend the high priority task. This will attempt to take the
mutex, and block when it finds it cannot obtain it. */
vTaskResume( xHighPriorityMutexTask );
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Ensure the task is reporting its priority as blocked and not
suspended (as it would have done in versions up to V7.5.3). */
#if( INCLUDE_eTaskGetState == 1 )
{
configASSERT( eTaskGetState( xHighPriorityMutexTask ) == eBlocked );
}
#endif /* INCLUDE_eTaskGetState */
/* The priority of the high priority task should now have been inherited
as by now it will have attempted to get the mutex. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now unsuspend the medium priority task. This should not run as the
inherited priority of this task is above that of the medium priority
task. */
vTaskResume( xMediumPriorityMutexTask );
/* If the medium priority task did run then it will have incremented the
guarded variable. */
if( ulGuardedVariable != 0 )
{
xErrorDetected = pdTRUE;
}
/* Take the local mutex too, so two mutexes are now held. */
if( xSemaphoreTake( xLocalMutex, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* When the local semaphore is given back the priority of this task should
not yet be disinherited because the shared mutex is still held. This is a
simplification to allow FreeRTOS to be integrated with middleware that
attempts to hold multiple mutexes without bloating the code with complex
algorithms. It is possible that the high priority mutex task will
execute as it shares a priority with this task. */
if( xSemaphoreGive( xLocalMutex ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* The guarded variable is only incremented by the medium priority task,
which still should not have executed as this task should remain at the
higher priority, ensure this is the case. */
if( ulGuardedVariable != 0 )
{
xErrorDetected = pdTRUE;
}
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now also give back the shared mutex, taking the held count back to 0.
This time the priority of this task should be disinherited back to the
priority at which it was created. This means the medium priority task
should execute and increment the guarded variable. When this task next runs
both the high and medium priority tasks will have been suspended again. */
if( xSemaphoreGive( xMutex ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Check the guarded variable did indeed increment... */
if( ulGuardedVariable != 1 )
{
xErrorDetected = pdTRUE;
}
/* ... and that the priority of this task has been disinherited to
genqMUTEX_LOW_PRIORITY. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
{
xErrorDetected = pdTRUE;
}
}
/*-----------------------------------------------------------*/
static void prvLowPriorityMutexTask( void *pvParameters )
{
SemaphoreHandle_t xMutex = ( SemaphoreHandle_t ) pvParameters, xLocalMutex;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Mutex with priority inheritance test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
/* The local mutex is used to check the 'mutexs held' count. */
xLocalMutex = xSemaphoreCreateMutex();
configASSERT( xLocalMutex );
for( ;; )
{
/* The first tests exercise the priority inheritance when two mutexes
are taken then returned in a different order to which they were
taken. */
prvTakeTwoMutexesReturnInDifferentOrder( xMutex, xLocalMutex );
/* Just to show this task is still running. */
ulLoopCounter2++;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* The second tests exercise the priority inheritance when two mutexes
are taken then returned in the same order in which they were taken. */
prvTakeTwoMutexesReturnInSameOrder( xMutex, xLocalMutex );
/* Just to show this task is still running. */
ulLoopCounter2++;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static void prvMediumPriorityMutexTask( void *pvParameters )
{
( void ) pvParameters;
for( ;; )
{
/* The medium priority task starts by suspending itself. The low
priority task will unsuspend this task when required. */
vTaskSuspend( NULL );
/* When this task unsuspends all it does is increment the guarded
variable, this is so the low priority task knows that it has
executed. */
ulGuardedVariable++;
}
}
/*-----------------------------------------------------------*/
static void prvHighPriorityMutexTask( void *pvParameters )
{
SemaphoreHandle_t xMutex = ( SemaphoreHandle_t ) pvParameters;
for( ;; )
{
/* The high priority task starts by suspending itself. The low
priority task will unsuspend this task when required. */
vTaskSuspend( NULL );
/* When this task unsuspends all it does is attempt to obtain
the mutex. It should find the mutex is not available so a
block time is specified. */
if( xSemaphoreTake( xMutex, portMAX_DELAY ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* When the mutex is eventually obtained it is just given back before
returning to suspend ready for the next cycle. */
if( xSemaphoreGive( xMutex ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
}
}
/*-----------------------------------------------------------*/
/* NOTE: This function is not declared static to prevent compiler warnings in
demos where the function is declared but not used. */
void vInterruptMutexTask( void *pvParameters )
{
const TickType_t xInterruptGivePeriod = pdMS_TO_TICKS( genqINTERRUPT_MUTEX_GIVE_PERIOD_MS );
volatile uint32_t ulLoops = 0;
/* Just to avoid compiler warnings. */
( void ) pvParameters;
for( ;; )
{
/* Has to wait longer than the time between gives to make sure it
should definitely have received the mutex. */
if( xSemaphoreTake( xISRMutex, ( xInterruptGivePeriod * 2 ) ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
else
{
ulLoops++;
}
}
}
/*-----------------------------------------------------------*/
void vMutexISRInteractionTest( void )
{
static TickType_t xLastGiveTime = 0;
TickType_t xTimeNow;
xTimeNow = xTaskGetTickCountFromISR();
if( ( xTimeNow - xLastGiveTime ) >= pdMS_TO_TICKS( genqINTERRUPT_MUTEX_GIVE_PERIOD_MS ) )
{
configASSERT( xISRMutex );
xSemaphoreGiveFromISR( xISRMutex, NULL );
xLastGiveTime = xTimeNow;
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreGenericQueueTasksStillRunning( void )
{
static uint32_t ulLastLoopCounter = 0, ulLastLoopCounter2 = 0;
/* If the demo task is still running then we expect the loop counters to
have incremented since this function was last called. */
if( ulLastLoopCounter == ulLoopCounter )
{
xErrorDetected = pdTRUE;
}
if( ulLastLoopCounter2 == ulLoopCounter2 )
{
xErrorDetected = pdTRUE;
}
ulLastLoopCounter = ulLoopCounter;
ulLastLoopCounter2 = ulLoopCounter2;
/* Errors detected in the task itself will have latched xErrorDetected
to true. */
return ( BaseType_t ) !xErrorDetected;
}

View file

@ -0,0 +1,760 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This file defines one of the more complex set of demo/test tasks. They are
* designed to stress test the queue implementation though pseudo simultaneous
* multiple reads and multiple writes from both tasks of varying priority and
* interrupts. The interrupts are prioritised such to ensure that nesting
* occurs (for those ports that support it).
*
* The test ensures that, while being accessed from three tasks and two
* interrupts, all the data sent to the queues is also received from
* the same queue, and that no duplicate items are either sent or received.
* The tests also ensure that a low priority task is never able to successfully
* read from or write to a queue when a task of higher priority is attempting
* the same operation.
*/
/* Standard includes. */
#include <string.h>
/* SafeRTOS includes. */
#include "FreeRTOS.h"
#include "queue.h"
#include "task.h"
/* Demo app includes. */
#include "IntQueue.h"
#include "IntQueueTimer.h"
#if( INCLUDE_eTaskGetState != 1 )
#error INCLUDE_eTaskGetState must be set to 1 in FreeRTOSConfig.h to use this demo file.
#endif
/* Priorities used by test tasks. */
#ifndef intqHIGHER_PRIORITY
#define intqHIGHER_PRIORITY ( configMAX_PRIORITIES - 2 )
#endif
#define intqLOWER_PRIORITY ( tskIDLE_PRIORITY )
/* The number of values to send/receive before checking that all values were
processed as expected. */
#define intqNUM_VALUES_TO_LOG ( 200 )
#define intqSHORT_DELAY ( 140 )
/* The value by which the value being sent to or received from a queue should
increment past intqNUM_VALUES_TO_LOG before we check that all values have been
sent/received correctly. This is done to ensure that all tasks and interrupts
accessing the queue have completed their accesses with the
intqNUM_VALUES_TO_LOG range. */
#define intqVALUE_OVERRUN ( 50 )
/* The delay used by the polling task. A short delay is used for code
coverage. */
#define intqONE_TICK_DELAY ( 1 )
/* Each task and interrupt is given a unique identifier. This value is used to
identify which task sent or received each value. The identifier is also used
to distinguish between two tasks that are running the same task function. */
#define intqHIGH_PRIORITY_TASK1 ( ( UBaseType_t ) 1 )
#define intqHIGH_PRIORITY_TASK2 ( ( UBaseType_t ) 2 )
#define intqLOW_PRIORITY_TASK ( ( UBaseType_t ) 3 )
#define intqFIRST_INTERRUPT ( ( UBaseType_t ) 4 )
#define intqSECOND_INTERRUPT ( ( UBaseType_t ) 5 )
#define intqQUEUE_LENGTH ( ( UBaseType_t ) 10 )
/* At least intqMIN_ACCEPTABLE_TASK_COUNT values should be sent to/received
from each queue by each task, otherwise an error is detected. */
#define intqMIN_ACCEPTABLE_TASK_COUNT ( 5 )
/* Send the next value to the queue that is normally empty. This is called
from within the interrupts. */
#define timerNORMALLY_EMPTY_TX() \
if( xQueueIsQueueFullFromISR( xNormallyEmptyQueue ) != pdTRUE ) \
{ \
UBaseType_t uxSavedInterruptStatus; \
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); \
{ \
uxValueForNormallyEmptyQueue++; \
xQueueSendFromISR( xNormallyEmptyQueue, ( void * ) &uxValueForNormallyEmptyQueue, &xHigherPriorityTaskWoken ); \
} \
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); \
} \
/* Send the next value to the queue that is normally full. This is called
from within the interrupts. */
#define timerNORMALLY_FULL_TX() \
if( xQueueIsQueueFullFromISR( xNormallyFullQueue ) != pdTRUE ) \
{ \
UBaseType_t uxSavedInterruptStatus; \
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); \
{ \
uxValueForNormallyFullQueue++; \
xQueueSendFromISR( xNormallyFullQueue, ( void * ) &uxValueForNormallyFullQueue, &xHigherPriorityTaskWoken ); \
} \
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); \
} \
/* Receive a value from the normally empty queue. This is called from within
an interrupt. */
#define timerNORMALLY_EMPTY_RX() \
if( xQueueReceiveFromISR( xNormallyEmptyQueue, &uxRxedValue, &xHigherPriorityTaskWoken ) != pdPASS ) \
{ \
prvQueueAccessLogError( __LINE__ ); \
} \
else \
{ \
prvRecordValue_NormallyEmpty( uxRxedValue, intqSECOND_INTERRUPT ); \
}
/* Receive a value from the normally full queue. This is called from within
an interrupt. */
#define timerNORMALLY_FULL_RX() \
if( xQueueReceiveFromISR( xNormallyFullQueue, &uxRxedValue, &xHigherPriorityTaskWoken ) == pdPASS ) \
{ \
prvRecordValue_NormallyFull( uxRxedValue, intqSECOND_INTERRUPT ); \
} \
/*-----------------------------------------------------------*/
/* The two queues used by the test. */
static QueueHandle_t xNormallyEmptyQueue, xNormallyFullQueue;
/* Variables used to detect a stall in one of the tasks. */
static UBaseType_t uxHighPriorityLoops1 = 0, uxHighPriorityLoops2 = 0, uxLowPriorityLoops1 = 0, uxLowPriorityLoops2 = 0;
/* Any unexpected behaviour sets xErrorStatus to fail and log the line that
caused the error in xErrorLine. */
static BaseType_t xErrorStatus = pdPASS;
static volatile UBaseType_t xErrorLine = ( UBaseType_t ) 0;
/* Used for sequencing between tasks. */
static BaseType_t xWasSuspended = pdFALSE;
/* The values that are sent to the queues. An incremented value is sent each
time to each queue. */
volatile UBaseType_t uxValueForNormallyEmptyQueue = 0, uxValueForNormallyFullQueue = 0;
/* A handle to some of the tasks is required so they can be suspended/resumed. */
TaskHandle_t xHighPriorityNormallyEmptyTask1, xHighPriorityNormallyEmptyTask2, xHighPriorityNormallyFullTask1, xHighPriorityNormallyFullTask2;
/* When a value is received in a queue the value is ticked off in the array
the array position of the value is set to a the identifier of the task or
interrupt that accessed the queue. This way missing or duplicate values can be
detected. */
static uint8_t ucNormallyEmptyReceivedValues[ intqNUM_VALUES_TO_LOG ] = { 0 };
static uint8_t ucNormallyFullReceivedValues[ intqNUM_VALUES_TO_LOG ] = { 0 };
/* The test tasks themselves. */
static void prvLowerPriorityNormallyEmptyTask( void *pvParameters );
static void prvLowerPriorityNormallyFullTask( void *pvParameters );
static void prvHigherPriorityNormallyEmptyTask( void *pvParameters );
static void prv1stHigherPriorityNormallyFullTask( void *pvParameters );
static void prv2ndHigherPriorityNormallyFullTask( void *pvParameters );
/* Used to mark the positions within the ucNormallyEmptyReceivedValues and
ucNormallyFullReceivedValues arrays, while checking for duplicates. */
static void prvRecordValue_NormallyEmpty( UBaseType_t uxValue, UBaseType_t uxSource );
static void prvRecordValue_NormallyFull( UBaseType_t uxValue, UBaseType_t uxSource );
/* Logs the line on which an error occurred. */
static void prvQueueAccessLogError( UBaseType_t uxLine );
/*-----------------------------------------------------------*/
void vStartInterruptQueueTasks( void )
{
/* Start the test tasks. */
xTaskCreate( prvHigherPriorityNormallyEmptyTask, "H1QRx", configMINIMAL_STACK_SIZE, ( void * ) intqHIGH_PRIORITY_TASK1, intqHIGHER_PRIORITY, &xHighPriorityNormallyEmptyTask1 );
xTaskCreate( prvHigherPriorityNormallyEmptyTask, "H2QRx", configMINIMAL_STACK_SIZE, ( void * ) intqHIGH_PRIORITY_TASK2, intqHIGHER_PRIORITY, &xHighPriorityNormallyEmptyTask2 );
xTaskCreate( prvLowerPriorityNormallyEmptyTask, "L1QRx", configMINIMAL_STACK_SIZE, NULL, intqLOWER_PRIORITY, NULL );
xTaskCreate( prv1stHigherPriorityNormallyFullTask, "H1QTx", configMINIMAL_STACK_SIZE, ( void * ) intqHIGH_PRIORITY_TASK1, intqHIGHER_PRIORITY, &xHighPriorityNormallyFullTask1 );
xTaskCreate( prv2ndHigherPriorityNormallyFullTask, "H2QTx", configMINIMAL_STACK_SIZE, ( void * ) intqHIGH_PRIORITY_TASK2, intqHIGHER_PRIORITY, &xHighPriorityNormallyFullTask2 );
xTaskCreate( prvLowerPriorityNormallyFullTask, "L2QRx", configMINIMAL_STACK_SIZE, NULL, intqLOWER_PRIORITY, NULL );
/* Create the queues that are accessed by multiple tasks and multiple
interrupts. */
xNormallyFullQueue = xQueueCreate( intqQUEUE_LENGTH, ( UBaseType_t ) sizeof( UBaseType_t ) );
xNormallyEmptyQueue = xQueueCreate( intqQUEUE_LENGTH, ( UBaseType_t ) sizeof( UBaseType_t ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xNormallyFullQueue, "NormallyFull" );
vQueueAddToRegistry( xNormallyEmptyQueue, "NormallyEmpty" );
}
/*-----------------------------------------------------------*/
static void prvRecordValue_NormallyFull( UBaseType_t uxValue, UBaseType_t uxSource )
{
if( uxValue < intqNUM_VALUES_TO_LOG )
{
/* We don't expect to receive the same value twice, so if the value
has already been marked as received an error has occurred. */
if( ucNormallyFullReceivedValues[ uxValue ] != 0x00 )
{
prvQueueAccessLogError( __LINE__ );
}
/* Log that this value has been received. */
ucNormallyFullReceivedValues[ uxValue ] = ( uint8_t ) uxSource;
}
}
/*-----------------------------------------------------------*/
static void prvRecordValue_NormallyEmpty( UBaseType_t uxValue, UBaseType_t uxSource )
{
if( uxValue < intqNUM_VALUES_TO_LOG )
{
/* We don't expect to receive the same value twice, so if the value
has already been marked as received an error has occurred. */
if( ucNormallyEmptyReceivedValues[ uxValue ] != 0x00 )
{
prvQueueAccessLogError( __LINE__ );
}
/* Log that this value has been received. */
ucNormallyEmptyReceivedValues[ uxValue ] = ( uint8_t ) uxSource;
}
}
/*-----------------------------------------------------------*/
static void prvQueueAccessLogError( UBaseType_t uxLine )
{
/* Latch the line number that caused the error. */
xErrorLine = uxLine;
xErrorStatus = pdFAIL;
}
/*-----------------------------------------------------------*/
static void prvHigherPriorityNormallyEmptyTask( void *pvParameters )
{
UBaseType_t uxRxed, ux, uxTask1, uxTask2, uxInterrupts, uxErrorCount1 = 0, uxErrorCount2 = 0;
/* The timer should not be started until after the scheduler has started.
More than one task is running this code so we check the parameter value
to determine which task should start the timer. */
if( ( UBaseType_t ) pvParameters == intqHIGH_PRIORITY_TASK1 )
{
vInitialiseTimerForIntQueueTest();
}
for( ;; )
{
/* Block waiting to receive a value from the normally empty queue.
Interrupts will write to the queue so we should receive a value. */
if( xQueueReceive( xNormallyEmptyQueue, &uxRxed, intqSHORT_DELAY ) != pdPASS )
{
prvQueueAccessLogError( __LINE__ );
}
else
{
/* Note which value was received so we can check all expected
values are received and no values are duplicated. */
prvRecordValue_NormallyEmpty( uxRxed, ( UBaseType_t ) pvParameters );
}
/* Ensure the other task running this code gets a chance to execute. */
taskYIELD();
if( ( UBaseType_t ) pvParameters == intqHIGH_PRIORITY_TASK1 )
{
/* Have we received all the expected values? */
if( uxValueForNormallyEmptyQueue > ( intqNUM_VALUES_TO_LOG + intqVALUE_OVERRUN ) )
{
vTaskSuspend( xHighPriorityNormallyEmptyTask2 );
uxTask1 = 0;
uxTask2 = 0;
uxInterrupts = 0;
/* Loop through the array, checking that both tasks have
placed values into the array, and that no values are missing.
Start at 1 as we expect position 0 to be unused. */
for( ux = 1; ux < intqNUM_VALUES_TO_LOG; ux++ )
{
if( ucNormallyEmptyReceivedValues[ ux ] == 0 )
{
/* A value is missing. */
prvQueueAccessLogError( __LINE__ );
}
else
{
if( ucNormallyEmptyReceivedValues[ ux ] == intqHIGH_PRIORITY_TASK1 )
{
/* Value was placed into the array by task 1. */
uxTask1++;
}
else if( ucNormallyEmptyReceivedValues[ ux ] == intqHIGH_PRIORITY_TASK2 )
{
/* Value was placed into the array by task 2. */
uxTask2++;
}
else if( ucNormallyEmptyReceivedValues[ ux ] == intqSECOND_INTERRUPT )
{
uxInterrupts++;
}
}
}
if( uxTask1 < intqMIN_ACCEPTABLE_TASK_COUNT )
{
/* Only task 2 seemed to log any values. */
uxErrorCount1++;
if( uxErrorCount1 > 2 )
{
prvQueueAccessLogError( __LINE__ );
}
}
else
{
uxErrorCount1 = 0;
}
if( uxTask2 < intqMIN_ACCEPTABLE_TASK_COUNT )
{
/* Only task 1 seemed to log any values. */
uxErrorCount2++;
if( uxErrorCount2 > 2 )
{
prvQueueAccessLogError( __LINE__ );
}
}
else
{
uxErrorCount2 = 0;
}
if( uxInterrupts == 0 )
{
prvQueueAccessLogError( __LINE__ );
}
/* Clear the array again, ready to start a new cycle. */
memset( ucNormallyEmptyReceivedValues, 0x00, sizeof( ucNormallyEmptyReceivedValues ) );
uxHighPriorityLoops1++;
uxValueForNormallyEmptyQueue = 0;
/* Suspend ourselves, allowing the lower priority task to
actually receive something from the queue. Until now it
will have been prevented from doing so by the higher
priority tasks. The lower priority task will resume us
if it receives something. We will then resume the other
higher priority task. */
vTaskSuspend( NULL );
vTaskResume( xHighPriorityNormallyEmptyTask2 );
}
}
}
}
/*-----------------------------------------------------------*/
static void prvLowerPriorityNormallyEmptyTask( void *pvParameters )
{
UBaseType_t uxValue, uxRxed;
/* The parameters are not being used so avoid compiler warnings. */
( void ) pvParameters;
for( ;; )
{
if( xQueueReceive( xNormallyEmptyQueue, &uxRxed, intqONE_TICK_DELAY ) != errQUEUE_EMPTY )
{
/* A value should only be obtained when the high priority task is
suspended. */
if( eTaskGetState( xHighPriorityNormallyEmptyTask1 ) != eSuspended )
{
prvQueueAccessLogError( __LINE__ );
}
prvRecordValue_NormallyEmpty( uxRxed, intqLOW_PRIORITY_TASK );
/* Wake the higher priority task again. */
vTaskResume( xHighPriorityNormallyEmptyTask1 );
uxLowPriorityLoops1++;
}
else
{
/* Raise our priority while we send so we can preempt the higher
priority task, and ensure we get the Tx value into the queue. */
vTaskPrioritySet( NULL, intqHIGHER_PRIORITY + 1 );
portENTER_CRITICAL();
{
uxValueForNormallyEmptyQueue++;
uxValue = uxValueForNormallyEmptyQueue;
}
portEXIT_CRITICAL();
if( xQueueSend( xNormallyEmptyQueue, &uxValue, portMAX_DELAY ) != pdPASS )
{
prvQueueAccessLogError( __LINE__ );
}
vTaskPrioritySet( NULL, intqLOWER_PRIORITY );
}
}
}
/*-----------------------------------------------------------*/
static void prv1stHigherPriorityNormallyFullTask( void *pvParameters )
{
UBaseType_t uxValueToTx, ux, uxInterrupts;
/* The parameters are not being used so avoid compiler warnings. */
( void ) pvParameters;
/* Make sure the queue starts full or near full. >> 1 as there are two
high priority tasks. */
for( ux = 0; ux < ( intqQUEUE_LENGTH >> 1 ); ux++ )
{
portENTER_CRITICAL();
{
uxValueForNormallyFullQueue++;
uxValueToTx = uxValueForNormallyFullQueue;
}
portEXIT_CRITICAL();
xQueueSend( xNormallyFullQueue, &uxValueToTx, intqSHORT_DELAY );
}
for( ;; )
{
portENTER_CRITICAL();
{
uxValueForNormallyFullQueue++;
uxValueToTx = uxValueForNormallyFullQueue;
}
portEXIT_CRITICAL();
if( xQueueSend( xNormallyFullQueue, &uxValueToTx, intqSHORT_DELAY ) != pdPASS )
{
/* intqHIGH_PRIORITY_TASK2 is never suspended so we would not
expect it to ever time out. */
prvQueueAccessLogError( __LINE__ );
}
/* Allow the other task running this code to run. */
taskYIELD();
/* Have all the expected values been sent to the queue? */
if( uxValueToTx > ( intqNUM_VALUES_TO_LOG + intqVALUE_OVERRUN ) )
{
/* Make sure the other high priority task completes its send of
any values below intqNUM_VALUE_TO_LOG. */
vTaskDelay( intqSHORT_DELAY );
vTaskSuspend( xHighPriorityNormallyFullTask2 );
if( xWasSuspended == pdTRUE )
{
/* We would have expected the other high priority task to have
set this back to false by now. */
prvQueueAccessLogError( __LINE__ );
}
/* Set the suspended flag so an error is not logged if the other
task recognises a time out when it is unsuspended. */
xWasSuspended = pdTRUE;
/* Check interrupts are also sending. */
uxInterrupts = 0U;
/* Start at 1 as we expect position 0 to be unused. */
for( ux = 1; ux < intqNUM_VALUES_TO_LOG; ux++ )
{
if( ucNormallyFullReceivedValues[ ux ] == 0 )
{
/* A value was missing. */
prvQueueAccessLogError( __LINE__ );
}
else if( ucNormallyFullReceivedValues[ ux ] == intqSECOND_INTERRUPT )
{
uxInterrupts++;
}
}
if( uxInterrupts == 0 )
{
/* No writes from interrupts were found. Are interrupts
actually running? */
prvQueueAccessLogError( __LINE__ );
}
/* Reset the array ready for the next cycle. */
memset( ucNormallyFullReceivedValues, 0x00, sizeof( ucNormallyFullReceivedValues ) );
uxHighPriorityLoops2++;
uxValueForNormallyFullQueue = 0;
/* Suspend ourselves, allowing the lower priority task to
actually receive something from the queue. Until now it
will have been prevented from doing so by the higher
priority tasks. The lower priority task will resume us
if it receives something. We will then resume the other
higher priority task. */
vTaskSuspend( NULL );
vTaskResume( xHighPriorityNormallyFullTask2 );
}
}
}
/*-----------------------------------------------------------*/
static void prv2ndHigherPriorityNormallyFullTask( void *pvParameters )
{
UBaseType_t uxValueToTx, ux;
/* The parameters are not being used so avoid compiler warnings. */
( void ) pvParameters;
/* Make sure the queue starts full or near full. >> 1 as there are two
high priority tasks. */
for( ux = 0; ux < ( intqQUEUE_LENGTH >> 1 ); ux++ )
{
portENTER_CRITICAL();
{
uxValueForNormallyFullQueue++;
uxValueToTx = uxValueForNormallyFullQueue;
}
portEXIT_CRITICAL();
xQueueSend( xNormallyFullQueue, &uxValueToTx, intqSHORT_DELAY );
}
for( ;; )
{
portENTER_CRITICAL();
{
uxValueForNormallyFullQueue++;
uxValueToTx = uxValueForNormallyFullQueue;
}
portEXIT_CRITICAL();
if( xQueueSend( xNormallyFullQueue, &uxValueToTx, intqSHORT_DELAY ) != pdPASS )
{
if( xWasSuspended != pdTRUE )
{
/* It is ok to time out if the task has been suspended. */
prvQueueAccessLogError( __LINE__ );
}
}
xWasSuspended = pdFALSE;
taskYIELD();
}
}
/*-----------------------------------------------------------*/
static void prvLowerPriorityNormallyFullTask( void *pvParameters )
{
UBaseType_t uxValue, uxTxed = 9999;
/* The parameters are not being used so avoid compiler warnings. */
( void ) pvParameters;
for( ;; )
{
if( xQueueSend( xNormallyFullQueue, &uxTxed, intqONE_TICK_DELAY ) != errQUEUE_FULL )
{
/* Should only succeed when the higher priority task is suspended */
if( eTaskGetState( xHighPriorityNormallyFullTask1 ) != eSuspended )
{
prvQueueAccessLogError( __LINE__ );
}
vTaskResume( xHighPriorityNormallyFullTask1 );
uxLowPriorityLoops2++;
}
else
{
/* Raise our priority while we receive so we can preempt the higher
priority task, and ensure we get the value from the queue. */
vTaskPrioritySet( NULL, intqHIGHER_PRIORITY + 1 );
if( xQueueReceive( xNormallyFullQueue, &uxValue, portMAX_DELAY ) != pdPASS )
{
prvQueueAccessLogError( __LINE__ );
}
else
{
prvRecordValue_NormallyFull( uxValue, intqLOW_PRIORITY_TASK );
}
vTaskPrioritySet( NULL, intqLOWER_PRIORITY );
}
}
}
/*-----------------------------------------------------------*/
BaseType_t xFirstTimerHandler( void )
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
UBaseType_t uxRxedValue;
static UBaseType_t uxNextOperation = 0;
/* Called from a timer interrupt. Perform various read and write
accesses on the queues. */
uxNextOperation++;
if( uxNextOperation & ( UBaseType_t ) 0x01 )
{
timerNORMALLY_EMPTY_TX();
timerNORMALLY_EMPTY_TX();
timerNORMALLY_EMPTY_TX();
}
else
{
timerNORMALLY_FULL_RX();
timerNORMALLY_FULL_RX();
timerNORMALLY_FULL_RX();
}
return xHigherPriorityTaskWoken;
}
/*-----------------------------------------------------------*/
BaseType_t xSecondTimerHandler( void )
{
UBaseType_t uxRxedValue;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
static UBaseType_t uxNextOperation = 0;
/* Called from a timer interrupt. Perform various read and write
accesses on the queues. */
uxNextOperation++;
if( uxNextOperation & ( UBaseType_t ) 0x01 )
{
timerNORMALLY_EMPTY_TX();
timerNORMALLY_EMPTY_TX();
timerNORMALLY_EMPTY_RX();
timerNORMALLY_EMPTY_RX();
}
else
{
timerNORMALLY_FULL_RX();
timerNORMALLY_FULL_TX();
timerNORMALLY_FULL_TX();
timerNORMALLY_FULL_TX();
timerNORMALLY_FULL_TX();
}
return xHigherPriorityTaskWoken;
}
/*-----------------------------------------------------------*/
BaseType_t xAreIntQueueTasksStillRunning( void )
{
static UBaseType_t uxLastHighPriorityLoops1 = 0, uxLastHighPriorityLoops2 = 0, uxLastLowPriorityLoops1 = 0, uxLastLowPriorityLoops2 = 0;
/* xErrorStatus can be set outside of this function. This function just
checks that all the tasks are still cycling. */
if( uxHighPriorityLoops1 == uxLastHighPriorityLoops1 )
{
/* The high priority 1 task has stalled. */
prvQueueAccessLogError( __LINE__ );
}
uxLastHighPriorityLoops1 = uxHighPriorityLoops1;
if( uxHighPriorityLoops2 == uxLastHighPriorityLoops2 )
{
/* The high priority 2 task has stalled. */
prvQueueAccessLogError( __LINE__ );
}
uxLastHighPriorityLoops2 = uxHighPriorityLoops2;
if( uxLowPriorityLoops1 == uxLastLowPriorityLoops1 )
{
/* The low priority 1 task has stalled. */
prvQueueAccessLogError( __LINE__ );
}
uxLastLowPriorityLoops1 = uxLowPriorityLoops1;
if( uxLowPriorityLoops2 == uxLastLowPriorityLoops2 )
{
/* The low priority 2 task has stalled. */
prvQueueAccessLogError( __LINE__ );
}
uxLastLowPriorityLoops2 = uxLowPriorityLoops2;
return xErrorStatus;
}

View file

@ -0,0 +1,258 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This version of PollQ. c is for use on systems that have limited stack
* space and no display facilities. The complete version can be found in
* the Demo/Common/Full directory.
*
* Creates two tasks that communicate over a single queue. One task acts as a
* producer, the other a consumer.
*
* The producer loops for three iteration, posting an incrementing number onto the
* queue each cycle. It then delays for a fixed period before doing exactly the
* same again.
*
* The consumer loops emptying the queue. Each item removed from the queue is
* checked to ensure it contains the expected value. When the queue is empty it
* blocks for a fixed period, then does the same again.
*
* All queue access is performed without blocking. The consumer completely empties
* the queue each time it runs so the producer should never find the queue full.
*
* An error is flagged if the consumer obtains an unexpected value or the producer
* find the queue is full.
*/
/*
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
TickType_t rather than uint32_t.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo program include files. */
#include "PollQ.h"
#define pollqSTACK_SIZE configMINIMAL_STACK_SIZE
#define pollqQUEUE_SIZE ( 10 )
#define pollqPRODUCER_DELAY ( ( TickType_t ) 200 / portTICK_PERIOD_MS )
#define pollqCONSUMER_DELAY ( pollqPRODUCER_DELAY - ( TickType_t ) ( 20 / portTICK_PERIOD_MS ) )
#define pollqNO_DELAY ( ( TickType_t ) 0 )
#define pollqVALUES_TO_PRODUCE ( ( BaseType_t ) 3 )
#define pollqINITIAL_VALUE ( ( BaseType_t ) 0 )
/* The task that posts the incrementing number onto the queue. */
static portTASK_FUNCTION_PROTO( vPolledQueueProducer, pvParameters );
/* The task that empties the queue. */
static portTASK_FUNCTION_PROTO( vPolledQueueConsumer, pvParameters );
/* Variables that are used to check that the tasks are still running with no
errors. */
static volatile BaseType_t xPollingConsumerCount = pollqINITIAL_VALUE, xPollingProducerCount = pollqINITIAL_VALUE;
/*-----------------------------------------------------------*/
void vStartPolledQueueTasks( UBaseType_t uxPriority )
{
static QueueHandle_t xPolledQueue;
/* Create the queue used by the producer and consumer. */
xPolledQueue = xQueueCreate( pollqQUEUE_SIZE, ( UBaseType_t ) sizeof( uint16_t ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xPolledQueue, "Poll_Test_Queue" );
/* Spawn the producer and consumer. */
xTaskCreate( vPolledQueueConsumer, "QConsNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, ( TaskHandle_t * ) NULL );
xTaskCreate( vPolledQueueProducer, "QProdNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, ( TaskHandle_t * ) NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vPolledQueueProducer, pvParameters )
{
uint16_t usValue = ( uint16_t ) 0;
BaseType_t xError = pdFALSE, xLoop;
for( ;; )
{
for( xLoop = 0; xLoop < pollqVALUES_TO_PRODUCE; xLoop++ )
{
/* Send an incrementing number on the queue without blocking. */
if( xQueueSend( *( ( QueueHandle_t * ) pvParameters ), ( void * ) &usValue, pollqNO_DELAY ) != pdPASS )
{
/* We should never find the queue full so if we get here there
has been an error. */
xError = pdTRUE;
}
else
{
if( xError == pdFALSE )
{
/* If an error has ever been recorded we stop incrementing the
check variable. */
portENTER_CRITICAL();
xPollingProducerCount++;
portEXIT_CRITICAL();
}
/* Update the value we are going to post next time around. */
usValue++;
}
}
/* Wait before we start posting again to ensure the consumer runs and
empties the queue. */
vTaskDelay( pollqPRODUCER_DELAY );
}
} /*lint !e818 Function prototype must conform to API. */
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vPolledQueueConsumer, pvParameters )
{
uint16_t usData, usExpectedValue = ( uint16_t ) 0;
BaseType_t xError = pdFALSE;
for( ;; )
{
/* Loop until the queue is empty. */
while( uxQueueMessagesWaiting( *( ( QueueHandle_t * ) pvParameters ) ) )
{
if( xQueueReceive( *( ( QueueHandle_t * ) pvParameters ), &usData, pollqNO_DELAY ) == pdPASS )
{
if( usData != usExpectedValue )
{
/* This is not what we expected to receive so an error has
occurred. */
xError = pdTRUE;
/* Catch-up to the value we received so our next expected
value should again be correct. */
usExpectedValue = usData;
}
else
{
if( xError == pdFALSE )
{
/* Only increment the check variable if no errors have
occurred. */
portENTER_CRITICAL();
xPollingConsumerCount++;
portEXIT_CRITICAL();
}
}
/* Next time round we would expect the number to be one higher. */
usExpectedValue++;
}
}
/* Now the queue is empty we block, allowing the producer to place more
items in the queue. */
vTaskDelay( pollqCONSUMER_DELAY );
}
} /*lint !e818 Function prototype must conform to API. */
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running with no errors. */
BaseType_t xArePollingQueuesStillRunning( void )
{
BaseType_t xReturn;
/* Check both the consumer and producer poll count to check they have both
been changed since out last trip round. We do not need a critical section
around the check variables as this is called from a higher priority than
the other tasks that access the same variables. */
if( ( xPollingConsumerCount == pollqINITIAL_VALUE ) ||
( xPollingProducerCount == pollqINITIAL_VALUE )
)
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
/* Set the check variables back down so we know if they have been
incremented the next time around. */
xPollingConsumerCount = pollqINITIAL_VALUE;
xPollingProducerCount = pollqINITIAL_VALUE;
return xReturn;
}

