rel_1.6.0 init

This commit is contained in:
guocheng.kgc 2020-06-18 20:06:52 +08:00 committed by shengdong.dsd
commit 27b3e2883d
19359 changed files with 8093121 additions and 0 deletions

View file

@ -0,0 +1,91 @@
/*
* Copyright (C) 2015-2017 Alibaba Group Holding Limited
*/
#include "CheckSumUtils.h"
uint8_t UpdateCRC8(uint8_t crcIn, uint8_t byte)
{
uint8_t crc = crcIn;
uint8_t i;
crc ^= byte;
for (i = 0; i < 8; i++) {
if (crc & 0x01) {
crc = (crc >> 1) ^ 0x8C;
} else {
crc >>= 1;
}
}
return crc;
}
void CRC8_Init( CRC8_Context *inContext )
{
inContext->crc = 0;
}
void CRC8_Update( CRC8_Context *inContext, const void *inSrc, size_t inLen )
{
const uint8_t *src = (const uint8_t *) inSrc;
const uint8_t *srcEnd = src + inLen;
while ( src < srcEnd ) {
inContext->crc = UpdateCRC8(inContext->crc, *src++);
}
}
void CRC8_Final( CRC8_Context *inContext, uint8_t *outResult )
{
//inContext->crc = UpdateCRC8(inContext->crc, 0);
*outResult = inContext->crc & 0xffu;
}
/*******************************************************************************/
uint16_t UpdateCRC16(uint16_t crcIn, uint8_t byte)
{
uint32_t crc = crcIn;
uint32_t in = byte | 0x100;
do {
crc <<= 1;
in <<= 1;
if (in & 0x100) {
++crc;
}
if (crc & 0x10000) {
crc ^= 0x1021;
}
} while (!(in & 0x10000));
return crc & 0xffffu;
}
void CRC16_Init( CRC16_Context *inContext )
{
inContext->crc = 0;
}
void CRC16_Update( CRC16_Context *inContext, const void *inSrc, size_t inLen )
{
const uint8_t *src = (const uint8_t *) inSrc;
const uint8_t *srcEnd = src + inLen;
while ( src < srcEnd ) {
inContext->crc = UpdateCRC16(inContext->crc, *src++);
}
}
void CRC16_Final( CRC16_Context *inContext, uint16_t *outResult )
{
inContext->crc = UpdateCRC16(inContext->crc, 0);
inContext->crc = UpdateCRC16(inContext->crc, 0);
*outResult = inContext->crc & 0xffffu;
}

View file

@ -0,0 +1,117 @@
/*
* Copyright (C) 2015-2017 Alibaba Group Holding Limited
*/
#ifndef __CheckSumUtils_h__
#define __CheckSumUtils_h__
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
/******************CRC-8 XMODEM x8+x5+x4+1******************************
*******************************************************************************/
typedef struct {
uint8_t crc;
} CRC8_Context;
/**
* @brief initialize the CRC8 Context
*
* @param inContext holds CRC8 result
*
* @retval none
*/
void CRC8_Init( CRC8_Context *inContext );
/**
* @brief Caculate the CRC8 result
*
* @param inContext holds CRC8 result during caculation process
* @param inSrc input data
* @param inLen length of input data
*
* @retval none
*/
void CRC8_Update( CRC8_Context *inContext, const void *inSrc, size_t inLen );
/**
* @brief output CRC8 result
*
* @param inContext holds CRC8 result
* @param outResutl holds CRC8 final result
*
* @retval none
*/
void CRC8_Final( CRC8_Context *inContext, uint8_t *outResult );
/**
* @}
*/
/******************CRC-16/XMODEM x16+x12+x5+1******************************
*******************************************************************************/
/**
* @brief caculate the CRC16 result for each byte
*
* @param crcIn The context to save CRC16 result.
* @param byte each byte of input data.
*
* @retval return the CRC16 result
*/
typedef struct {
uint16_t crc;
} CRC16_Context;
/**
* @brief initialize the CRC16 Context
*
* @param inContext holds CRC16 result
*
* @retval none
*/
void CRC16_Init( CRC16_Context *inContext );
/**
* @brief Caculate the CRC16 result
*
* @param inContext holds CRC16 result during caculation process
* @param inSrc input data
* @param inLen length of input data
*
* @retval none
*/
void CRC16_Update( CRC16_Context *inContext, const void *inSrc, size_t inLen );
/**
* @brief output CRC16 result
*
* @param inContext holds CRC16 result
* @param outResutl holds CRC16 final result
*
* @retval none
*/
void CRC16_Final( CRC16_Context *inContext, uint16_t *outResult );
/**
* @}
*/
/**
* @}
*/
#endif //__CheckSumUtils_h__

