KlassischeKeplerKriege/game/renderer_polygon_3d/renderer_polygon_3d.cpp

485 lines
17 KiB
C++

#include "renderer_polygon_3d.hpp"
#include <iostream>
#include "state/events/explosion_event.hpp"
namespace endofthejedi {
void RendererPolygon3d::setup()
{
m_lastTime = -1.0;
std::cout<<"setup polygon 3d" << std::endl;
std::string vss_game_objects = "../data/shader/gameobjects.vert";
std::string fss_game_objects = "../data/shader/gameobjects.frag";
m_shader_game_objects.init();
m_shader_game_objects.loadFile(vss_game_objects, GL_VERTEX_SHADER);
m_shader_game_objects.loadFile(fss_game_objects, GL_FRAGMENT_SHADER);
std::string vss_particles = "../data/shader/particle.vert";
std::string fss_particles = "../data/shader/particle.frag";
m_shader_particles.init();
m_shader_particles.loadFile(vss_particles, GL_VERTEX_SHADER);
m_shader_particles.loadFile(fss_particles, GL_FRAGMENT_SHADER);
//addModel("../data/mesh/small_atomic_bomb.stl", &m_missileModel);
addModel("../data/mesh/rocket.stl", &m_missileModel);
addModel("../data/mesh/planet_12.stl", &m_planetModel);
addModel("../data/mesh/ship_ufo.stl", &m_shipModel);
}
void RendererPolygon3d::render(const game::State *state)
{
if (m_lastTime == -1.0) {
m_lastTime = state->timestamp();
}
float dt = state->timestamp() - m_lastTime;
if (dt < 0.0) {
dt = 0.0;
}
m_state = state;
advanceGraphicObjects(dt);
// TODO: add stars (texture)
// TODO: add dust particles
// TODO: add little rocks flying around
//glClearColor(0.0, 0.0, 0.0, 1.0);
float s = 0.1;
glClearColor(s, s, 1.2*s, 1.0);
m_shader_game_objects.bind();
// TODO: add ONE sun planet
// TODO: add lights for explosions
configureLightningInShader();
//std::cout<<"setting aspect ratio: " << m_aspectRatio << std::endl;
glUniform1f(m_shader_game_objects.location("aspectRatio"), m_aspectRatio);
renderPlanets();
renderShips();
renderMissiles();
renderParticles();
renderTraces();
//glColor3f(1.0, 0.0, 0.0);
//glBegin(GL_QUADS);
//glVertex2f(-1.0f, -1.0f);
//glVertex2f(1.0f, -1.0f);
//glVertex2f(1.0f, 1.0f);
//glVertex2f(-1.0f, 1.0f);
//glEnd();
m_lastTime = state->timestamp();
}
void RendererPolygon3d::renderParticles()
{
m_shader_particles.bind();
glUniform1f(m_shader_particles.location("aspectRatio"), m_aspectRatio);
for (ParticleBatch *batch : m_particles) {
batch->bind();
batch->render(&m_shader_particles);
}
}
void RendererPolygon3d::addExplosionEffect(
size_t id, const glm::vec2 &explCenter, const glm::vec2 &missileVelocity,
bool isPlanetHit,
size_t n, float duration)
{
//float particleRadius = 0.005;
//float particleRadius = 0.003;
float particleRadius = 0.02;
// TODO: use this as shader input too and make the area 2x around this
// so that it stays hot/yellow for 2/3 of the time
float explCoreSize = 0.02f;
float maxVelocity = 0.4f;
ParticleBatch *batch = new ParticleBatch(id, n, particleRadius, duration);
batch->setup(&m_shader_particles);
batch->setCenter(glm::vec3(explCenter, 0.0));
batch->setMaxVelocity(maxVelocity);
for (size_t i=0; i<n; i++) {
// distribute in a circle
//float t = 2.0 * M_PI * i / (float) n;
//t += 0.2*util::randf_m1_1();
// with random velocities
// this is 3d because it looks better if some particles leave/enter
// the space and they are not all on one plane.