View file

@ -0,0 +1,474 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Tests the behaviour when data is peeked from a queue when there are
* multiple tasks blocked on the queue.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
/* Demo program include files. */
#include "QPeek.h"
#define qpeekQUEUE_LENGTH ( 5 )
#define qpeekNO_BLOCK ( 0 )
#define qpeekSHORT_DELAY ( 10 )
#define qpeekLOW_PRIORITY ( tskIDLE_PRIORITY + 0 )
#define qpeekMEDIUM_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define qpeekHIGH_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define qpeekHIGHEST_PRIORITY ( tskIDLE_PRIORITY + 3 )
/*-----------------------------------------------------------*/
/*
* The following three tasks are used to demonstrate the peeking behaviour.
* Each task is given a different priority to demonstrate the order in which
* tasks are woken as data is peeked from a queue.
*/
static void prvLowPriorityPeekTask( void *pvParameters );
static void prvMediumPriorityPeekTask( void *pvParameters );
static void prvHighPriorityPeekTask( void *pvParameters );
static void prvHighestPriorityPeekTask( void *pvParameters );
/*-----------------------------------------------------------*/
/* Flag that will be latched to pdTRUE should any unexpected behaviour be
detected in any of the tasks. */
static volatile BaseType_t xErrorDetected = pdFALSE;
/* Counter that is incremented on each cycle of a test. This is used to
detect a stalled task - a test that is no longer running. */
static volatile uint32_t ulLoopCounter = 0;
/* Handles to the test tasks. */
TaskHandle_t xMediumPriorityTask, xHighPriorityTask, xHighestPriorityTask;
/*-----------------------------------------------------------*/
void vStartQueuePeekTasks( void )
{
QueueHandle_t xQueue;
/* Create the queue that we are going to use for the test/demo. */
xQueue = xQueueCreate( qpeekQUEUE_LENGTH, sizeof( uint32_t ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xQueue, "QPeek_Test_Queue" );
/* Create the demo tasks and pass it the queue just created. We are
passing the queue handle by value so it does not matter that it is declared
on the stack here. */
xTaskCreate( prvLowPriorityPeekTask, "PeekL", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekLOW_PRIORITY, NULL );
xTaskCreate( prvMediumPriorityPeekTask, "PeekM", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekMEDIUM_PRIORITY, &xMediumPriorityTask );
xTaskCreate( prvHighPriorityPeekTask, "PeekH1", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekHIGH_PRIORITY, &xHighPriorityTask );
xTaskCreate( prvHighestPriorityPeekTask, "PeekH2", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekHIGHEST_PRIORITY, &xHighestPriorityTask );
}
/*-----------------------------------------------------------*/
static void prvHighestPriorityPeekTask( void *pvParameters )
{
QueueHandle_t xQueue = ( QueueHandle_t ) pvParameters;
uint32_t ulValue;
#ifdef USE_STDIO
{
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Queue peek test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
}
#endif
for( ;; )
{
/* Try peeking from the queue. The queue should be empty so we will
block, allowing the high priority task to execute. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
/* We expected to have received something by the time we unblock. */
xErrorDetected = pdTRUE;
}
/* When we reach here the high and medium priority tasks should still
be blocked on the queue. We unblocked because the low priority task
wrote a value to the queue, which we should have peeked. Peeking the
data (rather than receiving it) will leave the data on the queue, so
the high priority task should then have also been unblocked, but not
yet executed. */
if( ulValue != 0x11223344 )
{
/* We did not receive the expected value. */
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
/* The message should have been left on the queue. */
xErrorDetected = pdTRUE;
}
/* Now we are going to actually receive the data, so when the high
priority task runs it will find the queue empty and return to the
blocked state. */
ulValue = 0;
if( xQueueReceive( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We expected to receive the value. */
xErrorDetected = pdTRUE;
}
if( ulValue != 0x11223344 )
{
/* We did not receive the expected value - which should have been
the same value as was peeked. */
xErrorDetected = pdTRUE;
}
/* Now we will block again as the queue is once more empty. The low
priority task can then execute again. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
/* We expected to have received something by the time we unblock. */
xErrorDetected = pdTRUE;
}
/* When we get here the low priority task should have again written to the
queue. */
if( ulValue != 0x01234567 )
{
/* We did not receive the expected value. */
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
/* The message should have been left on the queue. */
xErrorDetected = pdTRUE;
}
/* We only peeked the data, so suspending ourselves now should enable
the high priority task to also peek the data. The high priority task
will have been unblocked when we peeked the data as we left the data
in the queue. */
vTaskSuspend( NULL );
/* This time we are going to do the same as the above test, but the
high priority task is going to receive the data, rather than peek it.
This means that the medium priority task should never peek the value. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulValue != 0xaabbaabb )
{
xErrorDetected = pdTRUE;
}
vTaskSuspend( NULL );
}
}
/*-----------------------------------------------------------*/
static void prvHighPriorityPeekTask( void *pvParameters )
{
QueueHandle_t xQueue = ( QueueHandle_t ) pvParameters;
uint32_t ulValue;
for( ;; )
{
/* Try peeking from the queue. The queue should be empty so we will
block, allowing the medium priority task to execute. Both the high
and highest priority tasks will then be blocked on the queue. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
/* We expected to have received something by the time we unblock. */
xErrorDetected = pdTRUE;
}
/* When we get here the highest priority task should have peeked the data
(unblocking this task) then suspended (allowing this task to also peek
the data). */
if( ulValue != 0x01234567 )
{
/* We did not receive the expected value. */
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
/* The message should have been left on the queue. */
xErrorDetected = pdTRUE;
}
/* We only peeked the data, so suspending ourselves now should enable
the medium priority task to also peek the data. The medium priority task
will have been unblocked when we peeked the data as we left the data
in the queue. */
vTaskSuspend( NULL );
/* This time we are going actually receive the value, so the medium
priority task will never peek the data - we removed it from the queue. */
if( xQueueReceive( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulValue != 0xaabbaabb )
{
xErrorDetected = pdTRUE;
}
vTaskSuspend( NULL );
}
}
/*-----------------------------------------------------------*/
static void prvMediumPriorityPeekTask( void *pvParameters )
{
QueueHandle_t xQueue = ( QueueHandle_t ) pvParameters;
uint32_t ulValue;
for( ;; )
{
/* Try peeking from the queue. The queue should be empty so we will
block, allowing the low priority task to execute. The highest, high
and medium priority tasks will then all be blocked on the queue. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
/* We expected to have received something by the time we unblock. */
xErrorDetected = pdTRUE;
}
/* When we get here the high priority task should have peeked the data
(unblocking this task) then suspended (allowing this task to also peek
the data). */
if( ulValue != 0x01234567 )
{
/* We did not receive the expected value. */
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
/* The message should have been left on the queue. */
xErrorDetected = pdTRUE;
}
/* Just so we know the test is still running. */
ulLoopCounter++;
/* Now we can suspend ourselves so the low priority task can execute
again. */
vTaskSuspend( NULL );
}
}
/*-----------------------------------------------------------*/
static void prvLowPriorityPeekTask( void *pvParameters )
{
QueueHandle_t xQueue = ( QueueHandle_t ) pvParameters;
uint32_t ulValue;
for( ;; )
{
/* Write some data to the queue. This should unblock the highest
priority task that is waiting to peek data from the queue. */
ulValue = 0x11223344;
if( xQueueSendToBack( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We were expecting the queue to be empty so we should not of
had a problem writing to the queue. */
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* By the time we get here the data should have been removed from
the queue. */
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
/* Write another value to the queue, again waking the highest priority
task that is blocked on the queue. */
ulValue = 0x01234567;
if( xQueueSendToBack( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We were expecting the queue to be empty so we should not of
had a problem writing to the queue. */
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* All the other tasks should now have successfully peeked the data.
The data is still in the queue so we should be able to receive it. */
ulValue = 0;
if( xQueueReceive( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We expected to receive the data. */
xErrorDetected = pdTRUE;
}
if( ulValue != 0x01234567 )
{
/* We did not receive the expected value. */
}
/* Lets just delay a while as this is an intensive test as we don't
want to starve other tests of processing time. */
vTaskDelay( qpeekSHORT_DELAY );
/* Unsuspend the other tasks so we can repeat the test - this time
however not all the other tasks will peek the data as the high
priority task is actually going to remove it from the queue. Send
to front is used just to be different. As the queue is empty it
makes no difference to the result. */
vTaskResume( xMediumPriorityTask );
vTaskResume( xHighPriorityTask );
vTaskResume( xHighestPriorityTask );
#if( configUSE_PREEMPTION == 0 )
taskYIELD();
#endif
ulValue = 0xaabbaabb;
if( xQueueSendToFront( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We were expecting the queue to be empty so we should not of
had a problem writing to the queue. */
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* This time we should find that the queue is empty. The high priority
task actually removed the data rather than just peeking it. */
if( xQueuePeek( xQueue, &ulValue, qpeekNO_BLOCK ) != errQUEUE_EMPTY )
{
/* We expected to receive the data. */
xErrorDetected = pdTRUE;
}
/* Unsuspend the highest and high priority tasks so we can go back
and repeat the whole thing. The medium priority task should not be
suspended as it was not able to peek the data in this last case. */
vTaskResume( xHighPriorityTask );
vTaskResume( xHighestPriorityTask );
/* Lets just delay a while as this is an intensive test as we don't
want to starve other tests of processing time. */
vTaskDelay( qpeekSHORT_DELAY );
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreQueuePeekTasksStillRunning( void )
{
static uint32_t ulLastLoopCounter = 0;
/* If the demo task is still running then we expect the loopcounter to
have incremented since this function was last called. */
if( ulLastLoopCounter == ulLoopCounter )
{
xErrorDetected = pdTRUE;
}
ulLastLoopCounter = ulLoopCounter;
/* Errors detected in the task itself will have latched xErrorDetected
to true. */
return ( BaseType_t ) !xErrorDetected;
}

View file

@ -0,0 +1,268 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Basic task to demonstrate the xQueueOverwrite() function. See the comments
* in the function itself.
*/
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo program include files. */
#include "QueueOverwrite.h"
/* A block time of 0 just means "don't block". */
#define qoDONT_BLOCK 0
/* Number of times to overwrite the value in the queue. */
#define qoLOOPS 5
/* The task that uses the queue. */
static void prvQueueOverwriteTask( void *pvParameters );
/* Variable that is incremented on each loop of prvQueueOverwriteTask() provided
prvQueueOverwriteTask() has not found any errors. */
static uint32_t ulLoopCounter = 0;
/* Set to pdFALSE if an error is discovered by the
vQueueOverwritePeriodicISRDemo() function. */
static BaseType_t xISRTestStatus = pdPASS;
/* The queue that is accessed from the ISR. The queue accessed by the task is
created inside the task itself. */
static QueueHandle_t xISRQueue = NULL;
/*-----------------------------------------------------------*/
void vStartQueueOverwriteTask( UBaseType_t uxPriority )
{
const UBaseType_t uxQueueLength = 1;
/* Create the queue used by the ISR. xQueueOverwriteFromISR() should only
be used on queues that have a length of 1. */
xISRQueue = xQueueCreate( uxQueueLength, ( UBaseType_t ) sizeof( uint32_t ) );
/* Create the test task. The queue used by the test task is created inside
the task itself. */
xTaskCreate( prvQueueOverwriteTask, "QOver", configMINIMAL_STACK_SIZE, NULL, uxPriority, ( TaskHandle_t * ) NULL );
}
/*-----------------------------------------------------------*/
static void prvQueueOverwriteTask( void *pvParameters )
{
QueueHandle_t xTaskQueue;
const UBaseType_t uxQueueLength = 1;
uint32_t ulValue, ulStatus = pdPASS, x;
/* The parameter is not used. */
( void ) pvParameters;
/* Create the queue. xQueueOverwrite() should only be used on queues that
have a length of 1. */
xTaskQueue = xQueueCreate( uxQueueLength, ( UBaseType_t ) sizeof( uint32_t ) );
configASSERT( xTaskQueue );
for( ;; )
{
/* The queue is empty. Writing to the queue then reading from the queue
should return the item written. */
ulValue = 10;
xQueueOverwrite( xTaskQueue, &ulValue );
ulValue = 0;
xQueueReceive( xTaskQueue, &ulValue, qoDONT_BLOCK );
if( ulValue != 10 )
{
ulStatus = pdFAIL;
}
/* Now try writing to the queue several times. Each time the value
in the queue should get overwritten. */
for( x = 0; x < qoLOOPS; x++ )
{
/* Write to the queue. */
xQueueOverwrite( xTaskQueue, &x );
/* Check the value in the queue is that written, even though the
queue was not necessarily empty. */
xQueuePeek( xTaskQueue, &ulValue, qoDONT_BLOCK );
if( ulValue != x )
{
ulStatus = pdFAIL;
}
/* There should always be one item in the queue. */
if( uxQueueMessagesWaiting( xTaskQueue ) != uxQueueLength )
{
ulStatus = pdFAIL;
}
}
/* Empty the queue again. */
xQueueReceive( xTaskQueue, &ulValue, qoDONT_BLOCK );
if( uxQueueMessagesWaiting( xTaskQueue ) != 0 )
{
ulStatus = pdFAIL;
}
if( ulStatus != pdFAIL )
{
/* Increment a counter to show this task is still running without
error. */
ulLoopCounter++;
}
#if( configUSE_PREEMPTION == 0 )
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
BaseType_t xIsQueueOverwriteTaskStillRunning( void )
{
BaseType_t xReturn;
if( xISRTestStatus != pdPASS )
{
xReturn = pdFAIL;
}
else if( ulLoopCounter > 0 )
{
xReturn = pdPASS;
}
else
{
/* The task has either stalled of discovered an error. */
xReturn = pdFAIL;
}
ulLoopCounter = 0;
return xReturn;
}
/*-----------------------------------------------------------*/
void vQueueOverwritePeriodicISRDemo( void )
{
static uint32_t ulCallCount = 0;
const uint32_t ulTx1 = 10UL, ulTx2 = 20UL, ulNumberOfSwitchCases = 3UL;
uint32_t ulRx;
/* This function should be called from an interrupt, such as the tick hook
function vApplicationTickHook(). */
configASSERT( xISRQueue );
switch( ulCallCount )
{
case 0:
/* The queue is empty. Write ulTx1 to the queue. In this demo the
last parameter is not used because there are no tasks blocked on
this queue. */
xQueueOverwriteFromISR( xISRQueue, &ulTx1, NULL );
/* Peek the queue to check it holds the expected value. */
xQueuePeekFromISR( xISRQueue, &ulRx );
if( ulRx != ulTx1 )
{
xISRTestStatus = pdFAIL;
}
break;
case 1:
/* The queue already holds ulTx1. Overwrite the value in the queue
with ulTx2. */
xQueueOverwriteFromISR( xISRQueue, &ulTx2, NULL );
break;
case 2:
/* Read from the queue to empty the queue again. The value read
should be ulTx2. */
xQueueReceiveFromISR( xISRQueue, &ulRx, NULL );
if( ulRx != ulTx2 )
{
xISRTestStatus = pdFAIL;
}
break;
}
/* Run the next case in the switch statement above next time this function
is called. */
ulCallCount++;
if( ulCallCount >= ulNumberOfSwitchCases )
{
/* Go back to the start. */
ulCallCount = 0;
}
}

View file

@ -0,0 +1,715 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Tests the use of queue sets.
*
* A receive task creates a number of queues and adds them to a queue set before
* blocking on the queue set receive. A transmit task and (optionally) an
* interrupt repeatedly unblocks the receive task by sending messages to the
* queues in a pseudo random order. The receive task removes the messages from
* the queues and flags an error if the received message does not match that
* expected. The task sends values in the range 0 to
* queuesetINITIAL_ISR_TX_VALUE, and the ISR sends value in the range
* queuesetINITIAL_ISR_TX_VALUE to ULONG_MAX.
*/
/* Standard includes. */
#include <stdlib.h>
#include <limits.h>
/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo includes. */
#include "QueueSet.h"
/* The number of queues that are created and added to the queue set. */
#define queuesetNUM_QUEUES_IN_SET 3
/* The length of each created queue. */
#define queuesetQUEUE_LENGTH 3
/* Block times used in this demo. A block time or 0 means "don't block". */
#define queuesetSHORT_DELAY 200
#define queuesetDONT_BLOCK 0
/* Messages are sent in incrementing order from both a task and an interrupt.
The task sends values in the range 0 to 0xfffe, and the interrupt sends values
in the range of 0xffff to ULONG_MAX. */
#define queuesetINITIAL_ISR_TX_VALUE 0xffffUL
/* The priorities used in this demo. */
#define queuesetLOW_PRIORITY ( tskIDLE_PRIORITY )
#define queuesetMEDIUM_PRIORITY ( queuesetLOW_PRIORITY + 1 )
/* For test purposes the priority of the sending task is changed after every
queuesetPRIORITY_CHANGE_LOOPS number of values are sent to a queue. */
#define queuesetPRIORITY_CHANGE_LOOPS ( ( queuesetNUM_QUEUES_IN_SET * queuesetQUEUE_LENGTH ) * 2 )
/* The ISR sends to the queue every queuesetISR_TX_PERIOD ticks. */
#define queuesetISR_TX_PERIOD ( 100UL )
/* A delay inserted when the Tx task changes its priority to be above the idle
task priority to ensure the idle priority tasks get some CPU time before the
next iteration of the queue set Tx task. */
#define queuesetTX_LOOP_DELAY ( 200 / portTICK_PERIOD_MS )
/* The allowable maximum deviation between a received value and the expected
received value. A deviation will occur when data is received from a queue
inside an ISR in between a task receiving from a queue and the task checking
the received value. */
#define queuesetALLOWABLE_RX_DEVIATION 3
/* Ignore values that are at the boundaries of allowable values to make the
testing of limits easier (don't have to deal with wrapping values). */
#define queuesetIGNORED_BOUNDARY ( queuesetALLOWABLE_RX_DEVIATION * 2 )
typedef enum
{
eEqualPriority = 0, /* Tx and Rx tasks have the same priority. */
eTxHigherPriority, /* The priority of the Tx task is above that of the Rx task. */
eTxLowerPriority /* The priority of the Tx task is below that of the Rx task. */
} eRelativePriorities;
/*
* The task that periodically sends to the queue set.
*/
static void prvQueueSetSendingTask( void *pvParameters );
/*
* The task that reads from the queue set.
*/
static void prvQueueSetReceivingTask( void *pvParameters );
/*
* Check the value received from a queue is the expected value. Some values
* originate from the send task, some values originate from the ISR, with the
* range of the value being used to distinguish between the two message
* sources.
*/
static void prvCheckReceivedValue( uint32_t ulReceived );
/*
* For purposes of test coverage, functions that read from and write to a
* queue set from an ISR respectively.
*/
static void prvReceiveFromQueueInSetFromISR( void );
static void prvSendToQueueInSetFromISR( void );
/*
* Create the queues and add them to a queue set before resuming the Tx
* task.
*/
static void prvSetupTest( void );
/*
* Checks a value received from a queue falls within the range of expected
* values.
*/
static BaseType_t prvCheckReceivedValueWithinExpectedRange( uint32_t ulReceived, uint32_t ulExpectedReceived );
/*
* Increase test coverage by occasionally change the priorities of the two tasks
* relative to each other. */
static void prvChangeRelativePriorities( void );
/*
* Local pseudo random number seed and return functions. Used to avoid calls
* to the standard library.
*/
static uint32_t prvRand( void );
static void prvSRand( uint32_t ulSeed );
/*-----------------------------------------------------------*/
/* The queues that are added to the set. */
static QueueHandle_t xQueues[ queuesetNUM_QUEUES_IN_SET ] = { 0 };
/* Counts how many times each queue in the set is used to ensure all the
queues are used. */
static uint32_t ulQueueUsedCounter[ queuesetNUM_QUEUES_IN_SET ] = { 0 };
/* The handle of the queue set to which the queues are added. */
static QueueSetHandle_t xQueueSet;
/* If the prvQueueSetReceivingTask() task has not detected any errors then
it increments ulCycleCounter on each iteration.
xAreQueueSetTasksStillRunning() returns pdPASS if the value of
ulCycleCounter has changed between consecutive calls, and pdFALSE if
ulCycleCounter has stopped incrementing (indicating an error condition). */
static volatile uint32_t ulCycleCounter = 0UL;
/* Set to pdFAIL if an error is detected by any queue set task.
ulCycleCounter will only be incremented if xQueueSetTasksSatus equals pdPASS. */
static volatile BaseType_t xQueueSetTasksStatus = pdPASS;
/* Just a flag to let the function that writes to a queue from an ISR know that
the queues are setup and can be used. */
static volatile BaseType_t xSetupComplete = pdFALSE;
/* The value sent to the queue from the ISR is file scope so the
xAreQueeuSetTasksStillRunning() function can check it is incrementing as
expected. */
static volatile uint32_t ulISRTxValue = queuesetINITIAL_ISR_TX_VALUE;
/* Used by the pseudo random number generator. */
static uint32_t ulNextRand = 0;
/* The task handles are stored so their priorities can be changed. */
TaskHandle_t xQueueSetSendingTask, xQueueSetReceivingTask;
/*-----------------------------------------------------------*/
void vStartQueueSetTasks( void )
{
/* Create the tasks. */
xTaskCreate( prvQueueSetSendingTask, "SetTx", configMINIMAL_STACK_SIZE, NULL, queuesetMEDIUM_PRIORITY, &xQueueSetSendingTask );
xTaskCreate( prvQueueSetReceivingTask, "SetRx", configMINIMAL_STACK_SIZE, ( void * ) xQueueSetSendingTask, queuesetMEDIUM_PRIORITY, &xQueueSetReceivingTask );
/* It is important that the sending task does not attempt to write to a
queue before the queue has been created. It is therefore placed into the
suspended state before the scheduler has started. It is resumed by the
receiving task after the receiving task has created the queues and added the
queues to the queue set. */
vTaskSuspend( xQueueSetSendingTask );
}
/*-----------------------------------------------------------*/
BaseType_t xAreQueueSetTasksStillRunning( void )
{
static uint32_t ulLastCycleCounter, ulLastISRTxValue = 0;
static uint32_t ulLastQueueUsedCounter[ queuesetNUM_QUEUES_IN_SET ] = { 0 };
BaseType_t xReturn = pdPASS, x;
if( ulLastCycleCounter == ulCycleCounter )
{
/* The cycle counter is no longer being incremented. Either one of the
tasks is stalled or an error has been detected. */
xReturn = pdFAIL;
}
ulLastCycleCounter = ulCycleCounter;
/* Ensure that all the queues in the set have been used. This ensures the
test is working as intended and guards against the rand() in the Tx task
missing some values. */
for( x = 0; x < queuesetNUM_QUEUES_IN_SET; x++ )
{
if( ulLastQueueUsedCounter[ x ] == ulQueueUsedCounter[ x ] )
{
xReturn = pdFAIL;
}
ulLastQueueUsedCounter[ x ] = ulQueueUsedCounter[ x ];
}
/* Check the global status flag. */
if( xQueueSetTasksStatus != pdPASS )
{
xReturn = pdFAIL;
}
/* Check that the ISR is still sending values to the queues too. */
if( ulISRTxValue == ulLastISRTxValue )
{
xReturn = pdFAIL;
}
else
{
ulLastISRTxValue = ulISRTxValue;
}
return xReturn;
}
/*-----------------------------------------------------------*/
static void prvQueueSetSendingTask( void *pvParameters )
{
uint32_t ulTaskTxValue = 0, ulQueueToWriteTo;
QueueHandle_t xQueueInUse;
/* Remove compiler warning about the unused parameter. */
( void ) pvParameters;
/* Seed mini pseudo random number generator. */
prvSRand( ( uint32_t ) &ulTaskTxValue );
for( ;; )
{
/* Generate the index for the queue to which a value is to be sent. */
ulQueueToWriteTo = prvRand() % queuesetNUM_QUEUES_IN_SET;
xQueueInUse = xQueues[ ulQueueToWriteTo ];
/* Note which index is being written to to ensure all the queues are
used. */
( ulQueueUsedCounter[ ulQueueToWriteTo ] )++;
/* Send to the queue to unblock the task that is waiting for data to
arrive on a queue within the queue set to which this queue belongs. */
if( xQueueSendToBack( xQueueInUse, &ulTaskTxValue, portMAX_DELAY ) != pdPASS )
{
/* The send should always pass as an infinite block time was
used. */
xQueueSetTasksStatus = pdFAIL;
}
#if( configUSE_PREEMPTION == 0 )
taskYIELD();
#endif
ulTaskTxValue++;
/* If the Tx value has reached the range used by the ISR then set it
back to 0. */
if( ulTaskTxValue == queuesetINITIAL_ISR_TX_VALUE )
{
ulTaskTxValue = 0;
}
/* Increase test coverage by occasionally change the priorities of the
two tasks relative to each other. */
prvChangeRelativePriorities();
}
}
/*-----------------------------------------------------------*/
static void prvChangeRelativePriorities( void )
{
static UBaseType_t ulLoops = 0;
static eRelativePriorities ePriorities = eEqualPriority;
/* Occasionally change the task priority relative to the priority of
the receiving task. */
ulLoops++;
if( ulLoops >= queuesetPRIORITY_CHANGE_LOOPS )
{
ulLoops = 0;
switch( ePriorities )
{
case eEqualPriority:
/* Both tasks are running with medium priority. Now lower the
priority of the receiving task so the Tx task has the higher
relative priority. */
vTaskPrioritySet( xQueueSetReceivingTask, queuesetLOW_PRIORITY );
ePriorities = eTxHigherPriority;
break;
case eTxHigherPriority:
/* The Tx task is running with a higher priority than the Rx
task. Switch the priorities around so the Rx task has the
higher relative priority. */
vTaskPrioritySet( xQueueSetReceivingTask, queuesetMEDIUM_PRIORITY );
vTaskPrioritySet( xQueueSetSendingTask, queuesetLOW_PRIORITY );
ePriorities = eTxLowerPriority;
break;
case eTxLowerPriority:
/* The Tx task is running with a lower priority than the Rx
task. Make the priorities equal again. */
vTaskPrioritySet( xQueueSetSendingTask, queuesetMEDIUM_PRIORITY );
ePriorities = eEqualPriority;
/* When both tasks are using a non-idle priority the queue set
tasks will starve idle priority tasks of execution time - so
relax a bit before the next iteration to minimise the impact. */
vTaskDelay( queuesetTX_LOOP_DELAY );
break;
}
}
}
/*-----------------------------------------------------------*/
static void prvQueueSetReceivingTask( void *pvParameters )
{
uint32_t ulReceived;
QueueHandle_t xActivatedQueue;
/* Remove compiler warnings. */
( void ) pvParameters;
/* Create the queues and add them to the queue set before resuming the Tx
task. */
prvSetupTest();
for( ;; )
{
/* Wait for a message to arrive on one of the queues in the set. */
xActivatedQueue = xQueueSelectFromSet( xQueueSet, portMAX_DELAY );
configASSERT( xActivatedQueue );
if( xActivatedQueue == NULL )
{
/* This should not happen as an infinite delay was used. */
xQueueSetTasksStatus = pdFAIL;
}
else
{
/* Reading from the queue should pass with a zero block time as
this task will only run when something has been posted to a task
in the queue set. */
if( xQueueReceive( xActivatedQueue, &ulReceived, queuesetDONT_BLOCK ) != pdPASS )
{
xQueueSetTasksStatus = pdFAIL;
}
/* Ensure the value received was the value expected. This function
manipulates file scope data and is also called from an ISR, hence
the critical section. */
taskENTER_CRITICAL();
{
prvCheckReceivedValue( ulReceived );
}
taskEXIT_CRITICAL();
}
if( xQueueSetTasksStatus == pdPASS )
{
ulCycleCounter++;
}
}
}
/*-----------------------------------------------------------*/
void vQueueSetAccessQueueSetFromISR( void )
{
static uint32_t ulCallCount = 0;
/* xSetupComplete is set to pdTRUE when the queues have been created and
are available for use. */
if( xSetupComplete == pdTRUE )
{
/* It is intended that this function is called from the tick hook
function, so each call is one tick period apart. */
ulCallCount++;
if( ulCallCount > queuesetISR_TX_PERIOD )
{
ulCallCount = 0;
/* First attempt to read from the queue set. */
prvReceiveFromQueueInSetFromISR();
/* Then write to the queue set. */
prvSendToQueueInSetFromISR();
}
}
}
/*-----------------------------------------------------------*/
static void prvCheckReceivedValue( uint32_t ulReceived )
{
static uint32_t ulExpectedReceivedFromTask = 0, ulExpectedReceivedFromISR = queuesetINITIAL_ISR_TX_VALUE;
/* Values are received in tasks and interrupts. It is likely that the
receiving task will sometimes get preempted by the receiving interrupt
between reading a value from the queue and calling this function. When
that happens, if the receiving interrupt calls this function the values
will get passed into this function slightly out of order. For that
reason the value passed in is tested against a small range of expected
values, rather than a single absolute value. To make the range testing
easier values in the range limits are ignored. */
/* If the received value is equal to or greater than
queuesetINITIAL_ISR_TX_VALUE then it was sent by an ISR. */
if( ulReceived >= queuesetINITIAL_ISR_TX_VALUE )
{
/* The value was sent from the ISR. */
if( ( ulReceived - queuesetINITIAL_ISR_TX_VALUE ) < queuesetIGNORED_BOUNDARY )
{
/* The value received is at the lower limit of the expected range.
Don't test it and expect to receive one higher next time. */
}
else if( ( ULONG_MAX - ulReceived ) <= queuesetIGNORED_BOUNDARY )
{
/* The value received is at the higher limit of the expected range.
Don't test it and expect to wrap soon. */
}
else
{
/* Check the value against its expected value range. */
if( prvCheckReceivedValueWithinExpectedRange( ulReceived, ulExpectedReceivedFromISR ) != pdPASS )
{
xQueueSetTasksStatus = pdFAIL;
}
}
configASSERT( xQueueSetTasksStatus );
/* It is expected to receive an incrementing number. */
ulExpectedReceivedFromISR++;
if( ulExpectedReceivedFromISR == 0 )
{
ulExpectedReceivedFromISR = queuesetINITIAL_ISR_TX_VALUE;
}
}
else
{
/* The value was sent from the Tx task. */
if( ulReceived < queuesetIGNORED_BOUNDARY )
{
/* The value received is at the lower limit of the expected range.
Don't test it, and expect to receive one higher next time. */
}
else if( ( ( queuesetINITIAL_ISR_TX_VALUE - 1 ) - ulReceived ) <= queuesetIGNORED_BOUNDARY )
{
/* The value received is at the higher limit of the expected range.
Don't test it and expect to wrap soon. */
}
else
{
/* Check the value against its expected value range. */
if( prvCheckReceivedValueWithinExpectedRange( ulReceived, ulExpectedReceivedFromTask ) != pdPASS )
{
xQueueSetTasksStatus = pdFAIL;
}
}
configASSERT( xQueueSetTasksStatus );
/* It is expected to receive an incrementing number. */
ulExpectedReceivedFromTask++;
if( ulExpectedReceivedFromTask >= queuesetINITIAL_ISR_TX_VALUE )
{
ulExpectedReceivedFromTask = 0;
}
}
}
/*-----------------------------------------------------------*/
static BaseType_t prvCheckReceivedValueWithinExpectedRange( uint32_t ulReceived, uint32_t ulExpectedReceived )
{
BaseType_t xReturn = pdPASS;
if( ulReceived > ulExpectedReceived )
{
configASSERT( ( ulReceived - ulExpectedReceived ) <= queuesetALLOWABLE_RX_DEVIATION );
if( ( ulReceived - ulExpectedReceived ) > queuesetALLOWABLE_RX_DEVIATION )
{
xReturn = pdFALSE;
}
}
else
{
configASSERT( ( ulExpectedReceived - ulReceived ) <= queuesetALLOWABLE_RX_DEVIATION );
if( ( ulExpectedReceived - ulReceived ) > queuesetALLOWABLE_RX_DEVIATION )
{
xReturn = pdFALSE;
}
}
return xReturn;
}
/*-----------------------------------------------------------*/
static void prvReceiveFromQueueInSetFromISR( void )
{
QueueSetMemberHandle_t xActivatedQueue;
uint32_t ulReceived;
/* See if any of the queues in the set contain data. */
xActivatedQueue = xQueueSelectFromSetFromISR( xQueueSet );
if( xActivatedQueue != NULL )
{
/* Reading from the queue for test purposes only. */
if( xQueueReceiveFromISR( xActivatedQueue, &ulReceived, NULL ) != pdPASS )
{
/* Data should have been available as the handle was returned from
xQueueSelectFromSetFromISR(). */
xQueueSetTasksStatus = pdFAIL;
}
/* Ensure the value received was the value expected. */
prvCheckReceivedValue( ulReceived );
}
}
/*-----------------------------------------------------------*/
static void prvSendToQueueInSetFromISR( void )
{
static BaseType_t xQueueToWriteTo = 0;
if( xQueueSendFromISR( xQueues[ xQueueToWriteTo ], ( void * ) &ulISRTxValue, NULL ) == pdPASS )
{
ulISRTxValue++;
/* If the Tx value has wrapped then set it back to its
initial value. */
if( ulISRTxValue == 0UL )
{
ulISRTxValue = queuesetINITIAL_ISR_TX_VALUE;
}
/* Use a different queue next time. */
xQueueToWriteTo++;
if( xQueueToWriteTo >= queuesetNUM_QUEUES_IN_SET )
{
xQueueToWriteTo = 0;
}
}
}
/*-----------------------------------------------------------*/
static void prvSetupTest( void )
{
BaseType_t x;
uint32_t ulValueToSend = 0;
/* Ensure the queues are created and the queue set configured before the
sending task is unsuspended.
First Create the queue set such that it will be able to hold a message for
every space in every queue in the set. */
xQueueSet = xQueueCreateSet( queuesetNUM_QUEUES_IN_SET * queuesetQUEUE_LENGTH );
for( x = 0; x < queuesetNUM_QUEUES_IN_SET; x++ )
{
/* Create the queue and add it to the set. The queue is just holding
uint32_t value. */
xQueues[ x ] = xQueueCreate( queuesetQUEUE_LENGTH, sizeof( uint32_t ) );
configASSERT( xQueues[ x ] );
if( xQueueAddToSet( xQueues[ x ], xQueueSet ) != pdPASS )
{
xQueueSetTasksStatus = pdFAIL;
}
else
{
/* The queue has now been added to the queue set and cannot be added to
another. */
if( xQueueAddToSet( xQueues[ x ], xQueueSet ) != pdFAIL )
{
xQueueSetTasksStatus = pdFAIL;
}
}
}
/* Attempt to remove a queue from a queue set it does not belong
to (NULL being passed as the queue set in this case). */
if( xQueueRemoveFromSet( xQueues[ 0 ], NULL ) != pdFAIL )
{
/* It is not possible to successfully remove a queue from a queue
set it does not belong to. */
xQueueSetTasksStatus = pdFAIL;
}
/* Attempt to remove a queue from the queue set it does belong to. */
if( xQueueRemoveFromSet( xQueues[ 0 ], xQueueSet ) != pdPASS )
{
/* It should be possible to remove the queue from the queue set it
does belong to. */
xQueueSetTasksStatus = pdFAIL;
}
/* Add an item to the queue before attempting to add it back into the
set. */
xQueueSend( xQueues[ 0 ], ( void * ) &ulValueToSend, 0 );
if( xQueueAddToSet( xQueues[ 0 ], xQueueSet ) != pdFAIL )
{
/* Should not be able to add a non-empty queue to a set. */
xQueueSetTasksStatus = pdFAIL;
}
/* Remove the item from the queue before adding the queue back into the
set so the dynamic tests can begin. */
xQueueReceive( xQueues[ 0 ], &ulValueToSend, 0 );
if( xQueueAddToSet( xQueues[ 0 ], xQueueSet ) != pdPASS )
{
/* If the queue was successfully removed from the queue set then it
should be possible to add it back in again. */
xQueueSetTasksStatus = pdFAIL;
}
/* The task that sends to the queues is not running yet, so attempting to
read from the queue set should fail. */
if( xQueueSelectFromSet( xQueueSet, queuesetSHORT_DELAY ) != NULL )
{
xQueueSetTasksStatus = pdFAIL;
}
/* Resume the task that writes to the queues. */
vTaskResume( xQueueSetSendingTask );
/* Let the ISR access the queues also. */
xSetupComplete = pdTRUE;
}
/*-----------------------------------------------------------*/
static uint32_t prvRand( void )
{
ulNextRand = ( ulNextRand * 1103515245UL ) + 12345UL;
return ( ulNextRand / 65536UL ) % 32768UL;
}
/*-----------------------------------------------------------*/
static void prvSRand( uint32_t ulSeed )
{
ulNextRand = ulSeed;
}

View file

@ -0,0 +1,505 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This file contains some test scenarios that ensure tasks do not exit queue
* send or receive functions prematurely. A description of the tests is
* included within the code.
*/
/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo includes. */
#include "blocktim.h"
/* Task priorities. Allow these to be overridden. */
#ifndef bktPRIMARY_PRIORITY
#define bktPRIMARY_PRIORITY ( configMAX_PRIORITIES - 3 )
#endif
#ifndef bktSECONDARY_PRIORITY
#define bktSECONDARY_PRIORITY ( configMAX_PRIORITIES - 4 )
#endif
/* Task behaviour. */
#define bktQUEUE_LENGTH ( 5 )
#define bktSHORT_WAIT ( ( ( TickType_t ) 20 ) / portTICK_PERIOD_MS )
#define bktPRIMARY_BLOCK_TIME ( 10 )
#define bktALLOWABLE_MARGIN ( 15 )
#define bktTIME_TO_BLOCK ( 175 )
#define bktDONT_BLOCK ( ( TickType_t ) 0 )
#define bktRUN_INDICATOR ( ( UBaseType_t ) 0x55 )
/* The queue on which the tasks block. */
static QueueHandle_t xTestQueue;
/* Handle to the secondary task is required by the primary task for calls
to vTaskSuspend/Resume(). */
static TaskHandle_t xSecondary;
/* Used to ensure that tasks are still executing without error. */
static volatile BaseType_t xPrimaryCycles = 0, xSecondaryCycles = 0;
static volatile BaseType_t xErrorOccurred = pdFALSE;
/* Provides a simple mechanism for the primary task to know when the
secondary task has executed. */
static volatile UBaseType_t xRunIndicator;
/* The two test tasks. Their behaviour is commented within the files. */
static void vPrimaryBlockTimeTestTask( void *pvParameters );
static void vSecondaryBlockTimeTestTask( void *pvParameters );
/*-----------------------------------------------------------*/
void vCreateBlockTimeTasks( void )
{
/* Create the queue on which the two tasks block. */
xTestQueue = xQueueCreate( bktQUEUE_LENGTH, sizeof( BaseType_t ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xTestQueue, "Block_Time_Queue" );
/* Create the two test tasks. */
xTaskCreate( vPrimaryBlockTimeTestTask, "BTest1", configMINIMAL_STACK_SIZE, NULL, bktPRIMARY_PRIORITY, NULL );
xTaskCreate( vSecondaryBlockTimeTestTask, "BTest2", configMINIMAL_STACK_SIZE, NULL, bktSECONDARY_PRIORITY, &xSecondary );
}
/*-----------------------------------------------------------*/
static void vPrimaryBlockTimeTestTask( void *pvParameters )
{
BaseType_t xItem, xData;
TickType_t xTimeWhenBlocking;
TickType_t xTimeToBlock, xBlockedTime;
( void ) pvParameters;
for( ;; )
{
/*********************************************************************
Test 1
Simple block time wakeup test on queue receives. */
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* The queue is empty. Attempt to read from the queue using a block
time. When we wake, ensure the delta in time is as expected. */
xTimeToBlock = ( TickType_t ) ( bktPRIMARY_BLOCK_TIME << xItem );
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after xTimeToBlock having not received
anything on the queue. */
if( xQueueReceive( xTestQueue, &xData, xTimeToBlock ) != errQUEUE_EMPTY )
{
xErrorOccurred = pdTRUE;
}
/* How long were we blocked for? */
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
if( xBlockedTime < xTimeToBlock )
{
/* Should not have blocked for less than we requested. */
xErrorOccurred = pdTRUE;
}
if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
{
/* Should not have blocked for longer than we requested,
although we would not necessarily run as soon as we were
unblocked so a margin is allowed. */
xErrorOccurred = pdTRUE;
}
}
/*********************************************************************
Test 2
Simple block time wakeup test on queue sends.
First fill the queue. It should be empty so all sends should pass. */
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* The queue is full. Attempt to write to the queue using a block
time. When we wake, ensure the delta in time is as expected. */
xTimeToBlock = ( TickType_t ) ( bktPRIMARY_BLOCK_TIME << xItem );
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after xTimeToBlock having not received
anything on the queue. */
if( xQueueSend( xTestQueue, &xItem, xTimeToBlock ) != errQUEUE_FULL )
{
xErrorOccurred = pdTRUE;
}
/* How long were we blocked for? */
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
if( xBlockedTime < xTimeToBlock )
{
/* Should not have blocked for less than we requested. */
xErrorOccurred = pdTRUE;
}
if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
{
/* Should not have blocked for longer than we requested,
although we would not necessarily run as soon as we were
unblocked so a margin is allowed. */
xErrorOccurred = pdTRUE;
}
}
/*********************************************************************
Test 3
Wake the other task, it will block attempting to post to the queue.
When we read from the queue the other task will wake, but before it
can run we will post to the queue again. When the other task runs it
will find the queue still full, even though it was woken. It should
recognise that its block time has not expired and return to block for
the remains of its block time.
Wake the other task so it blocks attempting to post to the already
full queue. */
xRunIndicator = 0;
vTaskResume( xSecondary );
/* We need to wait a little to ensure the other task executes. */
while( xRunIndicator != bktRUN_INDICATOR )
{
/* The other task has not yet executed. */
vTaskDelay( bktSHORT_WAIT );
}
/* Make sure the other task is blocked on the queue. */
vTaskDelay( bktSHORT_WAIT );
xRunIndicator = 0;
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* Now when we make space on the queue the other task should wake
but not execute as this task has higher priority. */
if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Now fill the queue again before the other task gets a chance to
execute. If the other task had executed we would find the queue
full ourselves, and the other task have set xRunIndicator. */
if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed. */
xErrorOccurred = pdTRUE;
}
/* Raise the priority of the other task so it executes and blocks
on the queue again. */
vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
/* The other task should now have re-blocked without exiting the
queue function. */
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed outside of the
queue function. */
xErrorOccurred = pdTRUE;
}
/* Set the priority back down. */
vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
}
/* Let the other task timeout. When it unblockes it will check that it
unblocked at the correct time, then suspend itself. */
while( xRunIndicator != bktRUN_INDICATOR )
{
vTaskDelay( bktSHORT_WAIT );
}
vTaskDelay( bktSHORT_WAIT );
xRunIndicator = 0;
/*********************************************************************
Test 4
As per test 3 - but with the send and receive the other way around.
The other task blocks attempting to read from the queue.
Empty the queue. We should find that it is full. */
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
}
/* Wake the other task so it blocks attempting to read from the
already empty queue. */
vTaskResume( xSecondary );
/* We need to wait a little to ensure the other task executes. */
while( xRunIndicator != bktRUN_INDICATOR )
{
vTaskDelay( bktSHORT_WAIT );
}
vTaskDelay( bktSHORT_WAIT );
xRunIndicator = 0;
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* Now when we place an item on the queue the other task should
wake but not execute as this task has higher priority. */
if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Now empty the queue again before the other task gets a chance to
execute. If the other task had executed we would find the queue
empty ourselves, and the other task would be suspended. */
if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed. */
xErrorOccurred = pdTRUE;
}
/* Raise the priority of the other task so it executes and blocks
on the queue again. */
vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
/* The other task should now have re-blocked without exiting the
queue function. */
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed outside of the
queue function. */
xErrorOccurred = pdTRUE;
}
vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
}
/* Let the other task timeout. When it unblockes it will check that it
unblocked at the correct time, then suspend itself. */
while( xRunIndicator != bktRUN_INDICATOR )
{
vTaskDelay( bktSHORT_WAIT );
}
vTaskDelay( bktSHORT_WAIT );
xPrimaryCycles++;
}
}
/*-----------------------------------------------------------*/
static void vSecondaryBlockTimeTestTask( void *pvParameters )
{
TickType_t xTimeWhenBlocking, xBlockedTime;
BaseType_t xData;
( void ) pvParameters;
for( ;; )
{
/*********************************************************************
Test 1 and 2
This task does does not participate in these tests. */
vTaskSuspend( NULL );
/*********************************************************************
Test 3
The first thing we do is attempt to read from the queue. It should be
full so we block. Note the time before we block so we can check the
wake time is as per that expected. */
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after bktTIME_TO_BLOCK having not sent
anything to the queue. */
xData = 0;
xRunIndicator = bktRUN_INDICATOR;
if( xQueueSend( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_FULL )
{
xErrorOccurred = pdTRUE;
}
/* How long were we inside the send function? */
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
/* We should not have blocked for less time than bktTIME_TO_BLOCK. */
if( xBlockedTime < bktTIME_TO_BLOCK )
{
xErrorOccurred = pdTRUE;
}
/* We should of not blocked for much longer than bktALLOWABLE_MARGIN
either. A margin is permitted as we would not necessarily run as
soon as we unblocked. */
if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
{
xErrorOccurred = pdTRUE;
}
/* Suspend ready for test 3. */
xRunIndicator = bktRUN_INDICATOR;
vTaskSuspend( NULL );
/*********************************************************************
Test 4
As per test three, but with the send and receive reversed. */
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after bktTIME_TO_BLOCK having not received
anything on the queue. */
xRunIndicator = bktRUN_INDICATOR;
if( xQueueReceive( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_EMPTY )
{
xErrorOccurred = pdTRUE;
}
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
/* We should not have blocked for less time than bktTIME_TO_BLOCK. */
if( xBlockedTime < bktTIME_TO_BLOCK )
{
xErrorOccurred = pdTRUE;
}
/* We should of not blocked for much longer than bktALLOWABLE_MARGIN
either. A margin is permitted as we would not necessarily run as soon
as we unblocked. */
if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
{
xErrorOccurred = pdTRUE;
}
xRunIndicator = bktRUN_INDICATOR;
xSecondaryCycles++;
}
}
/*-----------------------------------------------------------*/
BaseType_t xAreBlockTimeTestTasksStillRunning( void )
{
static BaseType_t xLastPrimaryCycleCount = 0, xLastSecondaryCycleCount = 0;
BaseType_t xReturn = pdPASS;
/* Have both tasks performed at least one cycle since this function was
last called? */
if( xPrimaryCycles == xLastPrimaryCycleCount )
{
xReturn = pdFAIL;
}
if( xSecondaryCycles == xLastSecondaryCycleCount )
{
xReturn = pdFAIL;
}
if( xErrorOccurred == pdTRUE )
{
xReturn = pdFAIL;
}
xLastSecondaryCycleCount = xSecondaryCycles;
xLastPrimaryCycleCount = xPrimaryCycles;
return xReturn;
}