View file

@ -0,0 +1,50 @@
/*
* Copyright (C) 2015-2017 Alibaba Group Holding Limited
*/
#include <stdint.h>
#include "crc.h"
#define CRC16_SEED 0xFFFF
#define POLY16 0x1021
#define CRC32_SEED 0xFFFFFFFF
#define POLY32 0x04C11DB7
/** The poly is 0x1021 (x^16 + x^12 + x^5 + 1) */
uint16_t utils_crc16(uint8_t *buf, uint32_t length)
{
int i;
unsigned short shift = CRC16_SEED, data = 0, val = 0;
for (i = 0; i < length; i++) {
if ((i % 8) == 0) {
data = (*buf++) << 8;
}
val = shift ^ data;
shift = shift << 1;
data = data << 1;
if (val & 0x8000) {
shift = shift ^ POLY16;
}
}
return shift;
}
/** The poly is 0x04C11DB7 (X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X+1) */
uint32_t utils_crc32(uint8_t *buf, uint32_t length)
{
uint8_t i;
uint32_t crc = CRC32_SEED; // Initial value
while (length--) {
crc ^= (uint32_t) (*buf++) << 24; // crc ^=(uint32_t)(*data)<<24; data++;
for (i = 0; i < 8; ++i) {
if (crc & 0x80000000) {
crc = (crc << 1) ^ POLY32;
} else {
crc <<= 1;
}
}
}
return crc;
}

View file

@ -0,0 +1,20 @@
/*
* Copyright (C) 2015-2017 Alibaba Group Holding Limited
*/
#ifndef _crc_h_
#define _crc_h_
#include <stdint.h>
#if defined(__cplusplus) /* If this is a C++ compiler, use C linkage */
extern "C"
{
#endif
uint16_t utils_crc16(uint8_t *buf, uint32_t length);
uint32_t utils_crc32(uint8_t *buf, uint32_t length);
#if defined(__cplusplus) /* If this is a C++ compiler, use C linkage */
}
#endif
#endif

View file

@ -0,0 +1,233 @@
/*
* Copyright (C) 2015-2017 Alibaba Group Holding Limited
*/
#include <stdio.h>
#include <stdlib.h>
#include "digest_algorithm.h"
#include "md5.h"
#include "sha2.c"
#include "hmac.c"
#include "aos/aos.h"
void *digest_md5_init(void)
{
MD5_CTX *ctx = (MD5_CTX *) aos_malloc(sizeof(MD5_CTX));
if (NULL == ctx) {
return NULL;
}
MD5_Init(ctx);
return ctx;
}
int digest_md5_update(void *md5, const void *data, uint32_t length)
{
MD5_Update(md5, data, length);
return 0;
}
int digest_md5_final(void *md5, unsigned char *digest)
{
MD5_Final(digest, md5);
aos_free(md5);
return 0;
}
int digest_md5(const void *data, uint32_t length, unsigned char *digest)
{
MD5_CTX *ctx = (MD5_CTX *) aos_malloc(sizeof(MD5_CTX));
if (NULL == ctx) {
return -1;
}
MD5_Init(ctx);
MD5_Update(ctx, data, length);
MD5_Final(digest, ctx);
aos_free(ctx);
return 0;
}
int digest_md5_file(const char *path, unsigned char *md5)
{
int bytes;
unsigned char data[512];
unsigned char digest[16];
int i, fd;
fd = aos_open(path, O_RDONLY);
if (fd < 0) {
return -1;
}
MD5_CTX *ctx = (MD5_CTX *) aos_malloc(sizeof(MD5_CTX));
if (NULL == ctx) {
aos_close(fd);
return -1;
}
MD5_Init(ctx);
do {
bytes = aos_read(fd, data, sizeof(data));
if (bytes > 0) {
MD5_Update(ctx, data, bytes);
}
} while (bytes == sizeof(data));
MD5_Final(digest, ctx);
for (i = 0; i < 16; i++) {
sprintf((char *)&md5[i * 2], "%02x", digest[i]);
}
aos_close(fd);
aos_free(ctx);
return 0;
}
void *digest_sha256_init(void)
{
SHA256_CTX *ctx = (SHA256_CTX *) aos_malloc(sizeof(SHA256_CTX));
if (NULL == ctx) {
return NULL;
}
SHA256_Init(ctx);
return ctx;
}
int digest_sha256_update(void *sha256, const void *data, uint32_t length)
{
SHA256_Update(sha256, data, length);
return 0;
}
int digest_sha256_final(void *sha256, unsigned char *digest)
{
SHA256_Final(digest, sha256);
aos_free(sha256);
return 0;
}
int digest_sha256(const void *data, uint32_t length, unsigned char *digest)
{
SHA256_CTX *ctx = (SHA256_CTX *) aos_malloc(sizeof(SHA256_CTX));
if (NULL == ctx) {
return -1;
}
memset(ctx, 0, sizeof(SHA256_CTX));
SHA256_Init(ctx);
SHA256_Update(ctx, data, length);
SHA256_Final(digest, ctx);
aos_free(ctx);
return 0;
}
void *digest_sha384_init(void)
{
SHA384_CTX *ctx = (SHA384_CTX *) aos_malloc(sizeof(SHA384_CTX));
if (NULL == ctx) {
return NULL;
}
SHA384_Init(ctx);
return ctx;
}
int digest_sha384_update(void *sha384, const void *data, uint32_t length)
{
SHA384_Update(sha384, data, length);
return 0;
}
int digest_sha384_final(void *sha384, unsigned char *digest)
{
SHA384_Final(digest, sha384);
aos_free(sha384);
return 0;
}
int digest_sha384(const void *data, uint32_t length, unsigned char *digest)
{
SHA384_CTX *ctx = (SHA384_CTX *) aos_malloc(sizeof(SHA384_CTX));
if (NULL == ctx) {
return -1;
}
SHA384_Init(ctx);
SHA384_Update(ctx, data, length);
SHA384_Final(digest, ctx);
aos_free(ctx);
return 0;
}
void *digest_sha512_init(void)
{
SHA512_CTX *ctx = (SHA512_CTX *) aos_malloc(sizeof(SHA512_CTX));
if (NULL == ctx) {
return NULL;
}
SHA512_Init(ctx);
return ctx;
}
int digest_sha512_update(void *sha512, const void *data, uint32_t length)
{
SHA512_Update(sha512, data, length);
return 0;
}
int digest_sha512_final(void *sha512, unsigned char *digest)
{
SHA512_Final(digest, sha512);
aos_free(sha512);
return 0;
}
int digest_sha512(const void *data, uint32_t length, unsigned char *digest)
{
SHA512_CTX *ctx = (SHA512_CTX *) aos_malloc(sizeof(SHA512_CTX));
if (NULL == ctx) {
return -1;
}
SHA512_Init(ctx);
SHA512_Update(ctx, data, length);
SHA512_Final(digest, ctx);
aos_free(ctx);
return 0;
}
int digest_hmac(enum digest_type type, const unsigned char *data,
uint32_t data_len, const unsigned char *key, uint32_t key_len,
unsigned char *digest)
{
switch (type) {
case DIGEST_TYPE_MD5:
return digest_hmac_md5(data, data_len, key, key_len, digest);
case DIGEST_TYPE_SHA256:
break;
case DIGEST_TYPE_SHA384:
break;
case DIGEST_TYPE_SHA512:
break;
default:
break;
}
return -1;
}