// especially in 3d this would look bad without 3d velocity vector.
//glm::vec3 v = 0.5f*glm::vec3(sin(t), cos(t), util::randf_m1_1());
glm::vec3 pos = glm::vec3(explCenter, 0.0) + glm::ballRand(explCoreSize);
glm::vec3 v = glm::ballRand(maxVelocity);
// TODO: is that good?
if (isPlanetHit) {
v *= util::randf_0_1() * util::randf_0_1() * util::randf_0_1();
} else {
v *= util::randf_0_1();
}
// find collisions with planetns and limit max distance so particles
// won't fly through planets
//float maxDist = 0.1;
//float maxDist = 0.1*util::randf_0_1();
bool isInsidePlanet = false;
float maxParticleDist = INFINITY;
const game::Planet *nearestPlanet = nullptr;
for (const game::Planet *planet : m_state->planets) {
const glm::vec3 ppos3 = glm::vec3(planet->position, 0.0f);
// TODO: that's slightly wrong. use intersection for this.
float dist = glm::distance(ppos3, pos);
if (dist <= planet->radius) {
isInsidePlanet = true;
nearestPlanet = planet;
}
if (isInsidePlanet) {
// skip searching for nearer planets once we are inside some
// planet as the position/velocity will be changed to start
// at the surface of the planet we were in with
// reflected or planet-normal velocity.
continue;
}
// TODO: if inside, move position so that it looks like
// reflecting the particle from the planet
bool fliesInPlanetDirection = glm::dot(v, ppos3-pos) > 0.0f;
if (dist < maxParticleDist && fliesInPlanetDirection) {
nearestPlanet = planet;
maxParticleDist = dist;
}
}
bool makeStationary = false;
if (isInsidePlanet && isPlanetHit) {
util::IntersectionTest intersect;
if (!intersect.raySphere(
glm::vec3(explCenter, 0.0f), v,
glm::vec3(nearestPlanet->position, 0.0f), nearestPlanet->radius))
{
makeStationary = true;
//std::cout<<"warning: intersection should be valid!" << std::endl;
// TODO: must be as they lie on a plane and the dist is < as
// the radius.
// handle if this is wrong.
} else {
// simple reflection, ignoring the missile velocity: this looks good enough
(void) missileVelocity;
glm::vec3 planetNormal = glm::normalize(pos - glm::vec3(nearestPlanet->position, 0.0f));
v = glm::length(v) * planetNormal;
// TODO
// considering the missile velocity is not yet working:
// set position to the intersection point between explosion
// center and planet surface
//pos = intersect.pointAtDistance(intersect.distance());
//v = glm::vec3(missileVelocity, 0.0f);
//v = v - 2.0f*glm::dot(v, planetNormal) * planetNormal;
//v *= 4.0;
//maxParticleDist = 100.0;
//v = -v;
//pos = glm::vec3(nearestPlanet->position, 0.0f) + nearestPlanet->radius*planetNormal;
// set position to the intersection point between explosion
// center and planet surface
//const glm::vec3 planetNormal = glm::vec3(glm::normalize(explCenter - nearestPlanet->position), 0.0f);
//pos = glm::vec3(nearestPlanet->position, 0.0f) + nearestPlanet->radius*planetNormal;
// build new velocity by reflecting the old velocity on the
// planet normal
// TODO: add a bit random
// TODO: add reflection
// TODO: distribute particles around main reflection angle and
// TODO: add material exhaust that is specific for the planet.
// TODO: spawn waves on water planet
// TODO: start fire on gas planet
//v = glm::length(v) * planetNormal;
//v = v - 2.0f*glm::dot(v, planetNormal) * planetNormal;
//v = glm::length(v) * planetNormal;
//glm::vec3 r = v - 2.0f*glm::dot(v, planetNormal) * planetNormal;
//glm::vec3 vn = glm::length(v) * planetNormal;
//v = (r+vn) / 2.0f;
//glm::vec3 vc = glm::vec3(nearestPlanet->position-explCenter, 0.0f);
//glm::vec3 r = vc - 2.0f*glm::dot(vc, planetNormal) * planetNormal;
//v = r;
}
} else if (isInsidePlanet && !isPlanetHit) {
// if a planet is just hit by explosions particles but not the
// missile itself, don't reflect the particles in the planet.
