24 lines
1.2 KiB
Mathematica
24 lines
1.2 KiB
Mathematica
|
function [w,d,b,T,Tau] = OrbitalElements2TransitParams(n,aor,ex,ey,I,Omega,r)
|
||
|
%OrbitalElements2TransitParams: returns the duration, ingress-egress time and angular velocity as a
|
||
|
%function of the orbital properties.
|
||
|
|
||
|
%inputs: n - mean motion, aor - semi-major axis over stellar radius, ex,ey - eccentricity vector components, x
|
||
|
%pointing at observer, I,Omega - inclination with respect to the planet xy,
|
||
|
%r - planetary radius in units of stellar radii.
|
||
|
%where x points at observer. Outputs: T=Duration, Tau=ingress/egress time,
|
||
|
%w = angular velocity at mid-transit, d = planet-star distance at
|
||
|
%mid-transit, b = impact parameter
|
||
|
|
||
|
%Yair Judkovsky, 9.9.2020
|
||
|
|
||
|
w = n.*(1+ex).^2./(1-ex.^2-ey.^2).^(3/2);
|
||
|
d = aor.*(1-ex.^2-ey.^2)./(1+ex);
|
||
|
b = d.*sin(I).*sin(Omega);
|
||
|
|
||
|
if nargout>3
|
||
|
asin0 = asin(sqrt(((1+ex).^2./(aor.^2.*(1-ex.^2-ey.^2).^2)-sin(I).^2.*sin(Omega).^2)./(1-sin(I).^2.*sin(Omega).^2)));
|
||
|
T=1./n*2.*((1-ex.^2-ey.^2).^(3/2))./((1+ex).^2).*asin0;
|
||
|
asin2 = asin(sqrt(((1+r).^2.*(1+ex).^2./(aor.^2.*(1-ex.^2-ey.^2).^2)-sin(I).^2.*sin(Omega).^2)./(1-sin(I).^2.*sin(Omega).^2)));
|
||
|
asin1 = asin(sqrt(((1-r).^2.*(1+ex).^2./(aor.^2.*(1-ex.^2-ey.^2).^2)-sin(I).^2.*sin(Omega).^2)./(1-sin(I).^2.*sin(Omega).^2)));
|
||
|
Tau=1./n.*((1-ex.^2-ey.^2).^(3/2))./((1+ex).^2).*(asin2-asin1);
|
||
|
end
|