View file

@ -0,0 +1,358 @@
/*
* Copyright (C) 2015-2017 Alibaba Group Holding Limited
*/
//chf, cryptographic hash function
#ifndef __CRY_HASH_FUNC_H__
#define __CRY_HASH_FUNC_H__
#include <stdint.h>
#if defined(__cplusplus) /* If this is a C++ compiler, use C linkage */
extern "C"
{
#endif
/** @defgroup group_chf group_chf
* @ingroup group_external_resource
* @{
*/
/**
* @enum Type of digest.
*/
enum digest_type {
DIGEST_TYPE_MD5, /**< MD5 */
//CHF_SHA1,
DIGEST_TYPE_SHA256, /**< SHA-256 */
DIGEST_TYPE_SHA384, /**< SHA-384 */
DIGEST_TYPE_SHA512, /**< SHA-512 */
};
/** @defgroup group_crypto_hash group_crypto_hash
* @{
*/
/** @defgroup group_crypto_hash_md5 group_crypto_hash_md5
* @{
*/
#define MD5_SIZE_BYTE (16) /*Size of MD5 result in byte*/
#define MD5_SIZE_BIT (128) /*Size of MD5 result in bit*/
/**
* @brief initialize MD5.
*
* @param None.
* @return @n MD5 handle.
* @see None.
* @note None.
*/
void *digest_md5_init(void);
/**
* @brief Hash chunks of data with using MD5 digest type.
*
* @param[in] md5 @n The MD5 handle.
* @param[in] data @n The data to be hashed.
* @param[in] length @n The length of the data, in bytes.
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note None.
*/
int digest_md5_update(void *md5, const void *data, uint32_t length);
/**
* @brief Extract the MD5 result and place in digest.
*
* @param[in] md5 @n The MD5 handle.
* @param[out] digest @n MD5 result.
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_md5_final(void *md5, unsigned char *digest);
/**
* @brief Compute MD5 once.
*
* @param[in] data @n The data to be hashed.
* @param[in] length @n The length of the data, in bytes.
* @param[out] digest @n MD5 result.
*
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_md5(const void *data, uint32_t length, unsigned char *digest);
/**
* @brief Compute the specific file's MD5 value.
*
* @param[in] path @n file path.
* @param[out] digest @n MD5 result.
*
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_md5_file(const char *path, unsigned char *digest);
/** @} */// end of group_crypt_hash_md5
/** @defgroup group_crypto_hash_sha256 group_crypto_hash_sha256
* @{
*/
#define SHA256_SIZE_BYTE (32) /*Size of SHA256 result in byte*/
#define SHA256_SIZE_BIT (256) /*Size of SHA256 result in bit*/
/**
* @brief initialize sha256.
*
* @param None.
* @return @n sha256 handle.
* @see None.
* @note None.
*/
void *digest_sha256_init(void);
/**
* @brief Hash chunks of data with using sha256 digest type.
*
* @param[in] sha256 @n The sha256 handle.
* @param[in] data @n The data to be hashed.
* @param[in] length @n The length of the data, in bytes.
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note None.
*/
int digest_sha256_update(void *sha256, const void *data, uint32_t length);
/**
* @brief Extract the sha256 result and place in digest.
*
* @param[in] sha256 @n The sha256 handle.
* @param[out] digest @n sha256 result.
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_sha256_final(void *sha256, unsigned char *digest);
/**
* @brief Compute sha256 once.
*
* @param[in] data @n The data to be hashed.
* @param[in] length @n The length of the data, in bytes.
* @param[out] digest @n sha256 result.
*
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_sha256(const void *data, uint32_t length, unsigned char *digest);
/** @} */// end of group_crypt_hash_sha256
/** @defgroup group_crypto_hash_sha384 group_crypto_hash_sha384
* @{
*/
#define SHA384_SIZE_BYTE (48) /*Size of SHA384 result in byte*/