View file

@ -0,0 +1,303 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This version of comtest. c is for use on systems that have limited stack
* space and no display facilities. The complete version can be found in
* the Demo/Common/Full directory.
*
* Creates two tasks that operate on an interrupt driven serial port. A
* loopback connector should be used so that everything that is transmitted is
* also received. The serial port does not use any flow control. On a
* standard 9way 'D' connector pins two and three should be connected together.
*
* The first task posts a sequence of characters to the Tx queue, toggling an
* LED on each successful post. At the end of the sequence it sleeps for a
* pseudo-random period before resending the same sequence.
*
* The UART Tx end interrupt is enabled whenever data is available in the Tx
* queue. The Tx end ISR removes a single character from the Tx queue and
* passes it to the UART for transmission.
*
* The second task blocks on the Rx queue waiting for a character to become
* available. When the UART Rx end interrupt receives a character it places
* it in the Rx queue, waking the second task. The second task checks that the
* characters removed from the Rx queue form the same sequence as those posted
* to the Tx queue, and toggles an LED for each correct character.
*
* The receiving task is spawned with a higher priority than the transmitting
* task. The receiver will therefore wake every time a character is
* transmitted so neither the Tx or Rx queue should ever hold more than a few
* characters.
*
*/
/* Scheduler include files. */
#include <stdlib.h>
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "serial.h"
#include "comtest.h"
#include "partest.h"
#define comSTACK_SIZE configMINIMAL_STACK_SIZE
#define comTX_LED_OFFSET ( 0 )
#define comRX_LED_OFFSET ( 1 )
#define comTOTAL_PERMISSIBLE_ERRORS ( 2 )
/* The Tx task will transmit the sequence of characters at a pseudo random
interval. This is the maximum and minimum block time between sends. */
#define comTX_MAX_BLOCK_TIME ( ( TickType_t ) 0x96 )
#define comTX_MIN_BLOCK_TIME ( ( TickType_t ) 0x32 )
#define comOFFSET_TIME ( ( TickType_t ) 3 )
/* We should find that each character can be queued for Tx immediately and we
don't have to block to send. */
#define comNO_BLOCK ( ( TickType_t ) 0 )
/* The Rx task will block on the Rx queue for a long period. */
#define comRX_BLOCK_TIME ( ( TickType_t ) 0xffff )
/* The sequence transmitted is from comFIRST_BYTE to and including comLAST_BYTE. */
#define comFIRST_BYTE ( 'A' )
#define comLAST_BYTE ( 'X' )
#define comBUFFER_LEN ( ( UBaseType_t ) ( comLAST_BYTE - comFIRST_BYTE ) + ( UBaseType_t ) 1 )
#define comINITIAL_RX_COUNT_VALUE ( 0 )
/* Handle to the com port used by both tasks. */
static xComPortHandle xPort = NULL;
/* The transmit task as described at the top of the file. */
static portTASK_FUNCTION_PROTO( vComTxTask, pvParameters );
/* The receive task as described at the top of the file. */
static portTASK_FUNCTION_PROTO( vComRxTask, pvParameters );
/* The LED that should be toggled by the Rx and Tx tasks. The Rx task will
toggle LED ( uxBaseLED + comRX_LED_OFFSET). The Tx task will toggle LED
( uxBaseLED + comTX_LED_OFFSET ). */
static UBaseType_t uxBaseLED = 0;
/* Check variable used to ensure no error have occurred. The Rx task will
increment this variable after every successfully received sequence. If at any
time the sequence is incorrect the the variable will stop being incremented. */
static volatile UBaseType_t uxRxLoops = comINITIAL_RX_COUNT_VALUE;
/*-----------------------------------------------------------*/
void vAltStartComTestTasks( UBaseType_t uxPriority, uint32_t ulBaudRate, UBaseType_t uxLED )
{
/* Initialise the com port then spawn the Rx and Tx tasks. */
uxBaseLED = uxLED;
xSerialPortInitMinimal( ulBaudRate, comBUFFER_LEN );
/* The Tx task is spawned with a lower priority than the Rx task. */
xTaskCreate( vComTxTask, "COMTx", comSTACK_SIZE, NULL, uxPriority - 1, ( TaskHandle_t * ) NULL );
xTaskCreate( vComRxTask, "COMRx", comSTACK_SIZE, NULL, uxPriority, ( TaskHandle_t * ) NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vComTxTask, pvParameters )
{
char cByteToSend;
TickType_t xTimeToWait;
/* Just to stop compiler warnings. */
( void ) pvParameters;
for( ;; )
{
/* Simply transmit a sequence of characters from comFIRST_BYTE to
comLAST_BYTE. */
for( cByteToSend = comFIRST_BYTE; cByteToSend <= comLAST_BYTE; cByteToSend++ )
{
if( xSerialPutChar( xPort, cByteToSend, comNO_BLOCK ) == pdPASS )
{
vParTestToggleLED( uxBaseLED + comTX_LED_OFFSET );
}
}
/* Turn the LED off while we are not doing anything. */
vParTestSetLED( uxBaseLED + comTX_LED_OFFSET, pdFALSE );
/* We have posted all the characters in the string - wait before
re-sending. Wait a pseudo-random time as this will provide a better
test. */
xTimeToWait = xTaskGetTickCount() + comOFFSET_TIME;
/* Make sure we don't wait too long... */
xTimeToWait %= comTX_MAX_BLOCK_TIME;
/* ...but we do want to wait. */
if( xTimeToWait < comTX_MIN_BLOCK_TIME )
{
xTimeToWait = comTX_MIN_BLOCK_TIME;
}
vTaskDelay( xTimeToWait );
}
} /*lint !e715 !e818 pvParameters is required for a task function even if it is not referenced. */
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vComRxTask, pvParameters )
{
signed char cExpectedByte, cByteRxed;
BaseType_t xResyncRequired = pdFALSE, xErrorOccurred = pdFALSE;
/* Just to stop compiler warnings. */
( void ) pvParameters;
for( ;; )
{
/* We expect to receive the characters from comFIRST_BYTE to
comLAST_BYTE in an incrementing order. Loop to receive each byte. */
for( cExpectedByte = comFIRST_BYTE; cExpectedByte <= comLAST_BYTE; cExpectedByte++ )
{
/* Block on the queue that contains received bytes until a byte is
available. */
if( xSerialGetChar( xPort, &cByteRxed, comRX_BLOCK_TIME ) )
{
/* Was this the byte we were expecting? If so, toggle the LED,
otherwise we are out on sync and should break out of the loop
until the expected character sequence is about to restart. */
if( cByteRxed == cExpectedByte )
{
vParTestToggleLED( uxBaseLED + comRX_LED_OFFSET );
}
else
{
xResyncRequired = pdTRUE;
break; /*lint !e960 Non-switch break allowed. */
}
}
}
/* Turn the LED off while we are not doing anything. */
vParTestSetLED( uxBaseLED + comRX_LED_OFFSET, pdFALSE );
/* Did we break out of the loop because the characters were received in
an unexpected order? If so wait here until the character sequence is
about to restart. */
if( xResyncRequired == pdTRUE )
{
while( cByteRxed != comLAST_BYTE )
{
/* Block until the next char is available. */
xSerialGetChar( xPort, &cByteRxed, comRX_BLOCK_TIME );
}
/* Note that an error occurred which caused us to have to resync.
We use this to stop incrementing the loop counter so
sAreComTestTasksStillRunning() will return false - indicating an
error. */
xErrorOccurred++;
/* We have now resynced with the Tx task and can continue. */
xResyncRequired = pdFALSE;
}
else
{
if( xErrorOccurred < comTOTAL_PERMISSIBLE_ERRORS )
{
/* Increment the count of successful loops. As error
occurring (i.e. an unexpected character being received) will
prevent this counter being incremented for the rest of the
execution. Don't worry about mutual exclusion on this
variable - it doesn't really matter as we just want it
to change. */
uxRxLoops++;
}
}
}
} /*lint !e715 !e818 pvParameters is required for a task function even if it is not referenced. */
/*-----------------------------------------------------------*/
BaseType_t xAreComTestTasksStillRunning( void )
{
BaseType_t xReturn;
/* If the count of successful reception loops has not changed than at
some time an error occurred (i.e. a character was received out of sequence)
and we will return false. */
if( uxRxLoops == comINITIAL_RX_COUNT_VALUE )
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
/* Reset the count of successful Rx loops. When this function is called
again we expect this to have been incremented. */
uxRxLoops = comINITIAL_RX_COUNT_VALUE;
return xReturn;
}

View file

@ -0,0 +1,349 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Creates a task and a timer that operate on an interrupt driven serial port.
* This demo assumes that the characters transmitted on a port will also be
* received on the same port. Therefore, the UART must either be connected to
* an echo server, or the uart connector must have a loopback connector fitted.
* See http://www.serialporttool.com/CommEcho.htm for a suitable echo server
* for Windows hosts.
*
* The timer sends a string to the UART, toggles an LED, then resets itself by
* changing its own period. The period is calculated as a pseudo random number
* between comTX_MAX_BLOCK_TIME and comTX_MIN_BLOCK_TIME.
*
* The task blocks on an Rx queue waiting for a character to become available.
* Received characters are checked to ensure they match those transmitted by the
* Tx timer. An error is latched if characters are missing, incorrect, or
* arrive too slowly.
*
* How characters are actually transmitted and received is port specific. Demos
* that include this test/demo file will provide example drivers. The Tx timer
* executes in the context of the timer service (daemon) task, and must
* therefore never attempt to block.
*
*/
/* Scheduler include files. */
#include <stdlib.h>
#include <string.h>
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#ifndef configUSE_TIMERS
#error This demo uses timers. configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h.
#endif
#if configUSE_TIMERS != 1
#error This demo uses timers. configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h.
#endif
/* Demo program include files. */
#include "serial.h"
#include "comtest_strings.h"
#include "partest.h"
/* The size of the stack given to the Rx task. */
#define comSTACK_SIZE configMINIMAL_STACK_SIZE
/* See the comment above the declaraction of the uxBaseLED variable. */
#define comTX_LED_OFFSET ( 0 )
#define comRX_LED_OFFSET ( 1 )
/* The Tx timer transmits the sequence of characters at a pseudo random
interval that is capped between comTX_MAX_BLOCK_TIME and
comTX_MIN_BLOCK_TIME. */
#define comTX_MAX_BLOCK_TIME ( ( TickType_t ) 0x96 )
#define comTX_MIN_BLOCK_TIME ( ( TickType_t ) 0x32 )
#define comOFFSET_TIME ( ( TickType_t ) 3 )
/* States for the simple state machine implemented in the Rx task. */
#define comtstWAITING_START_OF_STRING 0
#define comtstWAITING_END_OF_STRING 1
/* A short delay in ticks - this delay is used to allow the Rx queue to fill up
a bit so more than one character can be processed at a time. This is relative
to comTX_MIN_BLOCK_TIME to ensure it is never longer than the shortest gap
between transmissions. It could be worked out more scientifically from the
baud rate being used. */
#define comSHORT_DELAY ( comTX_MIN_BLOCK_TIME >> ( TickType_t ) 2 )
/* The string that is transmitted and received. */
#define comTRANSACTED_STRING "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"
/* A block time of 0 simply means "don't block". */
#define comtstDONT_BLOCK ( TickType_t ) 0
/* Handle to the com port used by both tasks. */
static xComPortHandle xPort = NULL;
/* The callback function allocated to the transmit timer, as described in the
comments at the top of this file. */
static void prvComTxTimerCallback( TimerHandle_t xTimer );
/* The receive task as described in the comments at the top of this file. */
static void vComRxTask( void *pvParameters );
/* The Rx task will toggle LED ( uxBaseLED + comRX_LED_OFFSET). The Tx task
will toggle LED ( uxBaseLED + comTX_LED_OFFSET ). */
static UBaseType_t uxBaseLED = 0;
/* The Rx task toggles uxRxLoops on each successful iteration of its defined
function - provided no errors have ever been latched. If this variable stops
incrementing, then an error has occurred. */
static volatile UBaseType_t uxRxLoops = 0UL;
/* The timer used to periodically transmit the string. This is the timer that
has prvComTxTimerCallback allocated to it as its callback function. */
static TimerHandle_t xTxTimer = NULL;
/* The string length is held at file scope so the Tx timer does not need to
calculate it each time it executes. */
static size_t xStringLength = 0U;
/*-----------------------------------------------------------*/
void vStartComTestStringsTasks( UBaseType_t uxPriority, uint32_t ulBaudRate, UBaseType_t uxLED )
{
/* Store values that are used at run time. */
uxBaseLED = uxLED;
/* Calculate the string length here, rather than each time the Tx timer
executes. */
xStringLength = strlen( comTRANSACTED_STRING );
/* Include the null terminator in the string length as this is used to
detect the end of the string in the Rx task. */
xStringLength++;
/* Initialise the com port, then spawn the Rx task and create the Tx
timer. */
xSerialPortInitMinimal( ulBaudRate, ( xStringLength * 2U ) );
/* Create the Rx task and the Tx timer. The timer is started from the
Rx task. */
xTaskCreate( vComRxTask, "COMRx", comSTACK_SIZE, NULL, uxPriority, ( TaskHandle_t * ) NULL );
xTxTimer = xTimerCreate( "TxTimer", comTX_MIN_BLOCK_TIME, pdFALSE, NULL, prvComTxTimerCallback );
configASSERT( xTxTimer );
}
/*-----------------------------------------------------------*/
static void prvComTxTimerCallback( TimerHandle_t xTimer )
{
TickType_t xTimeToWait;
/* The parameter is not used in this case. */
( void ) xTimer;
/* Send the string. How this is actually performed depends on the
sample driver provided with this demo. However - as this is a timer,
it executes in the context of the timer task and therefore must not
block. */
vSerialPutString( xPort, comTRANSACTED_STRING, xStringLength );
/* Toggle an LED to give a visible indication that another transmission
has been performed. */
vParTestToggleLED( uxBaseLED + comTX_LED_OFFSET );
/* Wait a pseudo random time before sending the string again. */
xTimeToWait = xTaskGetTickCount() + comOFFSET_TIME;
/* Ensure the time to wait is not greater than comTX_MAX_BLOCK_TIME. */
xTimeToWait %= comTX_MAX_BLOCK_TIME;
/* Ensure the time to wait is not less than comTX_MIN_BLOCK_TIME. */
if( xTimeToWait < comTX_MIN_BLOCK_TIME )
{
xTimeToWait = comTX_MIN_BLOCK_TIME;
}
/* Reset the timer to run again xTimeToWait ticks from now. This function
is called from the context of the timer task, so the block time must not
be anything other than zero. */
xTimerChangePeriod( xTxTimer, xTimeToWait, comtstDONT_BLOCK );
}
/*-----------------------------------------------------------*/
static void vComRxTask( void *pvParameters )
{
BaseType_t xState = comtstWAITING_START_OF_STRING, xErrorOccurred = pdFALSE;
char *pcExpectedByte, cRxedChar;
const xComPortHandle xPort = NULL;
/* The parameter is not used in this example. */
( void ) pvParameters;
/* Start the Tx timer. This only needs to be started once, as it will
reset itself thereafter. */
xTimerStart( xTxTimer, portMAX_DELAY );
/* The first expected Rx character is the first in the string that is
transmitted. */
pcExpectedByte = comTRANSACTED_STRING;
for( ;; )
{
/* Wait for the next character. */
if( xSerialGetChar( xPort, &cRxedChar, ( comTX_MAX_BLOCK_TIME * 2 ) ) == pdFALSE )
{
/* A character definitely should have been received by now. As a
character was not received an error must have occurred (which might
just be that the loopback connector is not fitted). */
xErrorOccurred = pdTRUE;
}
switch( xState )
{
case comtstWAITING_START_OF_STRING:
if( cRxedChar == *pcExpectedByte )
{
/* The received character was the first character of the
string. Move to the next state to check each character
as it comes in until the entire string has been received. */
xState = comtstWAITING_END_OF_STRING;
pcExpectedByte++;
/* Block for a short period. This just allows the Rx queue
to contain more than one character, and therefore prevent
thrashing reads to the queue, and repetitive context
switches as each character is received. */
vTaskDelay( comSHORT_DELAY );
}
break;
case comtstWAITING_END_OF_STRING:
if( cRxedChar == *pcExpectedByte )
{
/* The received character was the expected character. Was
it the last character in the string - i.e. the null
terminator? */
if( cRxedChar == 0x00 )
{
/* The entire string has been received. If no errors
have been latched, then increment the loop counter to
show this task is still healthy. */
if( xErrorOccurred == pdFALSE )
{
uxRxLoops++;
/* Toggle an LED to give a visible sign that a
complete string has been received. */
vParTestToggleLED( uxBaseLED + comRX_LED_OFFSET );
}
/* Go back to wait for the start of the next string. */
pcExpectedByte = comTRANSACTED_STRING;
xState = comtstWAITING_START_OF_STRING;
}
else
{
/* Wait for the next character in the string. */
pcExpectedByte++;
}
}
else
{
/* The character received was not that expected. */
xErrorOccurred = pdTRUE;
}
break;
default:
/* Should not get here. Stop the Rx loop counter from
incrementing to latch the error. */
xErrorOccurred = pdTRUE;
break;
}
}
}
/*-----------------------------------------------------------*/
BaseType_t xAreComTestTasksStillRunning( void )
{
BaseType_t xReturn;
/* If the count of successful reception loops has not changed than at
some time an error occurred (i.e. a character was received out of sequence)
and false is returned. */
if( uxRxLoops == 0UL )
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
/* Reset the count of successful Rx loops. When this function is called
again it should have been incremented again. */
uxRxLoops = 0UL;
return xReturn;
}

View file

@ -0,0 +1,322 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Simple demonstration of the usage of counting semaphore.
*/
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Demo program include files. */
#include "countsem.h"
/* The maximum count value that the semaphore used for the demo can hold. */
#define countMAX_COUNT_VALUE ( 200 )
/* Constants used to indicate whether or not the semaphore should have been
created with its maximum count value, or its minimum count value. These
numbers are used to ensure that the pointers passed in as the task parameters
are valid. */
#define countSTART_AT_MAX_COUNT ( 0xaa )
#define countSTART_AT_ZERO ( 0x55 )
/* Two tasks are created for the test. One uses a semaphore created with its
count value set to the maximum, and one with the count value set to zero. */
#define countNUM_TEST_TASKS ( 2 )
#define countDONT_BLOCK ( 0 )
/*-----------------------------------------------------------*/
/* Flag that will be latched to pdTRUE should any unexpected behaviour be
detected in any of the tasks. */
static volatile BaseType_t xErrorDetected = pdFALSE;
/*-----------------------------------------------------------*/
/*
* The demo task. This simply counts the semaphore up to its maximum value,
* the counts it back down again. The result of each semaphore 'give' and
* 'take' is inspected, with an error being flagged if it is found not to be
* the expected result.
*/
static void prvCountingSemaphoreTask( void *pvParameters );
/*
* Utility function to increment the semaphore count value up from zero to
* countMAX_COUNT_VALUE.
*/
static void prvIncrementSemaphoreCount( SemaphoreHandle_t xSemaphore, UBaseType_t *puxLoopCounter );
/*
* Utility function to decrement the semaphore count value up from
* countMAX_COUNT_VALUE to zero.
*/
static void prvDecrementSemaphoreCount( SemaphoreHandle_t xSemaphore, UBaseType_t *puxLoopCounter );
/*-----------------------------------------------------------*/
/* The structure that is passed into the task as the task parameter. */
typedef struct COUNT_SEM_STRUCT
{
/* The semaphore to be used for the demo. */
SemaphoreHandle_t xSemaphore;
/* Set to countSTART_AT_MAX_COUNT if the semaphore should be created with
its count value set to its max count value, or countSTART_AT_ZERO if it
should have been created with its count value set to 0. */
UBaseType_t uxExpectedStartCount;
/* Incremented on each cycle of the demo task. Used to detect a stalled
task. */
UBaseType_t uxLoopCounter;
} xCountSemStruct;
/* Two structures are defined, one is passed to each test task. */
static volatile xCountSemStruct xParameters[ countNUM_TEST_TASKS ];
/*-----------------------------------------------------------*/
void vStartCountingSemaphoreTasks( void )
{
/* Create the semaphores that we are going to use for the test/demo. The
first should be created such that it starts at its maximum count value,
the second should be created such that it starts with a count value of zero. */
xParameters[ 0 ].xSemaphore = xSemaphoreCreateCounting( countMAX_COUNT_VALUE, countMAX_COUNT_VALUE );
xParameters[ 0 ].uxExpectedStartCount = countSTART_AT_MAX_COUNT;
xParameters[ 0 ].uxLoopCounter = 0;
xParameters[ 1 ].xSemaphore = xSemaphoreCreateCounting( countMAX_COUNT_VALUE, 0 );
xParameters[ 1 ].uxExpectedStartCount = 0;
xParameters[ 1 ].uxLoopCounter = 0;
/* vQueueAddToRegistry() adds the semaphore to the registry, if one is
in use. The registry is provided as a means for kernel aware
debuggers to locate semaphores and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( ( QueueHandle_t ) xParameters[ 0 ].xSemaphore, "Counting_Sem_1" );
vQueueAddToRegistry( ( QueueHandle_t ) xParameters[ 1 ].xSemaphore, "Counting_Sem_2" );
/* Were the semaphores created? */
if( ( xParameters[ 0 ].xSemaphore != NULL ) || ( xParameters[ 1 ].xSemaphore != NULL ) )
{
/* Create the demo tasks, passing in the semaphore to use as the parameter. */
xTaskCreate( prvCountingSemaphoreTask, "CNT1", configMINIMAL_STACK_SIZE, ( void * ) &( xParameters[ 0 ] ), tskIDLE_PRIORITY, NULL );
xTaskCreate( prvCountingSemaphoreTask, "CNT2", configMINIMAL_STACK_SIZE, ( void * ) &( xParameters[ 1 ] ), tskIDLE_PRIORITY, NULL );
}
}
/*-----------------------------------------------------------*/
static void prvDecrementSemaphoreCount( SemaphoreHandle_t xSemaphore, UBaseType_t *puxLoopCounter )
{
UBaseType_t ux;
/* If the semaphore count is at its maximum then we should not be able to
'give' the semaphore. */
if( xSemaphoreGive( xSemaphore ) == pdPASS )
{
xErrorDetected = pdTRUE;
}
/* We should be able to 'take' the semaphore countMAX_COUNT_VALUE times. */
for( ux = 0; ux < countMAX_COUNT_VALUE; ux++ )
{
if( xSemaphoreTake( xSemaphore, countDONT_BLOCK ) != pdPASS )
{
/* We expected to be able to take the semaphore. */
xErrorDetected = pdTRUE;
}
( *puxLoopCounter )++;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the semaphore count is zero then we should not be able to 'take'
the semaphore. */
if( xSemaphoreTake( xSemaphore, countDONT_BLOCK ) == pdPASS )
{
xErrorDetected = pdTRUE;
}
}
/*-----------------------------------------------------------*/
static void prvIncrementSemaphoreCount( SemaphoreHandle_t xSemaphore, UBaseType_t *puxLoopCounter )
{
UBaseType_t ux;
/* If the semaphore count is zero then we should not be able to 'take'
the semaphore. */
if( xSemaphoreTake( xSemaphore, countDONT_BLOCK ) == pdPASS )
{
xErrorDetected = pdTRUE;
}
/* We should be able to 'give' the semaphore countMAX_COUNT_VALUE times. */
for( ux = 0; ux < countMAX_COUNT_VALUE; ux++ )
{
if( xSemaphoreGive( xSemaphore ) != pdPASS )
{
/* We expected to be able to take the semaphore. */
xErrorDetected = pdTRUE;
}
( *puxLoopCounter )++;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the semaphore count is at its maximum then we should not be able to
'give' the semaphore. */
if( xSemaphoreGive( xSemaphore ) == pdPASS )
{
xErrorDetected = pdTRUE;
}
}
/*-----------------------------------------------------------*/
static void prvCountingSemaphoreTask( void *pvParameters )
{
xCountSemStruct *pxParameter;
#ifdef USE_STDIO
void vPrintDisplayMessage( const char * const * ppcMessageToSend );
const char * const pcTaskStartMsg = "Counting semaphore demo started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
/* The semaphore to be used was passed as the parameter. */
pxParameter = ( xCountSemStruct * ) pvParameters;
/* Did we expect to find the semaphore already at its max count value, or
at zero? */
if( pxParameter->uxExpectedStartCount == countSTART_AT_MAX_COUNT )
{
prvDecrementSemaphoreCount( pxParameter->xSemaphore, &( pxParameter->uxLoopCounter ) );
}
/* Now we expect the semaphore count to be 0, so this time there is an
error if we can take the semaphore. */
if( xSemaphoreTake( pxParameter->xSemaphore, 0 ) == pdPASS )
{
xErrorDetected = pdTRUE;
}
for( ;; )
{
prvIncrementSemaphoreCount( pxParameter->xSemaphore, &( pxParameter->uxLoopCounter ) );
prvDecrementSemaphoreCount( pxParameter->xSemaphore, &( pxParameter->uxLoopCounter ) );
}
}
/*-----------------------------------------------------------*/
BaseType_t xAreCountingSemaphoreTasksStillRunning( void )
{
static UBaseType_t uxLastCount0 = 0, uxLastCount1 = 0;
BaseType_t xReturn = pdPASS;
/* Return fail if any 'give' or 'take' did not result in the expected
behaviour. */
if( xErrorDetected != pdFALSE )
{
xReturn = pdFAIL;
}
/* Return fail if either task is not still incrementing its loop counter. */
if( uxLastCount0 == xParameters[ 0 ].uxLoopCounter )
{
xReturn = pdFAIL;
}
else
{
uxLastCount0 = xParameters[ 0 ].uxLoopCounter;
}
if( uxLastCount1 == xParameters[ 1 ].uxLoopCounter )
{
xReturn = pdFAIL;
}
else
{
uxLastCount1 = xParameters[ 1 ].uxLoopCounter;
}
return xReturn;
}

View file

@ -0,0 +1,246 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This demo application file demonstrates the use of queues to pass data
* between co-routines.
*
* N represents the number of 'fixed delay' co-routines that are created and
* is set during initialisation.
*
* N 'fixed delay' co-routines are created that just block for a fixed
* period then post the number of an LED onto a queue. Each such co-routine
* uses a different block period. A single 'flash' co-routine is also created
* that blocks on the same queue, waiting for the number of the next LED it
* should flash. Upon receiving a number it simply toggle the instructed LED
* then blocks on the queue once more. In this manner each LED from LED 0 to
* LED N-1 is caused to flash at a different rate.
*
* The 'fixed delay' co-routines are created with co-routine priority 0. The
* flash co-routine is created with co-routine priority 1. This means that
* the queue should never contain more than a single item. This is because
* posting to the queue will unblock the 'flash' co-routine, and as this has
* a priority greater than the tasks posting to the queue it is guaranteed to
* have emptied the queue and blocked once again before the queue can contain
* any more date. An error is indicated if an attempt to post data to the
* queue fails - indicating that the queue is already full.
*
*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "croutine.h"
#include "queue.h"
/* Demo application includes. */
#include "partest.h"
#include "crflash.h"
/* The queue should only need to be of length 1. See the description at the
top of the file. */
#define crfQUEUE_LENGTH 1
#define crfFIXED_DELAY_PRIORITY 0
#define crfFLASH_PRIORITY 1
/* Only one flash co-routine is created so the index is not significant. */
#define crfFLASH_INDEX 0
/* Don't allow more than crfMAX_FLASH_TASKS 'fixed delay' co-routines to be
created. */
#define crfMAX_FLASH_TASKS 8
/* We don't want to block when posting to the queue. */
#define crfPOSTING_BLOCK_TIME 0
/*
* The 'fixed delay' co-routine as described at the top of the file.
*/
static void prvFixedDelayCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex );
/*
* The 'flash' co-routine as described at the top of the file.
*/
static void prvFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex );
/* The queue used to pass data between the 'fixed delay' co-routines and the
'flash' co-routine. */
static QueueHandle_t xFlashQueue;
/* This will be set to pdFALSE if we detect an error. */
static BaseType_t xCoRoutineFlashStatus = pdPASS;
/*-----------------------------------------------------------*/
/*
* See the header file for details.
*/
void vStartFlashCoRoutines( UBaseType_t uxNumberToCreate )
{
UBaseType_t uxIndex;
if( uxNumberToCreate > crfMAX_FLASH_TASKS )
{
uxNumberToCreate = crfMAX_FLASH_TASKS;
}
/* Create the queue used to pass data between the co-routines. */
xFlashQueue = xQueueCreate( crfQUEUE_LENGTH, sizeof( UBaseType_t ) );
if( xFlashQueue )
{
/* Create uxNumberToCreate 'fixed delay' co-routines. */
for( uxIndex = 0; uxIndex < uxNumberToCreate; uxIndex++ )
{
xCoRoutineCreate( prvFixedDelayCoRoutine, crfFIXED_DELAY_PRIORITY, uxIndex );
}
/* Create the 'flash' co-routine. */
xCoRoutineCreate( prvFlashCoRoutine, crfFLASH_PRIORITY, crfFLASH_INDEX );
}
}
/*-----------------------------------------------------------*/
static void prvFixedDelayCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
/* Even though this is a co-routine the xResult variable does not need to be
static as we do not need it to maintain its state between blocks. */
BaseType_t xResult;
/* The uxIndex parameter of the co-routine function is used as an index into
the xFlashRates array to obtain the delay period to use. */
static const TickType_t xFlashRates[ crfMAX_FLASH_TASKS ] = { 150 / portTICK_PERIOD_MS,
200 / portTICK_PERIOD_MS,
250 / portTICK_PERIOD_MS,
300 / portTICK_PERIOD_MS,
350 / portTICK_PERIOD_MS,
400 / portTICK_PERIOD_MS,
450 / portTICK_PERIOD_MS,
500 / portTICK_PERIOD_MS };
/* Co-routines MUST start with a call to crSTART. */
crSTART( xHandle );
for( ;; )
{
/* Post our uxIndex value onto the queue. This is used as the LED to
flash. */
crQUEUE_SEND( xHandle, xFlashQueue, ( void * ) &uxIndex, crfPOSTING_BLOCK_TIME, &xResult );
if( xResult != pdPASS )
{
/* For the reasons stated at the top of the file we should always
find that we can post to the queue. If we could not then an error
has occurred. */
xCoRoutineFlashStatus = pdFAIL;
}
crDELAY( xHandle, xFlashRates[ uxIndex ] );
}
/* Co-routines MUST end with a call to crEND. */
crEND();
}
/*-----------------------------------------------------------*/
static void prvFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
/* Even though this is a co-routine the variable do not need to be
static as we do not need it to maintain their state between blocks. */
BaseType_t xResult;
UBaseType_t uxLEDToFlash;
/* Co-routines MUST start with a call to crSTART. */
crSTART( xHandle );
( void ) uxIndex;
for( ;; )
{
/* Block to wait for the number of the LED to flash. */
crQUEUE_RECEIVE( xHandle, xFlashQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
if( xResult != pdPASS )
{
/* We would not expect to wake unless we received something. */
xCoRoutineFlashStatus = pdFAIL;
}
else
{
/* We received the number of an LED to flash - flash it! */
vParTestToggleLED( uxLEDToFlash );
}
}
/* Co-routines MUST end with a call to crEND. */
crEND();
}
/*-----------------------------------------------------------*/
BaseType_t xAreFlashCoRoutinesStillRunning( void )
{
/* Return pdPASS or pdFAIL depending on whether an error has been detected
or not. */
return xCoRoutineFlashStatus;
}

View file

@ -0,0 +1,270 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This demo file demonstrates how to send data between an ISR and a
* co-routine. A tick hook function is used to periodically pass data between
* the RTOS tick and a set of 'hook' co-routines.
*
* hookNUM_HOOK_CO_ROUTINES co-routines are created. Each co-routine blocks
* to wait for a character to be received on a queue from the tick ISR, checks
* to ensure the character received was that expected, then sends the number
* back to the tick ISR on a different queue.
*
* The tick ISR checks the numbers received back from the 'hook' co-routines
* matches the number previously sent.
*
* If at any time a queue function returns unexpectedly, or an incorrect value
* is received either by the tick hook or a co-routine then an error is
* latched.
*
* This demo relies on each 'hook' co-routine to execute between each
* hookTICK_CALLS_BEFORE_POST tick interrupts. This and the heavy use of
* queues from within an interrupt may result in an error being detected on
* slower targets simply due to timing.
*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "croutine.h"
#include "queue.h"
/* Demo application includes. */
#include "crhook.h"
/* The number of 'hook' co-routines that are to be created. */
#define hookNUM_HOOK_CO_ROUTINES ( 4 )
/* The number of times the tick hook should be called before a character is
posted to the 'hook' co-routines. */
#define hookTICK_CALLS_BEFORE_POST ( 500 )
/* There should never be more than one item in any queue at any time. */
#define hookHOOK_QUEUE_LENGTH ( 1 )
/* Don't block when initially posting to the queue. */
#define hookNO_BLOCK_TIME ( 0 )
/* The priority relative to other co-routines (rather than tasks) that the
'hook' co-routines should take. */
#define mainHOOK_CR_PRIORITY ( 1 )
/*-----------------------------------------------------------*/
/*
* The co-routine function itself.
*/
static void prvHookCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex );
/*
* The tick hook function. This receives a number from each 'hook' co-routine
* then sends a number to each co-routine. An error is flagged if a send or
* receive fails, or an unexpected number is received.
*/
void vApplicationTickHook( void );
/*-----------------------------------------------------------*/
/* Queues used to send data FROM a co-routine TO the tick hook function.
The hook functions received (Rx's) on these queues. One queue per
'hook' co-routine. */
static QueueHandle_t xHookRxQueues[ hookNUM_HOOK_CO_ROUTINES ];
/* Queues used to send data FROM the tick hook TO a co-routine function.
The hood function transmits (Tx's) on these queues. One queue per
'hook' co-routine. */
static QueueHandle_t xHookTxQueues[ hookNUM_HOOK_CO_ROUTINES ];
/* Set to true if an error is detected at any time. */
static BaseType_t xCoRoutineErrorDetected = pdFALSE;
/*-----------------------------------------------------------*/
void vStartHookCoRoutines( void )
{
UBaseType_t uxIndex, uxValueToPost = 0;
for( uxIndex = 0; uxIndex < hookNUM_HOOK_CO_ROUTINES; uxIndex++ )
{
/* Create a queue to transmit to and receive from each 'hook'
co-routine. */
xHookRxQueues[ uxIndex ] = xQueueCreate( hookHOOK_QUEUE_LENGTH, sizeof( UBaseType_t ) );
xHookTxQueues[ uxIndex ] = xQueueCreate( hookHOOK_QUEUE_LENGTH, sizeof( UBaseType_t ) );
/* To start things off the tick hook function expects the queue it
uses to receive data to contain a value. */
xQueueSend( xHookRxQueues[ uxIndex ], &uxValueToPost, hookNO_BLOCK_TIME );
/* Create the 'hook' co-routine itself. */
xCoRoutineCreate( prvHookCoRoutine, mainHOOK_CR_PRIORITY, uxIndex );
}
}
/*-----------------------------------------------------------*/
static UBaseType_t uxCallCounter = 0, uxNumberToPost = 0;
void vApplicationTickHook( void )
{
UBaseType_t uxReceivedNumber;
BaseType_t xIndex, xCoRoutineWoken;
/* Is it time to talk to the 'hook' co-routines again? */
uxCallCounter++;
if( uxCallCounter >= hookTICK_CALLS_BEFORE_POST )
{
uxCallCounter = 0;
for( xIndex = 0; xIndex < hookNUM_HOOK_CO_ROUTINES; xIndex++ )
{
xCoRoutineWoken = pdFALSE;
if( crQUEUE_RECEIVE_FROM_ISR( xHookRxQueues[ xIndex ], &uxReceivedNumber, &xCoRoutineWoken ) != pdPASS )
{
/* There is no reason why we would not expect the queue to
contain a value. */
xCoRoutineErrorDetected = pdTRUE;
}
else
{
/* Each queue used to receive data from the 'hook' co-routines
should contain the number we last posted to the same co-routine. */
if( uxReceivedNumber != uxNumberToPost )
{
xCoRoutineErrorDetected = pdTRUE;
}
/* Nothing should be blocked waiting to post to the queue. */
if( xCoRoutineWoken != pdFALSE )
{
xCoRoutineErrorDetected = pdTRUE;
}
}
}
/* Start the next cycle by posting the next number onto each Tx queue. */
uxNumberToPost++;
for( xIndex = 0; xIndex < hookNUM_HOOK_CO_ROUTINES; xIndex++ )
{
if( crQUEUE_SEND_FROM_ISR( xHookTxQueues[ xIndex ], &uxNumberToPost, pdFALSE ) != pdTRUE )
{
/* Posting to the queue should have woken the co-routine that
was blocked on the queue. */
xCoRoutineErrorDetected = pdTRUE;
}
}
}
}
/*-----------------------------------------------------------*/
static void prvHookCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
static UBaseType_t uxReceivedValue[ hookNUM_HOOK_CO_ROUTINES ];
BaseType_t xResult;
/* Each co-routine MUST start with a call to crSTART(); */
crSTART( xHandle );
for( ;; )
{
/* Wait to receive a value from the tick hook. */
xResult = pdFAIL;
crQUEUE_RECEIVE( xHandle, xHookTxQueues[ uxIndex ], &( uxReceivedValue[ uxIndex ] ), portMAX_DELAY, &xResult );
/* There is no reason why we should not have received something on
the queue. */
if( xResult != pdPASS )
{
xCoRoutineErrorDetected = pdTRUE;
}
/* Send the same number back to the idle hook so it can verify it. */
xResult = pdFAIL;
crQUEUE_SEND( xHandle, xHookRxQueues[ uxIndex ], &( uxReceivedValue[ uxIndex ] ), hookNO_BLOCK_TIME, &xResult );
if( xResult != pdPASS )
{
/* There is no reason why we should not have been able to post to
the queue. */
xCoRoutineErrorDetected = pdTRUE;
}
}
/* Each co-routine MUST end with a call to crEND(). */
crEND();
}
/*-----------------------------------------------------------*/
BaseType_t xAreHookCoRoutinesStillRunning( void )
{
if( xCoRoutineErrorDetected )
{
return pdFALSE;
}
else
{
return pdTRUE;
}
}