// just set them as stationary at place of explosion
makeStationary = true;
}
if (makeStationary) {
v = glm::vec3(0.0f, 0.0f, 0.0f);
pos = glm::vec3(explCenter, 0.0f);;
}
batch->setParticle(i, pos, v, maxParticleDist);
}
batch->upload();
m_particles.push_back(batch);
}
void RendererPolygon3d::advanceGraphicObjects(float dt)
{
#if 0
for (const game::Explosion *expl : m_state->explosions) {
bool gotIt = false;
for (ParticleBatch *batch : m_particles) {
if (batch->id() == expl->id) {
gotIt = true;
break;
}
}
if (!gotIt) {
addExplosionEffect(
expl->id, expl->position,
expl->missileVelocity,
(expl->hit == game::Hit::Planet),
1000, 1.0);
}
}
#endif
for (game::StateUpdateEvent *evt : m_state->currentStateUpdateEvents()) {
if (evt->eventType() == game::StateUpdateEvent::EventType::Explosion) {
auto cycle = evt->lifeCycle();
if (cycle == game::StateUpdateEvent::LifeCycle::Create) {
game::ExplosionEvent *ee = static_cast<game::ExplosionEvent*>(evt);
const game::Explosion *expl = ee->explosion;
addExplosionEffect(
expl->id, expl->position,
expl->missileVelocity,
(expl->hit == game::Hit::Planet),
1000, 1.0);
std::cout<<"adding [graphic] explosion for #" << expl->id << std::endl;
}
}
}
//if (m_particles.size() == 0) {
// addExplosionEffect(0, glm::vec2(0.0, 0.0), glm::vec2(0.0, 0.0), false, 10000, 2.0);
//}
std::vector<ParticleBatch*> rm;
for (ParticleBatch *batch : m_particles) {
batch->tick(dt);
if (batch->done()) {
rm.push_back(batch);
}
}
for (ParticleBatch *batch : rm) {
m_particles.remove(batch);
delete(batch);
}
}
void RendererPolygon3d::renderPlanets()
{
m_planetModel->bind();
// TODO: put material into attributes and render witd glDrawInstanced
// too (same for missiles)
for (const game::Planet *planet : m_state->planets) {
glm::mat4 model = computeModelMatrix(planet);
glUniformMatrix4fv(m_shader_game_objects.location("model"), 1, GL_FALSE, glm::value_ptr(model));
glm::vec3 c = planet->getColor();
glUniform3f(m_shader_game_objects.location("materialColor"), c.x, c.y, c.z);
glUniform1i(m_shader_game_objects.location("materialSeed"), planet->seed);
glUniform1i(m_shader_game_objects.location("materialKind"), (int) planet->material);
m_planetModel->render();
}
}
void RendererPolygon3d::renderMissiles()
{
// TODO: add fire trail for missiles near the sun
m_missileModel->bind();
for (const game::Player *player : m_state->players) {
for (const game::Missile *missile : player->missiles) {
glm::vec3 c = glm::vec3(1.0, 1.0, 0.3);
glUniform3f(m_shader_game_objects.location("materialColor"), c.x, c.y, c.z);
glm::mat4 model = computeModelMatrix(missile);
glUniformMatrix4fv(m_shader_game_objects.location("model"), 1, GL_FALSE, glm::value_ptr(model));
m_missileModel->render();
}
}
}
void RendererPolygon3d::renderShips()
{
m_shipModel->bind();
for (const game::Ship *ship : m_state->ships) {
glm::mat4 model = computeModelMatrix(ship);
glUniformMatrix4fv(m_shader_game_objects.location("model"), 1, GL_FALSE, glm::value_ptr(model));
glm::vec3 c = glm::vec3(0.1, 1.0, 0.2);
glUniform3f(m_shader_game_objects.location("materialColor"), c.x, c.y, c.z);
m_shipModel->render();
}
}
void RendererPolygon3d::addModel(const std::string &filename, PolygonModel **dest)
{
//std::cout<<"adding a model: " << filename << std::endl;
*dest = new PolygonModel(filename);
if (!(*dest)->import()) {
std::cout<<"error: failed to load needed model!!!" << std::endl << std::endl;
exit(-1);
}
(*dest)->setup(&m_shader_game_objects);
(*dest)->uploadToOpenGl();
m_models.push_back(*dest);
}
glm::mat4 RendererPolygon3d::computeModelMatrix(const game::Planet *planet)
{
return computeModelMatrix(planet->position, planet->radius);
}
glm::mat4 RendererPolygon3d::computeModelMatrix(const game::Missile *missile)
{
glm::vec2 vn = glm::normalize(missile->velocity);
float a = std::atan2(vn.y, vn.x);
glm::mat4 mat = computeModelMatrix(missile->position, 0.1f, a);
// TODO: which visual size has the rocket? in game its just a point with
// no size because all others have size.