#define SHA384_SIZE_BIT (384) /*Size of SHA384 result in bit*/
/**
* @brief initialize sha384.
*
* @param None.
* @return @n sha384 handle.
* @see None.
* @note None.
*/
void *digest_sha384_init(void);
/**
* @brief Hash chunks of data with using sha384 digest type.
*
* @param[in] sha384 @n The sha384 handle.
* @param[in] data @n The data to be hashed.
* @param[in] length @n The length of the data, in bytes.
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note None.
*/
int digest_sha384_update(void *sha384, const void *data, uint32_t length);
/**
* @brief Extract the sha384 result and place in digest.
*
* @param[in] sha384 @n The sha384 handle.
* @param[out] digest @n sha384 result.
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_sha384_final(void *sha384, unsigned char *digest);
/**
* @brief Compute sha384 once.
*
* @param[in] data @n The data to be hashed.
* @param[in] length @n The length of the data, in bytes.
* @param[out] digest @n sha384 result.
*
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_sha384(const void *data, uint32_t length, unsigned char *digest);
/** @} */// end of group_crypt_hash_sha384
/** @defgroup group_crypto_hash_sha512 group_crypto_hash_sha512
* @{
*/
#define SHA512_SIZE_BYTE (64) /*Size of SHA512 result in byte*/
#define SHA512_SIZE_BIT (512) /*Size of SHA512 result in bit*/
/**
* @brief initialize sha512.
*
* @param None.
* @return @n sha512 handle.
* @see None.
* @note None.
*/
void *digest_sha512_init(void);
/**
* @brief Hash chunks of data with using sha512 digest type.
*
* @param[in] sha512 @n The sha512 handle.
* @param[in] data @n The data to be hashed.
* @param[in] length @n The length of the data, in bytes.
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note None.
*/
int digest_sha512_update(void *sha512, const void *data, uint32_t length);
/**
* @brief Extract the sha512 result and place in digest.
*
* @param[in] sha512 @n The sha512 handle.
* @param[out] digest @n sha512 result.
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_sha512_final(void *sha512, unsigned char *digest);
/**
* @brief Compute sha512 once.
*
* @param[in] data @n The data to be hashed.
* @param[in] length @n The length of the data, in bytes.
* @param[out] digest @n sha512 result.
*
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_sha512(const void *data, uint32_t length, unsigned char *digest);
/** @} */// end of group_crypt_hash_sha512
/** @defgroup group_crypto_hash_hmac group_crypto_hash_hmac
* @{
*/
/**
* @brief Compute hmac with specific digest type (MD5, sha256, .etc).
*
* @param[in] digest_type @n Specify the digest type for hmac.
* @param[in] msg @n The data to be hashed.
* @param[in] msg_len @n The length of the data, in bytes.
* @param[in] key @n The hmac key.
* @param[in] key_len @n The length of the hmac key, in bytes.
* @param[out] digest @n hmac result.
*
* @return
@verbatim
= 0, success.
= -1, failure.
@endverbatim
* @see None.
* @note It is the caller that allocate memory space for digest.
*/
int digest_hmac(enum digest_type type,
const unsigned char *msg, uint32_t msg_len,
const unsigned char *key, uint32_t key_len,
unsigned char *digest);
/** @} */// end of group_crypt_hash_hmac
/** @} */// end of group_crypt_hash
#if defined(__cplusplus) /* If this is a C++ compiler, use C linkage */
}
#endif
#endif /* ALINK_AGENT_EXTERNAL_CHF_CHF_H_ */

View file

@ -0,0 +1,5 @@
NAME := digest_algorithm
$(NAME)_TYPE := share
$(NAME)_SOURCES := digest_algorithm.c CheckSumUtils.c crc.c md5.c
GLOBAL_INCLUDES += .