View file

@ -0,0 +1,254 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* Create a single persistent task which periodically dynamically creates another
* two tasks. The original task is called the creator task, the two tasks it
* creates are called suicidal tasks.
*
* One of the created suicidal tasks kill one other suicidal task before killing
* itself - leaving just the original task remaining.
*
* The creator task must be spawned after all of the other demo application tasks
* as it keeps a check on the number of tasks under the scheduler control. The
* number of tasks it expects to see running should never be greater than the
* number of tasks that were in existence when the creator task was spawned, plus
* one set of four suicidal tasks. If this number is exceeded an error is flagged.
*
* \page DeathC death.c
* \ingroup DemoFiles
* <HR>
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "death.h"
#define deathSTACK_SIZE ( configMINIMAL_STACK_SIZE + 60 )
/* The task originally created which is responsible for periodically dynamically
creating another four tasks. */
static portTASK_FUNCTION_PROTO( vCreateTasks, pvParameters );
/* The task function of the dynamically created tasks. */
static portTASK_FUNCTION_PROTO( vSuicidalTask, pvParameters );
/* A variable which is incremented every time the dynamic tasks are created. This
is used to check that the task is still running. */
static volatile uint16_t usCreationCount = 0;
/* Used to store the number of tasks that were originally running so the creator
task can tell if any of the suicidal tasks have failed to die.
*/
static volatile UBaseType_t uxTasksRunningAtStart = 0;
/* Tasks are deleted by the idle task. Under heavy load the idle task might
not get much processing time, so it would be legitimate for several tasks to
remain undeleted for a short period. */
static const UBaseType_t uxMaxNumberOfExtraTasksRunning = 3;
/* Used to store a handle to the task that should be killed by a suicidal task,
before it kills itself. */
TaskHandle_t xCreatedTask;
/*-----------------------------------------------------------*/
void vCreateSuicidalTasks( UBaseType_t uxPriority )
{
UBaseType_t *puxPriority;
/* Create the Creator tasks - passing in as a parameter the priority at which
the suicidal tasks should be created. */
puxPriority = ( UBaseType_t * ) pvPortMalloc( sizeof( UBaseType_t ) );
*puxPriority = uxPriority;
xTaskCreate( vCreateTasks, "CREATOR", deathSTACK_SIZE, ( void * ) puxPriority, uxPriority, NULL );
/* Record the number of tasks that are running now so we know if any of the
suicidal tasks have failed to be killed. */
uxTasksRunningAtStart = ( UBaseType_t ) uxTaskGetNumberOfTasks();
/* FreeRTOS.org versions before V3.0 started the idle-task as the very
first task. The idle task was then already included in uxTasksRunningAtStart.
From FreeRTOS V3.0 on, the idle task is started when the scheduler is
started. Therefore the idle task is not yet accounted for. We correct
this by increasing uxTasksRunningAtStart by 1. */
uxTasksRunningAtStart++;
/* From FreeRTOS version 7.0.0 can optionally create a timer service task.
If this is done, then uxTasksRunningAtStart needs incrementing again as that
too is created when the scheduler is started. */
#if configUSE_TIMERS == 1
uxTasksRunningAtStart++;
#endif
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vSuicidalTask, pvParameters )
{
volatile long l1, l2;
TaskHandle_t xTaskToKill;
const TickType_t xDelay = ( TickType_t ) 200 / portTICK_PERIOD_MS;
if( pvParameters != NULL )
{
/* This task is periodically created four times. Two created tasks are
passed a handle to the other task so it can kill it before killing itself.
The other task is passed in null. */
xTaskToKill = *( TaskHandle_t* )pvParameters;
}
else
{
xTaskToKill = NULL;
}
for( ;; )
{
/* Do something random just to use some stack and registers. */
l1 = 2;
l2 = 89;
l2 *= l1;
vTaskDelay( xDelay );
if( xTaskToKill != NULL )
{
/* Make sure the other task has a go before we delete it. */
vTaskDelay( ( TickType_t ) 0 );
/* Kill the other task that was created by vCreateTasks(). */
vTaskDelete( xTaskToKill );
/* Kill ourselves. */
vTaskDelete( NULL );
}
}
}/*lint !e818 !e550 Function prototype must be as per standard for task functions. */
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCreateTasks, pvParameters )
{
const TickType_t xDelay = ( TickType_t ) 1000 / portTICK_PERIOD_MS;
UBaseType_t uxPriority;
uxPriority = *( UBaseType_t * ) pvParameters;
vPortFree( pvParameters );
for( ;; )
{
/* Just loop round, delaying then creating the four suicidal tasks. */
vTaskDelay( xDelay );
xCreatedTask = NULL;
xTaskCreate( vSuicidalTask, "SUICID1", configMINIMAL_STACK_SIZE, NULL, uxPriority, &xCreatedTask );
xTaskCreate( vSuicidalTask, "SUICID2", configMINIMAL_STACK_SIZE, &xCreatedTask, uxPriority, NULL );
++usCreationCount;
}
}
/*-----------------------------------------------------------*/
/* This is called to check that the creator task is still running and that there
are not any more than four extra tasks. */
BaseType_t xIsCreateTaskStillRunning( void )
{
static uint16_t usLastCreationCount = 0xfff;
BaseType_t xReturn = pdTRUE;
static UBaseType_t uxTasksRunningNow;
if( usLastCreationCount == usCreationCount )
{
xReturn = pdFALSE;
}
else
{
usLastCreationCount = usCreationCount;
}
uxTasksRunningNow = ( UBaseType_t ) uxTaskGetNumberOfTasks();
if( uxTasksRunningNow < uxTasksRunningAtStart )
{
xReturn = pdFALSE;
}
else if( ( uxTasksRunningNow - uxTasksRunningAtStart ) > uxMaxNumberOfExtraTasksRunning )
{
xReturn = pdFALSE;
}
else
{
/* Everything is okay. */
}
return xReturn;
}

View file

@ -0,0 +1,511 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* The first test creates three tasks - two counter tasks (one continuous count
* and one limited count) and one controller. A "count" variable is shared
* between all three tasks. The two counter tasks should never be in a "ready"
* state at the same time. The controller task runs at the same priority as
* the continuous count task, and at a lower priority than the limited count
* task.
*
* One counter task loops indefinitely, incrementing the shared count variable
* on each iteration. To ensure it has exclusive access to the variable it
* raises its priority above that of the controller task before each
* increment, lowering it again to its original priority before starting the
* next iteration.
*
* The other counter task increments the shared count variable on each
* iteration of its loop until the count has reached a limit of 0xff - at
* which point it suspends itself. It will not start a new loop until the
* controller task has made it "ready" again by calling vTaskResume().
* This second counter task operates at a higher priority than controller
* task so does not need to worry about mutual exclusion of the counter
* variable.
*
* The controller task is in two sections. The first section controls and
* monitors the continuous count task. When this section is operational the
* limited count task is suspended. Likewise, the second section controls
* and monitors the limited count task. When this section is operational the
* continuous count task is suspended.
*
* In the first section the controller task first takes a copy of the shared
* count variable. To ensure mutual exclusion on the count variable it
* suspends the continuous count task, resuming it again when the copy has been
* taken. The controller task then sleeps for a fixed period - during which
* the continuous count task will execute and increment the shared variable.
* When the controller task wakes it checks that the continuous count task
* has executed by comparing the copy of the shared variable with its current
* value. This time, to ensure mutual exclusion, the scheduler itself is
* suspended with a call to vTaskSuspendAll (). This is for demonstration
* purposes only and is not a recommended technique due to its inefficiency.
*
* After a fixed number of iterations the controller task suspends the
* continuous count task, and moves on to its second section.
*
* At the start of the second section the shared variable is cleared to zero.
* The limited count task is then woken from its suspension by a call to
* vTaskResume (). As this counter task operates at a higher priority than
* the controller task the controller task should not run again until the
* shared variable has been counted up to the limited value causing the counter
* task to suspend itself. The next line after vTaskResume () is therefore
* a check on the shared variable to ensure everything is as expected.
*
*
* The second test consists of a couple of very simple tasks that post onto a
* queue while the scheduler is suspended. This test was added to test parts
* of the scheduler not exercised by the first test.
*
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Demo app include files. */
#include "dynamic.h"
/* Function that implements the "limited count" task as described above. */
static portTASK_FUNCTION_PROTO( vLimitedIncrementTask, pvParameters );
/* Function that implements the "continuous count" task as described above. */
static portTASK_FUNCTION_PROTO( vContinuousIncrementTask, pvParameters );
/* Function that implements the controller task as described above. */
static portTASK_FUNCTION_PROTO( vCounterControlTask, pvParameters );
static portTASK_FUNCTION_PROTO( vQueueReceiveWhenSuspendedTask, pvParameters );
static portTASK_FUNCTION_PROTO( vQueueSendWhenSuspendedTask, pvParameters );
/* Demo task specific constants. */
#define priSTACK_SIZE ( configMINIMAL_STACK_SIZE )
#define priSLEEP_TIME ( ( TickType_t ) 128 / portTICK_PERIOD_MS )
#define priLOOPS ( 5 )
#define priMAX_COUNT ( ( uint32_t ) 0xff )
#define priNO_BLOCK ( ( TickType_t ) 0 )
#define priSUSPENDED_QUEUE_LENGTH ( 1 )
/*-----------------------------------------------------------*/
/* Handles to the two counter tasks. These could be passed in as parameters
to the controller task to prevent them having to be file scope. */
static TaskHandle_t xContinuousIncrementHandle, xLimitedIncrementHandle;
/* The shared counter variable. This is passed in as a parameter to the two
counter variables for demonstration purposes. */
static volatile uint32_t ulCounter;
/* Variables used to check that the tasks are still operating without error.
Each complete iteration of the controller task increments this variable
provided no errors have been found. The variable maintaining the same value
is therefore indication of an error. */
static volatile uint16_t usCheckVariable = ( uint16_t ) 0;
static volatile BaseType_t xSuspendedQueueSendError = pdFALSE;
static volatile BaseType_t xSuspendedQueueReceiveError = pdFALSE;
/* Queue used by the second test. */
QueueHandle_t xSuspendedTestQueue;
/* The value the queue receive task expects to receive next. This is file
scope so xAreDynamicPriorityTasksStillRunning() can ensure it is still
incrementing. */
static uint32_t ulExpectedValue = ( uint32_t ) 0;
/*-----------------------------------------------------------*/
/*
* Start the three tasks as described at the top of the file.
* Note that the limited count task is given a higher priority.
*/
void vStartDynamicPriorityTasks( void )
{
xSuspendedTestQueue = xQueueCreate( priSUSPENDED_QUEUE_LENGTH, sizeof( uint32_t ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xSuspendedTestQueue, "Suspended_Test_Queue" );
xTaskCreate( vContinuousIncrementTask, "CNT_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY, &xContinuousIncrementHandle );
xTaskCreate( vLimitedIncrementTask, "LIM_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY + 1, &xLimitedIncrementHandle );
xTaskCreate( vCounterControlTask, "C_CTRL", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vQueueSendWhenSuspendedTask, "SUSP_TX", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vQueueReceiveWhenSuspendedTask, "SUSP_RX", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
}
/*-----------------------------------------------------------*/
/*
* Just loops around incrementing the shared variable until the limit has been
* reached. Once the limit has been reached it suspends itself.
*/
static portTASK_FUNCTION( vLimitedIncrementTask, pvParameters )
{
uint32_t *pulCounter;
/* Take a pointer to the shared variable from the parameters passed into
the task. */
pulCounter = ( uint32_t * ) pvParameters;
/* This will run before the control task, so the first thing it does is
suspend - the control task will resume it when ready. */
vTaskSuspend( NULL );
for( ;; )
{
/* Just count up to a value then suspend. */
( *pulCounter )++;
if( *pulCounter >= priMAX_COUNT )
{
vTaskSuspend( NULL );
}
}
}
/*-----------------------------------------------------------*/
/*
* Just keep counting the shared variable up. The control task will suspend
* this task when it wants.
*/
static portTASK_FUNCTION( vContinuousIncrementTask, pvParameters )
{
volatile uint32_t *pulCounter;
UBaseType_t uxOurPriority;
/* Take a pointer to the shared variable from the parameters passed into
the task. */
pulCounter = ( uint32_t * ) pvParameters;
/* Query our priority so we can raise it when exclusive access to the
shared variable is required. */
uxOurPriority = uxTaskPriorityGet( NULL );
for( ;; )
{
/* Raise the priority above the controller task to ensure a context
switch does not occur while the variable is being accessed. */
vTaskPrioritySet( NULL, uxOurPriority + 1 );
{
configASSERT( ( uxTaskPriorityGet( NULL ) == ( uxOurPriority + 1 ) ) );
( *pulCounter )++;
}
vTaskPrioritySet( NULL, uxOurPriority );
#if( configUSE_PREEMPTION == 0 )
taskYIELD();
#endif
configASSERT( ( uxTaskPriorityGet( NULL ) == uxOurPriority ) );
}
}
/*-----------------------------------------------------------*/
/*
* Controller task as described above.
*/
static portTASK_FUNCTION( vCounterControlTask, pvParameters )
{
uint32_t ulLastCounter;
short sLoops;
short sError = pdFALSE;
/* Just to stop warning messages. */
( void ) pvParameters;
for( ;; )
{
/* Start with the counter at zero. */
ulCounter = ( uint32_t ) 0;
/* First section : */
/* Check the continuous count task is running. */
for( sLoops = 0; sLoops < priLOOPS; sLoops++ )
{
/* Suspend the continuous count task so we can take a mirror of the
shared variable without risk of corruption. This is not really
needed as the other task raises its priority above this task's
priority. */
vTaskSuspend( xContinuousIncrementHandle );
{
#if( INCLUDE_eTaskGetState == 1 )
{
configASSERT( eTaskGetState( xContinuousIncrementHandle ) == eSuspended );
}
#endif /* INCLUDE_eTaskGetState */
ulLastCounter = ulCounter;
}
vTaskResume( xContinuousIncrementHandle );
#if( configUSE_PREEMPTION == 0 )
taskYIELD();
#endif
#if( INCLUDE_eTaskGetState == 1 )
{
configASSERT( eTaskGetState( xContinuousIncrementHandle ) == eReady );
}
#endif /* INCLUDE_eTaskGetState */
/* Now delay to ensure the other task has processor time. */
vTaskDelay( priSLEEP_TIME );
/* Check the shared variable again. This time to ensure mutual
exclusion the whole scheduler will be locked. This is just for
demo purposes! */
vTaskSuspendAll();
{
if( ulLastCounter == ulCounter )
{
/* The shared variable has not changed. There is a problem
with the continuous count task so flag an error. */
sError = pdTRUE;
}
}
xTaskResumeAll();
}
/* Second section: */
/* Suspend the continuous counter task so it stops accessing the shared
variable. */
vTaskSuspend( xContinuousIncrementHandle );
/* Reset the variable. */
ulCounter = ( uint32_t ) 0;
#if( INCLUDE_eTaskGetState == 1 )
{
configASSERT( eTaskGetState( xLimitedIncrementHandle ) == eSuspended );
}
#endif /* INCLUDE_eTaskGetState */
/* Resume the limited count task which has a higher priority than us.
We should therefore not return from this call until the limited count
task has suspended itself with a known value in the counter variable. */
vTaskResume( xLimitedIncrementHandle );
#if( configUSE_PREEMPTION == 0 )
taskYIELD();
#endif
/* This task should not run again until xLimitedIncrementHandle has
suspended itself. */
#if( INCLUDE_eTaskGetState == 1 )
{
configASSERT( eTaskGetState( xLimitedIncrementHandle ) == eSuspended );
}
#endif /* INCLUDE_eTaskGetState */
/* Does the counter variable have the expected value? */
if( ulCounter != priMAX_COUNT )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If no errors have occurred then increment the check variable. */
portENTER_CRITICAL();
usCheckVariable++;
portEXIT_CRITICAL();
}
/* Resume the continuous count task and do it all again. */
vTaskResume( xContinuousIncrementHandle );
#if( configUSE_PREEMPTION == 0 )
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vQueueSendWhenSuspendedTask, pvParameters )
{
static uint32_t ulValueToSend = ( uint32_t ) 0;
/* Just to stop warning messages. */
( void ) pvParameters;
for( ;; )
{
vTaskSuspendAll();
{
/* We must not block while the scheduler is suspended! */
if( xQueueSend( xSuspendedTestQueue, ( void * ) &ulValueToSend, priNO_BLOCK ) != pdTRUE )
{
xSuspendedQueueSendError = pdTRUE;
}
}
xTaskResumeAll();
vTaskDelay( priSLEEP_TIME );
++ulValueToSend;
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vQueueReceiveWhenSuspendedTask, pvParameters )
{
uint32_t ulReceivedValue;
BaseType_t xGotValue;
/* Just to stop warning messages. */
( void ) pvParameters;
for( ;; )
{
do
{
/* Suspending the scheduler here is fairly pointless and
undesirable for a normal application. It is done here purely
to test the scheduler. The inner xTaskResumeAll() should
never return pdTRUE as the scheduler is still locked by the
outer call. */
vTaskSuspendAll();
{
vTaskSuspendAll();
{
xGotValue = xQueueReceive( xSuspendedTestQueue, ( void * ) &ulReceivedValue, priNO_BLOCK );
}
if( xTaskResumeAll() != pdFALSE )
{
xSuspendedQueueReceiveError = pdTRUE;
}
}
xTaskResumeAll();
#if configUSE_PREEMPTION == 0
{
taskYIELD();
}
#endif
} while( xGotValue == pdFALSE );
if( ulReceivedValue != ulExpectedValue )
{
xSuspendedQueueReceiveError = pdTRUE;
}
if( xSuspendedQueueReceiveError != pdTRUE )
{
/* Only increment the variable if an error has not occurred. This
allows xAreDynamicPriorityTasksStillRunning() to check for stalled
tasks as well as explicit errors. */
++ulExpectedValue;
}
}
}
/*-----------------------------------------------------------*/
/* Called to check that all the created tasks are still running without error. */
BaseType_t xAreDynamicPriorityTasksStillRunning( void )
{
/* Keep a history of the check variables so we know if it has been incremented
since the last call. */
static uint16_t usLastTaskCheck = ( uint16_t ) 0;
static uint32_t ulLastExpectedValue = ( uint32_t ) 0U;
BaseType_t xReturn = pdTRUE;
/* Check the tasks are still running by ensuring the check variable
is still incrementing. */
if( usCheckVariable == usLastTaskCheck )
{
/* The check has not incremented so an error exists. */
xReturn = pdFALSE;
}
if( ulExpectedValue == ulLastExpectedValue )
{
/* The value being received by the queue receive task has not
incremented so an error exists. */
xReturn = pdFALSE;
}
if( xSuspendedQueueSendError == pdTRUE )
{
xReturn = pdFALSE;
}
if( xSuspendedQueueReceiveError == pdTRUE )
{
xReturn = pdFALSE;
}
usLastTaskCheck = usCheckVariable;
ulLastExpectedValue = ulExpectedValue;
return xReturn;
}

View file

@ -0,0 +1,157 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* This version of flash .c is for use on systems that have limited stack space
* and no display facilities. The complete version can be found in the
* Demo/Common/Full directory.
*
* Three tasks are created, each of which flash an LED at a different rate. The first
* LED flashes every 200ms, the second every 400ms, the third every 600ms.
*
* The LED flash tasks provide instant visual feedback. They show that the scheduler
* is still operational.
*
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "partest.h"
#include "flash.h"
#define ledSTACK_SIZE configMINIMAL_STACK_SIZE
#define ledNUMBER_OF_LEDS ( 3 )
#define ledFLASH_RATE_BASE ( ( TickType_t ) 333 )
/* Variable used by the created tasks to calculate the LED number to use, and
the rate at which they should flash the LED. */
static volatile UBaseType_t uxFlashTaskNumber = 0;
/* The task that is created three times. */
static portTASK_FUNCTION_PROTO( vLEDFlashTask, pvParameters );
/*-----------------------------------------------------------*/
void vStartLEDFlashTasks( UBaseType_t uxPriority )
{
BaseType_t xLEDTask;
/* Create the three tasks. */
for( xLEDTask = 0; xLEDTask < ledNUMBER_OF_LEDS; ++xLEDTask )
{
/* Spawn the task. */
xTaskCreate( vLEDFlashTask, "LEDx", ledSTACK_SIZE, NULL, uxPriority, ( TaskHandle_t * ) NULL );
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vLEDFlashTask, pvParameters )
{
TickType_t xFlashRate, xLastFlashTime;
UBaseType_t uxLED;
/* The parameters are not used. */
( void ) pvParameters;
/* Calculate the LED and flash rate. */
portENTER_CRITICAL();
{
/* See which of the eight LED's we should use. */
uxLED = uxFlashTaskNumber;
/* Update so the next task uses the next LED. */
uxFlashTaskNumber++;
}
portEXIT_CRITICAL();
xFlashRate = ledFLASH_RATE_BASE + ( ledFLASH_RATE_BASE * ( TickType_t ) uxLED );
xFlashRate /= portTICK_PERIOD_MS;
/* We will turn the LED on and off again in the delay period, so each
delay is only half the total period. */
xFlashRate /= ( TickType_t ) 2;
/* We need to initialise xLastFlashTime prior to the first call to
vTaskDelayUntil(). */
xLastFlashTime = xTaskGetTickCount();
for(;;)
{
/* Delay for half the flash period then turn the LED on. */
vTaskDelayUntil( &xLastFlashTime, xFlashRate );
vParTestToggleLED( uxLED );
/* Delay for half the flash period then turn the LED off. */
vTaskDelayUntil( &xLastFlashTime, xFlashRate );
vParTestToggleLED( uxLED );
}
} /*lint !e715 !e818 !e830 Function definition must be standard for task creation. */

View file

@ -0,0 +1,136 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/**
* Repeatedly toggles one or more LEDs using software timers - one timer per
* LED.
*/
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "timers.h"
/* Demo program include files. */
#include "partest.h"
#include "flash_timer.h"
/* The toggle rates are all a multple of ledFLASH_RATE_BASE. */
#define ledFLASH_RATE_BASE ( ( ( TickType_t ) 333 ) / portTICK_PERIOD_MS )
/* A block time of zero simple means "don't block". */
#define ledDONT_BLOCK ( ( TickType_t ) 0 )
/*-----------------------------------------------------------*/
/*
* The callback function used by each LED flashing timer. All the timers use
* this function, and the timer ID is used within the function to determine
* which timer has actually expired.
*/
static void prvLEDTimerCallback( TimerHandle_t xTimer );
/*-----------------------------------------------------------*/
void vStartLEDFlashTimers( UBaseType_t uxNumberOfLEDs )
{
UBaseType_t uxLEDTimer;
TimerHandle_t xTimer;
/* Create and start the requested number of timers. */
for( uxLEDTimer = 0; uxLEDTimer < uxNumberOfLEDs; ++uxLEDTimer )
{
/* Create the timer. */
xTimer = xTimerCreate( "Flasher", /* A text name, purely to help debugging. */
ledFLASH_RATE_BASE * ( uxLEDTimer + 1 ),/* The timer period, which is a multiple of ledFLASH_RATE_BASE. */
pdTRUE, /* This is an auto-reload timer, so xAutoReload is set to pdTRUE. */
( void * ) uxLEDTimer, /* The ID is used to identify the timer within the timer callback function, as each timer uses the same callback. */
prvLEDTimerCallback /* Each timer uses the same callback. */
);
/* If the timer was created successfully, attempt to start it. If the
scheduler has not yet been started then the timer command queue must
be long enough to hold each command sent to it until such time that the
scheduler is started. The timer command queue length is set by
configTIMER_QUEUE_LENGTH in FreeRTOSConfig.h. */
if( xTimer != NULL )
{
xTimerStart( xTimer, ledDONT_BLOCK );
}
}
}
/*-----------------------------------------------------------*/
static void prvLEDTimerCallback( TimerHandle_t xTimer )
{
BaseType_t xTimerID;
/* The timer ID is used to identify the timer that has actually expired as
each timer uses the same callback. The ID is then also used as the number
of the LED that is to be toggled. */
xTimerID = ( BaseType_t ) pvTimerGetTimerID( xTimer );
vParTestToggleLED( xTimerID );
}

View file

@ -0,0 +1,383 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Creates eight tasks, each of which loops continuously performing a floating
* point calculation.
*
* All the tasks run at the idle priority and never block or yield. This causes
* all eight tasks to time slice with the idle task. Running at the idle
* priority means that these tasks will get pre-empted any time another task is
* ready to run or a time slice occurs. More often than not the pre-emption
* will occur mid calculation, creating a good test of the schedulers context
* switch mechanism - a calculation producing an unexpected result could be a
* symptom of a corruption in the context of a task.
*/
#include <stdlib.h>
#include <math.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "flop.h"
#define mathSTACK_SIZE configMINIMAL_STACK_SIZE
#define mathNUMBER_OF_TASKS ( 4 )
/* Four tasks, each of which performs a different floating point calculation.
Each of the four is created twice. */
static portTASK_FUNCTION_PROTO( vCompetingMathTask1, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask2, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask3, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask4, pvParameters );
/* These variables are used to check that all the tasks are still running. If a
task gets a calculation wrong it will stop setting its check variable. */
static volatile uint16_t usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( uint16_t ) 0 };
/*-----------------------------------------------------------*/
void vStartMathTasks( UBaseType_t uxPriority )
{
xTaskCreate( vCompetingMathTask1, "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask2, "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask3, "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask4, "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask1, pvParameters )
{
volatile portDOUBLE d1, d2, d3, d4;
volatile uint16_t *pusTaskCheckVariable;
volatile portDOUBLE dAnswer;
short sError = pdFALSE;
/* Some ports require that tasks that use a hardware floating point unit
tell the kernel that they require a floating point context before any
floating point instructions are executed. */
portTASK_USES_FLOATING_POINT();
d1 = 123.4567;
d2 = 2345.6789;
d3 = -918.222;
dAnswer = ( d1 + d2 ) * d3;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for(;;)
{
d1 = 123.4567;
d2 = 2345.6789;
d3 = -918.222;
d4 = ( d1 + d2 ) * d3;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( fabs( d4 - dAnswer ) > 0.001 )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct then set set the check
variable. The check variable will get set to pdFALSE each time
xAreMathsTaskStillRunning() is executed. */
( *pusTaskCheckVariable ) = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask2, pvParameters )
{
volatile portDOUBLE d1, d2, d3, d4;
volatile uint16_t *pusTaskCheckVariable;
volatile portDOUBLE dAnswer;
short sError = pdFALSE;
/* Some ports require that tasks that use a hardware floating point unit
tell the kernel that they require a floating point context before any
floating point instructions are executed. */
portTASK_USES_FLOATING_POINT();
d1 = -389.38;
d2 = 32498.2;
d3 = -2.0001;
dAnswer = ( d1 / d2 ) * d3;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for( ;; )
{
d1 = -389.38;
d2 = 32498.2;
d3 = -2.0001;
d4 = ( d1 / d2 ) * d3;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( fabs( d4 - dAnswer ) > 0.001 )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct then set set the check
variable. The check variable will get set to pdFALSE each time
xAreMathsTaskStillRunning() is executed. */
( *pusTaskCheckVariable ) = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask3, pvParameters )
{
volatile portDOUBLE *pdArray, dTotal1, dTotal2, dDifference;
volatile uint16_t *pusTaskCheckVariable;
const size_t xArraySize = 10;
size_t xPosition;
short sError = pdFALSE;
/* Some ports require that tasks that use a hardware floating point unit
tell the kernel that they require a floating point context before any
floating point instructions are executed. */
portTASK_USES_FLOATING_POINT();
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
pdArray = ( portDOUBLE * ) pvPortMalloc( xArraySize * sizeof( portDOUBLE ) );
/* Keep filling an array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
dTotal1 = 0.0;
dTotal2 = 0.0;
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
pdArray[ xPosition ] = ( portDOUBLE ) xPosition + 5.5;
dTotal1 += ( portDOUBLE ) xPosition + 5.5;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
dTotal2 += pdArray[ xPosition ];
}
dDifference = dTotal1 - dTotal2;
if( fabs( dDifference ) > 0.001 )
{
sError = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
if( sError == pdFALSE )
{
/* If the calculation has always been correct then set set the check
variable. The check variable will get set to pdFALSE each time
xAreMathsTaskStillRunning() is executed. */
( *pusTaskCheckVariable ) = pdTRUE;
}
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask4, pvParameters )
{
volatile portDOUBLE *pdArray, dTotal1, dTotal2, dDifference;
volatile uint16_t *pusTaskCheckVariable;
const size_t xArraySize = 10;
size_t xPosition;
short sError = pdFALSE;
/* Some ports require that tasks that use a hardware floating point unit
tell the kernel that they require a floating point context before any
floating point instructions are executed. */
portTASK_USES_FLOATING_POINT();
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
pdArray = ( portDOUBLE * ) pvPortMalloc( xArraySize * sizeof( portDOUBLE ) );
/* Keep filling an array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
dTotal1 = 0.0;
dTotal2 = 0.0;
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
pdArray[ xPosition ] = ( portDOUBLE ) xPosition * 12.123;
dTotal1 += ( portDOUBLE ) xPosition * 12.123;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
dTotal2 += pdArray[ xPosition ];
}
dDifference = dTotal1 - dTotal2;
if( fabs( dDifference ) > 0.001 )
{
sError = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
if( sError == pdFALSE )
{
/* If the calculation has always been correct then set set the check
variable. The check variable will get set to pdFALSE each time
xAreMathsTaskStillRunning() is executed. */
( *pusTaskCheckVariable ) = pdTRUE;
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreMathsTaskStillRunning( void )
{
BaseType_t xReturn = pdPASS, xTask;
/* Check the maths tasks are still running by ensuring their check variables
have been set to pdPASS. */
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
{
if( usTaskCheck[ xTask ] != pdTRUE )
{
/* The check has not been set so the associated task has either
stalled or detected an error. */
xReturn = pdFAIL;
}
else
{
/* Reset the variable so it can be checked again the next time this
function is executed. */
usTaskCheck[ xTask ] = pdFALSE;
}
}
return xReturn;
}

View file

@ -0,0 +1,201 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Creates one or more tasks that repeatedly perform a set of integer
* calculations. The result of each run-time calculation is compared to the
* known expected result - with a mismatch being indicative of an error in the
* context switch mechanism.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "integer.h"
/* The constants used in the calculation. */
#define intgCONST1 ( ( long ) 123 )
#define intgCONST2 ( ( long ) 234567 )
#define intgCONST3 ( ( long ) -3 )
#define intgCONST4 ( ( long ) 7 )
#define intgEXPECTED_ANSWER ( ( ( intgCONST1 + intgCONST2 ) * intgCONST3 ) / intgCONST4 )
#define intgSTACK_SIZE configMINIMAL_STACK_SIZE
/* As this is the minimal version, we will only create one task. */
#define intgNUMBER_OF_TASKS ( 1 )
/* The task function. Repeatedly performs a 32 bit calculation, checking the
result against the expected result. If the result is incorrect then the
context switch must have caused some corruption. */
static portTASK_FUNCTION_PROTO( vCompeteingIntMathTask, pvParameters );
/* Variables that are set to true within the calculation task to indicate
that the task is still executing. The check task sets the variable back to
false, flagging an error if the variable is still false the next time it
is called. */
static volatile BaseType_t xTaskCheck[ intgNUMBER_OF_TASKS ] = { ( BaseType_t ) pdFALSE };
/*-----------------------------------------------------------*/
void vStartIntegerMathTasks( UBaseType_t uxPriority )
{
short sTask;
for( sTask = 0; sTask < intgNUMBER_OF_TASKS; sTask++ )
{
xTaskCreate( vCompeteingIntMathTask, "IntMath", intgSTACK_SIZE, ( void * ) &( xTaskCheck[ sTask ] ), uxPriority, ( TaskHandle_t * ) NULL );
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompeteingIntMathTask, pvParameters )
{
/* These variables are all effectively set to constants so they are volatile to
ensure the compiler does not just get rid of them. */
volatile long lValue;
short sError = pdFALSE;
volatile BaseType_t *pxTaskHasExecuted;
/* Set a pointer to the variable we are going to set to true each
iteration. This is also a good test of the parameter passing mechanism
within each port. */
pxTaskHasExecuted = ( volatile BaseType_t * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for( ;; )
{
/* Perform the calculation. This will store partial value in
registers, resulting in a good test of the context switch mechanism. */
lValue = intgCONST1;
lValue += intgCONST2;
/* Yield in case cooperative scheduling is being used. */
#if configUSE_PREEMPTION == 0
{
taskYIELD();
}
#endif
/* Finish off the calculation. */
lValue *= intgCONST3;
lValue /= intgCONST4;
/* If the calculation is found to be incorrect we stop setting the
TaskHasExecuted variable so the check task can see an error has
occurred. */
if( lValue != intgEXPECTED_ANSWER ) /*lint !e774 volatile used to prevent this being optimised out. */
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* We have not encountered any errors, so set the flag that show
we are still executing. This will be periodically cleared by
the check task. */
portENTER_CRITICAL();
*pxTaskHasExecuted = pdTRUE;
portEXIT_CRITICAL();
}
/* Yield in case cooperative scheduling is being used. */
#if configUSE_PREEMPTION == 0
{
taskYIELD();
}
#endif
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreIntegerMathsTaskStillRunning( void )
{
BaseType_t xReturn = pdTRUE;
short sTask;
/* Check the maths tasks are still running by ensuring their check variables
are still being set to true. */
for( sTask = 0; sTask < intgNUMBER_OF_TASKS; sTask++ )
{
if( xTaskCheck[ sTask ] == pdFALSE )
{
/* The check has not incremented so an error exists. */
xReturn = pdFALSE;
}
/* Reset the check variable so we can tell if it has been set by
the next time around. */
xTaskCheck[ sTask ] = pdFALSE;
}
return xReturn;
}