//for atomic bomb
//return computeModelMatrix(missile->position, 0.03f, a);
// flipped too
mat = glm::rotate(mat, (float) M_PI/2.0f, glm::vec3(0.0f, 1.0f, 0.0f));
return mat;
}
glm::mat4 RendererPolygon3d::computeModelMatrix(const game::Ship *ship)
{
// TODO: rotate them before shooting, that looks better
glm::mat4 mat = computeModelMatrix(ship->position, m_state->shipRadius());
// XXX model is flipped
//glm::mat4 mat = computeModelMatrix(ship->position, 0.3);
mat = glm::rotate(mat, (float) M_PI, glm::vec3(0.0f, 1.0f, 0.0f));
return mat;
}
glm::mat4 RendererPolygon3d::computeModelMatrix(const glm::vec2 &pos, float scale, float angle)
{
// init as identity matrix
glm::mat4 model;
model = glm::translate(model, glm::vec3(pos, 0.0));
if (scale != 1.0) {
model = glm::scale(model, glm::vec3(scale));
}
if (angle != 0.0) {
model = glm::rotate(model, angle, glm::vec3(0.0f, 0.0f, 1.0f));
}
return model;
}
void RendererPolygon3d::renderTraces()
{
// revert to default
glUseProgram(0);
// TODO dont use line mode. make that with own quads
glPolygonMode(GL_FRONT, GL_LINE);
for (const game::Trace *trace : m_state->traces) {
float fade_out = 1.0;
if (trace->missile == nullptr) {
fade_out = 1.0 - (trace->age / trace->maxAge);
}
glColor3f(0.0, 0.5*fade_out, 0.5*fade_out);
glBegin(GL_LINE_STRIP);
for (const game::Trace::TracePoint &tp : trace->points) {
glVertex2f(tp.position.x, tp.position.y);
}
glEnd();
}
glPolygonMode(GL_FRONT, GL_FILL);
}
void RendererPolygon3d::configureLightningInShader()
{
// TODO: add a few small lights for explosions so they lit the
// surroundsings
// TODO: use the sun planet color for this!
glm::vec3 c = glm::vec3(1.0, 1.0, 0.8);
glm::vec3 p = glm::vec3(0.3f, 0.4f, 0.0f);
for (const game::Planet *planet : m_state->planets) {
if (planet->material == game::Planet::Material::Sun) {
p = glm::vec3(planet->position, 0.0);
c = planet->getColor();
break;
}
}
glUniform3f(m_shader_game_objects.location("lightPosition"), p.x, p.y, p.z);
glUniform3f(m_shader_game_objects.location("lightColor"), c.x, c.y, c.z);
}
void RendererPolygon3d::setWindowSize(int px, int py)
{
m_aspectRatio = (float) px / (float) py;
}
void RendererPolygon3d::setCameraMatrix(const glm::mat4 &cam)
{
(void) cam;
}
}