View file

@ -0,0 +1,47 @@
/*
* Copyright (C) 2015-2017 Alibaba Group Holding Limited
*/
#include <string.h>
#include "digest_algorithm.h"
static int digest_hmac_md5(const unsigned char *msg, uint32_t msg_len,
const unsigned char *key, uint32_t key_len, unsigned char *digest)
{
void *context;
unsigned char k_ipad[65]; /* inner padding key XORd with ipad */
unsigned char k_opad[65]; /* outer padding* key XORd with opad */
unsigned char tk[16];
int i;
if (key_len > 64) {
void *ctx;
ctx = digest_md5_init();
digest_md5_update(ctx, (uint8_t *) key, key_len);
digest_md5_final(ctx, (uint8_t *) tk);
key = tk;
key_len = 16;
}
memset(k_ipad, 0, sizeof(k_ipad));
memset(k_opad, 0, sizeof(k_opad));
memcpy(k_ipad, key, key_len);
memcpy(k_opad, key, key_len);
for (i = 0; i < 64; i++) {
k_ipad[i] ^= 0x36;
k_opad[i] ^= 0x5c;
}
context = digest_md5_init();
digest_md5_update(context, k_ipad, 64);
digest_md5_update(context, (uint8_t *) msg, msg_len);
digest_md5_final(context, (uint8_t *) digest);
context = digest_md5_init();
digest_md5_update(context, k_opad, 64);
digest_md5_update(context, (uint8_t *) digest, 16);
digest_md5_final(context, (uint8_t *) digest);
return 0;
}

View file

@ -0,0 +1,301 @@
/*
* Copyright (c) 2007, Cameron Rich
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the axTLS project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* This file implements the MD5 algorithm as defined in RFC1321
*/
#include <stdint.h>
#include <string.h>
#include "md5.h"
#ifndef STDCALL
#define STDCALL
#endif
#ifndef EXP_FUNC
#define EXP_FUNC
#endif
/* Constants for MD5Transform routine.
*/
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21
#define MD5_SIZE 16
/* ----- static functions ----- */
static void MD5Transform(uint32_t state[4], const uint8_t block[64]);
static void Encode(uint8_t *output, uint32_t *input, uint32_t len);
static void Decode(uint32_t *output, const uint8_t *input, uint32_t len);
static const uint8_t PADDING[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* F, G, H and I are basic MD5 functions.
*/
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
/* ROTATE_LEFT rotates x left n bits. */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation. */
#define FF(a, b, c, d, x, s, ac) { \
(a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define GG(a, b, c, d, x, s, ac) { \
(a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define HH(a, b, c, d, x, s, ac) { \
(a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define II(a, b, c, d, x, s, ac) { \
(a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
/**
* MD5 initialization - begins an MD5 operation, writing a new ctx.
*/
EXP_FUNC void STDCALL MD5_Init(MD5_CTX *ctx)
{
ctx->count[0] = ctx->count[1] = 0;
/* Load magic initialization constants.
*/
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xefcdab89;
ctx->state[2] = 0x98badcfe;
ctx->state[3] = 0x10325476;
}
/**
* Accepts an array of octets as the next portion of the message.
*/
EXP_FUNC void STDCALL MD5_Update(MD5_CTX *ctx, const uint8_t *msg,
int len)
{
uint32_t x;
int i, partLen;
/* Compute number of bytes mod 64 */
x = (uint32_t) ((ctx->count[0] >> 3) & 0x3F);
/* Update number of bits */
if ((ctx->count[0] += ((uint32_t) len << 3)) < ((uint32_t) len << 3)) {
ctx->count[1]++;
}
ctx->count[1] += ((uint32_t) len >> 29);
partLen = 64 - x;
/* Transform as many times as possible. */
if (len >= partLen) {
memcpy(&ctx->buffer[x], msg, partLen);
MD5Transform(ctx->state, ctx->buffer);
for (i = partLen; i + 63 < len; i += 64) {
MD5Transform(ctx->state, &msg[i]);
}
x = 0;
} else {
i = 0;
}
/* Buffer remaining input */
memcpy(&ctx->buffer[x], &msg[i], len - i);
}
/**
* Return the 128-bit message digest into the user's array
*/
EXP_FUNC void STDCALL MD5_Final(uint8_t *digest, MD5_CTX *ctx)
{
uint8_t bits[8];
uint32_t x, padLen;
/* Save number of bits */
Encode(bits, ctx->count, 8);
/* Pad out to 56 mod 64.
*/
x = (uint32_t) ((ctx->count[0] >> 3) & 0x3f);
padLen = (x < 56) ? (56 - x) : (120 - x);
MD5_Update(ctx, PADDING, padLen);
/* Append length (before padding) */
MD5_Update(ctx, bits, 8);
/* Store state in digest */
Encode(digest, ctx->state, MD5_SIZE);
}
/**
* MD5 basic transformation. Transforms state based on block.
*/
static void MD5Transform(uint32_t state[4], const uint8_t block[64])
{
uint32_t a = state[0], b = state[1], c = state[2], d = state[3], x[MD5_SIZE];
Decode(x, block, 64);
/* Round 1 */
FF(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
FF(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
FF(c, d, a, b, x[2], S13, 0x242070db); /* 3 */
FF(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
FF(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
FF(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
FF(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
FF(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
FF(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
FF(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
/* Round 2 */
GG(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
GG(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
GG(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
GG(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
GG(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */
GG(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
GG(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
GG(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
/* Round 3 */
HH(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
HH(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
HH(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
HH(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
HH(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
HH(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
HH(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
HH(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
HH(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
HH(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */
/* Round 4 */
II(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
II(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
II(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
II(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
II(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
II(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
II(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
II(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
II(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
II(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}
/**
* Encodes input (uint32_t) into output (uint8_t). Assumes len is
* a multiple of 4.
*/
static void Encode(uint8_t *output, uint32_t *input, uint32_t len)
{
uint32_t i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (uint8_t) (input[i] & 0xff);
output[j + 1] = (uint8_t) ((input[i] >> 8) & 0xff);
output[j + 2] = (uint8_t) ((input[i] >> 16) & 0xff);
output[j + 3] = (uint8_t) ((input[i] >> 24) & 0xff);
}
}
/**
* Decodes input (uint8_t) into output (uint32_t). Assumes len is
* a multiple of 4.
*/
static void Decode(uint32_t *output, const uint8_t *input, uint32_t len)
{
uint32_t i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[i] = ((uint32_t) input[j]) | (((uint32_t) input[j + 1]) << 8) | (((
uint32_t) input[j + 2]) << 16) | (((uint32_t) input[j + 3]) << 24);
}
}