View file

@ -0,0 +1,440 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
The tasks defined on this page demonstrate the use of recursive mutexes.
For recursive mutex functionality the created mutex should be created using
xSemaphoreCreateRecursiveMutex(), then be manipulated
using the xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() API
functions.
This demo creates three tasks all of which access the same recursive mutex:
prvRecursiveMutexControllingTask() has the highest priority so executes
first and grabs the mutex. It then performs some recursive accesses -
between each of which it sleeps for a short period to let the lower
priority tasks execute. When it has completed its demo functionality
it gives the mutex back before suspending itself.
prvRecursiveMutexBlockingTask() attempts to access the mutex by performing
a blocking 'take'. The blocking task has a lower priority than the
controlling task so by the time it executes the mutex has already been
taken by the controlling task, causing the blocking task to block. It
does not unblock until the controlling task has given the mutex back,
and it does not actually run until the controlling task has suspended
itself (due to the relative priorities). When it eventually does obtain
the mutex all it does is give the mutex back prior to also suspending
itself. At this point both the controlling task and the blocking task are
suspended.
prvRecursiveMutexPollingTask() runs at the idle priority. It spins round
a tight loop attempting to obtain the mutex with a non-blocking call. As
the lowest priority task it will not successfully obtain the mutex until
both the controlling and blocking tasks are suspended. Once it eventually
does obtain the mutex it first unsuspends both the controlling task and
blocking task prior to giving the mutex back - resulting in the polling
task temporarily inheriting the controlling tasks priority.
*/
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Demo app include files. */
#include "recmutex.h"
/* Priorities assigned to the three tasks. recmuCONTROLLING_TASK_PRIORITY can
be overridden by a definition in FreeRTOSConfig.h. */
#ifndef recmuCONTROLLING_TASK_PRIORITY
#define recmuCONTROLLING_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 )
#endif
#define recmuBLOCKING_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define recmuPOLLING_TASK_PRIORITY ( tskIDLE_PRIORITY + 0 )
/* The recursive call depth. */
#define recmuMAX_COUNT ( 10 )
/* Misc. */
#define recmuSHORT_DELAY ( 20 / portTICK_PERIOD_MS )
#define recmuNO_DELAY ( ( TickType_t ) 0 )
#define recmuEIGHT_TICK_DELAY ( ( TickType_t ) 8 )
/* The three tasks as described at the top of this file. */
static void prvRecursiveMutexControllingTask( void *pvParameters );
static void prvRecursiveMutexBlockingTask( void *pvParameters );
static void prvRecursiveMutexPollingTask( void *pvParameters );
/* The mutex used by the demo. */
static SemaphoreHandle_t xMutex;
/* Variables used to detect and latch errors. */
static volatile BaseType_t xErrorOccurred = pdFALSE, xControllingIsSuspended = pdFALSE, xBlockingIsSuspended = pdFALSE;
static volatile UBaseType_t uxControllingCycles = 0, uxBlockingCycles = 0, uxPollingCycles = 0;
/* Handles of the two higher priority tasks, required so they can be resumed
(unsuspended). */
static TaskHandle_t xControllingTaskHandle, xBlockingTaskHandle;
/*-----------------------------------------------------------*/
void vStartRecursiveMutexTasks( void )
{
/* Just creates the mutex and the three tasks. */
xMutex = xSemaphoreCreateRecursiveMutex();
/* vQueueAddToRegistry() adds the mutex to the registry, if one is
in use. The registry is provided as a means for kernel aware
debuggers to locate mutex and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( ( QueueHandle_t ) xMutex, "Recursive_Mutex" );
if( xMutex != NULL )
{
xTaskCreate( prvRecursiveMutexControllingTask, "Rec1", configMINIMAL_STACK_SIZE, NULL, recmuCONTROLLING_TASK_PRIORITY, &xControllingTaskHandle );
xTaskCreate( prvRecursiveMutexBlockingTask, "Rec2", configMINIMAL_STACK_SIZE, NULL, recmuBLOCKING_TASK_PRIORITY, &xBlockingTaskHandle );
xTaskCreate( prvRecursiveMutexPollingTask, "Rec3", configMINIMAL_STACK_SIZE, NULL, recmuPOLLING_TASK_PRIORITY, NULL );
}
}
/*-----------------------------------------------------------*/
static void prvRecursiveMutexControllingTask( void *pvParameters )
{
UBaseType_t ux;
/* Just to remove compiler warning. */
( void ) pvParameters;
for( ;; )
{
/* Should not be able to 'give' the mutex, as we have not yet 'taken'
it. The first time through, the mutex will not have been used yet,
subsequent times through, at this point the mutex will be held by the
polling task. */
if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
{
xErrorOccurred = pdTRUE;
}
for( ux = 0; ux < recmuMAX_COUNT; ux++ )
{
/* We should now be able to take the mutex as many times as
we like.
The first time through the mutex will be immediately available, on
subsequent times through the mutex will be held by the polling task
at this point and this Take will cause the polling task to inherit
the priority of this task. In this case the block time must be
long enough to ensure the polling task will execute again before the
block time expires. If the block time does expire then the error
flag will be set here. */
if( xSemaphoreTakeRecursive( xMutex, recmuEIGHT_TICK_DELAY ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Ensure the other task attempting to access the mutex (and the
other demo tasks) are able to execute to ensure they either block
(where a block time is specified) or return an error (where no
block time is specified) as the mutex is held by this task. */
vTaskDelay( recmuSHORT_DELAY );
}
/* For each time we took the mutex, give it back. */
for( ux = 0; ux < recmuMAX_COUNT; ux++ )
{
/* Ensure the other task attempting to access the mutex (and the
other demo tasks) are able to execute. */
vTaskDelay( recmuSHORT_DELAY );
/* We should now be able to give the mutex as many times as we
took it. When the mutex is available again the Blocking task
should be unblocked but not run because it has a lower priority
than this task. The polling task should also not run at this point
as it too has a lower priority than this task. */
if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
}
/* Having given it back the same number of times as it was taken, we
should no longer be the mutex owner, so the next give should fail. */
if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Keep count of the number of cycles this task has performed so a
stall can be detected. */
uxControllingCycles++;
/* Suspend ourselves so the blocking task can execute. */
xControllingIsSuspended = pdTRUE;
vTaskSuspend( NULL );
xControllingIsSuspended = pdFALSE;
}
}
/*-----------------------------------------------------------*/
static void prvRecursiveMutexBlockingTask( void *pvParameters )
{
/* Just to remove compiler warning. */
( void ) pvParameters;
for( ;; )
{
/* This task will run while the controlling task is blocked, and the
controlling task will block only once it has the mutex - therefore
this call should block until the controlling task has given up the
mutex, and not actually execute past this call until the controlling
task is suspended. portMAX_DELAY - 1 is used instead of portMAX_DELAY
to ensure the task's state is reported as Blocked and not Suspended in
a later call to configASSERT() (within the polling task). */
if( xSemaphoreTakeRecursive( xMutex, ( portMAX_DELAY - 1 ) ) == pdPASS )
{
if( xControllingIsSuspended != pdTRUE )
{
/* Did not expect to execute until the controlling task was
suspended. */
xErrorOccurred = pdTRUE;
}
else
{
/* Give the mutex back before suspending ourselves to allow
the polling task to obtain the mutex. */
if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
xBlockingIsSuspended = pdTRUE;
vTaskSuspend( NULL );
xBlockingIsSuspended = pdFALSE;
}
}
else
{
/* We should not leave the xSemaphoreTakeRecursive() function
until the mutex was obtained. */
xErrorOccurred = pdTRUE;
}
/* The controlling and blocking tasks should be in lock step. */
if( uxControllingCycles != ( uxBlockingCycles + 1 ) )
{
xErrorOccurred = pdTRUE;
}
/* Keep count of the number of cycles this task has performed so a
stall can be detected. */
uxBlockingCycles++;
}
}
/*-----------------------------------------------------------*/
static void prvRecursiveMutexPollingTask( void *pvParameters )
{
/* Just to remove compiler warning. */
( void ) pvParameters;
for( ;; )
{
/* Keep attempting to obtain the mutex. We should only obtain it when
the blocking task has suspended itself, which in turn should only
happen when the controlling task is also suspended. */
if( xSemaphoreTakeRecursive( xMutex, recmuNO_DELAY ) == pdPASS )
{
#if( INCLUDE_eTaskGetState == 1 )
{
configASSERT( eTaskGetState( xControllingTaskHandle ) == eSuspended );
configASSERT( eTaskGetState( xBlockingTaskHandle ) == eSuspended );
}
#endif /* INCLUDE_eTaskGetState */
/* Is the blocking task suspended? */
if( ( xBlockingIsSuspended != pdTRUE ) || ( xControllingIsSuspended != pdTRUE ) )
{
xErrorOccurred = pdTRUE;
}
else
{
/* Keep count of the number of cycles this task has performed
so a stall can be detected. */
uxPollingCycles++;
/* We can resume the other tasks here even though they have a
higher priority than the polling task. When they execute they
will attempt to obtain the mutex but fail because the polling
task is still the mutex holder. The polling task (this task)
will then inherit the higher priority. The Blocking task will
block indefinitely when it attempts to obtain the mutex, the
Controlling task will only block for a fixed period and an
error will be latched if the polling task has not returned the
mutex by the time this fixed period has expired. */
vTaskResume( xBlockingTaskHandle );
vTaskResume( xControllingTaskHandle );
/* The other two tasks should now have executed and no longer
be suspended. */
if( ( xBlockingIsSuspended == pdTRUE ) || ( xControllingIsSuspended == pdTRUE ) )
{
xErrorOccurred = pdTRUE;
}
#if( INCLUDE_uxTaskPriorityGet == 1 )
{
/* Check priority inherited. */
configASSERT( uxTaskPriorityGet( NULL ) == recmuCONTROLLING_TASK_PRIORITY );
}
#endif /* INCLUDE_uxTaskPriorityGet */
#if( INCLUDE_eTaskGetState == 1 )
{
configASSERT( eTaskGetState( xControllingTaskHandle ) == eBlocked );
configASSERT( eTaskGetState( xBlockingTaskHandle ) == eBlocked );
}
#endif /* INCLUDE_eTaskGetState */
/* Release the mutex, disinheriting the higher priority again. */
if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
#if( INCLUDE_uxTaskPriorityGet == 1 )
{
/* Check priority disinherited. */
configASSERT( uxTaskPriorityGet( NULL ) == recmuPOLLING_TASK_PRIORITY );
}
#endif /* INCLUDE_uxTaskPriorityGet */
}
}
#if configUSE_PREEMPTION == 0
{
taskYIELD();
}
#endif
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreRecursiveMutexTasksStillRunning( void )
{
BaseType_t xReturn;
static UBaseType_t uxLastControllingCycles = 0, uxLastBlockingCycles = 0, uxLastPollingCycles = 0;
/* Is the controlling task still cycling? */
if( uxLastControllingCycles == uxControllingCycles )
{
xErrorOccurred = pdTRUE;
}
else
{
uxLastControllingCycles = uxControllingCycles;
}
/* Is the blocking task still cycling? */
if( uxLastBlockingCycles == uxBlockingCycles )
{
xErrorOccurred = pdTRUE;
}
else
{
uxLastBlockingCycles = uxBlockingCycles;
}
/* Is the polling task still cycling? */
if( uxLastPollingCycles == uxPollingCycles )
{
xErrorOccurred = pdTRUE;
}
else
{
uxLastPollingCycles = uxPollingCycles;
}
if( xErrorOccurred == pdTRUE )
{
xReturn = pdFAIL;
}
else
{
xReturn = pdTRUE;
}
return xReturn;
}

View file

@ -0,0 +1,298 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Creates two sets of two tasks. The tasks within a set share a variable, access
* to which is guarded by a semaphore.
*
* Each task starts by attempting to obtain the semaphore. On obtaining a
* semaphore a task checks to ensure that the guarded variable has an expected
* value. It then clears the variable to zero before counting it back up to the
* expected value in increments of 1. After each increment the variable is checked
* to ensure it contains the value to which it was just set. When the starting
* value is again reached the task releases the semaphore giving the other task in
* the set a chance to do exactly the same thing. The starting value is high
* enough to ensure that a tick is likely to occur during the incrementing loop.
*
* An error is flagged if at any time during the process a shared variable is
* found to have a value other than that expected. Such an occurrence would
* suggest an error in the mutual exclusion mechanism by which access to the
* variable is restricted.
*
* The first set of two tasks poll their semaphore. The second set use blocking
* calls.
*
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Demo app include files. */
#include "semtest.h"
/* The value to which the shared variables are counted. */
#define semtstBLOCKING_EXPECTED_VALUE ( ( uint32_t ) 0xfff )
#define semtstNON_BLOCKING_EXPECTED_VALUE ( ( uint32_t ) 0xff )
#define semtstSTACK_SIZE configMINIMAL_STACK_SIZE
#define semtstNUM_TASKS ( 4 )
#define semtstDELAY_FACTOR ( ( TickType_t ) 10 )
/* The task function as described at the top of the file. */
static portTASK_FUNCTION_PROTO( prvSemaphoreTest, pvParameters );
/* Structure used to pass parameters to each task. */
typedef struct SEMAPHORE_PARAMETERS
{
SemaphoreHandle_t xSemaphore;
volatile uint32_t *pulSharedVariable;
TickType_t xBlockTime;
} xSemaphoreParameters;
/* Variables used to check that all the tasks are still running without errors. */
static volatile short sCheckVariables[ semtstNUM_TASKS ] = { 0 };
static volatile short sNextCheckVariable = 0;
/*-----------------------------------------------------------*/
void vStartSemaphoreTasks( UBaseType_t uxPriority )
{
xSemaphoreParameters *pxFirstSemaphoreParameters, *pxSecondSemaphoreParameters;
const TickType_t xBlockTime = ( TickType_t ) 100;
/* Create the structure used to pass parameters to the first two tasks. */
pxFirstSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
if( pxFirstSemaphoreParameters != NULL )
{
/* Create the semaphore used by the first two tasks. */
pxFirstSemaphoreParameters->xSemaphore = xSemaphoreCreateBinary();
xSemaphoreGive( pxFirstSemaphoreParameters->xSemaphore );
if( pxFirstSemaphoreParameters->xSemaphore != NULL )
{
/* Create the variable which is to be shared by the first two tasks. */
pxFirstSemaphoreParameters->pulSharedVariable = ( uint32_t * ) pvPortMalloc( sizeof( uint32_t ) );
/* Initialise the share variable to the value the tasks expect. */
*( pxFirstSemaphoreParameters->pulSharedVariable ) = semtstNON_BLOCKING_EXPECTED_VALUE;
/* The first two tasks do not block on semaphore calls. */
pxFirstSemaphoreParameters->xBlockTime = ( TickType_t ) 0;
/* Spawn the first two tasks. As they poll they operate at the idle priority. */
xTaskCreate( prvSemaphoreTest, "PolSEM1", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( TaskHandle_t * ) NULL );
xTaskCreate( prvSemaphoreTest, "PolSEM2", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( TaskHandle_t * ) NULL );
}
}
/* Do exactly the same to create the second set of tasks, only this time
provide a block time for the semaphore calls. */
pxSecondSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
if( pxSecondSemaphoreParameters != NULL )
{
pxSecondSemaphoreParameters->xSemaphore = xSemaphoreCreateBinary();
xSemaphoreGive( pxSecondSemaphoreParameters->xSemaphore );
if( pxSecondSemaphoreParameters->xSemaphore != NULL )
{
pxSecondSemaphoreParameters->pulSharedVariable = ( uint32_t * ) pvPortMalloc( sizeof( uint32_t ) );
*( pxSecondSemaphoreParameters->pulSharedVariable ) = semtstBLOCKING_EXPECTED_VALUE;
pxSecondSemaphoreParameters->xBlockTime = xBlockTime / portTICK_PERIOD_MS;
xTaskCreate( prvSemaphoreTest, "BlkSEM1", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( TaskHandle_t * ) NULL );
xTaskCreate( prvSemaphoreTest, "BlkSEM2", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( TaskHandle_t * ) NULL );
}
}
/* vQueueAddToRegistry() adds the semaphore to the registry, if one is
in use. The registry is provided as a means for kernel aware
debuggers to locate semaphores and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( ( QueueHandle_t ) pxFirstSemaphoreParameters->xSemaphore, "Counting_Sem_1" );
vQueueAddToRegistry( ( QueueHandle_t ) pxSecondSemaphoreParameters->xSemaphore, "Counting_Sem_2" );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( prvSemaphoreTest, pvParameters )
{
xSemaphoreParameters *pxParameters;
volatile uint32_t *pulSharedVariable, ulExpectedValue;
uint32_t ulCounter;
short sError = pdFALSE, sCheckVariableToUse;
/* See which check variable to use. sNextCheckVariable is not semaphore
protected! */
portENTER_CRITICAL();
sCheckVariableToUse = sNextCheckVariable;
sNextCheckVariable++;
portEXIT_CRITICAL();
/* A structure is passed in as the parameter. This contains the shared
variable being guarded. */
pxParameters = ( xSemaphoreParameters * ) pvParameters;
pulSharedVariable = pxParameters->pulSharedVariable;
/* If we are blocking we use a much higher count to ensure loads of context
switches occur during the count. */
if( pxParameters->xBlockTime > ( TickType_t ) 0 )
{
ulExpectedValue = semtstBLOCKING_EXPECTED_VALUE;
}
else
{
ulExpectedValue = semtstNON_BLOCKING_EXPECTED_VALUE;
}
for( ;; )
{
/* Try to obtain the semaphore. */
if( xSemaphoreTake( pxParameters->xSemaphore, pxParameters->xBlockTime ) == pdPASS )
{
/* We have the semaphore and so expect any other tasks using the
shared variable to have left it in the state we expect to find
it. */
if( *pulSharedVariable != ulExpectedValue )
{
sError = pdTRUE;
}
/* Clear the variable, then count it back up to the expected value
before releasing the semaphore. Would expect a context switch or
two during this time. */
for( ulCounter = ( uint32_t ) 0; ulCounter <= ulExpectedValue; ulCounter++ )
{
*pulSharedVariable = ulCounter;
if( *pulSharedVariable != ulCounter )
{
sError = pdTRUE;
}
}
/* Release the semaphore, and if no errors have occurred increment the check
variable. */
if( xSemaphoreGive( pxParameters->xSemaphore ) == pdFALSE )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
if( sCheckVariableToUse < semtstNUM_TASKS )
{
( sCheckVariables[ sCheckVariableToUse ] )++;
}
}
/* If we have a block time then we are running at a priority higher
than the idle priority. This task takes a long time to complete
a cycle (deliberately so to test the guarding) so will be starving
out lower priority tasks. Block for some time to allow give lower
priority tasks some processor time. */
vTaskDelay( pxParameters->xBlockTime * semtstDELAY_FACTOR );
}
else
{
if( pxParameters->xBlockTime == ( TickType_t ) 0 )
{
/* We have not got the semaphore yet, so no point using the
processor. We are not blocking when attempting to obtain the
semaphore. */
taskYIELD();
}
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreSemaphoreTasksStillRunning( void )
{
static short sLastCheckVariables[ semtstNUM_TASKS ] = { 0 };
BaseType_t xTask, xReturn = pdTRUE;
for( xTask = 0; xTask < semtstNUM_TASKS; xTask++ )
{
if( sLastCheckVariables[ xTask ] == sCheckVariables[ xTask ] )
{
xReturn = pdFALSE;
}
sLastCheckVariables[ xTask ] = sCheckVariables[ xTask ];
}
return xReturn;
}

View file

@ -0,0 +1,365 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Creates eight tasks, each of which loops continuously performing a floating
* point calculation - using single precision variables.
*
* All the tasks run at the idle priority and never block or yield. This causes
* all eight tasks to time slice with the idle task. Running at the idle priority
* means that these tasks will get pre-empted any time another task is ready to run
* or a time slice occurs. More often than not the pre-emption will occur mid
* calculation, creating a good test of the schedulers context switch mechanism - a
* calculation producing an unexpected result could be a symptom of a corruption in
* the context of a task.
*/
#include <stdlib.h>
#include <math.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "flop.h"
#define mathSTACK_SIZE configMINIMAL_STACK_SIZE
#define mathNUMBER_OF_TASKS ( 8 )
/* Four tasks, each of which performs a different floating point calculation.
Each of the four is created twice. */
static portTASK_FUNCTION_PROTO( vCompetingMathTask1, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask2, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask3, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask4, pvParameters );
/* These variables are used to check that all the tasks are still running. If a
task gets a calculation wrong it will
stop incrementing its check variable. */
static volatile uint16_t usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( uint16_t ) 0 };
/*-----------------------------------------------------------*/
void vStartMathTasks( UBaseType_t uxPriority )
{
xTaskCreate( vCompetingMathTask1, "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask2, "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask3, "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask4, "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask1, "Math5", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask2, "Math6", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask3, "Math7", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask4, "Math8", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask1, pvParameters )
{
volatile float f1, f2, f3, f4;
volatile uint16_t *pusTaskCheckVariable;
volatile float fAnswer;
short sError = pdFALSE;
f1 = 123.4567F;
f2 = 2345.6789F;
f3 = -918.222F;
fAnswer = ( f1 + f2 ) * f3;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for(;;)
{
f1 = 123.4567F;
f2 = 2345.6789F;
f3 = -918.222F;
f4 = ( f1 + f2 ) * f3;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( fabs( f4 - fAnswer ) > 0.001F )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask2, pvParameters )
{
volatile float f1, f2, f3, f4;
volatile uint16_t *pusTaskCheckVariable;
volatile float fAnswer;
short sError = pdFALSE;
f1 = -389.38F;
f2 = 32498.2F;
f3 = -2.0001F;
fAnswer = ( f1 / f2 ) * f3;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for( ;; )
{
f1 = -389.38F;
f2 = 32498.2F;
f3 = -2.0001F;
f4 = ( f1 / f2 ) * f3;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( fabs( f4 - fAnswer ) > 0.001F )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know
this task is still running okay. */
( *pusTaskCheckVariable )++;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask3, pvParameters )
{
volatile float *pfArray, fTotal1, fTotal2, fDifference, fPosition;
volatile uint16_t *pusTaskCheckVariable;
const size_t xArraySize = 10;
size_t xPosition;
short sError = pdFALSE;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
pfArray = ( float * ) pvPortMalloc( xArraySize * sizeof( float ) );
/* Keep filling an array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
fTotal1 = 0.0F;
fTotal2 = 0.0F;
fPosition = 0.0F;
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
pfArray[ xPosition ] = fPosition + 5.5F;
fTotal1 += fPosition + 5.5F;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
fTotal2 += pfArray[ xPosition ];
}
fDifference = fTotal1 - fTotal2;
if( fabs( fDifference ) > 0.001F )
{
sError = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask4, pvParameters )
{
volatile float *pfArray, fTotal1, fTotal2, fDifference, fPosition;
volatile uint16_t *pusTaskCheckVariable;
const size_t xArraySize = 10;
size_t xPosition;
short sError = pdFALSE;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( uint16_t * ) pvParameters;
pfArray = ( float * ) pvPortMalloc( xArraySize * sizeof( float ) );
/* Keep filling an array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
fTotal1 = 0.0F;
fTotal2 = 0.0F;
fPosition = 0.0F;
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
pfArray[ xPosition ] = fPosition * 12.123F;
fTotal1 += fPosition * 12.123F;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
fTotal2 += pfArray[ xPosition ];
}
fDifference = fTotal1 - fTotal2;
if( fabs( fDifference ) > 0.001F )
{
sError = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreMathsTaskStillRunning( void )
{
/* Keep a history of the check variables so we know if they have been incremented
since the last call. */
static uint16_t usLastTaskCheck[ mathNUMBER_OF_TASKS ] = { ( uint16_t ) 0 };
BaseType_t xReturn = pdTRUE, xTask;
/* Check the maths tasks are still running by ensuring their check variables
are still incrementing. */
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
{
if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
{
/* The check has not incremented so an error exists. */
xReturn = pdFALSE;
}
usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
}
return xReturn;
}

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef ALT_BLOCK_Q_H
#define ALT_BLOCK_Q_H
void vStartAltBlockingQueueTasks( UBaseType_t uxPriority );
BaseType_t xAreAltBlockingQueuesStillRunning( void );
#endif

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef FAST_BLOCK_TIME_TEST_H
#define FAST_BLOCK_TIME_TEST_H
void vCreateAltBlockTimeTasks( void );
BaseType_t xAreAltBlockTimeTestTasksStillRunning( void );
#endif

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef ALT_POLLED_Q_H
#define ALT_POLLED_Q_H
void vStartAltPolledQueueTasks( UBaseType_t uxPriority );
BaseType_t xAreAltPollingQueuesStillRunning( void );
#endif

View file

@ -0,0 +1,75 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef FAST_GEN_Q_TEST_H
#define FAST_GEN_Q_TEST_H
void vStartAltGenericQueueTasks( UBaseType_t uxPriority );
BaseType_t xAreAltGenericQueueTasksStillRunning( void );
#endif /* GEN_Q_TEST_H */

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef BLOCK_Q_H
#define BLOCK_Q_H
void vStartBlockingQueueTasks( UBaseType_t uxPriority );
BaseType_t xAreBlockingQueuesStillRunning( void );
#endif

View file

@ -0,0 +1,82 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This file contains fairly comprehensive checks on the behaviour of event
* groups. It is not intended to be a user friendly demonstration of the event
* groups API.
*/
#ifndef EVENT_GROUPS_DEMO_H
#define EVENT_GROUPS_DEMO_H
void vStartEventGroupTasks( void );
BaseType_t xAreEventGroupTasksStillRunning( void );
void vPeriodicEventGroupsProcessing( void );
#endif /* EVENT_GROUPS_DEMO_H */

View file

@ -0,0 +1,76 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef GEN_Q_TEST_H
#define GEN_Q_TEST_H
void vStartGenericQueueTasks( UBaseType_t uxPriority );
BaseType_t xAreGenericQueueTasksStillRunning( void );
void vMutexISRInteractionTest( void );
#endif /* GEN_Q_TEST_H */

View file

@ -0,0 +1,80 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef QUEUE_ACCESS_TEST
#define QUEUE_ACCESS_TEST
void vStartInterruptQueueTasks( void );
BaseType_t xAreIntQueueTasksStillRunning( void );
BaseType_t xFirstTimerHandler( void );
BaseType_t xSecondTimerHandler( void );
#endif /* QUEUE_ACCESS_TEST */

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef POLLED_Q_H
#define POLLED_Q_H
void vStartPolledQueueTasks( UBaseType_t uxPriority );
BaseType_t xArePollingQueuesStillRunning( void );
#endif

View file

@ -0,0 +1,75 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef Q_PEEK_TEST_H
#define Q_PEEK_TEST_H
void vStartQueuePeekTasks( void );
BaseType_t xAreQueuePeekTasksStillRunning( void );
#endif /* Q_PEEK_TEST_H */

View file

@ -0,0 +1,75 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef QUEUE_OVERWRITE_H
#define QUEUE_OVERWRITE_H
void vStartQueueOverwriteTask( UBaseType_t uxPriority );
BaseType_t xIsQueueOverwriteTaskStillRunning( void );
void vQueueOverwritePeriodicISRDemo( void );
#endif /* QUEUE_OVERWRITE_H */

View file

@ -0,0 +1,75 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef QUEUE_WAIT_MULTIPLE_H
#define QUEUE_WAIT_MULTIPLE_H
void vStartQueueSetTasks( void );
BaseType_t xAreQueueSetTasksStillRunning( void );
void vQueueSetAccessQueueSetFromISR( void );
#endif /* QUEUE_WAIT_MULTIPLE_H */

View file

@ -0,0 +1,76 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef TIMER_DEMO_H
#define TIMER_DEMO_H
void vStartTimerDemoTask( TickType_t xBaseFrequencyIn );
BaseType_t xAreTimerDemoTasksStillRunning( TickType_t xCycleFrequency );
void vTimerPeriodicISRTests( void );
#endif /* TIMER_DEMO_H */

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef BLOCK_TIME_TEST_H
#define BLOCK_TIME_TEST_H
void vCreateBlockTimeTasks( void );
BaseType_t xAreBlockTimeTestTasksStillRunning( void );
#endif

View file

@ -0,0 +1,75 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef COMTEST_H
#define COMTEST_H
void vAltStartComTestTasks( UBaseType_t uxPriority, uint32_t ulBaudRate, UBaseType_t uxLED );
void vStartComTestTasks( UBaseType_t uxPriority, eCOMPort ePort, eBaud eBaudRate );
BaseType_t xAreComTestTasksStillRunning( void );
void vComTestUnsuspendTask( void );
#endif

View file

@ -0,0 +1,73 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef COMTEST_H
#define COMTEST_H
void vAltStartComTestTasks( UBaseType_t uxPriority, uint32_t ulBaudRate, UBaseType_t uxLED );
BaseType_t xAreComTestTasksStillRunning( void );
#endif

View file

@ -0,0 +1,73 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef COMTEST_STRINGS_H
#define COMTEST_STRINGS_H
void vStartComTestStringsTasks( UBaseType_t uxPriority, uint32_t ulBaudRate, UBaseType_t uxLED );
BaseType_t xAreComTestTasksStillRunning( void );
#endif

View file

@ -0,0 +1,73 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef COUNT_SEMAPHORE_TEST_H
#define COUNT_SEMAPHORE_TEST_H
void vStartCountingSemaphoreTasks( void );
BaseType_t xAreCountingSemaphoreTasksStillRunning( void );
#endif

View file

@ -0,0 +1,85 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef CRFLASH_LED_H
#define CRFLASH_LED_H
/*
* Create the co-routines used to flash the LED's at different rates.
*
* @param uxPriority The number of 'fixed delay' co-routines to create. This
* also effects the number of LED's that will be utilised. For example,
* passing in 3 will cause LED's 0 to 2 to be utilised.
*/
void vStartFlashCoRoutines( UBaseType_t uxPriority );
/*
* Return pdPASS or pdFAIL depending on whether an error has been detected
* or not.
*/
BaseType_t xAreFlashCoRoutinesStillRunning( void );
#endif

View file

@ -0,0 +1,81 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef CRHOOK_H
#define CRHOOK_H
/*
* Create the co-routines used to communicate wit the tick hook.
*/
void vStartHookCoRoutines( void );
/*
* Return pdPASS or pdFAIL depending on whether an error has been detected
* or not.
*/
BaseType_t xAreHookCoRoutinesStillRunning( void );
#endif

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef SUICIDE_TASK_H
#define SUICIDE_TASK_H
void vCreateSuicidalTasks( UBaseType_t uxPriority );
BaseType_t xIsCreateTaskStillRunning( void );
#endif

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef DYNAMIC_MANIPULATION_H
#define DYNAMIC_MANIPULATION_H
void vStartDynamicPriorityTasks( void );
BaseType_t xAreDynamicPriorityTasksStillRunning( void );
#endif

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef FILE_IO_H
#define FILE_OI_H
void vDisplayMessage( const char * const pcMessageToPrint );
void vWriteMessageToDisk( const char * const pcMessage );
void vWriteBufferToDisk( const char * const pcBuffer, uint32_t ulBufferLength );
#endif

View file

@ -0,0 +1,72 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef FLASH_LED_H
#define FLASH_LED_H
void vStartLEDFlashTasks( UBaseType_t uxPriority );
#endif

View file

@ -0,0 +1,79 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef FLASH_TIMER_H
#define FLASH_TIMER_H
/*
* Creates the LED flashing timers. xNumberOfLEDs specifies how many timers to
* create, with each timer toggling a different LED. The first LED to be
* toggled is LED 0, with subsequent LEDs following on in numerical order. Each
* timer uses the exact same callback function, with the timer ID being used
* within the callback function to determine which timer has actually expired
* (and therefore which LED to toggle).
*/
void vStartLEDFlashTimers( UBaseType_t uxNumberOfLEDs );
#endif /* FLASH_TIMER_H */

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef FLOP_TASKS_H
#define FLOP_TASKS_H
void vStartMathTasks( UBaseType_t uxPriority );
BaseType_t xAreMathsTaskStillRunning( void );
#endif

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef INTEGER_TASKS_H
#define INTEGER_TASKS_H
void vStartIntegerMathTasks( UBaseType_t uxPriority );
BaseType_t xAreIntegerMathsTaskStillRunning( void );
#endif

View file

@ -0,0 +1,74 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef EVENTS_TEST_H
#define EVENTS_TEST_H
void vStartMultiEventTasks( void );
BaseType_t xAreMultiEventTasksStillRunning( void );
#endif

View file

@ -0,0 +1,76 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PARTEST_H
#define PARTEST_H
#define partstDEFAULT_PORT_ADDRESS ( ( uint16_t ) 0x378 )
void vParTestInitialise( void );
void vParTestSetLED( UBaseType_t uxLED, BaseType_t xValue );
void vParTestToggleLED( UBaseType_t uxLED );
#endif

View file

@ -0,0 +1,75 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PRINT_H
#define PRINT_H
void vPrintInitialise( void );
void vPrintDisplayMessage( const char * const * pcMessageToSend );
const char *pcPrintGetNextMessage( TickType_t xPrintRate );
#endif

View file

@ -0,0 +1,73 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef RECURSIVE_MUTEX_TEST_H
#define RECURSIVE_MUTEX_TEST_H
void vStartRecursiveMutexTasks( void );
BaseType_t xAreRecursiveMutexTasksStillRunning( void );
#endif

View file

@ -0,0 +1,73 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef SEMAPHORE_TEST_H
#define SEMAPHORE_TEST_H
void vStartSemaphoreTasks( UBaseType_t uxPriority );
BaseType_t xAreSemaphoreTasksStillRunning( void );
#endif

View file

@ -0,0 +1,136 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef SERIAL_COMMS_H
#define SERIAL_COMMS_H
typedef void * xComPortHandle;
typedef enum
{
serCOM1,
serCOM2,
serCOM3,
serCOM4,
serCOM5,
serCOM6,
serCOM7,
serCOM8
} eCOMPort;
typedef enum
{
serNO_PARITY,
serODD_PARITY,
serEVEN_PARITY,
serMARK_PARITY,
serSPACE_PARITY
} eParity;
typedef enum
{
serSTOP_1,
serSTOP_2
} eStopBits;
typedef enum
{
serBITS_5,
serBITS_6,
serBITS_7,
serBITS_8
} eDataBits;
typedef enum
{
ser50,
ser75,
ser110,
ser134,
ser150,
ser200,
ser300,
ser600,
ser1200,
ser1800,
ser2400,
ser4800,
ser9600,
ser19200,
ser38400,
ser57600,
ser115200
} eBaud;
xComPortHandle xSerialPortInitMinimal( unsigned long ulWantedBaud, unsigned portBASE_TYPE uxQueueLength );
xComPortHandle xSerialPortInit( eCOMPort ePort, eBaud eWantedBaud, eParity eWantedParity, eDataBits eWantedDataBits, eStopBits eWantedStopBits, unsigned portBASE_TYPE uxBufferLength );
void vSerialPutString( xComPortHandle pxPort, const signed char * const pcString, unsigned short usStringLength );
signed portBASE_TYPE xSerialGetChar( xComPortHandle pxPort, signed char *pcRxedChar, TickType_t xBlockTime );
signed portBASE_TYPE xSerialPutChar( xComPortHandle pxPort, signed char cOutChar, TickType_t xBlockTime );
portBASE_TYPE xSerialWaitForSemaphore( xComPortHandle xPort );
void vSerialClose( xComPortHandle xPort );
#endif

View file

@ -0,0 +1,48 @@
include $(MAKE_INCLUDE_GEN)
.PHONY: all clean
MODULE_IFLAGS = -I./include
#*****************************************************************************#
# Object FILE LIST #
#*****************************************************************************#
OBJS = tasks.o list.o croutine.o queue.o timers.o event_groups.o
ifeq ($(CONFIG_RELEASE_BUILD),y)
OBJS =
else
endif
#*****************************************************************************#
# RULES TO GENERATE TARGETS #
#*****************************************************************************#
# Define the Rules to build the core targets
#all: CORE_TARGETS COPY_RAM_OBJS
all: CORE_TARGETS COPY_RAM_OBJS
make -C portable/MemMang all
make -C portable/GCC/ARM_CM4F all
#*****************************************************************************#
# GENERATE OBJECT FILE
#*****************************************************************************#
CORE_TARGETS: $(OBJS)
#*****************************************************************************#
# RULES TO CLEAN TARGETS #
#*****************************************************************************#
clean:
make -C portable/MemMang clean
make -C portable/GCC/ARM_CM4F clean
$(REMOVE) *.o
$(REMOVE) *.i
$(REMOVE) *.s
$(REMOVE) *.d
-include $(DEPS)

View file

@ -0,0 +1,27 @@
#ifndef FREERTOS_STDINT
#define FREERTOS_STDINT
/*******************************************************************************
* THIS IS NOT A FULL stdint.h IMPLEMENTATION - It only contains the definitions
* necessary to build the FreeRTOS code. It is provided to allow FreeRTOS to be
* built using compilers that do not provide their own stdint.h definition.
*
* To use this file:
*
* 1) Copy this file into the directory that contains your FreeRTOSConfig.h
* header file, as that directory will already be in the compilers include
* path.
*
* 2) Rename the copied file stdint.h.
*
*/
typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef short int16_t;
typedef unsigned short uint16_t;
typedef long int32_t;
typedef unsigned long uint32_t;
#endif /* FREERTOS_STDINT */

View file

@ -0,0 +1,33 @@
include $(MAKE_INCLUDE_GEN)
.PHONY: all clean
MODULE_IFLAGS =
#*****************************************************************************#
# Object FILE LIST #
#*****************************************************************************#
OBJS = port.o
#*****************************************************************************#
# RULES TO GENERATE TARGETS #
#*****************************************************************************#
# Define the Rules to build the core targets
all: CORE_TARGETS COPY_RAM_OBJS
#*****************************************************************************#
# GENERATE OBJECT FILE
#*****************************************************************************#
CORE_TARGETS: $(OBJS)
clean:
$(REMOVE) *.o
$(REMOVE) *.i
$(REMOVE) *.s
$(REMOVE) *.d
-include $(DEPS)

View file

@ -0,0 +1,218 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
#ifdef __cplusplus
extern "C" {
#endif
/*-----------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the
* given hardware and compiler.
*
* These settings should not be altered.
*-----------------------------------------------------------
*/
/* Type definitions. */
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint32_t
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
typedef unsigned long UBaseType_t;
#if( configUSE_16_BIT_TICKS == 1 )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffff
#else
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffffffffUL
#endif
/*-----------------------------------------------------------*/
/* MPU specific constants. */
#define portUSING_MPU_WRAPPERS 1
#define portPRIVILEGE_BIT ( 0x80000000UL )
#define portMPU_REGION_READ_WRITE ( 0x03UL << 24UL )
#define portMPU_REGION_PRIVILEGED_READ_ONLY ( 0x05UL << 24UL )
#define portMPU_REGION_READ_ONLY ( 0x06UL << 24UL )
#define portMPU_REGION_PRIVILEGED_READ_WRITE ( 0x01UL << 24UL )
#define portMPU_REGION_CACHEABLE_BUFFERABLE ( 0x07UL << 16UL )
#define portMPU_REGION_EXECUTE_NEVER ( 0x01UL << 28UL )
#define portUNPRIVILEGED_FLASH_REGION ( 0UL )
#define portPRIVILEGED_FLASH_REGION ( 1UL )
#define portPRIVILEGED_RAM_REGION ( 2UL )
#define portGENERAL_PERIPHERALS_REGION ( 3UL )
#define portSTACK_REGION ( 4UL )
#define portFIRST_CONFIGURABLE_REGION ( 5UL )
#define portLAST_CONFIGURABLE_REGION ( 7UL )
#define portNUM_CONFIGURABLE_REGIONS ( ( portLAST_CONFIGURABLE_REGION - portFIRST_CONFIGURABLE_REGION ) + 1 )
#define portTOTAL_NUM_REGIONS ( portNUM_CONFIGURABLE_REGIONS + 1 ) /* Plus one to make space for the stack region. */
#define portSWITCH_TO_USER_MODE() __asm volatile ( " mrs r0, control \n orr r0, #1 \n msr control, r0 " :::"r0" )
typedef struct MPU_REGION_REGISTERS
{
uint32_t ulRegionBaseAddress;
uint32_t ulRegionAttribute;
} xMPU_REGION_REGISTERS;
/* Plus 1 to create space for the stack region. */
typedef struct MPU_SETTINGS
{
xMPU_REGION_REGISTERS xRegion[ portTOTAL_NUM_REGIONS ];
} xMPU_SETTINGS;
/* Architecture specifics. */
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portBYTE_ALIGNMENT 8
/*-----------------------------------------------------------*/
/* SVC numbers for various services. */
#define portSVC_START_SCHEDULER 0
#define portSVC_YIELD 1
#define portSVC_RAISE_PRIVILEGE 2
/* Scheduler utilities. */
#define portYIELD() __asm volatile ( " SVC %0 \n" :: "i" (portSVC_YIELD) )
#define portYIELD_WITHIN_API() *(portNVIC_INT_CTRL) = portNVIC_PENDSVSET
#define portNVIC_INT_CTRL ( ( volatile uint32_t *) 0xe000ed04 )
#define portNVIC_PENDSVSET 0x10000000
#define portEND_SWITCHING_ISR( xSwitchRequired ) if( xSwitchRequired ) *(portNVIC_INT_CTRL) = portNVIC_PENDSVSET
#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
/*-----------------------------------------------------------*/
/* Critical section management. */
/*
* Set basepri to portMAX_SYSCALL_INTERRUPT_PRIORITY without effecting other
* registers. r0 is clobbered.
*/
#define portSET_INTERRUPT_MASK() \
__asm volatile \
( \
" mov r0, %0 \n" \
" msr basepri, r0 \n" \
::"i"(configMAX_SYSCALL_INTERRUPT_PRIORITY):"r0" \
)
/*
* Set basepri back to 0 without effective other registers.
* r0 is clobbered. FAQ: Setting BASEPRI to 0 is not a bug. Please see
* http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html before disagreeing.
*/
#define portCLEAR_INTERRUPT_MASK() \
__asm volatile \
( \
" mov r0, #0 \n" \
" msr basepri, r0 \n" \
:::"r0" \
)
/* FAQ: Setting BASEPRI to 0 is not a bug. Please see
http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html before disagreeing. */
#define portSET_INTERRUPT_MASK_FROM_ISR() 0;portSET_INTERRUPT_MASK()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) portCLEAR_INTERRUPT_MASK();(void)x
extern void vPortEnterCritical( void );
extern void vPortExitCritical( void );
#define portDISABLE_INTERRUPTS() portSET_INTERRUPT_MASK()
#define portENABLE_INTERRUPTS() portCLEAR_INTERRUPT_MASK()
#define portENTER_CRITICAL() vPortEnterCritical()
#define portEXIT_CRITICAL() vPortExitCritical()
/*-----------------------------------------------------------*/
/* Task function macros as described on the FreeRTOS.org WEB site. */
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters )
#define portNOP()
#ifdef __cplusplus
}
#endif
#endif /* PORTMACRO_H */

View file

@ -0,0 +1,33 @@
include $(MAKE_INCLUDE_GEN)
.PHONY: all clean
MODULE_IFLAGS =
#*****************************************************************************#
# Object FILE LIST #
#*****************************************************************************#
OBJS = port.o
#*****************************************************************************#
# RULES TO GENERATE TARGETS #
#*****************************************************************************#
# Define the Rules to build the core targets
all: CORE_TARGETS COPY_RAM_OBJS
#*****************************************************************************#
# GENERATE OBJECT FILE
#*****************************************************************************#
CORE_TARGETS: $(OBJS)
clean:
$(REMOVE) *.o
$(REMOVE) *.i
$(REMOVE) *.s
$(REMOVE) *.d
-include $(DEPS)