View file

@ -0,0 +1,26 @@
/*
* Copyright (C) 2015-2017 Alibaba Group Holding Limited
*/
#ifndef _MD5_H_
#define _MD5_H_
#include <stdint.h>
#if defined(__cplusplus) /* If this is a C++ compiler, use C linkage */
extern "C"
{
#endif
typedef struct {
uint32_t state[4]; /* state (ABCD) */
uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */
uint8_t buffer[64]; /* input buffer */
} MD5_CTX;
void MD5_Init(MD5_CTX *ctx);
void MD5_Update(MD5_CTX *ctx, const uint8_t *msg, int len);
void MD5_Final(uint8_t *digest, MD5_CTX *ctx);
#if defined(__cplusplus) /* If this is a C++ compiler, use C linkage */
}
#endif
#endif

View file

@ -0,0 +1,851 @@
/*
* FILE: sha2.c
* AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
*/
#include <stdint.h>
#include <string.h>
extern uint32_t os_be32toh(uint32_t data);
extern uint32_t os_htobe32(uint32_t data);
extern uint64_t os_be64toh(uint64_t data);
extern uint64_t os_htobe64(uint64_t data);
/*** SHA-256/384/512 Various Length Definitions ***********************/
/*** SHA-256/384/512 Various Length Definitions ***********************/
#define SHA256_BLOCK_LENGTH 64
#define SHA256_DIGEST_LENGTH 32
#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
#define SHA384_BLOCK_LENGTH 128
#define SHA384_DIGEST_LENGTH 48
#define SHA384_DIGEST_STRING_LENGTH (SHA384_DIGEST_LENGTH * 2 + 1)
#define SHA512_BLOCK_LENGTH 128
#define SHA512_DIGEST_LENGTH 64
#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1)
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
typedef uint8_t sha2_byte; /* Exactly 1 byte */
typedef uint32_t sha2_word32; /* Exactly 4 bytes */
typedef uint64_t sha2_word64; /* Exactly 8 bytes */
typedef struct _SHA256_CTX {
uint32_t state[8];
uint64_t bitcount;
uint8_t buffer[SHA256_BLOCK_LENGTH];
} SHA256_CTX;
typedef struct _SHA512_CTX {
uint64_t state[8];
uint64_t bitcount[2];
uint8_t buffer[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
typedef SHA512_CTX SHA384_CTX;
static void SHA256_Init(SHA256_CTX *);
static void SHA256_Update(SHA256_CTX *, const uint8_t *, uint32_t);
static void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX *);
static void SHA384_Init(SHA384_CTX *);
static void SHA384_Update(SHA384_CTX *, const uint8_t *, uint32_t);
static void SHA384_Final(uint8_t[SHA384_DIGEST_LENGTH], SHA384_CTX *);
static void SHA512_Init(SHA512_CTX *);
static void SHA512_Update(SHA512_CTX *, const uint8_t *, uint32_t);
static void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX *);
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) { \
(w)[0] += (sha2_word64)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
#define MEMSET_BZERO(p,l) memset((p), 0, (l))
#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
* S is a ROTATION) because the SHA-256/384/512 description document
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
* same "backwards" definition.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define _S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x) (_S32(2, (x)) ^ _S32(13, (x)) ^ _S32(22, (x)))
#define Sigma1_256(x) (_S32(6, (x)) ^ _S32(11, (x)) ^ _S32(25, (x)))
#define sigma0_256(x) (_S32(7, (x)) ^ _S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x) (_S32(17, (x)) ^ _S32(19, (x)) ^ R(10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
* library -- they are intended for private internal visibility/use
* only.
*/
static void SHA512_Last(SHA512_CTX *);
static void SHA256_Transform(SHA256_CTX *, const sha2_word32 *);
static void SHA512_Transform(SHA512_CTX *, const sha2_word64 *);
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
static const sha2_word32 K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
static const sha2_word32 sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
static const sha2_word64 K512[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-384 */
static const sha2_word64 sha384_initial_hash_value[8] = {
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
/* Initial hash value H for SHA-512 */
static const sha2_word64 sha512_initial_hash_value[8] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
static inline int os_is_big_endian(void)
{
uint32_t data = 0xFF000000;
if (0xFF == *(uint8_t *) & data) {
return 1; //big endian
}
return 0; //little endian
}
//reverse byte order
static inline uint32_t reverse_32bit(uint32_t data)
{
data = (data >> 16) | (data << 16);
return ((data & 0xff00ff00UL) >> 8) | ((data & 0x00ff00ffUL) << 8);
}
uint32_t os_htole32(uint32_t data)
{
if (os_is_big_endian()) {
return reverse_32bit(data);
}
return data;
}
static inline uint64_t reverse_64bit(uint64_t data)
{
data = (data >> 32) | (data << 32);
data = ((data & 0xff00ff00ff00ff00ULL) >> 8) | ((data & 0x00ff00ff00ff00ffULL)
<< 8);
return ((data & 0xffff0000ffff0000ULL) >> 16) | ((data & 0x0000ffff0000ffffULL)
<< 16);
}
//big endian to host byte order
uint32_t os_be32toh(uint32_t data)
{
return os_htobe32(data);
}
//host byte order to big endian
uint32_t os_htobe32(uint32_t data)
{
if (os_is_big_endian()) {
return data;
}
return reverse_32bit(data);
}
//host to big endian
uint64_t os_htobe64(uint64_t data)
{
if (os_is_big_endian()) {
return data;
}
return reverse_64bit(data);
}
//big endian to host
uint64_t os_be64toh(uint64_t data)
{
return os_htobe64(data);
}
/*** SHA-256: *********************************************************/
static void SHA256_Init(SHA256_CTX *context)
{
if (context == (SHA256_CTX *) 0) {
return;
}
MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
static void SHA256_Transform(SHA256_CTX *context, const sha2_word32 *data)
{
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
sha2_word32 T1, T2, *W256;
int j;
W256 = (sha2_word32 *) context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
/* Copy data while converting to host byte order */
W256[j] = os_htobe32(*data++);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j + 1) & 0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j + 14) & 0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f,
g) + K256[j] + (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
static void SHA256_Update(SHA256_CTX *context, const sha2_byte *data,
uint32_t len)
{
unsigned int os_freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
if (context == NULL || data == NULL) {
return;
}
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much os_free space is available in the buffer */
os_freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= os_freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(&context->buffer[usedspace], data, os_freespace);
context->bitcount += os_freespace << 3;
len -= os_freespace;
data += os_freespace;
SHA256_Transform(context, (sha2_word32 *) context->buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = os_freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
SHA256_Transform(context, (sha2_word32 *) data);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->buffer, data, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = os_freespace = 0;
}
static void SHA256_Final(sha2_byte digest[], SHA256_CTX *context)
{
sha2_word32 *d = (sha2_word32 *) digest;
unsigned int usedspace;
/* Sanity check: */
if (context == NULL) {
return;
}
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte *) 0) {
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
context->bitcount = os_htobe64(context->bitcount);
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
MEMSET_BZERO(&context->buffer[usedspace],
SHA256_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA256_BLOCK_LENGTH) {
MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
SHA256_Transform(context, (sha2_word32 *) context->buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
}
} else {
/* Set-up for the last transform: */
MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Set the bit count: */
*(sha2_word64 *) & context->buffer[SHA256_SHORT_BLOCK_LENGTH] =
context->bitcount;
/* Final transform: */
SHA256_Transform(context, (sha2_word32 *) context->buffer);
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
context->state[j] = os_be32toh(context->state[j]);
*d++ = context->state[j];
}
}
}
/* Clean up state data: */
MEMSET_BZERO(context, sizeof(*context));
usedspace = 0;
}
/*** SHA-512: *********************************************************/
static void SHA512_Init(SHA512_CTX *context)
{
if (context == (SHA512_CTX *) 0) {
return;
}
MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
static void SHA512_Transform(SHA512_CTX *context, const sha2_word64 *data)
{
sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
sha2_word64 T1, T2, *W512 = (sha2_word64 *) context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
/* Convert TO host byte order */
W512[j] = os_be64toh(*data++);
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W512[(j + 1) & 0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j + 14) & 0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f,
g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
static void SHA512_Update(SHA512_CTX *context, const sha2_byte *data,
uint32_t len)
{