View file

@ -0,0 +1,784 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the ARM CM4F port.
*----------------------------------------------------------*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#ifndef __VFP_FP__
#error This port can only be used when the project options are configured to enable hardware floating point support.
#endif
#ifndef configSYSTICK_CLOCK_HZ
#define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ
/* Ensure the SysTick is clocked at the same frequency as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
#else
/* The way the SysTick is clocked is not modified in case it is not the same
as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 0 )
#endif
/* Constants required to manipulate the core. Registers first... */
#define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) )
#define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) )
#define portNVIC_SYSTICK_CURRENT_VALUE_REG ( * ( ( volatile uint32_t * ) 0xe000e018 ) )
#define portNVIC_SYSPRI2_REG ( * ( ( volatile uint32_t * ) 0xe000ed20 ) )
/* ...then bits in the registers. */
#define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
#define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
#define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL )
#define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL )
#define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL )
#define portNVIC_PENDSV_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL )
#define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL )
/* Constants required to check the validity of an interrupt priority. */
#define portFIRST_USER_INTERRUPT_NUMBER ( 16 )
#define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 )
#define portAIRCR_REG ( * ( ( volatile uint32_t * ) 0xE000ED0C ) )
#define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff )
#define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 )
#define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 )
#define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL )
#define portPRIGROUP_SHIFT ( 8UL )
/* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
#define portVECTACTIVE_MASK ( 0x1FUL )
/* Constants required to manipulate the VFP. */
#define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
#define portASPEN_AND_LSPEN_BITS ( 0x3UL << 30UL )
/* Constants required to set up the initial stack. */
#define portINITIAL_XPSR ( 0x01000000 )
#define portINITIAL_EXEC_RETURN ( 0xfffffffd )
/* The systick is a 24-bit counter. */
#define portMAX_24_BIT_NUMBER ( 0xffffffUL )
/* A fiddle factor to estimate the number of SysTick counts that would have
occurred while the SysTick counter is stopped during tickless idle
calculations. */
#define portMISSED_COUNTS_FACTOR ( 45UL )
/* Let the user override the pre-loading of the initial LR with the address of
prvTaskExitError() in case is messes up unwinding of the stack in the
debugger. */
#ifdef configTASK_RETURN_ADDRESS
#define portTASK_RETURN_ADDRESS configTASK_RETURN_ADDRESS
#else
#define portTASK_RETURN_ADDRESS prvTaskExitError
#endif
/* Each task maintains its own interrupt status in the critical nesting
variable. */
static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
/*
* Setup the timer to generate the tick interrupts. The implementation in this
* file is weak to allow application writers to change the timer used to
* generate the tick interrupt.
*/
void vPortSetupTimerInterrupt( void );
/*
* Exception handlers.
*/
void xPortPendSVHandler( void ) __attribute__ (( naked ));
void xPortSysTickHandler( void );
void vPortSVCHandler( void ) __attribute__ (( naked ));
/*
* Start first task is a separate function so it can be tested in isolation.
*/
static void prvPortStartFirstTask( void ) __attribute__ (( naked ));
/*
* Function to enable the VFP.
*/
static void vPortEnableVFP( void ) __attribute__ (( naked ));
/*
* Used to catch tasks that attempt to return from their implementing function.
*/
static void prvTaskExitError( void );
/*-----------------------------------------------------------*/
/*
* The number of SysTick increments that make up one tick period.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulTimerCountsForOneTick = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* The maximum number of tick periods that can be suppressed is limited by the
* 24 bit resolution of the SysTick timer.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t xMaximumPossibleSuppressedTicks = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Compensate for the CPU cycles that pass while the SysTick is stopped (low
* power functionality only.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulStoppedTimerCompensation = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
* FreeRTOS API functions are not called from interrupts that have been assigned
* a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
*/
#if ( configASSERT_DEFINED == 1 )
static uint8_t ucMaxSysCallPriority = 0;
static uint32_t ulMaxPRIGROUPValue = 0;
static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
{
/* Simulate the stack frame as it would be created by a context switch
interrupt. */
/* Offset added to account for the way the MCU uses the stack on entry/exit
of interrupts, and to ensure alignment. */
pxTopOfStack--;
*pxTopOfStack = portINITIAL_XPSR; /* xPSR */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) pxCode; /* PC */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* LR */
/* Save code space by skipping register initialisation. */
pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
*pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
/* A save method is being used that requires each task to maintain its
own exec return value. */
pxTopOfStack--;
*pxTopOfStack = portINITIAL_EXEC_RETURN;
pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
static void prvTaskExitError( void )
{
/* A function that implements a task must not exit or attempt to return to
its caller as there is nothing to return to. If a task wants to exit it
should instead call vTaskDelete( NULL ).
Artificially force an assert() to be triggered if configASSERT() is
defined, then stop here so application writers can catch the error. */
configASSERT( uxCriticalNesting == ~0UL );
portDISABLE_INTERRUPTS();
for( ;; );
}
/*-----------------------------------------------------------*/
void vPortSVCHandler( void )
{
__asm volatile (
" ldr r3, pxCurrentTCBConst2 \n" /* Restore the context. */
" ldr r1, [r3] \n" /* Use pxCurrentTCBConst to get the pxCurrentTCB address. */
" ldr r0, [r1] \n" /* The first item in pxCurrentTCB is the task top of stack. */
" ldmia r0!, {r4-r11, r14} \n" /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
" msr psp, r0 \n" /* Restore the task stack pointer. */
" isb \n"
" mov r0, #0 \n"
" msr basepri, r0 \n"
" bx r14 \n"
" \n"
" .align 2 \n"
"pxCurrentTCBConst2: .word pxCurrentTCB \n"
);
}
/*-----------------------------------------------------------*/
static void prvPortStartFirstTask( void )
{
__asm volatile(
" ldr r0, =0xE000ED08 \n" /* Use the NVIC offset register to locate the stack. */
" ldr r0, [r0] \n"
" ldr r0, [r0] \n"
" msr msp, r0 \n" /* Set the msp back to the start of the stack. */
" cpsie i \n" /* Globally enable interrupts. */
" cpsie f \n"
" dsb \n"
" isb \n"
" svc 0 \n" /* System call to start first task. */
" nop \n"
);
}
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
BaseType_t xPortStartScheduler( void )
{
/* configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0.
See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
configASSERT( configMAX_SYSCALL_INTERRUPT_PRIORITY );
#if( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
functions can be called. ISR safe functions are those that end in
"FromISR". FreeRTOS maintains separate thread and ISR API functions to
ensure interrupt entry is as fast and simple as possible.
Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
/* Determine the number of priority bits available. First write to all
possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Calculate the maximum acceptable priority group value for the number
of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
/* Shift the priority group value back to its position within the AIRCR
register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
}
#endif /* conifgASSERT_DEFINED */
/* Make PendSV and SysTick the lowest priority interrupts. */
portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;
portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;
/* Start the timer that generates the tick ISR. Interrupts are disabled
here already. */
vPortSetupTimerInterrupt();
/* Initialise the critical nesting count ready for the first task. */
uxCriticalNesting = 0;
/* Ensure the VFP is enabled - it should be anyway. */
vPortEnableVFP();
/* Lazy save always. */
*( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
/* Start the first task. */
prvPortStartFirstTask();
/* Should never get here as the tasks will now be executing! Call the task
exit error function to prevent compiler warnings about a static function
not being called in the case that the application writer overrides this
functionality by defining configTASK_RETURN_ADDRESS. */
prvTaskExitError();
/* Should not get here! */
return 0;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* Not implemented in ports where there is nothing to return to.
Artificially force an assert. */
configASSERT( uxCriticalNesting == 1000UL );
}
/*-----------------------------------------------------------*/
void vPortYield( void )
{
/* Set a PendSV to request a context switch. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
/* Barriers are normally not required but do ensure the code is completely
within the specified behaviour for the architecture. */
__asm volatile( "dsb" );
__asm volatile( "isb" );
}
/*-----------------------------------------------------------*/
void vPortEnterCritical( void )
{
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
__asm volatile( "dsb" );
__asm volatile( "isb" );
/* This is not the interrupt safe version of the enter critical function so
assert() if it is being called from an interrupt context. Only API
functions that end in "FromISR" can be used in an interrupt. Only assert if
the critical nesting count is 1 to protect against recursive calls if the
assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
}
/*-----------------------------------------------------------*/
__attribute__(( naked )) uint32_t ulPortSetInterruptMask( void )
{
__asm volatile \
( \
" mrs r0, basepri \n" \
" mov r1, %0 \n" \
" msr basepri, r1 \n" \
" bx lr \n" \
:: "i" ( configMAX_SYSCALL_INTERRUPT_PRIORITY ) : "r0", "r1" \
);
/* This return will not be reached but is necessary to prevent compiler
warnings. */
return 0;
}
/*-----------------------------------------------------------*/
__attribute__(( naked )) void vPortClearInterruptMask( uint32_t ulNewMaskValue )
{
__asm volatile \
( \
" msr basepri, r0 \n" \
" bx lr \n" \
:::"r0" \
);
/* Just to avoid compiler warnings. */
( void ) ulNewMaskValue;
}
/*-----------------------------------------------------------*/
void xPortPendSVHandler( void )
{
/* This is a naked function. */
__asm volatile
(
" mrs r0, psp \n"
" isb \n"
" \n"
" ldr r3, pxCurrentTCBConst \n" /* Get the location of the current TCB. */
" ldr r2, [r3] \n"
" \n"
" tst r14, #0x10 \n" /* Is the task using the FPU context? If so, push high vfp registers. */
" it eq \n"
" vstmdbeq r0!, {s16-s31} \n"
" \n"
" stmdb r0!, {r4-r11, r14} \n" /* Save the core registers. */
" \n"
" str r0, [r2] \n" /* Save the new top of stack into the first member of the TCB. */
" \n"
" stmdb sp!, {r3} \n"
" mov r0, %0 \n"
" msr basepri, r0 \n"
" bl vTaskSwitchContext \n"
" mov r0, #0 \n"
" msr basepri, r0 \n"
" ldmia sp!, {r3} \n"
" \n"
" ldr r1, [r3] \n" /* The first item in pxCurrentTCB is the task top of stack. */
" ldr r0, [r1] \n"
" \n"
" ldmia r0!, {r4-r11, r14} \n" /* Pop the core registers. */
" \n"
" tst r14, #0x10 \n" /* Is the task using the FPU context? If so, pop the high vfp registers too. */
" it eq \n"
" vldmiaeq r0!, {s16-s31} \n"
" \n"
" msr psp, r0 \n"
" isb \n"
" \n"
#ifdef WORKAROUND_PMU_CM001 /* XMC4000 specific errata workaround. */
#if WORKAROUND_PMU_CM001 == 1
" push { r14 } \n"
" pop { pc } \n"
#endif
#endif
" \n"
" bx r14 \n"
" \n"
" .align 2 \n"
"pxCurrentTCBConst: .word pxCurrentTCB \n"
::"i"(configMAX_SYSCALL_INTERRUPT_PRIORITY)
);
}
/*-----------------------------------------------------------*/
void xPortSysTickHandler( void )
{
/* The SysTick runs at the lowest interrupt priority, so when this interrupt
executes all interrupts must be unmasked. There is therefore no need to
save and then restore the interrupt mask value as its value is already
known. */
( void ) portSET_INTERRUPT_MASK_FROM_ISR();
{
/* Increment the RTOS tick. */
if( xTaskIncrementTick() != pdFALSE )
{
/* A context switch is required. Context switching is performed in
the PendSV interrupt. Pend the PendSV interrupt. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( 0 );
}
/*-----------------------------------------------------------*/
#if configUSE_TICKLESS_IDLE == 1
__attribute__((weak)) void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
{
uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickCTRL;
TickType_t xModifiableIdleTime;
/* Make sure the SysTick reload value does not overflow the counter. */
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
{
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
}
/* Stop the SysTick momentarily. The time the SysTick is stopped for
is accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
portNVIC_SYSTICK_CTRL_REG &= ~portNVIC_SYSTICK_ENABLE_BIT;
/* Calculate the reload value required to wait xExpectedIdleTime
tick periods. -1 is used because this code will execute part way
through one of the tick periods. */
ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
if( ulReloadValue > ulStoppedTimerCompensation )
{
ulReloadValue -= ulStoppedTimerCompensation;
}
/* Enter a critical section but don't use the taskENTER_CRITICAL()
method as that will mask interrupts that should exit sleep mode. */
__asm volatile( "cpsid i" );
/* If a context switch is pending or a task is waiting for the scheduler
to be unsuspended then abandon the low power entry. */
if( eTaskConfirmSleepModeStatus() == eAbortSleep )
{
/* Restart from whatever is left in the count register to complete
this tick period. */
portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Reset the reload register to the value required for normal tick
periods. */
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
/* Re-enable interrupts - see comments above the cpsid instruction()
above. */
__asm volatile( "cpsie i" );
}
else
{
/* Set the new reload value. */
portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
/* Clear the SysTick count flag and set the count value back to
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
set its parameter to 0 to indicate that its implementation contains
its own wait for interrupt or wait for event instruction, and so wfi
should not be executed again. However, the original expected idle
time variable must remain unmodified, so a copy is taken. */
xModifiableIdleTime = xExpectedIdleTime;
configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
if( xModifiableIdleTime > 0 )
{
__asm volatile( "dsb" );
__asm volatile( "wfi" );
__asm volatile( "isb" );
}
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
/* Stop SysTick. Again, the time the SysTick is stopped for is
accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
ulSysTickCTRL = portNVIC_SYSTICK_CTRL_REG;
portNVIC_SYSTICK_CTRL_REG = ( ulSysTickCTRL & ~portNVIC_SYSTICK_ENABLE_BIT );
/* Re-enable interrupts - see comments above the cpsid instruction()
above. */
__asm volatile( "cpsie i" );
if( ( ulSysTickCTRL & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
{
uint32_t ulCalculatedLoadValue;
/* The tick interrupt has already executed, and the SysTick
count reloaded with ulReloadValue. Reset the
portNVIC_SYSTICK_LOAD_REG with whatever remains of this tick
period. */
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
/* Don't allow a tiny value, or values that have somehow
underflowed because the post sleep hook did something
that took too long. */
if( ( ulCalculatedLoadValue < ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
{
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
}
portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
/* The tick interrupt handler will already have pended the tick
processing in the kernel. As the pending tick will be
processed as soon as this function exits, the tick value
maintained by the tick is stepped forward by one less than the
time spent waiting. */
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
}
else
{
/* Something other than the tick interrupt ended the sleep.
Work out how long the sleep lasted rounded to complete tick
periods (not the ulReload value which accounted for part
ticks). */
ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* How many complete tick periods passed while the processor
was waiting? */
ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
/* The reload value is set to whatever fraction of a single tick
period remains. */
portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1 ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
}
/* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG
again, then set portNVIC_SYSTICK_LOAD_REG back to its standard
value. The critical section is used to ensure the tick interrupt
can only execute once in the case that the reload register is near
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
portENTER_CRITICAL();
{
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
vTaskStepTick( ulCompleteTickPeriods );
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
}
portEXIT_CRITICAL();
}
}
#endif /* #if configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
/*
* Setup the systick timer to generate the tick interrupts at the required
* frequency.
*/
__attribute__(( weak )) void vPortSetupTimerInterrupt( void )
{
/* Calculate the constants required to configure the tick interrupt. */
#if configUSE_TICKLESS_IDLE == 1
{
ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
}
#endif /* configUSE_TICKLESS_IDLE */
/* Configure SysTick to interrupt at the requested rate. */
portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
}
/*-----------------------------------------------------------*/
/* This is a naked function. */
static void vPortEnableVFP( void )
{
__asm volatile
(
" ldr.w r0, =0xE000ED88 \n" /* The FPU enable bits are in the CPACR. */
" ldr r1, [r0] \n"
" \n"
" orr r1, r1, #( 0xf << 20 ) \n" /* Enable CP10 and CP11 coprocessors, then save back. */
" str r1, [r0] \n"
" bx r14 "
);
}
/*-----------------------------------------------------------*/
#if( configASSERT_DEFINED == 1 )
void vPortValidateInterruptPriority( void )
{
uint32_t ulCurrentInterrupt;
uint8_t ucCurrentPriority;
/* Obtain the number of the currently executing interrupt. */
__asm volatile( "mrs %0, ipsr" : "=r"( ulCurrentInterrupt ) );
/* Is the interrupt number a user defined interrupt? */
if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
{
/* Look up the interrupt's priority. */
ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
/* The following assertion will fail if a service routine (ISR) for
an interrupt that has been assigned a priority above
configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
function. ISR safe FreeRTOS API functions must *only* be called
from interrupts that have been assigned a priority at or below
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Numerically low interrupt priority numbers represent logically high
interrupt priorities, therefore the priority of the interrupt must
be set to a value equal to or numerically *higher* than
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Interrupts that use the FreeRTOS API must not be left at their
default priority of zero as that is the highest possible priority,
which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
and therefore also guaranteed to be invalid.
FreeRTOS maintains separate thread and ISR API functions to ensure
interrupt entry is as fast and simple as possible.
The following links provide detailed information:
http://www.freertos.org/RTOS-Cortex-M3-M4.html
http://www.freertos.org/FAQHelp.html */
configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
}
/* Priority grouping: The interrupt controller (NVIC) allows the bits
that define each interrupt's priority to be split between bits that
define the interrupt's pre-emption priority bits and bits that define
the interrupt's sub-priority. For simplicity all bits must be defined
to be pre-emption priority bits. The following assertion will fail if
this is not the case (if some bits represent a sub-priority).
If the application only uses CMSIS libraries for interrupt
configuration then the correct setting can be achieved on all Cortex-M
devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
scheduler. Note however that some vendor specific peripheral libraries
assume a non-zero priority group setting, in which cases using a value
of zero will result in unpredicable behaviour. */
configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
}
#endif /* configASSERT_DEFINED */

View file

@ -0,0 +1,196 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
#ifdef __cplusplus
extern "C" {
#endif
/*-----------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the
* given hardware and compiler.
*
* These settings should not be altered.
*-----------------------------------------------------------
*/
/* Type definitions. */
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint32_t
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
typedef unsigned long UBaseType_t;
#if( configUSE_16_BIT_TICKS == 1 )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffff
#else
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffffffffUL
#endif
/*-----------------------------------------------------------*/
/* Architecture specifics. */
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portBYTE_ALIGNMENT 8
/*-----------------------------------------------------------*/
/* Scheduler utilities. */
extern void vPortYield( void );
#define portNVIC_INT_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000ed04 ) )
#define portNVIC_PENDSVSET_BIT ( 1UL << 28UL )
#define portYIELD() vPortYield()
#define portEND_SWITCHING_ISR( xSwitchRequired ) if( xSwitchRequired ) portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT
#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
/*-----------------------------------------------------------*/
/* Critical section management. */
extern void vPortEnterCritical( void );
extern void vPortExitCritical( void );
extern uint32_t ulPortSetInterruptMask( void );
extern void vPortClearInterruptMask( uint32_t ulNewMaskValue );
#define portSET_INTERRUPT_MASK_FROM_ISR() ulPortSetInterruptMask()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) vPortClearInterruptMask(x)
#define portDISABLE_INTERRUPTS() ulPortSetInterruptMask()
#define portENABLE_INTERRUPTS() vPortClearInterruptMask(0)
#define portENTER_CRITICAL() vPortEnterCritical()
#define portEXIT_CRITICAL() vPortExitCritical()
/*-----------------------------------------------------------*/
/* Task function macros as described on the FreeRTOS.org WEB site. These are
not necessary for to use this port. They are defined so the common demo files
(which build with all the ports) will build. */
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters )
/*-----------------------------------------------------------*/
/* Tickless idle/low power functionality. */
#ifndef portSUPPRESS_TICKS_AND_SLEEP
extern void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ) vPortSuppressTicksAndSleep( xExpectedIdleTime )
#endif
/*-----------------------------------------------------------*/
/* Architecture specific optimisations. */
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
#endif
#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
/* Generic helper function. */
__attribute__( ( always_inline ) ) static inline uint8_t ucPortCountLeadingZeros( uint32_t ulBitmap )
{
uint8_t ucReturn;
__asm volatile ( "clz %0, %1" : "=r" ( ucReturn ) : "r" ( ulBitmap ) );
return ucReturn;
}
/* Check the configuration. */
#if( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
#endif
/* Store/clear the ready priorities in a bit map. */
#define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )
/*-----------------------------------------------------------*/
#define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31 - ucPortCountLeadingZeros( ( uxReadyPriorities ) ) )
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
#ifdef configASSERT
void vPortValidateInterruptPriority( void );
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID() vPortValidateInterruptPriority()
#endif
/* portNOP() is not required by this port. */
#define portNOP()
#ifdef __cplusplus
}
#endif
#endif /* PORTMACRO_H */

View file

@ -0,0 +1,655 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the ARM CM3 port.
*----------------------------------------------------------*/
/* IAR includes. */
#include <intrinsics.h>
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
/* Platform includes */
#include "platform_autoconf.h"
#if configMAX_SYSCALL_INTERRUPT_PRIORITY == 0
#error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0. See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
#endif
#ifndef configSYSTICK_CLOCK_HZ
#define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ
/* Ensure the SysTick is clocked at the same frequency as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
#else
/* The way the SysTick is clocked is not modified in case it is not the same
as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 0 )
#endif
/* Constants required to manipulate the core. Registers first... */
#define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) )
#define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) )
#define portNVIC_SYSTICK_CURRENT_VALUE_REG ( * ( ( volatile uint32_t * ) 0xe000e018 ) )
#define portNVIC_SYSPRI2_REG ( * ( ( volatile uint32_t * ) 0xe000ed20 ) )
/* ...then bits in the registers. */
#define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
#define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
#define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL )
#define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL )
#define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL )
#define portNVIC_PENDSV_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL )
#define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL )
/* Constants required to check the validity of an interrupt priority. */
#define portFIRST_USER_INTERRUPT_NUMBER ( 16 )
#define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 )
#define portAIRCR_REG ( * ( ( volatile uint32_t * ) 0xE000ED0C ) )
#define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff )
#define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 )
#define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 )
#define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL )
#define portPRIGROUP_SHIFT ( 8UL )
/* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
#define portVECTACTIVE_MASK ( 0x1FUL )
/* Constants required to set up the initial stack. */
#define portINITIAL_XPSR ( 0x01000000 )
/* The systick is a 24-bit counter. */
#define portMAX_24_BIT_NUMBER ( 0xffffffUL )
/* A fiddle factor to estimate the number of SysTick counts that would have
occurred while the SysTick counter is stopped during tickless idle
calculations. */
#define portMISSED_COUNTS_FACTOR ( 45UL )
/* For backward compatibility, ensure configKERNEL_INTERRUPT_PRIORITY is
defined. The value 255 should also ensure backward compatibility.
FreeRTOS.org versions prior to V4.3.0 did not include this definition. */
#ifndef configKERNEL_INTERRUPT_PRIORITY
#define configKERNEL_INTERRUPT_PRIORITY 255
#endif
/* Each task maintains its own interrupt status in the critical nesting
variable. */
static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
/*
* Setup the timer to generate the tick interrupts. The implementation in this
* file is weak to allow application writers to change the timer used to
* generate the tick interrupt.
*/
void vPortSetupTimerInterrupt( void );
/*
* Exception handlers.
*/
void xPortSysTickHandler( void );
/*
* Start first task is a separate function so it can be tested in isolation.
*/
extern void vPortStartFirstTask( void );
/*
* Used to catch tasks that attempt to return from their implementing function.
*/
static void prvTaskExitError( void );
/*-----------------------------------------------------------*/
/*
* The number of SysTick increments that make up one tick period.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulTimerCountsForOneTick = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* The maximum number of tick periods that can be suppressed is limited by the
* 24 bit resolution of the SysTick timer.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t xMaximumPossibleSuppressedTicks = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Compensate for the CPU cycles that pass while the SysTick is stopped (low
* power functionality only.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulStoppedTimerCompensation = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
* FreeRTOS API functions are not called from interrupts that have been assigned
* a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
*/
#if ( configASSERT_DEFINED == 1 )
static uint8_t ucMaxSysCallPriority = 0;
static uint32_t ulMaxPRIGROUPValue = 0;
static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
{
/* Simulate the stack frame as it would be created by a context switch
interrupt. */
pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts. */
*pxTopOfStack = portINITIAL_XPSR; /* xPSR */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) pxCode; /* PC */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) prvTaskExitError; /* LR */
pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
*pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
static void prvTaskExitError( void )
{
/* A function that implements a task must not exit or attempt to return to
its caller as there is nothing to return to. If a task wants to exit it
should instead call vTaskDelete( NULL ).
Artificially force an assert() to be triggered if configASSERT() is
defined, then stop here so application writers can catch the error. */
configASSERT( uxCriticalNesting == ~0UL );
portDISABLE_INTERRUPTS();
for( ;; );
}
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
BaseType_t xPortStartScheduler( void )
{
#if( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
functions can be called. ISR safe functions are those that end in
"FromISR". FreeRTOS maintains separate thread and ISR API functions to
ensure interrupt entry is as fast and simple as possible.
Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
/* Determine the number of priority bits available. First write to all
possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Calculate the maximum acceptable priority group value for the number
of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
/* Shift the priority group value back to its position within the AIRCR
register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
}
#endif /* conifgASSERT_DEFINED */
/* Make PendSV and SysTick the lowest priority interrupts. */
portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;
portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;
/* Start the timer that generates the tick ISR. Interrupts are disabled
here already. */
vPortSetupTimerInterrupt();
/* Initialise the critical nesting count ready for the first task. */
uxCriticalNesting = 0;
/* Start the first task. */
vPortStartFirstTask();
/* Should not get here! */
return 0;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* Not implemented in ports where there is nothing to return to.
Artificially force an assert. */
configASSERT( uxCriticalNesting == 1000UL );
}
/*-----------------------------------------------------------*/
void vPortYield( void )
{
/* Set a PendSV to request a context switch. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
/* Barriers are normally not required but do ensure the code is completely
within the specified behaviour for the architecture. */
__DSB();
__ISB();
}
/*-----------------------------------------------------------*/
void vPortEnterCritical( void )
{
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
__DSB();
__ISB();
/* This is not the interrupt safe version of the enter critical function so
assert() if it is being called from an interrupt context. Only API
functions that end in "FromISR" can be used in an interrupt. Only assert if
the critical nesting count is 1 to protect against recursive calls if the
assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
}
/*-----------------------------------------------------------*/
void xPortSysTickHandler( void )
{
/* The SysTick runs at the lowest interrupt priority, so when this interrupt
executes all interrupts must be unmasked. There is therefore no need to
save and then restore the interrupt mask value as its value is already
known. */
( void ) portSET_INTERRUPT_MASK_FROM_ISR();
{
/* Increment the RTOS tick. */
if( xTaskIncrementTick() != pdFALSE )
{
/* A context switch is required. Context switching is performed in
the PendSV interrupt. Pend the PendSV interrupt. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( 0 );
}
/*-----------------------------------------------------------*/
#if configUSE_TICKLESS_IDLE == 1
__weak void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
{
uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickCTRL;
TickType_t xModifiableIdleTime;
/* Make sure the SysTick reload value does not overflow the counter. */
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
{
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
}
/* Stop the SysTick momentarily. The time the SysTick is stopped for
is accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
portNVIC_SYSTICK_CTRL_REG &= ~portNVIC_SYSTICK_ENABLE_BIT;
/* Calculate the reload value required to wait xExpectedIdleTime
tick periods. -1 is used because this code will execute part way
through one of the tick periods. */
ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
if( ulReloadValue > ulStoppedTimerCompensation )
{
ulReloadValue -= ulStoppedTimerCompensation;
}
/* Enter a critical section but don't use the taskENTER_CRITICAL()
method as that will mask interrupts that should exit sleep mode. */
__disable_interrupt();
/* If a context switch is pending or a task is waiting for the scheduler
to be unsuspended then abandon the low power entry. */
if( eTaskConfirmSleepModeStatus() == eAbortSleep )
{
/* Restart from whatever is left in the count register to complete
this tick period. */
portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Reset the reload register to the value required for normal tick
periods. */
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
/* Re-enable interrupts - see comments above __disable_interrupt()
call above. */
__enable_interrupt();
}
else
{
/* Set the new reload value. */
portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
/* Clear the SysTick count flag and set the count value back to
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
set its parameter to 0 to indicate that its implementation contains
its own wait for interrupt or wait for event instruction, and so wfi
should not be executed again. However, the original expected idle
time variable must remain unmodified, so a copy is taken. */
xModifiableIdleTime = xExpectedIdleTime;
configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
if( xModifiableIdleTime > 0 )
{
__DSB();
__WFI();
__ISB();
}
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
/* Stop SysTick. Again, the time the SysTick is stopped for is
accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
ulSysTickCTRL = portNVIC_SYSTICK_CTRL_REG;
portNVIC_SYSTICK_CTRL_REG = ( ulSysTickCTRL & ~portNVIC_SYSTICK_ENABLE_BIT );
/* Re-enable interrupts - see comments above __disable_interrupt()
call above. */
__enable_interrupt();
if( ( ulSysTickCTRL & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
{
uint32_t ulCalculatedLoadValue;
/* The tick interrupt has already executed, and the SysTick
count reloaded with ulReloadValue. Reset the
portNVIC_SYSTICK_LOAD_REG with whatever remains of this tick
period. */
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
/* Don't allow a tiny value, or values that have somehow
underflowed because the post sleep hook did something
that took too long. */
if( ( ulCalculatedLoadValue < ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
{
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
}
portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
/* The tick interrupt handler will already have pended the tick
processing in the kernel. As the pending tick will be
processed as soon as this function exits, the tick value
maintained by the tick is stepped forward by one less than the
time spent waiting. */
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
}
else
{
/* Something other than the tick interrupt ended the sleep.
Work out how long the sleep lasted rounded to complete tick
periods (not the ulReload value which accounted for part
ticks). */
ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* How many complete tick periods passed while the processor
was waiting? */
ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
/* The reload value is set to whatever fraction of a single tick
period remains. */
portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1 ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
}
/* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG
again, then set portNVIC_SYSTICK_LOAD_REG back to its standard
value. The critical section is used to ensure the tick interrupt
can only execute once in the case that the reload register is near
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
portENTER_CRITICAL();
{
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
vTaskStepTick( ulCompleteTickPeriods );
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
}
portEXIT_CRITICAL();
}
}
#endif /* #if configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
/*
* Setup the systick timer to generate the tick interrupts at the required
* frequency.
*/
__weak void vPortSetupTimerInterrupt( void )
{
/* Calculate the constants required to configure the tick interrupt. */
#if configUSE_TICKLESS_IDLE == 1
{
ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
#ifdef CONFIG_SOC_PS_MODULE
// RTK modified: max system timer can sleep up to 8355ms, set it to 8000
xMaximumPossibleSuppressedTicks = 8000;
#else // Below is original code. It can only sleep 100ms in 166MHz
xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
#endif
ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
}
#endif /* configUSE_TICKLESS_IDLE */
/* Configure SysTick to interrupt at the requested rate. */
portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
}
/*-----------------------------------------------------------*/
#if( configASSERT_DEFINED == 1 )
void vPortValidateInterruptPriority( void )
{
uint32_t ulCurrentInterrupt;
uint8_t ucCurrentPriority;
/* Obtain the number of the currently executing interrupt. */
__asm volatile( "mrs %0, ipsr" : "=r"( ulCurrentInterrupt ) );
/* Is the interrupt number a user defined interrupt? */
if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
{
/* Look up the interrupt's priority. */
ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
/* The following assertion will fail if a service routine (ISR) for
an interrupt that has been assigned a priority above
configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
function. ISR safe FreeRTOS API functions must *only* be called
from interrupts that have been assigned a priority at or below
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Numerically low interrupt priority numbers represent logically high
interrupt priorities, therefore the priority of the interrupt must
be set to a value equal to or numerically *higher* than
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Interrupts that use the FreeRTOS API must not be left at their
default priority of zero as that is the highest possible priority,
which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
and therefore also guaranteed to be invalid.
FreeRTOS maintains separate thread and ISR API functions to ensure
interrupt entry is as fast and simple as possible.
The following links provide detailed information:
http://www.freertos.org/RTOS-Cortex-M3-M4.html
http://www.freertos.org/FAQHelp.html */
configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
}
/* Priority grouping: The interrupt controller (NVIC) allows the bits
that define each interrupt's priority to be split between bits that
define the interrupt's pre-emption priority bits and bits that define
the interrupt's sub-priority. For simplicity all bits must be defined
to be pre-emption priority bits. The following assertion will fail if
this is not the case (if some bits represent a sub-priority).
If the application only uses CMSIS libraries for interrupt
configuration then the correct setting can be achieved on all Cortex-M
devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
scheduler. Note however that some vendor specific peripheral libraries
assume a non-zero priority group setting, in which cases using a value
of zero will result in unpredicable behaviour. */
configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
}
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/
void vApplicationIdleHook( void )
{
/* Use the idle task to place the CPU into a low power mode. Greater power
saving could be achieved by not including any demo tasks that never block. */
}
void vApplicationStackOverflowHook( xTaskHandle pxTask, signed char *pcTaskName )
{
/* This function will be called if a task overflows its stack, if
configCHECK_FOR_STACK_OVERFLOW != 0. It might be that the function
parameters have been corrupted, depending on the severity of the stack
overflow. When this is the case pxCurrentTCB can be inspected in the
debugger to find the offending task. */
// DiagPrintf("\n\r[%s] STACK OVERFLOW - TaskName(%s)\n\r", __FUNCTION__, pcTaskName);
for( ;; );
}
/*-----------------------------------------------------------*/

View file

@ -0,0 +1,155 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#include <FreeRTOSConfig.h>
RSEG CODE:CODE(2)
thumb
EXTERN pxCurrentTCB
EXTERN vTaskSwitchContext
PUBLIC xPortPendSVHandler
PUBLIC ulPortSetInterruptMask
PUBLIC vPortClearInterruptMask
PUBLIC vPortSVCHandler
PUBLIC vPortStartFirstTask
/*-----------------------------------------------------------*/
xPortPendSVHandler:
mrs r0, psp
isb
ldr r3, =pxCurrentTCB /* Get the location of the current TCB. */
ldr r2, [r3]
stmdb r0!, {r4-r11} /* Save the remaining registers. */
str r0, [r2] /* Save the new top of stack into the first member of the TCB. */
stmdb sp!, {r3, r14}
mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY
msr basepri, r0
bl vTaskSwitchContext
mov r0, #0
msr basepri, r0
ldmia sp!, {r3, r14}
ldr r1, [r3]
ldr r0, [r1] /* The first item in pxCurrentTCB is the task top of stack. */
ldmia r0!, {r4-r11} /* Pop the registers. */
msr psp, r0
isb
bx r14
/*-----------------------------------------------------------*/
ulPortSetInterruptMask:
mrs r0, basepri
mov r1, #configMAX_SYSCALL_INTERRUPT_PRIORITY
msr basepri, r1
bx r14
/*-----------------------------------------------------------*/
vPortClearInterruptMask:
msr basepri, r0
bx r14
/*-----------------------------------------------------------*/
vPortSVCHandler:
/* Get the location of the current TCB. */
ldr r3, =pxCurrentTCB
ldr r1, [r3]
ldr r0, [r1]
/* Pop the core registers. */
ldmia r0!, {r4-r11}
msr psp, r0
isb
mov r0, #0
msr basepri, r0
orr r14, r14, #13
bx r14
/*-----------------------------------------------------------*/
vPortStartFirstTask
/* Use the NVIC offset register to locate the stack. */
ldr r0, =0xE000ED08
ldr r0, [r0]
ldr r0, [r0]
/* Set the msp back to the start of the stack. */
msr msp, r0
/* Call SVC to start the first task, ensuring interrupts are enabled. */
cpsie i
cpsie f
dsb
isb
svc 0
END

View file

@ -0,0 +1,210 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
#ifdef __cplusplus
extern "C" {
#endif
#ifdef CONFIG_PLATFORM_8195A
// to prevent marco define use in standard header file
#define _NO_DEFINITIONS_IN_HEADER_FILES
#include <string.h>
//#include "basic_types.h"
#include "hal_misc.h"
#if !defined(__IARSTDLIB__)
#ifndef memcmp
#define memcmp(dst, src, sz) _memcmp(dst, src, sz)
#endif
#ifndef memset
#define memset(dst, val, sz) _memset(dst, val, sz)
#endif
#ifndef memcpy
#define memcpy(dst, src, sz) _memcpy(dst, src, sz)
#endif
#endif
#endif
/*-----------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the
* given hardware and compiler.
*
* These settings should not be altered.
*-----------------------------------------------------------
*/
/* Type definitions. */
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint32_t
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
typedef unsigned long UBaseType_t;
#if( configUSE_16_BIT_TICKS == 1 )
typedef uint16_t TickType_t;
#define portMAX_DELAY 0xffff
#else
typedef uint32_t TickType_t;
#define portMAX_DELAY 0xffffffffUL
#endif
/*-----------------------------------------------------------*/
/* Architecture specifics. */
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portBYTE_ALIGNMENT 8
/*-----------------------------------------------------------*/
/* Scheduler utilities. */
extern void vPortYield( void );
#define portNVIC_INT_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000ed04UL ) )
#define portNVIC_PENDSVSET_BIT ( 1UL << 28UL )
#define portYIELD() vPortYield()
#define portEND_SWITCHING_ISR( xSwitchRequired ) if( xSwitchRequired ) portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT
#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
/*-----------------------------------------------------------*/
/* Architecture specific optimisations. */
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
#endif
#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
/* Check the configuration. */
#if( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
#endif
/* Store/clear the ready priorities in a bit map. */
#define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) ) )
/*-----------------------------------------------------------*/
#include <intrinsics.h>
#define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31 - __CLZ( ( uxReadyPriorities ) ) )
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
/* Critical section management. */
extern void vPortEnterCritical( void );
extern void vPortExitCritical( void );
extern uint32_t ulPortSetInterruptMask( void );
extern void vPortClearInterruptMask( uint32_t ulNewMask );
#define portDISABLE_INTERRUPTS() ulPortSetInterruptMask()
#define portENABLE_INTERRUPTS() vPortClearInterruptMask( 0 )
#define portENTER_CRITICAL() vPortEnterCritical()
#define portEXIT_CRITICAL() vPortExitCritical()
#define portSET_INTERRUPT_MASK_FROM_ISR() ulPortSetInterruptMask()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) vPortClearInterruptMask( x )
/*-----------------------------------------------------------*/
/* Tickless idle/low power functionality. */
#ifndef portSUPPRESS_TICKS_AND_SLEEP
extern void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ) vPortSuppressTicksAndSleep( xExpectedIdleTime )
#endif
/*-----------------------------------------------------------*/
/* Task function macros as described on the FreeRTOS.org WEB site. These are
not necessary for to use this port. They are defined so the common demo files
(which build with all the ports) will build. */
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters )
/*-----------------------------------------------------------*/
#ifdef configASSERT
void vPortValidateInterruptPriority( void );
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID() vPortValidateInterruptPriority()
#endif
/* portNOP() is not required by this port. */
#define portNOP()
/* Suppress warnings that are generated by the IAR tools, but cannot be fixed in
the source code because to do so would cause other compilers to generate
warnings. */
#pragma diag_suppress=Pe191
#pragma diag_suppress=Pa082
#ifdef __cplusplus
}
#endif
#endif /* PORTMACRO_H */

View file

@ -0,0 +1,659 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the ARM CM4F port.
*----------------------------------------------------------*/
/* Compiler includes. */
#include <intrinsics.h>
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#ifndef __ARMVFP__
#error This port can only be used when the project options are configured to enable hardware floating point support.
#endif
#if configMAX_SYSCALL_INTERRUPT_PRIORITY == 0
#error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0. See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
#endif
#ifndef configSYSTICK_CLOCK_HZ
#define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ
/* Ensure the SysTick is clocked at the same frequency as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
#else
/* The way the SysTick is clocked is not modified in case it is not the same
as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 0 )
#endif
/* Constants required to manipulate the core. Registers first... */
#define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) )
#define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) )
#define portNVIC_SYSTICK_CURRENT_VALUE_REG ( * ( ( volatile uint32_t * ) 0xe000e018 ) )
#define portNVIC_SYSPRI2_REG ( * ( ( volatile uint32_t * ) 0xe000ed20 ) )
/* ...then bits in the registers. */
#define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
#define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
#define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL )
#define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL )
#define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL )
#define portNVIC_PENDSV_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL )
#define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL )
/* Constants required to check the validity of an interrupt priority. */
#define portFIRST_USER_INTERRUPT_NUMBER ( 16 )
#define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 )
#define portAIRCR_REG ( * ( ( volatile uint32_t * ) 0xE000ED0C ) )
#define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff )
#define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 )
#define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 )
#define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL )
#define portPRIGROUP_SHIFT ( 8UL )
/* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
#define portVECTACTIVE_MASK ( 0x1FUL )
/* Constants required to manipulate the VFP. */
#define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
#define portASPEN_AND_LSPEN_BITS ( 0x3UL << 30UL )
/* Constants required to set up the initial stack. */
#define portINITIAL_XPSR ( 0x01000000 )
#define portINITIAL_EXEC_RETURN ( 0xfffffffd )
/* The systick is a 24-bit counter. */
#define portMAX_24_BIT_NUMBER ( 0xffffffUL )
/* A fiddle factor to estimate the number of SysTick counts that would have
occurred while the SysTick counter is stopped during tickless idle
calculations. */
#define portMISSED_COUNTS_FACTOR ( 45UL )
/* Each task maintains its own interrupt status in the critical nesting
variable. */
static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
/*
* Setup the timer to generate the tick interrupts. The implementation in this
* file is weak to allow application writers to change the timer used to
* generate the tick interrupt.
*/
void vPortSetupTimerInterrupt( void );
/*
* Exception handlers.
*/
void xPortSysTickHandler( void );
/*
* Start first task is a separate function so it can be tested in isolation.
*/
extern void vPortStartFirstTask( void );
/*
* Turn the VFP on.
*/
extern void vPortEnableVFP( void );
/*
* Used to catch tasks that attempt to return from their implementing function.
*/
static void prvTaskExitError( void );
/*-----------------------------------------------------------*/
/*
* The number of SysTick increments that make up one tick period.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulTimerCountsForOneTick = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* The maximum number of tick periods that can be suppressed is limited by the
* 24 bit resolution of the SysTick timer.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t xMaximumPossibleSuppressedTicks = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Compensate for the CPU cycles that pass while the SysTick is stopped (low
* power functionality only.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulStoppedTimerCompensation = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
* FreeRTOS API functions are not called from interrupts that have been assigned
* a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
*/
#if ( configASSERT_DEFINED == 1 )
static uint8_t ucMaxSysCallPriority = 0;
static uint32_t ulMaxPRIGROUPValue = 0;
static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16;
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
{
/* Simulate the stack frame as it would be created by a context switch
interrupt. */
/* Offset added to account for the way the MCU uses the stack on entry/exit
of interrupts, and to ensure alignment. */
pxTopOfStack--;
*pxTopOfStack = portINITIAL_XPSR; /* xPSR */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) pxCode; /* PC */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) prvTaskExitError; /* LR */
/* Save code space by skipping register initialisation. */
pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
*pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
/* A save method is being used that requires each task to maintain its
own exec return value. */
pxTopOfStack--;
*pxTopOfStack = portINITIAL_EXEC_RETURN;
pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
static void prvTaskExitError( void )
{
/* A function that implements a task must not exit or attempt to return to
its caller as there is nothing to return to. If a task wants to exit it
should instead call vTaskDelete( NULL ).
Artificially force an assert() to be triggered if configASSERT() is
defined, then stop here so application writers can catch the error. */
configASSERT( uxCriticalNesting == ~0UL );
portDISABLE_INTERRUPTS();
for( ;; );
}
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
BaseType_t xPortStartScheduler( void )
{
#if( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
functions can be called. ISR safe functions are those that end in
"FromISR". FreeRTOS maintains separate thread and ISR API functions to
ensure interrupt entry is as fast and simple as possible.
Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
/* Determine the number of priority bits available. First write to all
possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Calculate the maximum acceptable priority group value for the number
of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
/* Shift the priority group value back to its position within the AIRCR
register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
}
#endif /* conifgASSERT_DEFINED */
/* Make PendSV and SysTick the lowest priority interrupts. */
portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;
portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;
/* Start the timer that generates the tick ISR. Interrupts are disabled
here already. */
vPortSetupTimerInterrupt();
/* Initialise the critical nesting count ready for the first task. */
uxCriticalNesting = 0;
/* Ensure the VFP is enabled - it should be anyway. */
vPortEnableVFP();
/* Lazy save always. */
*( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
/* Start the first task. */
vPortStartFirstTask();
/* Should not get here! */
return 0;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* Not implemented in ports where there is nothing to return to.
Artificially force an assert. */
configASSERT( uxCriticalNesting == 1000UL );
}
/*-----------------------------------------------------------*/
void vPortYield( void )
{
/* Set a PendSV to request a context switch. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
/* Barriers are normally not required but do ensure the code is completely
within the specified behaviour for the architecture. */
__DSB();
__ISB();
}
/*-----------------------------------------------------------*/
void vPortEnterCritical( void )
{
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
__DSB();
__ISB();
/* This is not the interrupt safe version of the enter critical function so
assert() if it is being called from an interrupt context. Only API
functions that end in "FromISR" can be used in an interrupt. Only assert if
the critical nesting count is 1 to protect against recursive calls if the
assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
}
/*-----------------------------------------------------------*/
void xPortSysTickHandler( void )
{
/* The SysTick runs at the lowest interrupt priority, so when this interrupt
executes all interrupts must be unmasked. There is therefore no need to
save and then restore the interrupt mask value as its value is already
known. */
( void ) portSET_INTERRUPT_MASK_FROM_ISR();
{
/* Increment the RTOS tick. */
if( xTaskIncrementTick() != pdFALSE )
{
/* A context switch is required. Context switching is performed in
the PendSV interrupt. Pend the PendSV interrupt. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( 0 );
}
/*-----------------------------------------------------------*/
#if configUSE_TICKLESS_IDLE == 1
__weak void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
{
uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickCTRL;
TickType_t xModifiableIdleTime;
/* Make sure the SysTick reload value does not overflow the counter. */
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
{
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
}
/* Stop the SysTick momentarily. The time the SysTick is stopped for
is accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
portNVIC_SYSTICK_CTRL_REG &= ~portNVIC_SYSTICK_ENABLE_BIT;
/* Calculate the reload value required to wait xExpectedIdleTime
tick periods. -1 is used because this code will execute part way
through one of the tick periods. */
ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
if( ulReloadValue > ulStoppedTimerCompensation )
{
ulReloadValue -= ulStoppedTimerCompensation;
}
/* Enter a critical section but don't use the taskENTER_CRITICAL()
method as that will mask interrupts that should exit sleep mode. */
__disable_interrupt();
/* If a context switch is pending or a task is waiting for the scheduler
to be unsuspended then abandon the low power entry. */
if( eTaskConfirmSleepModeStatus() == eAbortSleep )
{
/* Restart from whatever is left in the count register to complete
this tick period. */
portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Reset the reload register to the value required for normal tick
periods. */
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
/* Re-enable interrupts - see comments above __disable_interrupt()
call above. */
__enable_interrupt();
}
else
{
/* Set the new reload value. */
portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
/* Clear the SysTick count flag and set the count value back to
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
set its parameter to 0 to indicate that its implementation contains
its own wait for interrupt or wait for event instruction, and so wfi
should not be executed again. However, the original expected idle
time variable must remain unmodified, so a copy is taken. */
xModifiableIdleTime = xExpectedIdleTime;
configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
if( xModifiableIdleTime > 0 )
{
__DSB();
__WFI();
__ISB();
}
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
/* Stop SysTick. Again, the time the SysTick is stopped for is
accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
ulSysTickCTRL = portNVIC_SYSTICK_CTRL_REG;
portNVIC_SYSTICK_CTRL_REG = ( ulSysTickCTRL & ~portNVIC_SYSTICK_ENABLE_BIT );
/* Re-enable interrupts - see comments above __disable_interrupt()
call above. */
__enable_interrupt();
if( ( ulSysTickCTRL & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
{
uint32_t ulCalculatedLoadValue;
/* The tick interrupt has already executed, and the SysTick
count reloaded with ulReloadValue. Reset the
portNVIC_SYSTICK_LOAD_REG with whatever remains of this tick
period. */
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
/* Don't allow a tiny value, or values that have somehow
underflowed because the post sleep hook did something
that took too long. */
if( ( ulCalculatedLoadValue < ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
{
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
}
portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
/* The tick interrupt handler will already have pended the tick
processing in the kernel. As the pending tick will be
processed as soon as this function exits, the tick value
maintained by the tick is stepped forward by one less than the
time spent waiting. */
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
}
else
{
/* Something other than the tick interrupt ended the sleep.
Work out how long the sleep lasted rounded to complete tick
periods (not the ulReload value which accounted for part
ticks). */
ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* How many complete tick periods passed while the processor
was waiting? */
ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
/* The reload value is set to whatever fraction of a single tick
period remains. */
portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1 ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
}
/* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG
again, then set portNVIC_SYSTICK_LOAD_REG back to its standard
value. The critical section is used to ensure the tick interrupt
can only execute once in the case that the reload register is near
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
portENTER_CRITICAL();
{
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
vTaskStepTick( ulCompleteTickPeriods );
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
}
portEXIT_CRITICAL();
}
}
#endif /* #if configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
/*
* Setup the systick timer to generate the tick interrupts at the required
* frequency.
*/
__weak void vPortSetupTimerInterrupt( void )
{
/* Calculate the constants required to configure the tick interrupt. */
#if configUSE_TICKLESS_IDLE == 1
{
ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
}
#endif /* configUSE_TICKLESS_IDLE */
/* Configure SysTick to interrupt at the requested rate. */
portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
}
/*-----------------------------------------------------------*/
#if( configASSERT_DEFINED == 1 )
void vPortValidateInterruptPriority( void )
{
uint32_t ulCurrentInterrupt;
uint8_t ucCurrentPriority;
/* Obtain the number of the currently executing interrupt. */
__asm volatile( "mrs %0, ipsr" : "=r"( ulCurrentInterrupt ) );
/* Is the interrupt number a user defined interrupt? */
if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
{
/* Look up the interrupt's priority. */
ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
/* The following assertion will fail if a service routine (ISR) for
an interrupt that has been assigned a priority above
configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
function. ISR safe FreeRTOS API functions must *only* be called
from interrupts that have been assigned a priority at or below
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Numerically low interrupt priority numbers represent logically high
interrupt priorities, therefore the priority of the interrupt must
be set to a value equal to or numerically *higher* than
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Interrupts that use the FreeRTOS API must not be left at their
default priority of zero as that is the highest possible priority,
which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
and therefore also guaranteed to be invalid.
FreeRTOS maintains separate thread and ISR API functions to ensure
interrupt entry is as fast and simple as possible.
The following links provide detailed information:
http://www.freertos.org/RTOS-Cortex-M3-M4.html
http://www.freertos.org/FAQHelp.html */
configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
}
/* Priority grouping: The interrupt controller (NVIC) allows the bits
that define each interrupt's priority to be split between bits that
define the interrupt's pre-emption priority bits and bits that define
the interrupt's sub-priority. For simplicity all bits must be defined
to be pre-emption priority bits. The following assertion will fail if
this is not the case (if some bits represent a sub-priority).
If the application only uses CMSIS libraries for interrupt
configuration then the correct setting can be achieved on all Cortex-M
devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
scheduler. Note however that some vendor specific peripheral libraries
assume a non-zero priority group setting, in which cases using a value
of zero will result in unpredicable behaviour. */
configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
}
#endif /* configASSERT_DEFINED */
void vApplicationStackOverflowHook( xTaskHandle pxTask, signed char *pcTaskName )
{
/* This function will be called if a task overflows its stack, if
configCHECK_FOR_STACK_OVERFLOW != 0 */
printf("\n\r[%s] STACK OVERFLOW - TaskName(%s)\n\r", __FUNCTION__, pcTaskName);
for( ;; );
}

View file

@ -0,0 +1,195 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#include <FreeRTOSConfig.h>
RSEG CODE:CODE(2)
thumb
EXTERN pxCurrentTCB
EXTERN vTaskSwitchContext
PUBLIC xPortPendSVHandler
PUBLIC ulPortSetInterruptMask
PUBLIC vPortClearInterruptMask
PUBLIC vPortSVCHandler
PUBLIC vPortStartFirstTask
PUBLIC vPortEnableVFP
/*-----------------------------------------------------------*/
xPortPendSVHandler:
mrs r0, psp
isb
/* Get the location of the current TCB. */
ldr r3, =pxCurrentTCB
ldr r2, [r3]
/* Is the task using the FPU context? If so, push high vfp registers. */
tst r14, #0x10
it eq
vstmdbeq r0!, {s16-s31}
/* Save the core registers. */
stmdb r0!, {r4-r11, r14}
/* Save the new top of stack into the first member of the TCB. */
str r0, [r2]
stmdb sp!, {r3}
mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY
msr basepri, r0
bl vTaskSwitchContext
mov r0, #0
msr basepri, r0
ldmia sp!, {r3}
/* The first item in pxCurrentTCB is the task top of stack. */
ldr r1, [r3]
ldr r0, [r1]
/* Pop the core registers. */
ldmia r0!, {r4-r11, r14}
/* Is the task using the FPU context? If so, pop the high vfp registers
too. */
tst r14, #0x10
it eq
vldmiaeq r0!, {s16-s31}
msr psp, r0
isb
#ifdef WORKAROUND_PMU_CM001 /* XMC4000 specific errata */
#if WORKAROUND_PMU_CM001 == 1
push { r14 }
pop { pc }
#endif
#endif
bx r14
/*-----------------------------------------------------------*/
ulPortSetInterruptMask:
mrs r0, basepri
mov r1, #configMAX_SYSCALL_INTERRUPT_PRIORITY
msr basepri, r1
bx r14
/*-----------------------------------------------------------*/
vPortClearInterruptMask:
msr basepri, r0
bx r14
/*-----------------------------------------------------------*/
vPortSVCHandler:
/* Get the location of the current TCB. */
ldr r3, =pxCurrentTCB
ldr r1, [r3]
ldr r0, [r1]
/* Pop the core registers. */
ldmia r0!, {r4-r11, r14}
msr psp, r0
isb
mov r0, #0
msr basepri, r0
bx r14
/*-----------------------------------------------------------*/
vPortStartFirstTask
/* Use the NVIC offset register to locate the stack. */
ldr r0, =0xE000ED08
ldr r0, [r0]
ldr r0, [r0]
/* Set the msp back to the start of the stack. */
msr msp, r0
/* Call SVC to start the first task. */
cpsie i
cpsie f
dsb
isb
svc 0
/*-----------------------------------------------------------*/
vPortEnableVFP:
/* The FPU enable bits are in the CPACR. */
ldr.w r0, =0xE000ED88
ldr r1, [r0]
/* Enable CP10 and CP11 coprocessors, then save back. */
orr r1, r1, #( 0xf << 20 )
str r1, [r0]
bx r14
END

View file

@ -0,0 +1,193 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
#ifdef __cplusplus
extern "C" {
#endif
/*-----------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the
* given hardware and compiler.
*
* These settings should not be altered.
*-----------------------------------------------------------
*/
/* Type definitions. */
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint32_t
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
typedef unsigned long UBaseType_t;
#if( configUSE_16_BIT_TICKS == 1 )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffff
#else
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffffffffUL
#endif
/*-----------------------------------------------------------*/
/* Architecture specifics. */
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portBYTE_ALIGNMENT 8
/*-----------------------------------------------------------*/
/* Scheduler utilities. */
extern void vPortYield( void );
#define portNVIC_INT_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000ed04 ) )
#define portNVIC_PENDSVSET_BIT ( 1UL << 28UL )
#define portYIELD() vPortYield()
#define portEND_SWITCHING_ISR( xSwitchRequired ) if( xSwitchRequired ) portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT
#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
/*-----------------------------------------------------------*/
/* Architecture specific optimisations. */
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
#endif
#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
/* Check the configuration. */
#if( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
#endif
/* Store/clear the ready priorities in a bit map. */
#define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )
/*-----------------------------------------------------------*/
#include <intrinsics.h>
#define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31 - __CLZ( ( uxReadyPriorities ) ) )
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
/* Critical section management. */
extern void vPortEnterCritical( void );
extern void vPortExitCritical( void );
extern uint32_t ulPortSetInterruptMask( void );
extern void vPortClearInterruptMask( uint32_t ulNewMask );
#define portDISABLE_INTERRUPTS() ulPortSetInterruptMask()
#define portENABLE_INTERRUPTS() vPortClearInterruptMask( 0 )
#define portENTER_CRITICAL() vPortEnterCritical()
#define portEXIT_CRITICAL() vPortExitCritical()
#define portSET_INTERRUPT_MASK_FROM_ISR() ulPortSetInterruptMask()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) vPortClearInterruptMask( x )
/*-----------------------------------------------------------*/
/* Tickless idle/low power functionality. */
#ifndef portSUPPRESS_TICKS_AND_SLEEP
extern void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ) vPortSuppressTicksAndSleep( xExpectedIdleTime )
#endif
/*-----------------------------------------------------------*/
/* Task function macros as described on the FreeRTOS.org WEB site. These are
not necessary for to use this port. They are defined so the common demo files
(which build with all the ports) will build. */
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters )
/*-----------------------------------------------------------*/
#ifdef configASSERT
void vPortValidateInterruptPriority( void );
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID() vPortValidateInterruptPriority()
#endif
/* portNOP() is not required by this port. */
#define portNOP()
/* Suppress warnings that are generated by the IAR tools, but cannot be fixed in
the source code because to do so would cause other compilers to generate
warnings. */
#pragma diag_suppress=Pe191
#pragma diag_suppress=Pa082
#ifdef __cplusplus
}
#endif
#endif /* PORTMACRO_H */

View file

@ -0,0 +1,41 @@
include $(MAKE_INCLUDE_GEN)
.PHONY: all clean
MODULE_IFLAGS = -I../../include
#*****************************************************************************#
# Object FILE LIST #
#*****************************************************************************#
OBJS = heap_4.o
ifeq ($(CONFIG_RELEASE_BUILD),y)
OBJS =
else
endif
#*****************************************************************************#
# RULES TO GENERATE TARGETS #
#*****************************************************************************#
# Define the Rules to build the core targets
all: CORE_TARGETS COPY_RAM_OBJS
#*****************************************************************************#
# GENERATE OBJECT FILE
#*****************************************************************************#
CORE_TARGETS: $(OBJS)
-include $(DEPS)
#*****************************************************************************#
# RULES TO CLEAN TARGETS #
#*****************************************************************************#
clean:
$(REMOVE) *.o
$(REMOVE) *.i
$(REMOVE) *.s
$(REMOVE) *.d

View file

@ -0,0 +1,170 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* The simplest possible implementation of pvPortMalloc(). Note that this
* implementation does NOT allow allocated memory to be freed again.
*
* See heap_2.c, heap_3.c and heap_4.c for alternative implementations, and the
* memory management pages of http://www.FreeRTOS.org for more information.
*/
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "FreeRTOS.h"
#include "task.h"
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/* A few bytes might be lost to byte aligning the heap start address. */
#define configADJUSTED_HEAP_SIZE ( configTOTAL_HEAP_SIZE - portBYTE_ALIGNMENT )
/* Allocate the memory for the heap. */
static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
static size_t xNextFreeByte = ( size_t ) 0;
/*-----------------------------------------------------------*/
void *pvPortMalloc( size_t xWantedSize )
{
void *pvReturn = NULL;
static uint8_t *pucAlignedHeap = NULL;
/* Ensure that blocks are always aligned to the required number of bytes. */
#if portBYTE_ALIGNMENT != 1
if( xWantedSize & portBYTE_ALIGNMENT_MASK )
{
/* Byte alignment required. */
xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
}
#endif
vTaskSuspendAll();
{
if( pucAlignedHeap == NULL )
{
/* Ensure the heap starts on a correctly aligned boundary. */
pucAlignedHeap = ( uint8_t * ) ( ( ( portPOINTER_SIZE_TYPE ) &ucHeap[ portBYTE_ALIGNMENT ] ) & ( ( portPOINTER_SIZE_TYPE ) ~portBYTE_ALIGNMENT_MASK ) );
}
/* Check there is enough room left for the allocation. */
if( ( ( xNextFreeByte + xWantedSize ) < configADJUSTED_HEAP_SIZE ) &&
( ( xNextFreeByte + xWantedSize ) > xNextFreeByte ) )/* Check for overflow. */
{
/* Return the next free byte then increment the index past this
block. */
pvReturn = pucAlignedHeap + xNextFreeByte;
xNextFreeByte += xWantedSize;
}
traceMALLOC( pvReturn, xWantedSize );
}
( void ) xTaskResumeAll();
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
{
if( pvReturn == NULL )
{
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();
}
}
#endif
return pvReturn;
}
/*-----------------------------------------------------------*/
void vPortFree( void *pv )
{
/* Memory cannot be freed using this scheme. See heap_2.c, heap_3.c and
heap_4.c for alternative implementations, and the memory management pages of
http://www.FreeRTOS.org for more information. */
( void ) pv;
/* Force an assert as it is invalid to call this function. */
configASSERT( pv == NULL );
}
/*-----------------------------------------------------------*/
void vPortInitialiseBlocks( void )
{
/* Only required when static memory is not cleared. */
xNextFreeByte = ( size_t ) 0;
}
/*-----------------------------------------------------------*/
size_t xPortGetFreeHeapSize( void )
{
return ( configADJUSTED_HEAP_SIZE - xNextFreeByte );
}

View file

@ -0,0 +1,299 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* A sample implementation of pvPortMalloc() and vPortFree() that permits
* allocated blocks to be freed, but does not combine adjacent free blocks
* into a single larger block (and so will fragment memory). See heap_4.c for
* an equivalent that does combine adjacent blocks into single larger blocks.
*
* See heap_1.c, heap_3.c and heap_4.c for alternative implementations, and the
* memory management pages of http://www.FreeRTOS.org for more information.
*/
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "FreeRTOS.h"
#include "task.h"
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/* A few bytes might be lost to byte aligning the heap start address. */
#define configADJUSTED_HEAP_SIZE ( configTOTAL_HEAP_SIZE - portBYTE_ALIGNMENT )
/*
* Initialises the heap structures before their first use.
*/
static void prvHeapInit( void );
/* Allocate the memory for the heap. */
static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
/* Define the linked list structure. This is used to link free blocks in order
of their size. */
typedef struct A_BLOCK_LINK
{
struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
size_t xBlockSize; /*<< The size of the free block. */
} BlockLink_t;
static const uint16_t heapSTRUCT_SIZE = ( ( sizeof ( BlockLink_t ) + ( portBYTE_ALIGNMENT - 1 ) ) & ~portBYTE_ALIGNMENT_MASK );
#define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( heapSTRUCT_SIZE * 2 ) )
/* Create a couple of list links to mark the start and end of the list. */
static BlockLink_t xStart, xEnd;
/* Keeps track of the number of free bytes remaining, but says nothing about
fragmentation. */
static size_t xFreeBytesRemaining = configADJUSTED_HEAP_SIZE;
/* STATIC FUNCTIONS ARE DEFINED AS MACROS TO MINIMIZE THE FUNCTION CALL DEPTH. */
/*
* Insert a block into the list of free blocks - which is ordered by size of
* the block. Small blocks at the start of the list and large blocks at the end
* of the list.
*/
#define prvInsertBlockIntoFreeList( pxBlockToInsert ) \
{ \
BlockLink_t *pxIterator; \
size_t xBlockSize; \
\
xBlockSize = pxBlockToInsert->xBlockSize; \
\
/* Iterate through the list until a block is found that has a larger size */ \
/* than the block we are inserting. */ \
for( pxIterator = &xStart; pxIterator->pxNextFreeBlock->xBlockSize < xBlockSize; pxIterator = pxIterator->pxNextFreeBlock ) \
{ \
/* There is nothing to do here - just iterate to the correct position. */ \
} \
\
/* Update the list to include the block being inserted in the correct */ \
/* position. */ \
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock; \
pxIterator->pxNextFreeBlock = pxBlockToInsert; \
}
/*-----------------------------------------------------------*/
void *pvPortMalloc( size_t xWantedSize )
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
static BaseType_t xHeapHasBeenInitialised = pdFALSE;
void *pvReturn = NULL;
vTaskSuspendAll();
{
/* If this is the first call to malloc then the heap will require
initialisation to setup the list of free blocks. */
if( xHeapHasBeenInitialised == pdFALSE )
{
prvHeapInit();
xHeapHasBeenInitialised = pdTRUE;
}
/* The wanted size is increased so it can contain a BlockLink_t
structure in addition to the requested amount of bytes. */
if( xWantedSize > 0 )
{
xWantedSize += heapSTRUCT_SIZE;
/* Ensure that blocks are always aligned to the required number of bytes. */
if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0 )
{
/* Byte alignment required. */
xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
}
}
if( ( xWantedSize > 0 ) && ( xWantedSize < configADJUSTED_HEAP_SIZE ) )
{
/* Blocks are stored in byte order - traverse the list from the start
(smallest) block until one of adequate size is found. */
pxPreviousBlock = &xStart;
pxBlock = xStart.pxNextFreeBlock;
while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
{
pxPreviousBlock = pxBlock;
pxBlock = pxBlock->pxNextFreeBlock;
}
/* If we found the end marker then a block of adequate size was not found. */
if( pxBlock != &xEnd )
{
/* Return the memory space - jumping over the BlockLink_t structure
at its start. */
pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + heapSTRUCT_SIZE );
/* This block is being returned for use so must be taken out of the
list of free blocks. */
pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
/* If the block is larger than required it can be split into two. */
if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
{
/* This block is to be split into two. Create a new block
following the number of bytes requested. The void cast is
used to prevent byte alignment warnings from the compiler. */
pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
/* Calculate the sizes of two blocks split from the single
block. */
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
pxBlock->xBlockSize = xWantedSize;
/* Insert the new block into the list of free blocks. */
prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
}
xFreeBytesRemaining -= pxBlock->xBlockSize;
}
}
traceMALLOC( pvReturn, xWantedSize );
}
( void ) xTaskResumeAll();
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
{
if( pvReturn == NULL )
{
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();
}
}
#endif
return pvReturn;
}
/*-----------------------------------------------------------*/
void vPortFree( void *pv )
{
uint8_t *puc = ( uint8_t * ) pv;
BlockLink_t *pxLink;
if( pv != NULL )
{
/* The memory being freed will have an BlockLink_t structure immediately
before it. */
puc -= heapSTRUCT_SIZE;
/* This unexpected casting is to keep some compilers from issuing
byte alignment warnings. */
pxLink = ( void * ) puc;
vTaskSuspendAll();
{
/* Add this block to the list of free blocks. */
prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
xFreeBytesRemaining += pxLink->xBlockSize;
traceFREE( pv, pxLink->xBlockSize );
}
( void ) xTaskResumeAll();
}
}
/*-----------------------------------------------------------*/
size_t xPortGetFreeHeapSize( void )
{
return xFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
void vPortInitialiseBlocks( void )
{
/* This just exists to keep the linker quiet. */
}
/*-----------------------------------------------------------*/
static void prvHeapInit( void )
{
BlockLink_t *pxFirstFreeBlock;
uint8_t *pucAlignedHeap;
/* Ensure the heap starts on a correctly aligned boundary. */
pucAlignedHeap = ( uint8_t * ) ( ( ( portPOINTER_SIZE_TYPE ) &ucHeap[ portBYTE_ALIGNMENT ] ) & ( ( portPOINTER_SIZE_TYPE ) ~portBYTE_ALIGNMENT_MASK ) );
/* xStart is used to hold a pointer to the first item in the list of free
blocks. The void cast is used to prevent compiler warnings. */
xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
xStart.xBlockSize = ( size_t ) 0;
/* xEnd is used to mark the end of the list of free blocks. */
xEnd.xBlockSize = configADJUSTED_HEAP_SIZE;
xEnd.pxNextFreeBlock = NULL;
/* To start with there is a single free block that is sized to take up the
entire heap space. */
pxFirstFreeBlock = ( void * ) pucAlignedHeap;
pxFirstFreeBlock->xBlockSize = configADJUSTED_HEAP_SIZE;
pxFirstFreeBlock->pxNextFreeBlock = &xEnd;
}
/*-----------------------------------------------------------*/

View file

@ -0,0 +1,131 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* Implementation of pvPortMalloc() and vPortFree() that relies on the
* compilers own malloc() and free() implementations.
*
* This file can only be used if the linker is configured to to generate
* a heap memory area.
*
* See heap_1.c, heap_2.c and heap_4.c for alternative implementations, and the
* memory management pages of http://www.FreeRTOS.org for more information.
*/
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "FreeRTOS.h"
#include "task.h"
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/*-----------------------------------------------------------*/
void *pvPortMalloc( size_t xWantedSize )
{
void *pvReturn;
vTaskSuspendAll();
{
pvReturn = malloc( xWantedSize );
traceMALLOC( pvReturn, xWantedSize );
}
( void ) xTaskResumeAll();
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
{
if( pvReturn == NULL )
{
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();
}
}
#endif
return pvReturn;
}
/*-----------------------------------------------------------*/
void vPortFree( void *pv )
{
if( pv )
{
vTaskSuspendAll();
{
free( pv );
traceFREE( pv, 0 );
}
( void ) xTaskResumeAll();
}
}

View file

@ -0,0 +1,544 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* A sample implementation of pvPortMalloc() and vPortFree() that combines
* (coalescences) adjacent memory blocks as they are freed, and in so doing
* limits memory fragmentation.
*
* See heap_1.c, heap_2.c and heap_3.c for alternative implementations, and the
* memory management pages of http://www.FreeRTOS.org for more information.
*/
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "FreeRTOS.h"
#include "task.h"
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/* Block sizes must not get too small. */
#define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( xHeapStructSize * 2 ) )
/* Assumes 8bit bytes! */
#define heapBITS_PER_BYTE ( ( size_t ) 8 )
/* Allocate the memory for the heap. */
//TODO: remove section when combine BD and BF
#if ((defined CONFIG_PLATFORM_8195A) || (defined CONFIG_PLATFORM_8711B))
#include "section_config.h"
SRAM_BF_DATA_SECTION
#endif
static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
/* Define the linked list structure. This is used to link free blocks in order
of their memory address. */
typedef struct A_BLOCK_LINK
{
struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
size_t xBlockSize; /*<< The size of the free block. */
} BlockLink_t;
/*-----------------------------------------------------------*/
/*
* Inserts a block of memory that is being freed into the correct position in
* the list of free memory blocks. The block being freed will be merged with
* the block in front it and/or the block behind it if the memory blocks are
* adjacent to each other.
*/
static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert );
/*
* Called automatically to setup the required heap structures the first time
* pvPortMalloc() is called.
*/
static void prvHeapInit( void );
/*-----------------------------------------------------------*/
/* The size of the structure placed at the beginning of each allocated memory
block must by correctly byte aligned. */
static const size_t xHeapStructSize = ( ( sizeof( BlockLink_t ) + ( portBYTE_ALIGNMENT - 1 ) ) & ~portBYTE_ALIGNMENT_MASK );
/* Create a couple of list links to mark the start and end of the list. */
static BlockLink_t xStart, *pxEnd = NULL;
/* Keeps track of the number of free bytes remaining, but says nothing about
fragmentation. */
static size_t xFreeBytesRemaining = 0U;
static size_t xMinimumEverFreeBytesRemaining = 0U;
/* Gets set to the top bit of an size_t type. When this bit in the xBlockSize
member of an BlockLink_t structure is set then the block belongs to the
application. When the bit is free the block is still part of the free heap
space. */
static size_t xBlockAllocatedBit = 0;
/*-----------------------------------------------------------*/
void *pvPortMalloc( size_t xWantedSize )
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void *pvReturn = NULL;
vTaskSuspendAll();
{
/* If this is the first call to malloc then the heap will require
initialisation to setup the list of free blocks. */
if( pxEnd == NULL )
{
prvHeapInit();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Check the requested block size is not so large that the top bit is
set. The top bit of the block size member of the BlockLink_t structure
is used to determine who owns the block - the application or the
kernel, so it must be free. */
if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
{
/* The wanted size is increased so it can contain a BlockLink_t
structure in addition to the requested amount of bytes. */
if( xWantedSize > 0 )
{
xWantedSize += xHeapStructSize;
/* Ensure that blocks are always aligned to the required number
of bytes. */
if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
{
/* Byte alignment required. */
xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
{
/* Traverse the list from the start (lowest address) block until
one of adequate size is found. */
pxPreviousBlock = &xStart;
pxBlock = xStart.pxNextFreeBlock;
while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
{
pxPreviousBlock = pxBlock;
pxBlock = pxBlock->pxNextFreeBlock;
}
/* If the end marker was reached then a block of adequate size
was not found. */
if( pxBlock != pxEnd )
{
/* Return the memory space pointed to - jumping over the
BlockLink_t structure at its start. */
pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );
/* This block is being returned for use so must be taken out
of the list of free blocks. */
pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
/* If the block is larger than required it can be split into
two. */
if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
{
/* This block is to be split into two. Create a new
block following the number of bytes requested. The void
cast is used to prevent byte alignment warnings from the
compiler. */
pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
configASSERT( ( ( ( uint32_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );
/* Calculate the sizes of two blocks split from the
single block. */
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
pxBlock->xBlockSize = xWantedSize;
/* Insert the new block into the list of free blocks. */
prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
xFreeBytesRemaining -= pxBlock->xBlockSize;
if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
{
xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The block is being returned - it is allocated and owned
by the application and has no "next" block. */
pxBlock->xBlockSize |= xBlockAllocatedBit;
pxBlock->pxNextFreeBlock = NULL;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceMALLOC( pvReturn, xWantedSize );
}
( void ) xTaskResumeAll();
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
{
if( pvReturn == NULL )
{
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif
configASSERT( ( ( ( uint32_t ) pvReturn ) & portBYTE_ALIGNMENT_MASK ) == 0 );
return pvReturn;
}
/*-----------------------------------------------------------*/
void __vPortFree( void *pv )
{
uint8_t *puc = ( uint8_t * ) pv;
BlockLink_t *pxLink;
if( pv != NULL )
{
/* The memory being freed will have an BlockLink_t structure immediately
before it. */
puc -= xHeapStructSize;
/* This casting is to keep the compiler from issuing warnings. */
pxLink = ( void * ) puc;
/* Check the block is actually allocated. */
configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
configASSERT( pxLink->pxNextFreeBlock == NULL );
if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
{
if( pxLink->pxNextFreeBlock == NULL )
{
/* The block is being returned to the heap - it is no longer
allocated. */
pxLink->xBlockSize &= ~xBlockAllocatedBit;
vTaskSuspendAll();
{
/* Add this block to the list of free blocks. */
xFreeBytesRemaining += pxLink->xBlockSize;
traceFREE( pv, pxLink->xBlockSize );
prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
}
( void ) xTaskResumeAll();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
/*-----------------------------------------------------------*/
/* Add by Alfa 2015/02/04 -----------------------------------*/
static void (*ext_free)( void *p ) = NULL;
static uint32_t ext_upper = 0;
static uint32_t ext_lower = 0;
void vPortSetExtFree( void (*free)( void *p ), uint32_t upper, uint32_t lower )
{
ext_free = free;
ext_upper = upper;
ext_lower = lower;
}
void vPortFree( void *pv )
{
if( ((uint32_t)pv >= ext_lower) && ((uint32_t)pv < ext_upper) ){
// use external free function
if( ext_free ) ext_free( pv );
}else
__vPortFree( pv );
}
/*-----------------------------------------------------------*/
size_t xPortGetFreeHeapSize( void )
{
return xFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
size_t xPortGetMinimumEverFreeHeapSize( void )
{
return xMinimumEverFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
void vPortInitialiseBlocks( void )
{
/* This just exists to keep the linker quiet. */
}
/*-----------------------------------------------------------*/
static void prvHeapInit( void )
{
BlockLink_t *pxFirstFreeBlock;
uint8_t *pucAlignedHeap;
uint32_t ulAddress;
size_t xTotalHeapSize = configTOTAL_HEAP_SIZE;
/* Ensure the heap starts on a correctly aligned boundary. */
ulAddress = ( uint32_t ) ucHeap;
if( ( ulAddress & portBYTE_ALIGNMENT_MASK ) != 0 )
{
ulAddress += ( portBYTE_ALIGNMENT - 1 );
ulAddress &= ~portBYTE_ALIGNMENT_MASK;
xTotalHeapSize -= ulAddress - ( uint32_t ) ucHeap;
}
pucAlignedHeap = ( uint8_t * ) ulAddress;
/* xStart is used to hold a pointer to the first item in the list of free
blocks. The void cast is used to prevent compiler warnings. */
xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
xStart.xBlockSize = ( size_t ) 0;
/* pxEnd is used to mark the end of the list of free blocks and is inserted
at the end of the heap space. */
ulAddress = ( ( uint32_t ) pucAlignedHeap ) + xTotalHeapSize;
ulAddress -= xHeapStructSize;
ulAddress &= ~portBYTE_ALIGNMENT_MASK;
pxEnd = ( void * ) ulAddress;
pxEnd->xBlockSize = 0;
pxEnd->pxNextFreeBlock = NULL;
/* To start with there is a single free block that is sized to take up the
entire heap space, minus the space taken by pxEnd. */
pxFirstFreeBlock = ( void * ) pucAlignedHeap;
pxFirstFreeBlock->xBlockSize = ulAddress - ( uint32_t ) pxFirstFreeBlock;
pxFirstFreeBlock->pxNextFreeBlock = pxEnd;
/* Only one block exists - and it covers the entire usable heap space. */
xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
/* Work out the position of the top bit in a size_t variable. */
xBlockAllocatedBit = ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 );
}
/*-----------------------------------------------------------*/
static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert )
{
BlockLink_t *pxIterator;
uint8_t *puc;
/* Iterate through the list until a block is found that has a higher address
than the block being inserted. */
for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
{
/* Nothing to do here, just iterate to the right position. */
}
/* Do the block being inserted, and the block it is being inserted after
make a contiguous block of memory? */
puc = ( uint8_t * ) pxIterator;
if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert )
{
pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
pxBlockToInsert = pxIterator;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Do the block being inserted, and the block it is being inserted before
make a contiguous block of memory? */
puc = ( uint8_t * ) pxBlockToInsert;
if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock )
{
if( pxIterator->pxNextFreeBlock != pxEnd )
{
/* Form one big block from the two blocks. */
pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
}
else
{
pxBlockToInsert->pxNextFreeBlock = pxEnd;
}
}
else
{
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
}
/* If the block being inserted plugged a gab, so was merged with the block
before and the block after, then it's pxNextFreeBlock pointer will have
already been set, and should not be set here as that would make it point
to itself. */
if( pxIterator != pxBlockToInsert )
{
pxIterator->pxNextFreeBlock = pxBlockToInsert;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
void* pvPortReAlloc( void *pv, size_t xWantedSize )
{
BlockLink_t *pxLink;
if( ((uint32_t)pv >= ext_lower) && ((uint32_t)pv < ext_upper) ){
if( ext_free ) ext_free( pv );
pv = NULL;
}
unsigned char *puc = ( unsigned char * ) pv;
if( pv )
{
if( !xWantedSize )
{
vPortFree( pv );
return NULL;
}
void *newArea = pvPortMalloc( xWantedSize );
if( newArea )
{
/* The memory being freed will have an xBlockLink structure immediately
before it. */
puc -= xHeapStructSize;
/* This casting is to keep the compiler from issuing warnings. */
pxLink = ( void * ) puc;
int oldSize = (pxLink->xBlockSize & ~xBlockAllocatedBit) - xHeapStructSize;
int copySize = ( oldSize < xWantedSize ) ? oldSize : xWantedSize;
memcpy( newArea, pv, copySize );
vTaskSuspendAll();
{
/* Add this block to the list of free blocks. */
pxLink->xBlockSize &= ~xBlockAllocatedBit;
xFreeBytesRemaining += pxLink->xBlockSize;
prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
}
xTaskResumeAll();
return newArea;
}
}
else if( xWantedSize )
return pvPortMalloc( xWantedSize );
else
return NULL;
return NULL;
}

View file

@ -680,6 +680,15 @@ void* pvPortReAlloc( void *pv, size_t xWantedSize )
return NULL;
}
extern _LONG_CALL_ROM_ void *_memset( void *s, int c, SIZE_T n );
void *pvPortZalloc( size_t xWantedSize )
{
void * prt = pvPortMalloc(xWantedSize);
if(prt) _memset(prt, 0, xWantedSize);
return prt;
}
/*
#ifdef ARDUINO_SDK
int vPortAddHeapRegion(uint8_t *addr, size_t size)