unsigned int os_freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
if (context == NULL || data == NULL) {
return;
}
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much os_free space is available in the buffer */
os_freespace = SHA512_BLOCK_LENGTH - usedspace;
if (len >= os_freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(&context->buffer[usedspace], data, os_freespace);
ADDINC128(context->bitcount, os_freespace << 3);
len -= os_freespace;
data += os_freespace;
SHA512_Transform(context, (sha2_word64 *) context->buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
ADDINC128(context->bitcount, len << 3);
/* Clean up: */
usedspace = os_freespace = 0;
return;
}
}
while (len >= SHA512_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
SHA512_Transform(context, (sha2_word64 *) data);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->buffer, data, len);
ADDINC128(context->bitcount, len << 3);
}
/* Clean up: */
usedspace = os_freespace = 0;
}
static void SHA512_Last(SHA512_CTX *context)
{
unsigned int usedspace;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
context->bitcount[0] = os_htobe64(context->bitcount[0]);
context->bitcount[1] = os_htobe64(context->bitcount[1]);
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
MEMSET_BZERO(&context->buffer[usedspace],
SHA512_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA512_BLOCK_LENGTH) {
MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
SHA512_Transform(context, (sha2_word64 *) context->buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
}
} else {
/* Prepare for final transform: */
MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Store the length of input data (in bits): */
*(sha2_word64 *) & context->buffer[SHA512_SHORT_BLOCK_LENGTH] =
context->bitcount[1];
*(sha2_word64 *) & context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] =
context->bitcount[0];
/* Final transform: */
SHA512_Transform(context, (sha2_word64 *) context->buffer);
}
static void SHA512_Final(sha2_byte digest[], SHA512_CTX *context)
{
sha2_word64 *d = (sha2_word64 *) digest;
/* Sanity check: */
if (context == NULL) {
return;
}
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte *) 0) {
SHA512_Last(context);
/* Save the hash data for output: */
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
context->state[j] = os_be64toh(context->state[j]);
*d++ = context->state[j];
}
}
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(*context));
}
/*** SHA-384: *********************************************************/
static void SHA384_Init(SHA384_CTX *context)
{
if (context == (SHA384_CTX *) 0) {
return;
}
MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
static void SHA384_Update(SHA384_CTX *context, const sha2_byte *data,
uint32_t len)
{
SHA512_Update((SHA512_CTX *) context, data, len);
}
static void SHA384_Final(sha2_byte digest[], SHA384_CTX *context)
{
sha2_word64 *d = (sha2_word64 *) digest;
/* Sanity check: */
if (context == NULL) {
return;
}
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte *) 0) {
SHA512_Last((SHA512_CTX *) context);
/* Save the hash data for output: */
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 6; j++) {
context->state[j] = os_be64toh(context->state[j]);
*d++ = context->state[j];
}
}
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(context));
}
#if 0
/*
* Constant used by SHA256/384/512_End() functions for converting the
* digest to a readable hexadecimal character string:
*/
static const char *sha2_hex_digits = "0123456789abcdef";
static char *SHA256_End(SHA256_CTX *context, char buffer[])
{
sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
OS_ASSERT(context != (SHA256_CTX *) 0, NULL);
if (buffer != (char *)0) {
SHA256_Final(digest, context);
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
return buffer;
}
static char *SHA512_End(SHA512_CTX *context, char buffer[])
{
sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
OS_ASSERT(context != (SHA512_CTX *) 0, NULL);
if (buffer != (char *)0) {
SHA512_Final(digest, context);
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
return buffer;
}
static char *SHA384_End(SHA384_CTX *context, char buffer[])
{
sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
OS_ASSERT(context != (SHA384_CTX *) 0, NULL);
if (buffer != (char *)0) {
SHA384_Final(digest, context);
for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
return buffer;
}
#endif

View file

@ -0,0 +1,8 @@
src = Split('''
CheckSumUtils.c
crc.c
digest_algorithm.c
md5.c
''')
component = aos_component('digest_algorithm', src)