View file

@ -0,0 +1,724 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the ARM CM3 port.
*----------------------------------------------------------*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#ifndef configKERNEL_INTERRUPT_PRIORITY
#define configKERNEL_INTERRUPT_PRIORITY 255
#endif
#if configMAX_SYSCALL_INTERRUPT_PRIORITY == 0
#error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0. See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
#endif
#ifndef configSYSTICK_CLOCK_HZ
#define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ
/* Ensure the SysTick is clocked at the same frequency as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
#else
/* The way the SysTick is clocked is not modified in case it is not the same
as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 0 )
#endif
/* The __weak attribute does not work as you might expect with the Keil tools
so the configOVERRIDE_DEFAULT_TICK_CONFIGURATION constant must be set to 1 if
the application writer wants to provide their own implementation of
vPortSetupTimerInterrupt(). Ensure configOVERRIDE_DEFAULT_TICK_CONFIGURATION
is defined. */
#ifndef configOVERRIDE_DEFAULT_TICK_CONFIGURATION
#define configOVERRIDE_DEFAULT_TICK_CONFIGURATION 0
#endif
/* Constants required to manipulate the core. Registers first... */
#define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) )
#define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) )
#define portNVIC_SYSTICK_CURRENT_VALUE_REG ( * ( ( volatile uint32_t * ) 0xe000e018 ) )
#define portNVIC_SYSPRI2_REG ( * ( ( volatile uint32_t * ) 0xe000ed20 ) )
/* ...then bits in the registers. */
#define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
#define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
#define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL )
#define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL )
#define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL )
/* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
#define portVECTACTIVE_MASK ( 0x1FUL )
#define portNVIC_PENDSV_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL )
#define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL )
/* Constants required to check the validity of an interrupt priority. */
#define portFIRST_USER_INTERRUPT_NUMBER ( 16 )
#define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 )
#define portAIRCR_REG ( * ( ( volatile uint32_t * ) 0xE000ED0C ) )
#define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff )
#define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 )
#define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 )
#define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL )
#define portPRIGROUP_SHIFT ( 8UL )
/* Constants required to set up the initial stack. */
#define portINITIAL_XPSR ( 0x01000000 )
/* Constants used with memory barrier intrinsics. */
#define portSY_FULL_READ_WRITE ( 15 )
/* The systick is a 24-bit counter. */
#define portMAX_24_BIT_NUMBER ( 0xffffffUL )
/* A fiddle factor to estimate the number of SysTick counts that would have
occurred while the SysTick counter is stopped during tickless idle
calculations. */
#define portMISSED_COUNTS_FACTOR ( 45UL )
/* Each task maintains its own interrupt status in the critical nesting
variable. */
static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
/*
* Setup the timer to generate the tick interrupts. The implementation in this
* file is weak to allow application writers to change the timer used to
* generate the tick interrupt.
*/
void vPortSetupTimerInterrupt( void );
/*
* Exception handlers.
*/
void xPortPendSVHandler( void );
void xPortSysTickHandler( void );
void vPortSVCHandler( void );
/*
* Start first task is a separate function so it can be tested in isolation.
*/
static void prvStartFirstTask( void );
/*
* Used to catch tasks that attempt to return from their implementing function.
*/
static void prvTaskExitError( void );
/*-----------------------------------------------------------*/
/*
* The number of SysTick increments that make up one tick period.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulTimerCountsForOneTick = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* The maximum number of tick periods that can be suppressed is limited by the
* 24 bit resolution of the SysTick timer.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t xMaximumPossibleSuppressedTicks = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Compensate for the CPU cycles that pass while the SysTick is stopped (low
* power functionality only.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulStoppedTimerCompensation = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
* FreeRTOS API functions are not called from interrupts that have been assigned
* a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
*/
#if ( configASSERT_DEFINED == 1 )
static uint8_t ucMaxSysCallPriority = 0;
static uint32_t ulMaxPRIGROUPValue = 0;
static const volatile uint8_t * const pcInterruptPriorityRegisters = ( uint8_t * ) portNVIC_IP_REGISTERS_OFFSET_16;
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
{
/* Simulate the stack frame as it would be created by a context switch
interrupt. */
pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts. */
*pxTopOfStack = portINITIAL_XPSR; /* xPSR */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) pxCode; /* PC */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) prvTaskExitError; /* LR */
pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
*pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
static void prvTaskExitError( void )
{
/* A function that implements a task must not exit or attempt to return to
its caller as there is nothing to return to. If a task wants to exit it
should instead call vTaskDelete( NULL ).
Artificially force an assert() to be triggered if configASSERT() is
defined, then stop here so application writers can catch the error. */
configASSERT( uxCriticalNesting == ~0UL );
portDISABLE_INTERRUPTS();
for( ;; );
}
/*-----------------------------------------------------------*/
__asm void vPortSVCHandler( void )
{
PRESERVE8
ldr r3, =pxCurrentTCB /* Restore the context. */
ldr r1, [r3] /* Use pxCurrentTCBConst to get the pxCurrentTCB address. */
ldr r0, [r1] /* The first item in pxCurrentTCB is the task top of stack. */
ldmia r0!, {r4-r11} /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
msr psp, r0 /* Restore the task stack pointer. */
isb
mov r0, #0
msr basepri, r0
orr r14, #0xd
bx r14
}
/*-----------------------------------------------------------*/
__asm void prvStartFirstTask( void )
{
PRESERVE8
/* Use the NVIC offset register to locate the stack. */
ldr r0, =0xE000ED08
ldr r0, [r0]
ldr r0, [r0]
/* Set the msp back to the start of the stack. */
msr msp, r0
/* Globally enable interrupts. */
cpsie i
cpsie f
dsb
isb
/* Call SVC to start the first task. */
svc 0
nop
nop
}
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
BaseType_t xPortStartScheduler( void )
{
#if( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
functions can be called. ISR safe functions are those that end in
"FromISR". FreeRTOS maintains separate thread and ISR API functions to
ensure interrupt entry is as fast and simple as possible.
Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
/* Determine the number of priority bits available. First write to all
possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Calculate the maximum acceptable priority group value for the number
of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
/* Shift the priority group value back to its position within the AIRCR
register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
}
#endif /* conifgASSERT_DEFINED */
/* Make PendSV and SysTick the lowest priority interrupts. */
portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;
portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;
/* Start the timer that generates the tick ISR. Interrupts are disabled
here already. */
vPortSetupTimerInterrupt();
/* Initialise the critical nesting count ready for the first task. */
uxCriticalNesting = 0;
/* Start the first task. */
prvStartFirstTask();
/* Should not get here! */
return 0;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* Not implemented in ports where there is nothing to return to.
Artificially force an assert. */
configASSERT( uxCriticalNesting == 1000UL );
}
/*-----------------------------------------------------------*/
void vPortYield( void )
{
/* Set a PendSV to request a context switch. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
/* Barriers are normally not required but do ensure the code is completely
within the specified behaviour for the architecture. */
__dsb( portSY_FULL_READ_WRITE );
__isb( portSY_FULL_READ_WRITE );
}
/*-----------------------------------------------------------*/
void vPortEnterCritical( void )
{
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
__dsb( portSY_FULL_READ_WRITE );
__isb( portSY_FULL_READ_WRITE );
/* This is not the interrupt safe version of the enter critical function so
assert() if it is being called from an interrupt context. Only API
functions that end in "FromISR" can be used in an interrupt. Only assert if
the critical nesting count is 1 to protect against recursive calls if the
assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
}
/*-----------------------------------------------------------*/
__asm void xPortPendSVHandler( void )
{
extern uxCriticalNesting;
extern pxCurrentTCB;
extern vTaskSwitchContext;
PRESERVE8
mrs r0, psp
isb
ldr r3, =pxCurrentTCB /* Get the location of the current TCB. */
ldr r2, [r3]
stmdb r0!, {r4-r11} /* Save the remaining registers. */
str r0, [r2] /* Save the new top of stack into the first member of the TCB. */
stmdb sp!, {r3, r14}
mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY
msr basepri, r0
bl vTaskSwitchContext
mov r0, #0
msr basepri, r0
ldmia sp!, {r3, r14}
ldr r1, [r3]
ldr r0, [r1] /* The first item in pxCurrentTCB is the task top of stack. */
ldmia r0!, {r4-r11} /* Pop the registers and the critical nesting count. */
msr psp, r0
isb
bx r14
nop
}
/*-----------------------------------------------------------*/
void xPortSysTickHandler( void )
{
/* The SysTick runs at the lowest interrupt priority, so when this interrupt
executes all interrupts must be unmasked. There is therefore no need to
save and then restore the interrupt mask value as its value is already
known. */
( void ) portSET_INTERRUPT_MASK_FROM_ISR();
{
/* Increment the RTOS tick. */
if( xTaskIncrementTick() != pdFALSE )
{
/* A context switch is required. Context switching is performed in
the PendSV interrupt. Pend the PendSV interrupt. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( 0 );
}
/*-----------------------------------------------------------*/
#if configUSE_TICKLESS_IDLE == 1
__weak void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
{
uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickCTRL;
TickType_t xModifiableIdleTime;
/* Make sure the SysTick reload value does not overflow the counter. */
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
{
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
}
/* Stop the SysTick momentarily. The time the SysTick is stopped for
is accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
portNVIC_SYSTICK_CTRL_REG &= ~portNVIC_SYSTICK_ENABLE_BIT;
/* Calculate the reload value required to wait xExpectedIdleTime
tick periods. -1 is used because this code will execute part way
through one of the tick periods. */
ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
if( ulReloadValue > ulStoppedTimerCompensation )
{
ulReloadValue -= ulStoppedTimerCompensation;
}
/* Enter a critical section but don't use the taskENTER_CRITICAL()
method as that will mask interrupts that should exit sleep mode. */
__disable_irq();
/* If a context switch is pending or a task is waiting for the scheduler
to be unsuspended then abandon the low power entry. */
if( eTaskConfirmSleepModeStatus() == eAbortSleep )
{
/* Restart from whatever is left in the count register to complete
this tick period. */
portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Reset the reload register to the value required for normal tick
periods. */
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
/* Re-enable interrupts - see comments above __disable_irq() call
above. */
__enable_irq();
}
else
{
/* Set the new reload value. */
portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
/* Clear the SysTick count flag and set the count value back to
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
set its parameter to 0 to indicate that its implementation contains
its own wait for interrupt or wait for event instruction, and so wfi
should not be executed again. However, the original expected idle
time variable must remain unmodified, so a copy is taken. */
xModifiableIdleTime = xExpectedIdleTime;
configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
if( xModifiableIdleTime > 0 )
{
__dsb( portSY_FULL_READ_WRITE );
__wfi();
__isb( portSY_FULL_READ_WRITE );
}
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
/* Stop SysTick. Again, the time the SysTick is stopped for is
accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
ulSysTickCTRL = portNVIC_SYSTICK_CTRL_REG;
portNVIC_SYSTICK_CTRL_REG = ( ulSysTickCTRL & ~portNVIC_SYSTICK_ENABLE_BIT );
/* Re-enable interrupts - see comments above __disable_irq() call
above. */
__enable_irq();
if( ( ulSysTickCTRL & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
{
uint32_t ulCalculatedLoadValue;
/* The tick interrupt has already executed, and the SysTick
count reloaded with ulReloadValue. Reset the
portNVIC_SYSTICK_LOAD_REG with whatever remains of this tick
period. */
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
/* Don't allow a tiny value, or values that have somehow
underflowed because the post sleep hook did something
that took too long. */
if( ( ulCalculatedLoadValue < ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
{
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
}
portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
/* The tick interrupt handler will already have pended the tick
processing in the kernel. As the pending tick will be
processed as soon as this function exits, the tick value
maintained by the tick is stepped forward by one less than the
time spent waiting. */
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
}
else
{
/* Something other than the tick interrupt ended the sleep.
Work out how long the sleep lasted rounded to complete tick
periods (not the ulReload value which accounted for part
ticks). */
ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* How many complete tick periods passed while the processor
was waiting? */
ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
/* The reload value is set to whatever fraction of a single tick
period remains. */
portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1 ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
}
/* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG
again, then set portNVIC_SYSTICK_LOAD_REG back to its standard
value. The critical section is used to ensure the tick interrupt
can only execute once in the case that the reload register is near
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
portENTER_CRITICAL();
{
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
vTaskStepTick( ulCompleteTickPeriods );
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
}
portEXIT_CRITICAL();
}
}
#endif /* #if configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
/*
* Setup the SysTick timer to generate the tick interrupts at the required
* frequency.
*/
#if configOVERRIDE_DEFAULT_TICK_CONFIGURATION == 0
void vPortSetupTimerInterrupt( void )
{
/* Calculate the constants required to configure the tick interrupt. */
#if configUSE_TICKLESS_IDLE == 1
{
ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
}
#endif /* configUSE_TICKLESS_IDLE */
/* Configure SysTick to interrupt at the requested rate. */
portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
}
#endif /* configOVERRIDE_DEFAULT_TICK_CONFIGURATION */
/*-----------------------------------------------------------*/
__asm uint32_t ulPortSetInterruptMask( void )
{
PRESERVE8
mrs r0, basepri
mov r1, #configMAX_SYSCALL_INTERRUPT_PRIORITY
msr basepri, r1
bx r14
}
/*-----------------------------------------------------------*/
__asm void vPortClearInterruptMask( uint32_t ulNewMask )
{
PRESERVE8
msr basepri, r0
bx r14
}
/*-----------------------------------------------------------*/
__asm uint32_t vPortGetIPSR( void )
{
PRESERVE8
mrs r0, ipsr
bx r14
}
/*-----------------------------------------------------------*/
#if( configASSERT_DEFINED == 1 )
void vPortValidateInterruptPriority( void )
{
uint32_t ulCurrentInterrupt;
uint8_t ucCurrentPriority;
/* Obtain the number of the currently executing interrupt. */
ulCurrentInterrupt = vPortGetIPSR();
/* Is the interrupt number a user defined interrupt? */
if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
{
/* Look up the interrupt's priority. */
ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
/* The following assertion will fail if a service routine (ISR) for
an interrupt that has been assigned a priority above
configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
function. ISR safe FreeRTOS API functions must *only* be called
from interrupts that have been assigned a priority at or below
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Numerically low interrupt priority numbers represent logically high
interrupt priorities, therefore the priority of the interrupt must
be set to a value equal to or numerically *higher* than
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Interrupts that use the FreeRTOS API must not be left at their
default priority of zero as that is the highest possible priority,
which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
and therefore also guaranteed to be invalid.
FreeRTOS maintains separate thread and ISR API functions to ensure
interrupt entry is as fast and simple as possible.
The following links provide detailed information:
http://www.freertos.org/RTOS-Cortex-M3-M4.html
http://www.freertos.org/FAQHelp.html */
configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
}
/* Priority grouping: The interrupt controller (NVIC) allows the bits
that define each interrupt's priority to be split between bits that
define the interrupt's pre-emption priority bits and bits that define
the interrupt's sub-priority. For simplicity all bits must be defined
to be pre-emption priority bits. The following assertion will fail if
this is not the case (if some bits represent a sub-priority).
If the application only uses CMSIS libraries for interrupt
configuration then the correct setting can be achieved on all Cortex-M
devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
scheduler. Note however that some vendor specific peripheral libraries
assume a non-zero priority group setting, in which cases using a value
of zero will result in unpredicable behaviour. */
configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
}
#endif /* configASSERT_DEFINED */

View file

@ -0,0 +1,185 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
#ifdef __cplusplus
extern "C" {
#endif
/*-----------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the
* given hardware and compiler.
*
* These settings should not be altered.
*-----------------------------------------------------------
*/
/* Type definitions. */
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint32_t
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
typedef unsigned long UBaseType_t;
#if( configUSE_16_BIT_TICKS == 1 )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffff
#else
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffffffffUL
#endif
/*-----------------------------------------------------------*/
/* Architecture specifics. */
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portBYTE_ALIGNMENT 8
/*-----------------------------------------------------------*/
/* Scheduler utilities. */
extern void vPortYield( void );
#define portNVIC_INT_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000ed04 ) )
#define portNVIC_PENDSVSET_BIT ( 1UL << 28UL )
#define portYIELD() vPortYield()
#define portEND_SWITCHING_ISR( xSwitchRequired ) if( xSwitchRequired ) portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT
#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
/*-----------------------------------------------------------*/
/* Critical section management. */
extern uint32_t ulPortSetInterruptMask( void );
extern void vPortClearInterruptMask( uint32_t ulNewMask );
extern void vPortEnterCritical( void );
extern void vPortExitCritical( void );
#define portDISABLE_INTERRUPTS() ulPortSetInterruptMask()
#define portENABLE_INTERRUPTS() vPortClearInterruptMask( 0 )
#define portENTER_CRITICAL() vPortEnterCritical()
#define portEXIT_CRITICAL() vPortExitCritical()
#define portSET_INTERRUPT_MASK_FROM_ISR() ulPortSetInterruptMask()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) vPortClearInterruptMask(x)
/*-----------------------------------------------------------*/
/* Tickless idle/low power functionality. */
#ifndef portSUPPRESS_TICKS_AND_SLEEP
extern void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ) vPortSuppressTicksAndSleep( xExpectedIdleTime )
#endif
/*-----------------------------------------------------------*/
/* Port specific optimisations. */
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
#endif
#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
/* Check the configuration. */
#if( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
#endif
/* Store/clear the ready priorities in a bit map. */
#define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )
/*-----------------------------------------------------------*/
#define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31 - __clz( ( uxReadyPriorities ) ) )
#endif /* taskRECORD_READY_PRIORITY */
/*-----------------------------------------------------------*/
/* Task function macros as described on the FreeRTOS.org WEB site. These are
not necessary for to use this port. They are defined so the common demo files
(which build with all the ports) will build. */
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters )
/*-----------------------------------------------------------*/
#ifdef configASSERT
void vPortValidateInterruptPriority( void );
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID() vPortValidateInterruptPriority()
#endif
/* portNOP() is not required by this port. */
#define portNOP()
#ifdef __cplusplus
}
#endif
#endif /* PORTMACRO_H */

View file

@ -0,0 +1,803 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the ARM CM4F port.
*----------------------------------------------------------*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#ifndef __TARGET_FPU_VFP
#error This port can only be used when the project options are configured to enable hardware floating point support.
#endif
#if configMAX_SYSCALL_INTERRUPT_PRIORITY == 0
#error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0. See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html
#endif
#ifndef configSYSTICK_CLOCK_HZ
#define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ
/* Ensure the SysTick is clocked at the same frequency as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
#else
/* The way the SysTick is clocked is not modified in case it is not the same
as the core. */
#define portNVIC_SYSTICK_CLK_BIT ( 0 )
#endif
/* The __weak attribute does not work as you might expect with the Keil tools
so the configOVERRIDE_DEFAULT_TICK_CONFIGURATION constant must be set to 1 if
the application writer wants to provide their own implementation of
vPortSetupTimerInterrupt(). Ensure configOVERRIDE_DEFAULT_TICK_CONFIGURATION
is defined. */
#ifndef configOVERRIDE_DEFAULT_TICK_CONFIGURATION
#define configOVERRIDE_DEFAULT_TICK_CONFIGURATION 0
#endif
/* Constants required to manipulate the core. Registers first... */
#define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) )
#define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) )
#define portNVIC_SYSTICK_CURRENT_VALUE_REG ( * ( ( volatile uint32_t * ) 0xe000e018 ) )
#define portNVIC_SYSPRI2_REG ( * ( ( volatile uint32_t * ) 0xe000ed20 ) )
/* ...then bits in the registers. */
#define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
#define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
#define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL )
#define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL )
#define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL )
#define portNVIC_PENDSV_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL )
#define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL )
/* Constants required to check the validity of an interrupt priority. */
#define portFIRST_USER_INTERRUPT_NUMBER ( 16 )
#define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 )
#define portAIRCR_REG ( * ( ( volatile uint32_t * ) 0xE000ED0C ) )
#define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff )
#define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 )
#define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 )
#define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL )
#define portPRIGROUP_SHIFT ( 8UL )
/* Masks off all bits but the VECTACTIVE bits in the ICSR register. */
#define portVECTACTIVE_MASK ( 0x1FUL )
/* Constants required to manipulate the VFP. */
#define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */
#define portASPEN_AND_LSPEN_BITS ( 0x3UL << 30UL )
/* Constants required to set up the initial stack. */
#define portINITIAL_XPSR ( 0x01000000 )
#define portINITIAL_EXEC_RETURN ( 0xfffffffd )
/* Constants used with memory barrier intrinsics. */
#define portSY_FULL_READ_WRITE ( 15 )
/* The systick is a 24-bit counter. */
#define portMAX_24_BIT_NUMBER ( 0xffffffUL )
/* A fiddle factor to estimate the number of SysTick counts that would have
occurred while the SysTick counter is stopped during tickless idle
calculations. */
#define portMISSED_COUNTS_FACTOR ( 45UL )
/* Each task maintains its own interrupt status in the critical nesting
variable. */
static UBaseType_t uxCriticalNesting = 0xaaaaaaaa;
/*
* Setup the timer to generate the tick interrupts. The implementation in this
* file is weak to allow application writers to change the timer used to
* generate the tick interrupt.
*/
void vPortSetupTimerInterrupt( void );
/*
* Exception handlers.
*/
void xPortPendSVHandler( void );
void xPortSysTickHandler( void );
void vPortSVCHandler( void );
/*
* Start first task is a separate function so it can be tested in isolation.
*/
static void prvStartFirstTask( void );
/*
* Functions defined in portasm.s to enable the VFP.
*/
static void prvEnableVFP( void );
/*
* Used to catch tasks that attempt to return from their implementing function.
*/
static void prvTaskExitError( void );
/*-----------------------------------------------------------*/
/*
* The number of SysTick increments that make up one tick period.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulTimerCountsForOneTick = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* The maximum number of tick periods that can be suppressed is limited by the
* 24 bit resolution of the SysTick timer.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t xMaximumPossibleSuppressedTicks = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Compensate for the CPU cycles that pass while the SysTick is stopped (low
* power functionality only.
*/
#if configUSE_TICKLESS_IDLE == 1
static uint32_t ulStoppedTimerCompensation = 0;
#endif /* configUSE_TICKLESS_IDLE */
/*
* Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure
* FreeRTOS API functions are not called from interrupts that have been assigned
* a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY.
*/
#if ( configASSERT_DEFINED == 1 )
static uint8_t ucMaxSysCallPriority = 0;
static uint32_t ulMaxPRIGROUPValue = 0;
static const volatile uint8_t * const pcInterruptPriorityRegisters = ( uint8_t * ) portNVIC_IP_REGISTERS_OFFSET_16;
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
{
/* Simulate the stack frame as it would be created by a context switch
interrupt. */
/* Offset added to account for the way the MCU uses the stack on entry/exit
of interrupts, and to ensure alignment. */
pxTopOfStack--;
*pxTopOfStack = portINITIAL_XPSR; /* xPSR */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) pxCode; /* PC */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) prvTaskExitError; /* LR */
/* Save code space by skipping register initialisation. */
pxTopOfStack -= 5; /* R12, R3, R2 and R1. */
*pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
/* A save method is being used that requires each task to maintain its
own exec return value. */
pxTopOfStack--;
*pxTopOfStack = portINITIAL_EXEC_RETURN;
pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
static void prvTaskExitError( void )
{
/* A function that implements a task must not exit or attempt to return to
its caller as there is nothing to return to. If a task wants to exit it
should instead call vTaskDelete( NULL ).
Artificially force an assert() to be triggered if configASSERT() is
defined, then stop here so application writers can catch the error. */
configASSERT( uxCriticalNesting == ~0UL );
portDISABLE_INTERRUPTS();
for( ;; );
}
/*-----------------------------------------------------------*/
__asm void vPortSVCHandler( void )
{
PRESERVE8
/* Get the location of the current TCB. */
ldr r3, =pxCurrentTCB
ldr r1, [r3]
ldr r0, [r1]
/* Pop the core registers. */
ldmia r0!, {r4-r11, r14}
msr psp, r0
isb
mov r0, #0
msr basepri, r0
bx r14
}
/*-----------------------------------------------------------*/
__asm void prvStartFirstTask( void )
{
PRESERVE8
/* Use the NVIC offset register to locate the stack. */
ldr r0, =0xE000ED08
ldr r0, [r0]
ldr r0, [r0]
/* Set the msp back to the start of the stack. */
msr msp, r0
/* Globally enable interrupts. */
cpsie i
cpsie f
dsb
isb
/* Call SVC to start the first task. */
svc 0
nop
nop
}
/*-----------------------------------------------------------*/
__asm void prvEnableVFP( void )
{
PRESERVE8
/* The FPU enable bits are in the CPACR. */
ldr.w r0, =0xE000ED88
ldr r1, [r0]
/* Enable CP10 and CP11 coprocessors, then save back. */
orr r1, r1, #( 0xf << 20 )
str r1, [r0]
bx r14
nop
}
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
BaseType_t xPortStartScheduler( void )
{
#if( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
functions can be called. ISR safe functions are those that end in
"FromISR". FreeRTOS maintains separate thread and ISR API functions to
ensure interrupt entry is as fast and simple as possible.
Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
/* Determine the number of priority bits available. First write to all
possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Calculate the maximum acceptable priority group value for the number
of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
/* Shift the priority group value back to its position within the AIRCR
register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
}
#endif /* conifgASSERT_DEFINED */
/* Make PendSV and SysTick the lowest priority interrupts. */
portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;
portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;
/* Start the timer that generates the tick ISR. Interrupts are disabled
here already. */
vPortSetupTimerInterrupt();
/* Initialise the critical nesting count ready for the first task. */
uxCriticalNesting = 0;
/* Ensure the VFP is enabled - it should be anyway. */
prvEnableVFP();
/* Lazy save always. */
*( portFPCCR ) |= portASPEN_AND_LSPEN_BITS;
/* Start the first task. */
prvStartFirstTask();
/* Should not get here! */
return 0;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* Not implemented in ports where there is nothing to return to.
Artificially force an assert. */
configASSERT( uxCriticalNesting == 1000UL );
}
/*-----------------------------------------------------------*/
void vPortYield( void )
{
/* Set a PendSV to request a context switch. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
/* Barriers are normally not required but do ensure the code is completely
within the specified behaviour for the architecture. */
__dsb( portSY_FULL_READ_WRITE );
__isb( portSY_FULL_READ_WRITE );
}
/*-----------------------------------------------------------*/
void vPortEnterCritical( void )
{
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
__dsb( portSY_FULL_READ_WRITE );
__isb( portSY_FULL_READ_WRITE );
/* This is not the interrupt safe version of the enter critical function so
assert() if it is being called from an interrupt context. Only API
functions that end in "FromISR" can be used in an interrupt. Only assert if
the critical nesting count is 1 to protect against recursive calls if the
assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
}
/*-----------------------------------------------------------*/
__asm void xPortPendSVHandler( void )
{
extern uxCriticalNesting;
extern pxCurrentTCB;
extern vTaskSwitchContext;
PRESERVE8
mrs r0, psp
isb
/* Get the location of the current TCB. */
ldr r3, =pxCurrentTCB
ldr r2, [r3]
/* Is the task using the FPU context? If so, push high vfp registers. */
tst r14, #0x10
it eq
vstmdbeq r0!, {s16-s31}
/* Save the core registers. */
stmdb r0!, {r4-r11, r14}
/* Save the new top of stack into the first member of the TCB. */
str r0, [r2]
stmdb sp!, {r3}
mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY
msr basepri, r0
bl vTaskSwitchContext
mov r0, #0
msr basepri, r0
ldmia sp!, {r3}
/* The first item in pxCurrentTCB is the task top of stack. */
ldr r1, [r3]
ldr r0, [r1]
/* Pop the core registers. */
ldmia r0!, {r4-r11, r14}
/* Is the task using the FPU context? If so, pop the high vfp registers
too. */
tst r14, #0x10
it eq
vldmiaeq r0!, {s16-s31}
msr psp, r0
isb
#ifdef WORKAROUND_PMU_CM001 /* XMC4000 specific errata */
#if WORKAROUND_PMU_CM001 == 1
push { r14 }
pop { pc }
nop
#endif
#endif
bx r14
nop
}
/*-----------------------------------------------------------*/
void xPortSysTickHandler( void )
{
/* The SysTick runs at the lowest interrupt priority, so when this interrupt
executes all interrupts must be unmasked. There is therefore no need to
save and then restore the interrupt mask value as its value is already
known. */
( void ) portSET_INTERRUPT_MASK_FROM_ISR();
{
/* Increment the RTOS tick. */
if( xTaskIncrementTick() != pdFALSE )
{
/* A context switch is required. Context switching is performed in
the PendSV interrupt. Pend the PendSV interrupt. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( 0 );
}
/*-----------------------------------------------------------*/
#if configUSE_TICKLESS_IDLE == 1
__weak void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
{
uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickCTRL;
TickType_t xModifiableIdleTime;
/* Make sure the SysTick reload value does not overflow the counter. */
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
{
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
}
/* Stop the SysTick momentarily. The time the SysTick is stopped for
is accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
portNVIC_SYSTICK_CTRL_REG &= ~portNVIC_SYSTICK_ENABLE_BIT;
/* Calculate the reload value required to wait xExpectedIdleTime
tick periods. -1 is used because this code will execute part way
through one of the tick periods. */
ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
if( ulReloadValue > ulStoppedTimerCompensation )
{
ulReloadValue -= ulStoppedTimerCompensation;
}
/* Enter a critical section but don't use the taskENTER_CRITICAL()
method as that will mask interrupts that should exit sleep mode. */
__disable_irq();
/* If a context switch is pending or a task is waiting for the scheduler
to be unsuspended then abandon the low power entry. */
if( eTaskConfirmSleepModeStatus() == eAbortSleep )
{
/* Restart from whatever is left in the count register to complete
this tick period. */
portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Reset the reload register to the value required for normal tick
periods. */
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
/* Re-enable interrupts - see comments above __disable_irq() call
above. */
__enable_irq();
}
else
{
/* Set the new reload value. */
portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
/* Clear the SysTick count flag and set the count value back to
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
/* Restart SysTick. */
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
/* Sleep until something happens. configPRE_SLEEP_PROCESSING() can
set its parameter to 0 to indicate that its implementation contains
its own wait for interrupt or wait for event instruction, and so wfi
should not be executed again. However, the original expected idle
time variable must remain unmodified, so a copy is taken. */
xModifiableIdleTime = xExpectedIdleTime;
configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
if( xModifiableIdleTime > 0 )
{
__dsb( portSY_FULL_READ_WRITE );
__wfi();
__isb( portSY_FULL_READ_WRITE );
}
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
/* Stop SysTick. Again, the time the SysTick is stopped for is
accounted for as best it can be, but using the tickless mode will
inevitably result in some tiny drift of the time maintained by the
kernel with respect to calendar time. */
ulSysTickCTRL = portNVIC_SYSTICK_CTRL_REG;
portNVIC_SYSTICK_CTRL_REG = ( ulSysTickCTRL & ~portNVIC_SYSTICK_ENABLE_BIT );
/* Re-enable interrupts - see comments above __disable_irq() call
above. */
__enable_irq();
if( ( ulSysTickCTRL & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 )
{
uint32_t ulCalculatedLoadValue;
/* The tick interrupt has already executed, and the SysTick
count reloaded with ulReloadValue. Reset the
portNVIC_SYSTICK_LOAD_REG with whatever remains of this tick
period. */
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
/* Don't allow a tiny value, or values that have somehow
underflowed because the post sleep hook did something
that took too long. */
if( ( ulCalculatedLoadValue < ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
{
ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL );
}
portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
/* The tick interrupt handler will already have pended the tick
processing in the kernel. As the pending tick will be
processed as soon as this function exits, the tick value
maintained by the tick is stepped forward by one less than the
time spent waiting. */
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
}
else
{
/* Something other than the tick interrupt ended the sleep.
Work out how long the sleep lasted rounded to complete tick
periods (not the ulReload value which accounted for part
ticks). */
ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - portNVIC_SYSTICK_CURRENT_VALUE_REG;
/* How many complete tick periods passed while the processor
was waiting? */
ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick;
/* The reload value is set to whatever fraction of a single tick
period remains. */
portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1 ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
}
/* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG
again, then set portNVIC_SYSTICK_LOAD_REG back to its standard
value. The critical section is used to ensure the tick interrupt
can only execute once in the case that the reload register is near
zero. */
portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
portENTER_CRITICAL();
{
portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT;
vTaskStepTick( ulCompleteTickPeriods );
portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
}
portEXIT_CRITICAL();
}
}
#endif /* #if configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/
/*
* Setup the SysTick timer to generate the tick interrupts at the required
* frequency.
*/
#if configOVERRIDE_DEFAULT_TICK_CONFIGURATION == 0
void vPortSetupTimerInterrupt( void )
{
/* Calculate the constants required to configure the tick interrupt. */
#if configUSE_TICKLESS_IDLE == 1
{
ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ );
xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick;
ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ );
}
#endif /* configUSE_TICKLESS_IDLE */
/* Configure SysTick to interrupt at the requested rate. */
portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT );
}
#endif /* configOVERRIDE_DEFAULT_TICK_CONFIGURATION */
/*-----------------------------------------------------------*/
__asm uint32_t ulPortSetInterruptMask( void )
{
PRESERVE8
mrs r0, basepri
mov r1, #configMAX_SYSCALL_INTERRUPT_PRIORITY
msr basepri, r1
bx r14
}
/*-----------------------------------------------------------*/
__asm void vPortClearInterruptMask( uint32_t ulNewMask )
{
PRESERVE8
msr basepri, r0
bx r14
}
/*-----------------------------------------------------------*/
__asm uint32_t vPortGetIPSR( void )
{
PRESERVE8
mrs r0, ipsr
bx r14
}
/*-----------------------------------------------------------*/
#if( configASSERT_DEFINED == 1 )
void vPortValidateInterruptPriority( void )
{
uint32_t ulCurrentInterrupt;
uint8_t ucCurrentPriority;
/* Obtain the number of the currently executing interrupt. */
ulCurrentInterrupt = vPortGetIPSR();
/* Is the interrupt number a user defined interrupt? */
if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER )
{
/* Look up the interrupt's priority. */
ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ];
/* The following assertion will fail if a service routine (ISR) for
an interrupt that has been assigned a priority above
configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
function. ISR safe FreeRTOS API functions must *only* be called
from interrupts that have been assigned a priority at or below
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Numerically low interrupt priority numbers represent logically high
interrupt priorities, therefore the priority of the interrupt must
be set to a value equal to or numerically *higher* than
configMAX_SYSCALL_INTERRUPT_PRIORITY.
Interrupts that use the FreeRTOS API must not be left at their
default priority of zero as that is the highest possible priority,
which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY,
and therefore also guaranteed to be invalid.
FreeRTOS maintains separate thread and ISR API functions to ensure
interrupt entry is as fast and simple as possible.
The following links provide detailed information:
http://www.freertos.org/RTOS-Cortex-M3-M4.html
http://www.freertos.org/FAQHelp.html */
configASSERT( ucCurrentPriority >= ucMaxSysCallPriority );
}
/* Priority grouping: The interrupt controller (NVIC) allows the bits
that define each interrupt's priority to be split between bits that
define the interrupt's pre-emption priority bits and bits that define
the interrupt's sub-priority. For simplicity all bits must be defined
to be pre-emption priority bits. The following assertion will fail if
this is not the case (if some bits represent a sub-priority).
If the application only uses CMSIS libraries for interrupt
configuration then the correct setting can be achieved on all Cortex-M
devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the
scheduler. Note however that some vendor specific peripheral libraries
assume a non-zero priority group setting, in which cases using a value
of zero will result in unpredicable behaviour. */
configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
}
#endif /* configASSERT_DEFINED */
void vApplicationStackOverflowHook( xTaskHandle pxTask, signed char *pcTaskName )
{
/* This function will be called if a task overflows its stack, if
configCHECK_FOR_STACK_OVERFLOW != 0. It might be that the function
parameters have been corrupted, depending on the severity of the stack
overflow. When this is the case pxCurrentTCB can be inspected in the
debugger to find the offending task. */
printf("\n\r[%s] STACK OVERFLOW - TaskName(%s)\n\r", __FUNCTION__, pcTaskName);
for( ;; );
}

View file

@ -0,0 +1,186 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
#ifdef __cplusplus
extern "C" {
#endif
/*-----------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the
* given hardware and compiler.
*
* These settings should not be altered.
*-----------------------------------------------------------
*/
/* Type definitions. */
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint32_t
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
typedef unsigned long UBaseType_t;
#if( configUSE_16_BIT_TICKS == 1 )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffff
#else
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffffffffUL
#endif
/*-----------------------------------------------------------*/
/* Architecture specifics. */
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portBYTE_ALIGNMENT 8
/*-----------------------------------------------------------*/
/* Scheduler utilities. */
extern void vPortYield( void );
#define portNVIC_INT_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000ed04 ) )
#define portNVIC_PENDSVSET_BIT ( 1UL << 28UL )
#define portYIELD() vPortYield()
#define portEND_SWITCHING_ISR( xSwitchRequired ) if( xSwitchRequired ) portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT
#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
/*-----------------------------------------------------------*/
/* Critical section management. */
extern uint32_t ulPortSetInterruptMask( void );
extern void vPortClearInterruptMask( uint32_t ulNewMask );
extern void vPortEnterCritical( void );
extern void vPortExitCritical( void );
#define portDISABLE_INTERRUPTS() ulPortSetInterruptMask()
#define portENABLE_INTERRUPTS() vPortClearInterruptMask( 0 )
#define portENTER_CRITICAL() vPortEnterCritical()
#define portEXIT_CRITICAL() vPortExitCritical()
#define portSET_INTERRUPT_MASK_FROM_ISR() ulPortSetInterruptMask()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) vPortClearInterruptMask(x)
/*-----------------------------------------------------------*/
/* Tickless idle/low power functionality. */
#ifndef portSUPPRESS_TICKS_AND_SLEEP
extern void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ) vPortSuppressTicksAndSleep( xExpectedIdleTime )
#endif
/*-----------------------------------------------------------*/
/* Port specific optimisations. */
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
#endif
#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
/* Check the configuration. */
#if 0//( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
#endif
/* Store/clear the ready priorities in a bit map. */
#define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )
/*-----------------------------------------------------------*/
#define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31 - __clz( ( uxReadyPriorities ) ) )
#endif /* taskRECORD_READY_PRIORITY */
/*-----------------------------------------------------------*/
/* Task function macros as described on the FreeRTOS.org WEB site. These are
not necessary for to use this port. They are defined so the common demo files
(which build with all the ports) will build. */
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters )
/*-----------------------------------------------------------*/
#ifdef configASSERT
void vPortValidateInterruptPriority( void );
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID() vPortValidateInterruptPriority()
#endif
/* portNOP() is not required by this port. */
#define portNOP()
#ifdef __cplusplus
}
#endif
#endif /* PORTMACRO_H */

View file

@ -39,7 +39,6 @@ typedef enum _ADC_DBG_LVL_ {
VERI_ADC_LVL = 0x04,
}ADC_DBG_LVL,*PADC_DBG_LVL;
#if CONFIG_DEBUG_LOG > 0
#ifdef CONFIG_DEBUG_LOG_ADC_HAL
#define DBG_8195A_ADC(...) do{ \
@ -58,7 +57,6 @@ typedef enum _ADC_DBG_LVL_ {
#define DBG_8195A_ADC(...)
#define DBG_8195A_ADC_LVL(...)
#endif
#endif
//================ ADC HAL Related Enumeration ==================

View file

@ -146,5 +146,6 @@ VOID HalLogUartAbortIntRecv(HAL_LOG_UART_ADAPTER *pUartAdapter);
HAL_Status HalLogUartRstFIFO(HAL_LOG_UART_ADAPTER *pUartAdapter, u8 RstCtrl);
VOID HalLogUartEnable(HAL_LOG_UART_ADAPTER *pUartAdapter);
VOID HalLogUartDisable(HAL_LOG_UART_ADAPTER *pUartAdapter);
VOID HalLogUartWaitTxFifoEmpty(VOID);
#endif

Some files were not shown because too many files have changed in this diff Show more